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GROUP ALGEBRAS WITH CENTRALLY
METABELIAN UNIT GROUPS

Meena Sahai

Abstract
Given a field K of characteristic p > 2 and a finite group G,
necessary and sufficient conditions for the unit group U(KG) of
the group algebra KG to be centrally metabelian are obtained. It
is observed that U(KG) is centrally metabelian if and only if KG
is Lie centrally metabelian.

1. Introduction

Let G be a finite group and let K be a field of characteristic p > 0,
p �= 2. Necessary and sufficient conditions for the unit group U(KG) to
be metabelian were recently obtained by Shalev [5]. In CharK = p ≥ 5,
it turns out that U(KG) is metabelian if and only if G is abelian and in
CharK = 3, U(KG) is metabelian if and only if either G is abelian or
G′ is central cyclic of order 3. The characterization of metabelian group
algebras by Rosenberger and Levin [2] shows that for a finite group G
and K a field with CharK �= 2, U(KG) is metabelian if and only if
the group algebra KG is Lie metabelian. Also, in this connection, we
have an important result due to Sharma and Srivastava [6, Theorem 4.1],
which is, δ2(U(R))−1 ⊆ δ2(L(R))R for arbitrary rings R. This shows [6,
Corollary 4.2] that the unit group of a Lie metabelian ring is a metabelian
group.

The aim, in this paper, is to find necessary and sufficient conditions for
the unit group U(KG) to be centrally metabelian. Recall that a group G
is centrally metabelian if the second derived term δ2(G) is contained in
the centre ζ(G), that is, (δ2(G), G) = 1. Recently Sharma and Srivastava
[6] and Sahai and Srivastava [4] have obtained necessary and sufficient
conditions for the group algebra KG to be Lie centrally metabelian. Our
investigations show that U(KG) is centrally metabelian as a group if and
only if KG is Lie centrally metabelian, at least when CharK = p �= 2
and G is a finite group. This is not true in general as Tasic’ [7] has given
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example of a Lie centrally metabelian algebra of characteristic 2 whose
unit group is not centrally metabelian.

Our notations are standard. We use (x, y) = x−1y−1xy for group
commutators and [x, y] = xy − yx for Lie commutators.

We now start with our work.

2. Sufficient conditions

Theorem 2.1. Let K be a field, CharK = p �= 2 and let G be a
group, finite or infinite. If KG is Lie centrally metabelian, then U(KG)
is centrally metabelian.

Proof: Suppose that KG is Lie centrally metabelian. By [4, Theo-
rem B] either G is abelian or CharK = 3 and G′ = C3. If G is abelian,
then clearly U(KG) is abelian. Assume that CharK = 3 and G′ = 〈t〉,
t3 = 1. Since G′ is normal in G, we see that (t−1)2 = t2 + t+1 is central
in KG. Also if G′ is central, then by [2], KG is Lie metabelian and by
[6, Corollary 4.2], U(KG) is metabelian. This is also given in Shalev [5,
Theorem B] for finite groups.

So we are left with the case when G′ = 〈t〉, t3 = 1, CharK = 3 and t is
not central in G. Now ∆(G′)KG = (t−1)KG. In this case, γ3(G) = G′,
δ(1)(KG) = ∆(G′)KG and δ(2)(KG) = ∆(G′)2KG = (t − 1)2KG. We
know by [6, Theorem 4.1], δ2(U(KG))−1 ⊆ δ2(L(KG))KG ⊆ δ(2)(KG).
So δ2(U(KG)) ⊆ 1 + (t − 1)2KG. Let u ∈ δ2(U(KG)) and g ∈ G.
Then u − 1 ∈ (t − 1)2KG and we have (u, g) − 1 = u−1g−1[u − 1, g] ∈
KG[(t − 1)2KG,KG]. Thus (u, g) − 1 ∈ (t − 1)2∆(G′)KG = 0, since
(t − 1)2 is central in KG and ∆(G′)3 = 0. This shows that (u, g) = 1
for every u ∈ δ2(U(KG)) and for every g ∈ G and hence δ2(U(KG)) is
contained in the centre of KG, as desired.

3. Necessary conditions

We have seen in the previous section that for arbitrary groups G, KG
Lie centrally metabelian implies either G is abelian or CharK = 3 and
G′ = C3 and this, in turn, implies that the unit group U(KG) is centrally
metabelian. For finite groups, now we assume that U(KG) is centrally
metabelian and establish the converse.

We first make the following observation:

Lemma 3.1. GL2(Z3) is not centrally metabelian.
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Proof: Let A=
(
−1 1
0 −1

)
, B=

(
1 −1
−1 −1

)
in SL2(Z3)=GL2(Z3)′.

Then A−1B−1AB=
(

1 1
1 −1

)
belongs to GL2(Z3)′′, however,

(
1 1
1 −1

)

is not in the centre of GL2(Z3).

Lemma 3.2. Let G be a finite group and let CharK = p �= 2 such
that the unit group U(KG) is centrally metabelian. Then G/Op(G) is
abelian.

Proof: We have the exact sequence of groups

1 → 1 + J(KG) → U(KG) → U(KG/J(KG)) → 1.

Now KG/J(KG) ∼=
∏m

i=1 Mni
(Di) and so

U(KG/J(KG)) ∼=
∏m

i=1 GLni(Di). But U(KG) is centrally metabelian
implies U(KG/J(KG)) is centrally metabelian. Thus GLni(Di) is cen-
trally metabelian for all i and therefore all Di’s are fields and in view of
Lemma 3.1, ni = 1 for all i. This is because GLn(D) is solvable, n �= 1,
CharD �= 2, implies n = 2, D = Z3 and thus GLn(D) = GL2(Z3) but by
Lemma 3.1, GL2(Z3) is not centrally metabelian. Thus U(KG/J(KG))
is a direct product of multiplicative groups of fields and hence abelian.
But then U(KG)/{1 + J(KG)} is abelian and U(KG)′ ⊆ 1 + J(KG).
We get G′ ⊆ G ∩ {1 + J(KG)} = Op(G) and therefore, G/Op(G) is
abelian, as desired.

Corollary 3.3. Let CharK = p �= 2 and let G be a finite group such
that Op(G) = 1 and U(KG) is centrally metabelian. Then G must be
abelian.

Corollary 3.4. Let CharK = p �= 2 and let G be a finite group such
that U(KG) is solvable. Then G = P �H, a split extension of a p-group
P by a p′-group H.

Proof: Since U(KG) is solvable, either G/Op(G) is abelian or p = 3
and G/O3(G) is a 2-group, see [3]. In either case, Sylow p-subgroup
of G is normal in G. Let it be P . Now |P | and |G : P | are relatively
prime, hence by Schur-Zassenhaus Theorem G = P � H, with desired
properties.

Lemma 3.5. Let G be a finite p-group, p ≥ 5 and let K be a field
with CharK = p such that U(KG) is centrally metabelian. Then G is
abelian.
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Proof: If not, let G be a counter example of least order. Then G =
〈x, y〉, z = (x, y) �= 1, G′ = 〈z〉, zp = 1 and z central.

Let u1 = (1 + x, y) and u2 = (1 + y, x), then using centrality of z, we
get

(u1, u2)−1= u−1
1 u−1

2 [u1 − 1, u2 − 1]

= u−1
1 u−1

2 [(1 + x)−1y−1[1 + x, y], (1 + y)−1x−1[1 + y, x]]

= u−1
1 u−1

2 [(1+x)−1y−1yx,(1+y)−1x−1xy]((x, y)−1)((y, x)−1)

= −u−1
1 u−1

2 [(1+x)−1(1+x−1),(1+y)−1(1+y−1)](z−1)2z−1

= −u−1
1 u−1

2 [(1 + x)−1, (1 + y)−1](z − 1)2z−1

= −u−1
1 u−1

2 (1 + x)−1(1 + y)−1[1 + x, 1 + y]

(1 + y)−1(1 + x)−1(z − 1)2z−1

= −u−1
1 u−1

2 (1+x)−1(1+y)−1yx(1+y)−1(1+x)−1(z−1)3z−1

= −u−1
1 u−1

2 γ(z − 1)3z−1,

where γ = (1 + x)−1(1 + y)−1yx(1 + y)−1(1 + x)−1.
Since (u1, u2) is central in KG, so

0 = [(u1, u2) − 1, x]

= −[u−1
1 u−1

2 γ, x](z − 1)3z−1

= −{u−1
1 [u−1

2 , x]+[u−1
1 , x]u−1

2 }γ(z − 1)3z−1−u−1
1 u−1

2 [γ, x](z − 1)3z−1.

It is not difficult to see that both [u−1
2 , x] and [u−1

1 , x] belong to
KG(z − 1)2. Now multiplying by (z − 1)p−5 and using (z − 1)p = 0,
given p ≥ 5, we get [γ, x](z − 1)p−2 = 0. With routine calculations,

[γ, x] = (1 + x)−1[(1 + y)−1yx(1 + y)−1, x](1 + x)−1

= (1 + x)−1(1 + y)−1[y, x]x(1 + y)−1 + yx[(1 + y)−1, x](1 + x)−1

+ (1 + x)−1[(1 + y)−1, x]yx(1 + y)−1(1 + x)−1.

Using [(1+ y)−1, x] = −(1+ y)−1[1+ y, x](1+ y)−1 = (1+ y)−1yx(1+
y)−1(z − 1), we get

[γ, x] = (1 + x)−1(1 + y)−1{−yx2(1 + y)−1 + yx(1 + y)−1yx(1 + y)−1}
(1 + x)−1(z − 1)

+ (1 + x)−1(1 + y)−1yx(1 + y)−1yx(1 + y)−1(1 + x)−1(z − 1)

= (1 + x)−1(1 + y)−1yx{−x + 2(1 + y)−1yx}
(1 + y)−1(1 + x)−1(z − 1)

= (1 + x)−1(1 + y)−1yx(1 + y)−1{−(1 + y)x + 2yx}
(1 + y)−1(1 + x)−1(z − 1)

= −(1+x)−1(1+y)−1yx(1+y)−1(y−1)x(1 + y)−1(1 + x)−1(z−1).
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Now [γ, x](z − 1)p−2 = 0 implies (y − 1)(z − 1)p−1 = 0. So y ∈ 〈z〉 and
y is central. But then z = (x, y) = 1, a contradiction.

We now apply this lemma to settle the case when CharK = p ≥ 5 and
G is an arbitrary finite group.

Theorem 3.6. Let CharK = p ≥ 5 and let G be any finite group
such that U(KG) is centrally metabelian. Then G is abelian.

Proof: By Corollary 3.4, G = P �H, a split extension of a p-group P
by a p′-group H. By Corollary 3.3, H is abelian and by Lemma 3.5, P
is abelian. Suppose, if possible, G is non-abelian. Then (P, h) �= 1 for
some 1 �= h ∈ H. Since h induces a p′-automorphism on P , by [1, Theo-
rem 5.3.6], (P, h, h) = (P, h). Let L = 〈(P, h), h〉. Then L′ = (P, h, h) =
(P, h) �= 1. The Jacobson radical J = J(KL) = ∆((P, h))KL. Since
1 + J ⊆ U(KL), (1 + J, h) ⊆ U(KL)′ and ((1 + J, h), (P, h)) ⊆ U(KG)′′

which is central in U(KG).
Let x, y, z ∈ (P, h). Put a = 1 − x, then a ∈ J . Let u1 = (1 − ha, h).

Then

u1 = (1 − ha)−1(1 − ha)h

= {1 + ha + (ha)2 + (ha)3 + · · · }(1 − hah)

= 1 + ha− hah + (ha)2 − (ha)hah

+ (ha)3 − (ha)2hah + (ha)4 − (ha)3hah + · · ·
≡ 1 + h(a− ah) + h2ah(a− ah) + h3ah2

ah(a− ah) (mod J4).

Now, since P is abelian, working modulo J4, we have

u2 = (u1, y)

= 1 + u−1
1 (uy

1 − u1)

≡ 1 + u−1
1 {(hy − h)(a− ah) + (h2y − h2)ah(a− ah)

+ (h3y − h3)ah2
ah(a− ah)}

≡ 1 + u−1
1 h{(h, y) − 1 + h((h2, y) − 1)ah+h2((h3, y)−1)ah2

ah}(a−ah)

≡ 1 + u−1
1 h{(h, y) − 1 + h((h2, y) − 1)ah}(a− ah), (mod J4),

since (h3, y)− 1 ∈ J . Now u2 is central. So we have working modulo J4

0 = [u2 − 1, z]

≡ [u−1
1 h{(h, y) − 1 + h((h2, y) − 1)ah}(a− ah), z]

≡ [u−1
1 , z]h{(h, y) − 1 + h((h2, y) − 1)ah}(a− ah)

+ u−1
1 [h((h, y) − 1) + h2((h2, y) − 1)ah, z](a− ah)

≡ u−1
1 {[h, z]((h, y) − 1) + [h2, z]((h2, y) − 1)ah}(xh − x),
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since [u−1
1 , z] = −u−1

1 [u1, z]u−1
1 ∈ J2. Thus we get ((x, h) − 1)((y, h) −

1)((z, h) − 1) ∈ J4 for all x, y, z ∈ (P, h) = (P, h, h). So J3 ⊆ J4 and
J3 = 0, since J is nilpotent. Thus (∆((P, h)))3 = 0 and ((P, h) − 1)3 =
0. Now CharK = p ≥ 5 and (P, h) is a p-group implies (P, h) = 1,
a contradiction to our assumption that (P, h) �= 1. Thus G must be
abelian.

Remark 3.7. The entire proof of Theorem 3.6 goes through upto
(∆((P, h)))3 = 0 in Char K=3 also if we assume that P is abelian.

We, now, turn to CharK = 3.

Lemma 3.8. Let CharK = p = 3 and let G be a finite group of odd
order such that U(KG) is centrally metabelian. Then G = P � H, P a
p-group, H an abelian p′-group. Further G′ = P ′.

Proof: By Corollary 3.3 and 3.4, G = P�H, P a p-group, H an abelian
p′-group. Assume, further, that P is abelian. Then G′ = (P,H). If G′ �=
1, choose x ∈ P , h ∈ H such that (x, h, h) �= 1 which is possible because
(P, h, h) = (P, h) �= 1 for some h ∈ H. By Remark 3.7, (∆((P, h)))3 = 0.
Now (P, h) is a p-group, p = 3, so (P, h) is cyclic of order 3. Then (P, h) =
〈(x, h)〉. It is easy to see that (x, h)h = (x, h)(x, h, h) ∈ (P, h), hence
(x, h)h = (x, h) or (x, h)−1. If (x, h)h = (x, h)−1, then (x, h)h2

= (x, h)
implying (x, h)h = (x, h), because order of h is odd. Thus (x, h, h) = 1,
a contradiction. Hence G′ = (P,H) = 1 and G is abelian. So G′ = P ′.

Now let P be non-abelian. By applying the above case to the group
G/P ′, we get (P,H) ≤ P ′ and so G′ = P ′ in this case also.

Next result is for finite 3-groups.

Proposition 3.9. Suppose that CharK = 3 and P is a finite 3-group
such that U(KP ) is centrally metabelian. Then either P is abelian or
P ′ = C3.

Proof: If not, let G be a minimal counter example. Then |G′| = 9 and
we have the following three cases.

Case (i): G′ is central cyclic of order 9.
Let G′ = 〈z, 〉, z = (x, y), x, y ∈ G, z9 = 1. Exactly as in the proof of

Lemma 3.5, G = 〈x, y〉, z = (x, y) �= 1, and we conclude that (y− 1)(z−
1)8 = 0. Thus y ∈ 〈z〉 ⊆ ζ(G) and so (x, y) = 1, a contradiction. Hence
this case will not arise.

Case (ii): G′ is central and G′ = C3 × C3.
Clearly ∆(G′)5 = 0. Since G′ is not cyclic, there exist elements

x, y1, y2 ∈ G such that z1 = (x, y1) �= 1 and z2 = (x, y2) /∈ 〈z1〉, see
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[4, proof of Theorem B]. Let u1 = (1 + x, y1), u2 = (1 + y2, x). Then
exactly as in the proof of Lemma 3.5, we get

(u1, u2) − 1 = −u−1
1 u−1

2 γ(z1 − 1)(z2 − 1)2z−1
2 ,

where γ = (1 + x)−1(1 + y2)−1y2x(1 + y2)−1(1 + x)−1. Hence

0 = [(u1, u2) − 1, y1]

= −[u−1
1 u−1

2 γ, y1](z1 − 1)(z2 − 1)2z−1
2

= −{[u−1
1 u−1

2 , y1]γ + u−1
1 u−1

2 [γ, y1]}(z1 − 1)(z2 − 1)2z−1
2 .

We get [γ, y1](z1 − 1)(z2 − 1)2 = 0, first term above being 0 be-
cause [u−1

1 u−1
2 , y1] ∈ ∆(G′)2KG and ∆(G′)5 = 0. Now −[γ−1, y1] =

γ−1[γ, y1]γ−1 and z1, z2 are central. So [γ−1, y1](z1 − 1)(z2 − 1)2 = 0.
Now

γ−1 = (1 + x)(1 + y2)(y2x)−1(1 + y2)(1 + x)

= (1 + x)(1 + y2)z2y
−1
2 x−1(1 + y2)(1 + x)

= (1 + x)(1 + y−1
2 )(z2 + yx

2 z2)(1 + x−1)

= (1 + x)(1 + y−1
2 )(z2 + y2)(1 + x−1).

Since G′ = C3 ×C3, let (y1, y2) = zi
1z

j
2 for some 0 ≤ i, j ≤ 2. Now using

(zi
1 − 1)(z1 − 1) = i(z1 − 1)2, z2(z2 − 1)2 = (z2 − 1)2, and expanding

[γ−1, y1] in the usual way, we get

{y1x(1 + y−1
2 )(1 + y2)(1 + x−1) + i(1 + x)y1y

−1
2 (1 + y2)(1 + x−1)

− i(1 + x)(1 + y−1
2 )y2y1(1 + x−1)

− (1 + x)(1 + y−1
2 )(1 + y2)x−1y1}(z1 − 1)2(z2 − 1)2 = 0.

Since [α, β] ∈ ∆(G′)KG for all α, β ∈ KG and ∆(G′)5 = 0, on combining
first term with last term and second term with third term, we get, using
[α, β](z1 − 1)2(z2 − 1)2 = 0, that

0 = {(y1x− x−1y1)(1 + y−1
2 )(1 + y2)

+ i(1 + x)(y1y
−1
2 − y2y1)(1 + x−1)}(z1 − 1)2(z2 − 1)2

= {y1x
−1(x2 − 1)(1 + y2)2y−1

2

+ i(1 + x)2(1 − y2
2)y−1

2 y1x
−1}(z1 − 1)2(z2 − 1)2

= y1x
−1(1 + x){(x− 1)(y2 + 1)

+ i(1 + x)(1 − y2)}(1 + y2)y−1
2 (z1 − 1)2(z2 − 1)2.



450 M. Sahai

We have {(x− 1)(y2 + 1) + i(x + 1)(1− y2)}(z1 − 1)2(z2 − 1)2 = 0. It is
not difficult to see that this is not possible for any i = 0, 1, 2.

Case (iii): G′ is not central in G.
G is nilpotent, |G′| = 9, γ3(G) �= 1 implies γ3(G) = C3 and γ4(G) = 1.
Choose w ∈ G′, x ∈ G such that z = (x,w) �= 1. Then z ∈ ζ(G),

z3 = 1 and (1+x,w,w) is central in KG. Also (x,G) � γ3(G). For other-
wise (x,G) will be in ζ(G) and then (x, g−1, h)(g, h−1, x)(h, x−1, g) = 1,
implies (g, h−1, x) = 1 for all g, h ∈ G. So (G′, x) = 1 and z = (x,w) = 1.
Choose y ∈ G such that (x, y) /∈ γ3(G). Let u = (1 + x,w), then

(1 + x,w,w) = 1 + u−1w−1[u− 1, w]

= 1 + u−1w−1[(1 + x)−1w−1[1 + x,w], w]

= 1 + u−1w−1[(1 + x)−1w−1wx(z − 1), w]

= 1 + u−1w−1(1 + x)−1[x,w](1 + x)−1(z − 1)

= 1 + u−1w−1(1 + x)−1wx(1 + x)−1(z − 1)2

= 1 + u−1(1 + xz)−1(1 + x−1)−1(z − 1)2.

Now [(u,w), y] = 0 implies [(1+xz)−1(1+x−1)−1, y](z−1)2 = 0, because
[u−1, y] ∈ (z − 1)KG and (z − 1)3 = 0. Solving this further, we have

0 = [(1 + x−1)(1 + xz), y](z − 1)2

= [x−1 + xz, y](z − 1)2

= [x−1 + x, y](z − 1)2.

Hence

0 = {−x−1[x, y]x−1 + [x, y]}(z − 1)2

= {−x−1yx((x, y) − 1)x−1 + yx((x, y) − 1)}(z − 1)2

= {−x−1y((x, y)x−1 − 1) + yx((x, y) − 1)}(z − 1)2

= {−x−1y((x, y)(x, y, x−1) − 1) + yx((x, y) − 1)}(z − 1)2

= {−x−1y + yx}((x, y) − 1)(z − 1)2,

since (x, y, x−1) ∈ γ3(G) = 〈z〉. This gives yx{x−1y−1x−1y− 1}((x, y)−
1)(z − 1)2 = 0 and so {(y, x)xx−2 − 1}((x, y) − 1)(z − 1)2 = 0. Since
(x, y) /∈ γ3(G), it follows that (y, x)xx−2 is in G′ and so x−2 ∈ G′. But
then x ∈ G′ as order of x is odd. This is a contradiction as (x, y) /∈ γ3(G).

Thus we have a contradiction in all the three cases, so either P is
abelian or P ′ = C3.
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Corollary 3.10. Let CharK = 3 and let G be a finite group of odd
order such that U(KG) is centrally metabelian. Then either G is abelian
or G′ is cyclic of order 3.

Proof: It can be deduced easily from Lemma 3.8 and Proposition 3.9.

Now we shall study the case when G is a group of even order.

Lemma 3.11. Let G = P � 〈h〉, P a finite 3-group, o(h) is even
and coprime to 3 and let CharK = 3, such that U(KG) is centrally
metabelian. Then either G′ = 1 or G′ = C3.

Proof: If (P, h) ⊆ P ′, then G′ = P ′ and by Proposition 3.9, G′ = 1 or
C3. So we are through. Assume that (P, h) � P ′. Then z = (x, h) /∈ P ′

for some x ∈ P .

First suppose that P is abelian. Consider the group L = 〈(P, h), h〉.
By Remark 3.7, (∆((P, h)))3 = 0 and hence (P, h) is cyclic of order 3.
So G′ = (P, h) = C3, since P ′ = 1.

Now let P be non-abelian. Then P ′ = C3 = 〈t〉, say. Applying
the above case to G/P ′, we have G′/P ′ = (P, h)P ′/P ′ ∼= C3. Then
G′/P ′ = 〈zP ′〉, since z /∈ P ′. Thus z3 ∈ P ′. This gives that |G′| = 9
and hence G′ is abelian.

Again take L = 〈(P, h), h〉, then L′ = (P, h, h) = (P, h) = C3, since
U(KL) is centrally metabelian, (P, h) is abelian and we can apply Re-
mark 3.7. So (P, h) = 〈z〉, z3 = 1. Also (z, h) ∈ (P, h), (z, h) �= 1
and so (z, h) = z and zh = z−1. Clearly G′ = (P, h)P ′ = 〈z〉 × 〈t〉,
z3 = t3 = 1 and ∆(G′)5 = 0. Since P is nilpotent, t ∈ ζ(P ). Further,
(t, h) ∈ (P, h) ∩ P ′ = 1 and t is central in G.

Case (i): (z, P ) �= 1.

There exists y ∈ P with 1 �= (z, y) ∈ P ′ = 〈t〉. So we may take
(z, y) = t. Let a = 1−z ∈ ∆(P ). Then 1−ha is a unit. Let u1 = (1+z, y)
and u2 = (1 − ha, h). Then

u2 = (1 − ha)−1(1 − ha)h

= {1 + ha + (ha)2}(1 − hah)

= 1 + h(z − 1)z + h2(z − 1)2,
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using (z − 1)3 = 0, zh = z−1 and (ha)3 = 0. Now

(u1, u2) − 1 = u−1
1 u−1

2 [u1 − 1, u2 − 1]

= u−1
1 u−1

2 [(1 + z)−1y−1[1 + z, y], h(z − 1)z + h2(z − 1)2]

= u−1
1 u−1

2 [(1 + z)−1y−1yz((z, y)−1), h(z − 1)z+h2(z − 1)2]

= u−1
1 u−1

2 (1 + z)−1[z, h(z − 1)z+h2(z − 1)2](1 + z)−1(t− 1)

= u−1
1 u−1

2 h(z − 1)2(t− 1),

because zh2
= z, and (1 + z)−1 = −(1 − z + z2).

Now since [u−1
1 u−1

2 , y] ∈ ∆(G′)2KG and ∆(G′)5 = 0, we get

0 = [(u1, u2) − 1, y]

= [u−1
1 u−1

2 h(z − 1)2, y](t− 1)

= u−1
1 u−1

2 {yh((h, y) − 1)(z − 1)2 + h[z + z2, y]}(t− 1)

= −u−1
1 u−1

2 hyz(z − 1)(t− 1)2

because (h, y) ∈ 〈z〉. It follows that (z − 1)(t − 1)2 = 0 implying that
z ∈ 〈t〉, a contradiction.

Case (ii): (z, P ) = 1.
Let t = (a, b) for some a, b ∈ P . If (y, h) �= 1 implies (y, P ) = 1 for

all y ∈ P , then take π = xa. Otherwise we may take π = a = x. Let
g = hb. Then (π, g) = zt and (π, b) = t always. Set α = 1 − π ∈ ∆(P ),
then 1 − gα is a unit. We have

u1 = (1 − gα, g)

= 1 + g(πg − π) + g2(1 − πg)(πg − π) + · · ·
= (1 + g + g2(1 − πg) + · · · )π(zt− 1)

and

(u1, z) = 1 + u−1
1 (uz

1 − u1)

= 1 + u−1
1 {(gz − g) + (g2z − g2)(1 − πg) + · · · }(zt− 1)π.

Now (g, z) = z2 and (g2, z) = 1. Therefore,

(u1, z) = 1 + u−1
1 {g(z2−1)+g3(z2 − 1)(1 − πg2

)(1 − πg) + · · · }(zt− 1)π

= 1 + u−1
1 g{1 + g2(1 − πg2

)(1 − πg) + · · · }(z2 − 1)(zt− 1)π.
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Since (u1, z) is central, we have

0 = [(u1, z), z]

= [u−1
1 g{1 + g2(1 − πg2

)(1 − πg) + · · · }(z2 − 1)(zt− 1)π, z]

= ([u−1
1 , z]g{1 + g2(1 − πg2

)(1 − πg) + · · · }
+ u−1

1 [g + g3(1 − πg2
)(1 − πg) + · · · , z])(z2 − 1)(zt− 1)π

≡ u−1
1 zg(1 + g2(1 − πg2

)(1 − πg) + · · · )(z2 − 1)2(zt− 1)π

(mod ∆(G′)4KG),

because [u−1
1 , z] = −u−1

1 [u1, z]u−1
1 and [u1, z] = zu1((u1, z) − 1) ∈

∆(G′)2KG. Since ∆(G′)5 = 0, on multiplying by (t− 1), we get

(1 + g2(1 − πg2
)(1 − πg) + · · · )(z − 1)2(zt− 1)(t− 1) = 0.

Once again on multiplying by (1 − π)o(π)−1 from the right this gives
(1 − π)o(π)−1(z − 1)2(t − 1)2 = 0, since 1 − πg = 1 − π((π, g) − 1) − π.
Thus π ∈ G′ ⊆ ζ(P ) and hence 1 = (π, b) = t, a contradiction.

So (P, h) ≤ P ′ and G′ = P ′ with |G′| = 1 or 3.

Proposition 3.12. Let K be a field with CharK = 3 and let G =
P � H, P a 3-group, H a 3′-group of even order, such that U(KG) is
centrally metabelian. Then either G′ = 1 or G′ = C3.

Proof: By Corollary 3.3, H is abelian and so G′ = (P,H)P ′. Let
h ∈ H. Consider the group L = 〈P, h〉. Then by Corollary 3.10 and
Lemma 3.11, either L′ = 1 or L′ = (P, h)P ′ = C3. If P is non-abelian,
this gives (P, h) ≤ P ′. Since this is true for any h ∈ H, we get G′ =
P ′ = C3.

Let P be abelian. Then L′ = (P, h) is cyclic of order 3. Thus G′ =
(P,H) is an elementary abelian 3-group. Also (P, h) is normal in G,
for (π, h)π′h′

= (π, hπ′
)h′

= (π, (π′, h−1)h)h′
= (π, h)h′

= (πh′
, h) is in

(P, h). Let h1, h2 ∈ H such that (P, h1) �= 1 and (P, h2) �= 1. Suppose
that (P, h1) = 〈z1〉, (P, h2) = 〈z2〉 and 〈z1〉∩〈z2〉 = 1. Then since (P, h1)
is normal, (z1, h2) ∈ (P, h1). Also (z1, h2) ∈ (P, h2) and so (z1, h2) = 1.
Similarly (z2, h1) = 1. Set π = z1z2, g = h1h2 and α = 1 − π. Then

u = (1 − gα, g) = 1 + g(πg − π) + g2(1 − πg)(πg − π) + · · ·
= 1 + gπ(π − 1) + g2(π − 1)2,

(u, z1) = 1 + u−1z−1
1 [u, z1]

= 1 + u−1g(z2
1 − 1)π(π − 1)
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and

0 = [(u, z1), z1]

= [u−1, z1]g(z2
1 − 1)π(π − 1) + u−1[g, z1](z2

1 − 1)π(π − 1)

= u−1{−[u, z1]u−1g + [g, z1]}(z2
1 − 1)π(π − 1)

= u−1{−z1g(z2
1 − 1)π(π − 1)u−1g + z1g(z2

1 − 1)}(z2
1 − 1)π(π − 1).

Let Q = 〈z1〉 × 〈z2〉. Then ∆(Q)5 = 0. Since u−1 ∈ 1 + ∆(Q)KG, it
follows from the above equation that

{−(z2
1 − 1)π(π − 1)g + z2

1 − 1}(z2
1 − 1)(π − 1) = 0.

On multiplying by (z2 − 1), we get

0 = (z2
1 − 1)2(z1z2 − 1)(z2 − 1)

= (z1 − 1)2(z2 − 1)2.

This gives z1 ∈ 〈z2〉, a contradiction as 〈z1〉 ∩ 〈z2〉 = 1. Therefore G′

must be cyclic. so G′ = C3.

We are now in a position to state our main results of this section.

Theorem 3.13. Let G be a finite group and let K be a field with
CharK = p �= 2. Then U(KG) is centrally metabelian if and only if
either G is abelian or CharK = 3 and G′ = C3.

Proof: First let U(KG) be centrally metabelian. If CharK = 0 then
G is abelian, see [3]. So let CharK = p > 0. If p ≥ 5, then Theorem 3.6
gives that G is abelian.

Now let p = 3. By Corollary 3.4, we have G = P � H, where P is a
3-group and H is a 3′-group. Also since U(KH) ≤ U(KG) is centrally
metabelian, by Corollary 3.3, H is abelian. Finally by Corollary 3.10
and Proposition 3.12, we get that either G is abelian or G′ = C3.

Thus if U(KG) is centrally metabelian, then either G is abelian or
CharK = 3 and G′ = C3. But then KG is Lie centrally metabelian (see
[4]). The converse now follows from Theorem 2.1.

Corollary 3.14. Let K and G be as in Theorem 3.13. Then U(KG)
is centrally metabelian if and only if KG is Lie centrally metabelian.
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Proof: KG is Lie centrally metabelian if and only if either G is abelian
or CharK = 3 and G′ = C3. Rest follows from Theorem 3.13.

Corollary 3.15. Let K be a field with CharK = 3 and let G be a
finite group of odd order. Then the following are equivalent:

(i) U(KG) is centrally metabelian;
(ii) G is either abelian or nilpotent with G′ = C3;
(iii) U(KG) is metabelian;
(iv) KG is Lie metabelian.

Proof: Let U(KG) be centrally metabelian. By Theorem 3.13, if G is
non-abelian, then G′ = C3. Let G′ = 〈t〉. If tg �= t for some g ∈ G, then
tg = t−1 and so tg

2
= (t−1)g = t. Now G has odd order so g, also, is

of odd order and g ∈ 〈g2〉. This gives tg = t. Thus tg = t for all g ∈ G
and so G′ = 〈t〉 is central in G. Now by using [2] and Theorem 2.1, we
get that statements (i), (ii) and (iv) given above are equivalent. Further
by [6, Corollary 4.2], KG Lie metabelian implies U(KG) is metabelian.
Now [5, Theorem B] gives that either G is abelian or G is nilpotent with
G′ = C3.

It is easy to see that Corollary 3.15 is parallel to what we have for
Lie centrally metabelian group algebras KG, CharK = 3 and G torsion
having no element of order 2 (see [4, Theorem A]).
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