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REGULAR MAPPINGS BETWEEN DIMENSIONS

G. David and S. Semmes

Abstract
The notions of Lipschitz and bilipschitz mappings provide classes
of mappings connected to the geometry of metric spaces in certain
ways. A notion between these two is given by “regular mappings”
(reviewed in Section 1), in which some non-bilipschitz behavior is
allowed, but with limitations on this, and in a quantitative way.
In this paper we look at a class of mappings called (s, t)-regu-
lar mappings. These mappings are the same as ordinary regular
mappings when s = t, but otherwise they behave somewhat like
projections. In particular, they can map sets with Hausdorff di-
mension s to sets of Hausdorff dimension t. We mostly consider
the case of mappings between Euclidean spaces, and show in par-
ticular that if f : Rs → Rn is an (s, t)-regular mapping, then for
each ball B in Rs there is a linear mapping λ : Rs → Rs−t and a
subset E of B of substantial measure such that the pair (f, λ) is
bilipschitz on E. We also compare these mappings in comparison
with “nonlinear quotient mappings” from [6].
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Let us begin with a brief review of “regular mappings” in the ordinary
sense, and then proceed to a more general notion that allows for changes
in dimension (like Hausdorff dimension).

1. Regular mappings

Let (M,d(x, y)) be a metric space. That is, M is a nonempty set,
d(x, y) is a nonnegative real-valued function on M × M which is sym-
metric in x and y, vanishes exactly when x = y, and satisfies the triangle
inequality.

Let (N, ρ(u, v)) be another metric space, and let f : M → N be a
mapping. We say that f is Lipschitz if there is a constant C > 0 such
that

ρ(f(x), f(y)) ≤ C d(x, y) for all x, y ∈ M.(1.1)

The mapping f is said to be bilipschitz if there is a constant C ′ > 0 such
that

C
′−1 d(x, y) ≤ ρ(f(x), f(y)) ≤ C ′ d(x, y) for all x, y ∈ M.(1.2)

The notions of Lipschitz and bilipschitz mappings provide ways of
making comparisons between different metric spaces. If two metric
spaces are bilipschitz equivalent —so that there is a bilipschitz map-
ping from one of the spaces onto the other one— then it means that the
two spaces are practically the same in many respects. With Lipschitz
mappings one has more flexibility, and the possibility that the spaces are
quite different, because of compression of distances.

One might add conditions to prevent distances from being compressed
too much, without going all the way to bilipschitzness. For instance, one
might ask that the image of the domain under a given mapping have
positive mass with respect to some measure, like Hausdorff measure (in
some dimension). Compare with [14], starting in Chapter 11.

The notion of a regular mapping (as in the next definition) gives an-
other way to put limits on the manner in which distances might be
compressed by a Lipschitz mapping.

Definition 1.3. Let (M,d(x, y)) and (N, ρ(u, v)) be two metric spaces.
A mapping f : M → N between them is said to be regular if it is Lip-
schitz, and if there is a constant C > 0 such that for every ball B in N
it is possible to cover f−1(B) by at most C balls in M with radius equal
to C · radius(B).
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The notion of regular mappings originally came up in [8], in a slightly
different form. See also [14], [29] concerning this version. We shall say
a bit more about this in Section 3, just after Lemma 3.3.

For the record, when we refer to a “ball” in a metric space, this means
an open ball, unless something else is indicated. In practice, this does
not matter too much, though.

Remark 1.4. Recall that a metric space (M,d(x, y)) is said to be doubling
if there is a constant C1 so that every ball B in M can be covered by
at most C1 balls with radius equal to radius(B)/2. When this is true,
one can iterate the condition to say that every ball can be covered by
Ck

1 balls with radius equal to radius(B)/2k, k ∈ Z+.
If (M,d(x, y)) is doubling, then the definition of a regular mapping

from M to another metric space N can be simplified, as follows. In-
stead of asking that f−1(B) admit a covering by at most C balls with
radius equal to C ·radius(B), as above, one can ask that f−1(B) admit a
covering by a bounded number of balls in M with the same radius as B.

In this paper, metric spaces which are doubling will normally be the
primary focus. This includes Euclidean spaces Rn (with the standard
Euclidean metrics), and subsets of these (with the induced metrics).

Examples 1.5. Consider the real line R with its usual metric. The
mapping f : R → R defined by f(x) = |x| is regular. This is easy
to verify. As an extension of this, consider a mapping from R to R2

which maps the two half-lines (−∞, 0] and [0,∞) onto rays σ, τ in
R2 emanating from the origin. Assume that the mapping is linear on
(−∞, 0] and [0,∞), sending 0 ∈ R to the origin in R2, and that it has
“unit speed”, i.e., the derivative is a vector of norm 1. This mapping
is Lipschitz with constant 1, and also regular with bounded constant.
In other words, the constant for the regularity condition can be taken
to be bounded independently of the angle between σ and τ . As long
as σ and τ are distinct, the mapping will be one-to-one, and in fact it
will be bilipschitz. However, the bilipschitz constant tends to ∞ as the
angle between σ and τ goes to 0, while the regularity constant remains
bounded. In the limit, one recovers a copy of the first mapping mentioned
above, i.e., f(x) = |x| on R.

More generally, one can look at locally rectifiable curves in R2 (or
Rn), together with parameterizations of them by arclength. These pa-
rameterizations define regular mappings exactly when the curves in ques-
tion are regular in the sense of [7] (as well as [1]). This means that the
amount of arclength measure of the curve inside a disk of radius r is
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bounded by a constant times r. (Compare with Lemma 3.3.) In partic-
ular, with this class of examples, it is easy to see how regular mappings
can cross themselves in the image numerous times, have cusps in the
image, and so on.

Bilipschitz mappings are automatically regular, but the converse is
not true in general, as is indicated by the preceding examples. To make
a nicer comparison with the notion of regular mappings, one can refor-
mulate the bilipschitz property as follows. If M and N are metric spaces,
then a mapping f : M → N is bilipschitz if it is Lipschitz, and if f−1(B)
is contained in a single ball in M of radius C · radius(B) for all balls B
in N , where C is a constant that does not depend on B.

A basic property of bilipschitz mappings is that they do not increase
or decrease Hausdorff measures of a set (in the domain of the mapping)
by more than a bounded factor (which may depend on the dimension
for the Hausdorff measure that one is using). This is a well-known and
straightforward consequence of the definition of Hausdorff measures, as
in [16], [17], [25]. The same statement is true for regular mappings, and
by nearly the same argument. See also Section 12.1 of [14].

2. Regular mappings between dimensions

Definition 2.1. Let (M,d(x, y)) and (N, ρ(u, v)) be metric spaces. Also
let s, t be nonnegative real numbers, with s ≥ t. A mapping f : M → N
is said to be (s, t)-regular if it is Lipschitz, and if there is a constant C
so that the following holds: if B1 is an arbitrary ball in N , and B2 is an
arbitrary ball in M with radius(B2) ≥ radius(B1), then

f−1(B1) ∩B2(2.2)

can be covered by a family of at most

C ·
(

radius(B2)
radius(B1)

)s−t

(2.3)

balls in M with radius equal to C · radius(B1).

If s = t, then this is equivalent to the notion of regular mappings
from Definition 1.3. In general, the increment s− t allows for mappings
which are more like projections, in which the dimension of the image is
less than the dimension of the domain.

Examples 2.4. Consider Rn and the real line R, with their Euclidean
metrics. The mapping

f : Rn → R given by f(x) = |x|(2.5)
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is (n, 1)-regular. This is not hard to verify. Also, standard orthogonal
coordinate projections from Rm onto Rn, m ≥ n, are (m,n)-regular.

It is easy to make more examples like these. One can also make exam-
ples by combining ones like these with bilipschitz mappings and ordinary
regular mappings, with crossings and so forth, as in Examples 1.5.

As in Remark 1.4, if the metric space M is doubling, then one might
as well look at coverings of (2.2) by balls with radius equal to radius(B1),
rather than C ·radius(B1). For the purposes of this paper, it is reasonable
to restrict one’s attention to metric spaces that are doubling.

Note that the definition of (s, t)-regular mappings does not really de-
pend on s and t separately, but only on the difference s−t. It is often nice
to mention them explicitly anyway, and to take s to be the dimension
of M (e.g., Hausdorff dimension). In common situations, t could be the
dimension of f(M) (as in Examples 2.4), but a priori one has to be
a bit careful about this. The (s, t)-regularity condition automatically
becomes weaker when t becomes smaller (or s becomes larger), so that
t might be less than its optimal value. In particular, it can be less than
the dimension of f(M). In the context of this paper, t will often be the
Hausdorff dimension of f(M).

When s = t, a special feature occurs, which is that one has the class
of bilipschitz mappings sitting inside the class of regular mappings in a
distinguished way. Strictly speaking, when s > t, bilipschitz mappings
are also (s, t)-regular, but this is somewhat degenerate. This does not
happen if one asks that s be the Hausdorff dimension of the domain,
and that t be the Hausdorff dimension of the image, for instance, since
a bilipschitz mapping would preserve the Hausdorff dimension.

There are special classes of mappings among (s, t)-regular mappings
that one might consider, though, and which can be natural when s > t.
For instance, if s−t ≥ 1, then one might look at (s, t)-regular mappings f
with the additional property that f−1(u) be connected for every point
in the image.

The authors originally considered the notion of (s, t)-regular map-
pings, and observed most of the results discussed in this paper, several
years ago. We simply never got around to writing this up formally be-
fore. In the intervening time, some related matters have come up. One
is the study of nonlinear quotients in [6]. There they consider condi-
tions along the lines of “co-continuity” and “co-Lipschitzness”, in which
images of balls in the domain contain balls in the range, with estimates
from below for the radii of the balls in the image, and with the centers
of the balls in the domain and range matching up under the mapping.
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These conditions are quite different from (s, t)-regularity, but there is
also some overlap with (s, t)-regularity and related properties. We shall
say more about this later, especially in Sections 8 and 9. As a basic
instance of this, standard linear projections from Rm onto Rn give ex-
amples both for mappings that are Lipschitz and co-Lipschitz, as in [6],
and for mappings that are (m,n)-regular. On the other hand, mappings
like x → |x| do not behave well for the conditions in [6] (for balls cen-
tered at the origin), but they are accepted by the regularity conditions
considered here.

One of the issues considered in [6] is the way that nonlinear quotient
mappings from an infinite-dimensional Banach space onto another one
can respect a substantial amount of the Banach space structure. For
instance, one might hope that a nonlinear quotient (which is uniformly
continuous and co-uniformly continuous, or Lipschitz and co-Lipschitz)
could actually be realized as a linear quotient, or has some properties
like that. Some results of this type are discussed in [6].

To put this into perspective, there are analogous questions about Ba-
nach spaces which are bilipschitz equivalent, or homeomorphic through
mappings which are uniformly continuous and have uniformly continu-
ous inverse. In this case, it is natural to ask whether the two spaces are
then linearly isomorphic. See [6] for references for results related to this.

Let us emphasize that the nonlinear quotient conditions in [6] al-
low the fibers to have infinite dimension, and include linear quotient
mappings from one Banach space onto another as a special case. With
(s, t)-regular mappings, the fibers always have Hausdorff dimension less
than or equal to s− t. This is not hard to verify, and there are a number
of simple variants of this (concerning the (s− t)-dimensional behavior of
the fibers of an (s, t)-regular mapping).

The classes of nonlinear quotient mappings in [6] readily accommo-
date infinite-dimensional behavior, but they are quite nontrivial in purely
finite-dimensional situations as well. See [6] for some aspects of this. In
particular, there are examples in [6] (in finite and infinite dimensions) of
mappings which are Lipschitz, co-uniformly continuous, and for which
there is a nontrivial ball in a codimension-1 subspace of the domain
which is sent to a single point in the image. More precisely, this is hap-
pening even though the image is not of dimension 1 (in which case it
would be normal). This is quite different from what would happen with
(s, t)-regular mappings, at least if s−t is strictly less than the dimension
of the domain minus 1.

In another direction, one might look at regular and (s, t)-regular map-
pings in comparison with quasiregular mappings, in the sense of [27],
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[28]. See also [19], [20] in this regard. Actually, for this it is easier to
start with the notion of mappings of bounded length distortion, in the
sense of [24]. These are also called BLD mappings. BLD mappings are
quasiregular mappings in which the Jacobian is locally bounded, and
uniformly bounded away from 0. This fits better with the notion of
regular mappings (as in Definition 1.3), in that the regularity condition
for a mapping on a Euclidean space ensures that the differential of the
mapping is uniformly bounded, at every point where it exists (because
of the Lipschitz condition), and that the absolute value of the Jacobian
is uniformly bounded away from 0.

Note that a regular mapping from Rn to itself (say) does not have to
have positive Jacobian, or Jacobian of constant sign. Changing of sign
in the Jacobian occurs with the mapping x �→ |x| on R, for instance.
For mappings between arbitrary metric spaces, something like having
the Jacobian be of constant sign does not really make sense anyway.
Positivity of the Jacobian is an important condition for quasiregular
and BLD mappings, however. In particular, x �→ |x| on the real line is
not quasiregular or BLD, because of the change in sign of the Jacobian.

In general, quasiregular mappings are allowed to have Jacobians and
differentials which are not bounded or bounded from below, even locally.
The concepts of BLD and quasiregular mappings are closer than they
might seem at first, in the sense that one can modify the geometry of the
domain of a mapping, using the weight that comes from the Jacobian,
to put oneself in the situation where the mapping has Jacobian equal
to 1 (with respect to the new geometry). Compare with [20], especially
Section 2.3.

Quasiregular mappings are also discussed in [6], in connection with
the classes of nonlinear quotient mappings considered there. Note that
quasiregular mappings are always open mappings (i.e., they send open
sets to open sets), like the nonlinear quotient mappings considered in [6].

We should perhaps mention that quasiregular (and BLD) mappings
are always discrete, i.e., the inverse-image of a point under the mapping
is always a discrete set. This holds automatically for regular mappings
in the sense of Definition 1.3.

The notions of quasiregular and BLD mappings involve having the
domains and ranges of the mappings be of the same dimension. With
nonlinear quotient mappings as in [6], and (s, t)-regular mappings as
in Definition 2.1, one has related classes that allow for the domain and
image to have different dimensions. Once the dimensions are permitted
to be different, a number of things change, and it is not necessarily so
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clear what one might want to view as analogues of quasiregular or BLD
mappings (if there are any proper analogues).

One might also think of quasiregular and BLD mappings in connection
with quasiconformal and bilipschitz mappings. That is, they are nearly
the same, except for giving up the requirement of injectivity, even lo-
cally. When the dimensions of the domain and image are allowed to be
different, this aspect changes too.

The class of (s, t)-regular mappings is also useful in [31]. See Sec-
tion 16.3 in [31] in particular.

The main result of this paper will be stated in Section 6, and proved
in Section 7. This concerns the way that, given a ball B, one can add
m − t components to an (m, t)-regular mapping f : Rm → Rn, to get
a mapping which is bilipschitz on a subset of B of substantial measure
(compared to the measure of B), with uniform bounds. The situation
for ordinary regular mappings is reviewed before that, in Section 4, for
which stronger assertions are known. Analogues of these stronger state-
ments in the general case do not work, and this is discussed in Section 5.
We also review in Sections 5 and 6 some more classical results about
Lipschitz mappings, which help to indicate the differences between the
two types of situations (where dimensions are preserved or not). Sec-
tions 8 and 9 contain some comparisons and extensions, in connection
with co-Lipschitz mappings in particular, and Section 10 describes a
more complicated version of the main result which is more global.

In the next section, we review the notion of Ahlfors-regular metric
spaces, and mention a few facts related to them and (s, t)-regular map-
pings.

3. Ahlfors-regular spaces

Definition 3.1. Let (M,d(x, y)) be a metric space, and let s be a pos-
itive real number. We say that M is Ahlfors-regular of dimension s if it
is complete, and if there is a constant C > 0 so that

C−1rs ≤ Hs(B(x, r)) ≤ C rs(3.2)

for all x ∈ M and r > 0 such that r ≤ diamM .

Here Hs(A) denotes the s-dimensional Hausdorff measure of a set A
(as in [16], [17], [25]), and B(x, r) denotes the closed ball in M with
center x and radius r. For this definition, one might add the requirement
that M have at least two elements, to avoid trivialities.
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It is a standard fact that Ahlfors-regular metric spaces are always
doubling. This is not too hard to show, and it is given in Lemma 5.1
on p. 19 of [14]. (There is a small adjustment needed for this, which is
that one should allow arbitrary radii R in Lemma 5.1 in [14], and not
just R’s with R ≤ diamM . Alternatively, it is enough to consider only
radii R ≤ diamM if one uses closed balls in M . We were careful to do
this in Definition 3.1, and we should have done it in Definition 1.1 in
[14]. This is only a small technical point, but one can give examples
where it is an issue.)

For Ahlfors-regular spaces, the notions of regular and (s, t)-regular
mappings can be given slightly different characterizations, as follows.

Lemma 3.3. Let (M,d(x, y)) and (N, ρ(u, v)) be metric spaces, and let
s, t be positive real numbers, with s ≥ t. Assume that (M,d(x, y)) is
Ahlfors-regular of dimension s. Then a mapping f : M → N is (s, t)-reg-
ular if and only if it is Lipschitz, and satisfies the following condition:
there is a constant C > 0 so that if B1 is a ball in N and B2 is a ball in
M , with radius(B2) ≥ radius(B1), then

Hs(f−1(B1) ∩B2) ≤ C

(
radius(B2)
radius(B1)

)s−t

radius(B1)s.(3.4)

In the implications in this lemma, the constants that occur in the
conclusions can be bounded in terms of constants that occur in the hy-
potheses (as usual).

When s = t, (s, t)-regularity becomes regularity in the sense of Defi-
nition 1.3, and the condition in (3.4) can be reduced to the requirement
that

Hs(f−1(B1)) ≤ C radius(B1)s(3.5)

for all balls B1 in N . This is because one can take the ball B2 in
M to be arbitrarily large, and the right-hand side of (3.4) does not
depend on B2 when s = t. The original definition of regular mappings
in [8] was given in terms of (3.5), rather than the covering condition in
Definition 1.3. This had its genesis in the case of “regular curves” (as
in [7], and Examples 1.5), where (3.5) can be interpreted as saying that
the amount of arclength of a given curve inside a ball B1 is less than or
equal to C · radius(B1).

The case of s = t in Lemma 3.3 is fairly standard, and is given ex-
plicitly in Lemma 12.6 on p. 103 in [14]. Lemma 3.3 can be proved in
essentially the same manner. Let us briefly go through the argument.
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If f : M → N is (s, t)-regular, then one can get the bound (3.4) di-
rectly from the definitions. That is, if B1 and B2 are as above, then one
can cover f−1(B1)∩B2 by a constant times (radius(B2)/ radius(B1))s−t

balls with radius equal to C0 ·radius(B1), by (s, t)-regularity, and each of
these has Hs-measure less than or equal to a constant times radius(B1)s,
by the upper bound in Ahlfors-regularity. This gives (3.4).

Conversely, suppose that f : M → N is Lipschitz and satisfies the
condition in Lemma 3.3, and let us show that f is (s, t)-regular. Let
balls B1 and B2 in N and M be given as before. We would like
to show that f−1(B1) ∩ B2 can be covered by a constant times
(radius(B2)/ radius(B1))s−t balls with the same radius as B1.

The main point is to use mass bounds and simple covering arguments.
By hypothesis, f satisfies the condition in Lemma 3.3, and we can apply
this to the balls 2B1 and 2B2 to get that

Hs(f−1(2B1) ∩ 2B2) ≤ C

(
2 radius(B2)
2 radius(B1)

)s−t

(2 radius(B1))s.(3.6)

Of course f−1(2B1) ∩ 2B2 contains f−1(B1) ∩B2, and it does this with
some “extra room”. Specifically, if f is Lipschitz with constant k, and if
x is a point in f−1(B1) ∩ B2, then f−1(2B1) ∩ 2B2 contains the ball in
M with center x and radius equal to min(k−1, 1) · radius(B1).

From here one would like to obtain that f−1(B1)∩B2 can be covered
by at most a constant times (radius(B2)/ radius(B1))s−t balls with the
same radius as B1. Suppose that A is any subset of f−1(B1) ∩ B2 such
that

d(a, b) ≥ radius(B1) for all a, b ∈ A, a �= b.(3.7)

This implies that the balls B(a, radius(B1)/2), a ∈ A, (in M) are pair-
wise disjoint. Hence the balls

B(a,min(k−1, 1/2) radius(B1)), a ∈ A,(3.8)

are pairwise disjoint too. These balls are all contained in f−1(2B1)∩2B2,
as in the previous paragraph. Their union therefore has Hs measure
bounded by the right-hand side of (3.6). The disjointness of these
balls implies that the measure of their union is the equal to the sum
of their measures. The measure of each ball is at least a constant
times radius(B1)s, by the lower bound in Ahlfors-regularity. The combi-
nation of these upper and lower bounds implies that the total number of
elements of A is bounded by a constant times (radius(B2)/ radius(B1))s−t

(independently of the choice of A).
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On the other hand, if A is a maximal subset of f−1(B1) ∩ B2 which
satisfies (3.7), then f−1(B1)∩B2 is covered by the balls B(a, radius(B1)),
a ∈ A. Indeed, if a point x lay in f−1(B1) ∩ B2 but not in any
B(a, radius(B1)), a ∈ A, then one could add x to the set A to get a
larger set which still satisfies (3.7), and this would contradict the maxi-
mality of A.

Thus, by choosing A to be maximal, one can get a covering of
f−1(B1) ∩ B2 with the required properties. This completes the proof
of Lemma 3.3.

Remark 3.9. Although the statement of Lemma 3.3 asks that t be pos-
itive, the same assertion and proof work when t = 0. In this case,
(3.4) becomes an inequality that holds automatically when M is Ahlfors-
regular of dimension s. In other words, any Lipschitz mapping on M is
(s, t)-regular when t = 0 and M is Ahlfors-regular of dimension s. This
works more generally for spaces which are semi-regular of dimension s,
in the terminology of Definition 5.6 on p. 24 of [14]. The latter is equiv-
alent to s-homogeneity in the sense of [2]. See [23] for some additional
topics related to this property (in connection with topological dimension
in particular).

Here is another fact about regular mappings and Ahlfors-regular spa-
ces.

Lemma 3.10. Let (M,d(x, y)) and (N, ρ(u, v)) be metric spaces, and let
f : M → N be a mapping which is regular (in the sense of Definition 1.3).
If M is Ahlfors-regular of some dimension s, then f(M) is Ahlfors-
regular of dimension s as well.

As usual, the constants involved in the Ahlfors-regularity of f(M) are
bounded by constants that depend only on ones implicit in the regularity
assumption for f , and the Ahlfors-regularity condition for M .

This lemma arises in [8], in a slightly different form. See also Lem-
ma 12.5 on p. 103 of [14]. The main point is simply that Hausdorff
measure is preserved, to within bounded factors, by regular mappings
(as mentioned in Section 1). This leaves the completeness condition in
Definition 3.1, but in fact closed and bounded subsets of Ahlfors-regular
spaces are compact (because of completeness and the fact that bounded
sets are “totally bounded”, by the doubling property), and one can use
this to get completeness of f(M) (since compactness is preserved by
taking images under continuous mappings).
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The analogue of Lemma 3.10 for (s, t)-regular mappings does not
work. That is, if f : M → N is (s, t)-regular, and M is Ahlfors-regular
of dimension s, then it may not be true that f(M) is Ahlfors-regular of
dimension t.

As stated, this has no hope of being true, since an (s, t)-regular map-
ping is always (s, u)-regular when u ≤ t. In any case, for (s, t)-regular
mappings, one does not have a means by which to get upper bounds
for the Hausdorff measure of sets in the image, as one has for ordinary
regular mappings (the case when s = t). It is not hard to get lower
bounds, however, just using the definitions; see Lemma 16.38 of [31]. If
one knows upper bounds for the image in advance (e.g., if N satisfies
the upper bounds associated to Ahlfors-regularity of dimension t), then
one is in better shape. In particular, in this case the choice of t would
be unique, and as large as possible.

4. Regular mappings between Euclidean spaces

In this section, we shall consider the special case where the metric
spaces involved are Euclidean spaces. We shall also restrict ourselves to
regular mappings (rather than (s, t)-regular mappings, to which we shall
return later). We begin by recalling a result from [9].

Theorem 4.1. Let m and n be positive integers, with n ≥ m. If f :
Rm → Rn is a regular mapping (using the usual Euclidean metrics on
Rm and Rn), then for each ball B in Rm there is a set E ⊆ B such that

Hm(E) ≥ δ Hm(B)(4.2)

and

the restriction of f to E is bilipschitz with constant C.(4.3)

Here δ and C are constants that depend only on m, n, and the constants
involved in the regularity condition for f (and not on B or f).

Notice that if f is bilipschitz on a set E, then f is automatically
bilipschitz on the closure of E as well (since f is continuous).

See Proposition 1 on p. 95 of [9] for this result. Note that there are
stronger statements in [9] (from which this is derived), which permit
one to obtain a “large bilipschitz piece”, as above, from a Lipschitz
condition and information at a single location and scale, rather than an
assumption like regularity. Namely, if B is a ball in Rm, f : B → Rm is
Lipschitz, and Hm(f(B)) ≥ η Hm(B) for some η > 0, then one can find
a set E ⊆ B which satisfies (4.2) and (4.3) above, with constants that
depend only on m, η, and the Lipschitz constant for f . See also [10].
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In [21], alternate methods are given from which similar conclusions
can be derived. The statements in [21] give a somewhat stronger con-
clusion; instead of having a single “large bilipschitz piece” in a ball B,
as above, one gets that for each ε > 0 it is possible to find subsets of
B on which f is bilipschitz, and which cover all of B except for a set of
measure less than εHm(B). Here the constants for the bilipschitz con-
ditions, and the number of subsets of B that are used, are bounded in
terms of constants that depend on ε, m, n, and the regularity constant
for f .

As with [9], the results in [21] can be applied to a Lipschitz mapping
at a single location and scale, without as restrictive an assumption as
regularity. In general, the “bilipschitz pieces” cover all of B except for a
set whose image has small measure. This set may not have small measure
itself, but this is the case when the mapping is regular, since regular
mappings preserve Hausdorff measures to within bounded factors.

Let us mention a corollary to Theorem 4.1, using the following defin-
ition.

Definition 4.4. Let (N, ρ(u, v)) be a metric space. We say that N
is uniformly rectifiable if it is Ahlfors-regular of dimension n, for some
positive integer n, and if there are constants θ, k > 0 with the following
property: for each x ∈ N and r > 0 such that r ≤ diamN , there
is a subset A of the ball B(x, r) with Hn(A) ≥ θ rn and a bilipschitz
mapping from A into Rn, where the bilipschitz constant for the mapping
is bounded by k.

As a special case, N is uniformly rectifiable if it is bilipschitz equiva-
lent to Rn. Uniform rectifiability is more flexible than that, allowing par-
tial parameterizations (at all scales and locations), as in Definition 4.4.
See [11], [13] for some other characterizations of uniform rectifiability.
See [16], [17], [25] concerning classical notions of rectifiability.

Corollary 4.5. If f : Rm → Rn is regular, then f(Rm) is a uniformly
rectifiable subset of Rn.

This is an easy consequence of Theorem 4.1 (and Lemma 3.10). One
can get a slightly stronger conclusion than uniform rectifiability, which
is that f(Rm) has “big pieces of Lipschitz graphs”. See Proposition 1
on p. 95 of [9].

An earlier analysis of subsets of Rn which are images of Euclidean
spaces under regular mappings was given in [8]. This analysis went in
a similar direction as Theorem 4.1, if not with quite the same final con-
clusions. In particular, it was shown in [8] that large classes of singular
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integral operators are bounded on Lp for Ahlfors-regular sets which are
regular images of a Euclidean space.

See also [10] for more on these topics.

5. More classical results about Lipschitz mappings

Let f : Rm → Rn be a Lipschitz mapping. A basic fact is that such a
mapping is always differentiable almost everywhere. See [17], [25], [30],
[32], for instance.

Now suppose that f : Rm → Rn is Lipschitz, and that A is a subset of
Rm such that Hm(f(A)) > 0. In this case there are points in A at which
f is differentiable, and such that the rank of the differential is m. This
can be derived from the following two statements. If E denotes the set
of points in Rm at which f is not differentiable, then E has measure 0,
and this implies that

Hm(f(E)) = 0(5.1)

as well, since f is Lipschitz. On the other hand, if L denotes the set of
points at which f is differentiable, but the differential of f has rank less
than m, then

Hm(f(L)) = 0.(5.2)

This is a well-known result, which can be established through covering
arguments. See Theorem 7.6 on p. 103 of [25], or Theorem 3.2.3 on
p. 243 of [17].

Thus, if Hm(f(A)) > 0, then A should not be wholly contained in
the union of the sets E and L, since Hm(f(E ∪ L)) = 0. Moreover,

Hm(f(A\(E ∪ L))) = Hm(f(A)).(5.3)

This implies that A contains a set of positive measure on which f is
differentiable, and where the differential always has rank m.

Here is another fact related to these.

Proposition 5.4. Let f : Rm → Rn be a Lipschitz mapping. Then (in
the notation above), Rm\(E ∪ L) can be covered by a countable family
of sets, on each of which f is bilipschitz.

This is contained in Lemma 3.2.2 on p. 242 of [17]. The latter gives
some additional properties that one can have for f on the sets which are
used to cover Rm\(E ∪ L).
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Proposition 5.4 provides a more classical version of some of the themes
in Section 4. It deals with similar types of properties, but in a fashion
that does not give the same type of quantitative estimates.

We can use this as a kind of testing ground for questions about map-
pings between dimensions. Specifically, let f : Rm → Rn be a Lipschitz
mapping again, and imagine now that we are in a situation where the
expected dimension of the image of f is less than m.

For simplicity, let us just assume that n < m, and that we expect the
image of f to be n-dimensional. We still have that f is differentiable
almost everywhere. The largest that the rank of the differential of f
could be is n, since f takes values in Rn.

When the rank of the differential of f is equal to n, one is in pretty
good shape. One can use results like Proposition 5.4 to say something
about the behavior of f . We shall return to this in Section 6.

There is an important difference between this situation and the pre-
vious one, where the expected dimension of the image is equal to the
dimension of the domain. In the previous case, one can determine (as
above) that there are many points in the domain at which the differential
of f exists and has rank m, simply given the information that the image
of f has positive m-dimensional measure (and that f is Lipschitz). This
type of argument does not work in the present circumstances.

Indeed, there are striking results to the effect that one can have map-
pings f : Rm → Rn, m > n > 1, such that

f is C1 (and better than that),(5.5)

the differential of f has rank < n at all points in Rm, and(5.6)

the image of f contains a nonempty open set in Rn.(5.7)

See [3], [5], [22], [33]. One can in fact ask that the differential of the
mapping f have rank less than or equal to $ everywhere, with $ taken
to be any integer in the range 1 ≤ $ < n, and one can get a degree
of smoothness (including C1) which depends on m, n, and $. In other
words, $ = 1 is the most impressive in terms of conditions on the differ-
ential of f , but then one does not get as much smoothness as when one
allows larger $’s.

These results are related to Sard’s theorem, and the examples that
show that sufficiently-strong smoothness hypotheses are needed (to con-
clude that images of critical sets have measure 0 in a given dimension).
See Section 3.4 of [17] and [4], for instance. In the context of the preced-
ing paragraph, all points in Rm are critical points, which gives a more
extreme situation.
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6. (m, t)-Regular mappings between Euclidean spaces

Theorem 6.1. Let m, n, and t be positive integers, with t ≤ m. Suppose
that f : Rm → Rn is an (m, t)-regular mapping, as in Definition 2.1.
Then there are positive constants δ, C so that for each ball B in Rm,
there is a linear mapping λ : Rm → Rm−t and a subset E of B with the
following properties:

Hm(E) ≥ δ Hm(B);(6.2)

the combined mapping (f, λ) : Rm → Rn × Rm−t(6.3)
is bilipschitz on E, with constant C;

the norm of λ is ≤ C.(6.4)

Here C depends only on m, n, t, and the constants implicit in the
(m, t)-regularity condition for f (and not on B or the particular map-
ping f).

Note that it makes sense to think about the “norm of λ”, as in (6.4),
since λ is a linear mapping (which can be represented by a matrix).
Exactly what norm one uses does not really matter, since it will only
effect the bound to within a constant factor. For the standard “operator
norm”, our choice of λ will have norm equal to 1, and λ will in fact be
a composition of an orthogonal projection and an isometry onto Rm−t.

Theorem 6.1 is analogous to Theorem 4.1, but for (m, t)-regular map-
pings rather than ordinary regular mappings. One might also think of
the two of them as being similar to the implicit and inverse function
theorems. In particular, one way to deal with the implicit function the-
orem is to add extra components to the given mapping to get one whose
differential is invertible, and to which the inverse function theorem is
applicable.

Unlike Theorem 4.1, Theorem 6.1 does not have such broad extensions
to Lipschitz mappings in general, under mild conditions on the size of
the image (as in [9], [21]). The results in [3], [22], [33], mentioned in
the paragraph of (5.5), (5.6), (5.7), give strong limitations to this. Thus
the assumption of (m, t)-regularity is more crucial here.

Although one does not have such broad results in this context as
before, the proof of Theorem 6.1 is fairly robust, and admits a number
of variants. In particular, let us point out that the result is local, in
that one could start out with a mapping defined on a ball, for instance
(rather than all of Rm), and obtain analogous conclusions. A number
of things like this will be clear from the proof. Another result along the
lines of Theorem 6.1 will be discussed in Section 10.
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In analogy with Corollary 4.5, we have the following.

Corollary 6.5. Let m, n, and t be positive integers, with t ≤ m. As-
sume that f : Rm → Rn is (m, t)-regular, and that the image f(Rm) is
Ahlfors-regular of dimension t. Then f(Rm) is uniformly rectifiable (De-
finition 4.4), with bounds for the uniform rectifiability constants which
depend only on the constants implicit in the hypotheses.

As with Corollary 4.5, one also has the slightly stronger “big pieces of
Lipschitz graphs” property. We shall say more about this in Section 7.

Note that Ahlfors-regularity of f(Rm) is an assumption in Corol-
lary 6.5, while it is part of the conclusion in Corollary 4.5. This came up
already in Section 3, with Lemma 3.10 and the remarks following it. As
indicated there, one can get lower bounds for f(Rm) as in t-dimensional
Ahlfors-regularity when f is (m, t)-regular, but not upper bounds. (One
could use this to weaken the hypotheses of Corollary 6.5.)

We shall discuss proofs for Theorem 6.1 and Corollary 6.5 in Section 7.
For the moment let us consider some more “classical” statements, in the
spirit of Section 5.

Let f : Rm → Rn be a Lipschitz mapping. As before, f is automati-
cally differentiable almost everywhere.

Assume that f is also (m, t)-regular. This implies that

(6.6) the rank of dfx is at least t,

at any point x ∈ Rm where the differential exists.

It is not hard to verify this assertion, directly from the definitions.
For the rest of this discussion, we shall use only (6.6), and not the

condition of (m, t)-regularity. Let λ1, λ2, . . . , λj be a finite collection of
linear mappings from Rm to Rm−t, which is sufficiently rich so that the
following is true:

(6.7) if α : Rm → Rn is a linear mapping with rank ≥ t, then

(α, λi) : Rm → Rn × Rm−t is injective for at least one i.

This is equivalent to saying that if P is any plane in Rm of dimension
less than or equal to m − t (such as the kernel of α), then there is an i
so that the kernel of λi is transverse to P . This can easily be arranged.

Lemma 6.8. Under the conditions described above, there is a countable
family of sets {E
}
 in Rm such that

⋃

 E
 covers all of Rm except for

a set of measure 0, and for each $ there is an i, 1 ≤ i ≤ j, so that

(f, λi) : Rm → Rn × Rm−t is bilipschitz on E
.(6.9)
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This is analogous to Proposition 5.4, and it has much the same re-
lationship to Theorem 6.1 as Proposition 5.4 has with Theorem 4.1.
In particular, Theorems 4.1 and 6.1 give quantitative conclusions, while
Proposition 5.4 and Lemma 6.8 do not, even if they involve similar kinds
of basic structure.

It is not hard to derive Lemma 6.8 from Proposition 5.4. Specifi-
cally, one would apply Proposition 5.4 to the mappings (f, λi) : Rm →
Rn × Rm−t, 1 ≤ i ≤ j. Almost every element of Rm is a point of dif-
ferentiability for f , and the differential always has rank at least t, as in
(6.6). Because of (6.7), for each point of differentiability x ∈ Rm, there
is at least one i so that the differential of (f, λi) will be injective at that
point. This ensures that the sets provided by Proposition 5.4, on which
the mappings (f, λi) are bilipschitz, cover almost all of Rm, when one
takes the union also over i. This gives Lemma 6.8.

7. Proofs for Theorem 6.1 and Corollary 6.5

To prove Theorem 6.1, we shall use some quantitative results about
approximating Lipschitz functions by affine functions. We first review
some aspects of this, before proceeding to the main part of the argument.

Let h be a real-valued function on Rm, and let A denote the set of
real-valued affine functions on Rm. Given x ∈ Rm and r > 0, define
α(x, r) by

α(x, r) = inf
A∈A

sup
y∈B(x,r)

|h(y) −A(y)|
r

.(7.1)

This quantity measures how well h can be approximated by an affine
function on B(x, r). In particular, α(x, r) = 0 exactly when h is equal
to an affine function on B(x, r). If h is differentiable at x, then

lim
r→0

α(x, r) = 0.(7.2)

The converse to this last statement is not true in general, i.e., (7.2)
may hold even if h is not differentiable at x. This is because the affine
approximations A(y) to h may move around significantly while r tends
to 0.

Notice that if h is Lipschitz with constant C0, then

α(x, r) ≤ C0 for all x ∈ Rm, r > 0.(7.3)

This follows by taking A(y) to be the constant function equal to h(x)
in (7.1). The boundedness of the α(x, r)’s does not imply that h be
Lipschitz, but corresponds instead to the “Zygmund class” of functions.
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It is easy to check that α(x, r) is continuous in x and r when h is
continuous, so that α(x, r) is measurable in particular.

Theorem 7.4. Let h be a real-valued Lipschitz function on Rm. Given
ε > 0, define a set B(ε) by

B(ε) = {(x, r) ∈ Rm × (0,∞) : α(x, r) > ε}.(7.5)

Then B(ε) is a Carleson set in Rm × (0,∞), i.e., there is a constant C
so that for each z ∈ Rm and s > 0 we have that∫

B(z,s)

∫ s

0

1B(ε)(x, r)
dxdr

r
≤ C sm.(7.6)

Here 1B(ε)(x, r) denotes the indicator function of B(ε), so that 1B(ε)(x, r)
is equal to 0 when (x, r) does not lie in B(ε), and is equal to 1 when
(x, r) ∈ B(ε). Also, dx and dr refer to ordinary Lebesgue measure on
Rm and (0,∞).

The constant C in (7.6) can be chosen so that it depends only on m,
ε, and the Lipschitz constant for h.

In other words, α(x, r) is small most of the time, in the sense that
the exceptional set B(ε) is “sparse” for every ε > 0, as in the Carleson
condition above. A key point here is that the integral in (7.6) would
diverge if one did not have the indicator function in the integrand, to
restrict the integration to pairs (x, r) in B(ε).

Theorem 7.4 can be derived from the results of [15], and indeed it is
definitely weaker than the information provided by [15]. See also [21]
and [13]. In the terminology of [13], the property in the conclusions
of Theorem 7.4 is sometimes called the WALA (weak approximation of
Lipschitz functions by affine functions), as in Definition 2.47 on p. 45 of
[13], and the remarks just after it. The word “weak” is used to distin-
guish this condition from stronger quadratic estimates on the α(x, r)’s
and some variants of them (based on integral norms in (7.1) instead of
the supremum), as in [15] and p. 18 of [13]. See also Remark 2.28 on
p. 336 of [13], concerning a derivation of Theorem 7.4.

Corollary 7.7. Let h : Rm → R be a Lipschitz function, and let ε > 0
be given. Then there is a constant k so that for each x ∈ Rm and
r > 0 there exist x1 ∈ Rm and r1 > 0 such that B(x1, r1) ⊆ B(x, r),
r1 ≥ k−1r, and α(x1, r1) ≤ ε. This constant k can be chosen so that it
depends only on m, ε, and the Lipschitz constant for h.

Thus, although α(x, r) might not be too small itself, there is always
a pair (x1, r1) which is not too far from (x, r) in Rm × (0,∞) (in terms
of hyperbolic geometry) such that α(x1, r1) is as small as one likes.
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The conclusion of Theorem 7.4 is significantly stronger than that of
Corollary 7.7, by saying that α(x, r) should be small most of the time,
on the whole, and not just at regular intervals. We shall explain how
Corollary 7.7 can be derived from Theorem 7.4 in a moment.

The property described in Corollary 7.7 and variants of it are dis-
cussed in [6], in the context of mappings between Banach spaces more
generally. In particular, more direct proofs of Corollary 7.7 are given in
[6], which apply to broader situations. The results of [6] also show that
k can be taken to be independent of m.

To derive Corollary 7.7 from Theorem 7.4, let h and ε be given as
in the statement of the corollary, as well as x and r. Let us restrict
our attention to x1, r1 such that |x1 − x| ≤ r/2 and r1 ≤ r/2. These
conditions imply that B(x1, r1) ⊆ B(x, r).

Let k be a positive number, greater than or equal to 2, to be chosen
soon. Consider the integral∫

B(x,r/2)

∫ r/2

k−1 r

1B(ε)(y, u)
dydu

u
.(7.8)

The Carleson condition (7.6) implies that this integral is bounded by a
constant times rm, where the constant depends only on m, ε, and the
Lipschitz constant for h, and not on k. To obtain the conclusions of
Corollary 7.7, it suffices to show that there is a pair (x1, r1) in Rm ×
(0,∞) such that x1 ∈ B(x, r/2), r1 ∈ [k−1r, r/2], and (x1, r1) does not
lie in B(ε) (so that α(x1, r1) ≤ ε). If this were not the case, then the
integral in (7.8) would reduce to∫

B(x,r/2)

∫ r/2

k−1r

dydu

u
.(7.9)

This would be too large, compared to the upper bound that we have, if
k is taken large enough. How large k has to be depends only on m, ε,
and the Lipschitz constant for h. This gives Corollary 7.7.

Let us be a bit more explicit about the conclusions of Corollary 7.7.
One gets a pair (x1, r1) so that α(x1, r1) ≤ ε, and this implies that there
is an affine function A : Rm → R such that

|h(y) −A(y)| ≤ α(x1, r1)r1 ≤ ε r1 for all y ∈ B(x1, r1).(7.10)

The norm of the gradient for A can be bounded in terms of the Lipschitz
constant for h. This is something that comes out of standard proofs
of Theorem 7.4, and one can also derive it directly. Specifically, one
can bound the maximal oscillation of A on B(x1, r1) in terms of the
corresponding oscillation for h, and the norm of the gradient of A is
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bounded by its maximal oscillation on B(x1, r1) divided by r1, because
it is linear.

Let us emphasize that the bound for the gradient of A that one gets
does not depend on ε, i.e., it does not blow up when ε is small. The
price for taking ε small comes in the constant k in Corollary 7.7, which
controls how “far” from (x, r) one might have to go to get a pair (x1, r1)
for which there is a good affine approximation.

Now let us prove Theorem 6.1. Let f : Rm → Rn be a mapping which
is (m, t)-regular, as in the statement of Theorem 6.1. Let a ball B in
Rm be given.

Let ε be a small positive number, to be chosen later. We would like
to apply Corollary 7.7 to get a ball B1 ⊆ B such that

radius(B1) ≥ k−1 radius(B),(7.11)

and so that there is an affine mapping A : Rm → Rn which satisfies

|f(y) −A(y)| ≤ ε radius(B1) for all y ∈ B1.(7.12)

The only problem with this is that f takes values in Rn now, rather
than R. However, it is easy to extend Theorem 7.4 and Corollary 7.7 to
the case of Rn-valued functions. For Theorem 7.4, one can obtain the
Rn-valued case by applying the version for real-valued functions to the
components of an Rn-valued mapping, and combining the information
that one gets for them. The analogue of the set B(ε) (defined in (7.5))
for the Rn-valued mapping can be viewed as a subset of the union of
corresponding sets for the individual components (with adjustments in
the choice of ε for them to get ε in the end for f). The Carleson con-
dition (7.6) for the larger set then follows from analogous conditions for
the individual pieces, as desired for the conclusions of Theorem 7.4.

For that matter, common proofs of Theorem 7.4 extend easily enough
to the vector-valued case, and would give better information about the
constants. Once one has Theorem 7.4 for Rn-valued functions, one can
derive an Rn-valued version of Corollary 7.7 from it in the same manner
as before.

It is also possible to show that Corollary 7.7 directly implies a version
of itself for vector-valued functions. See Proposition 2.2 of [6], which
allows general Banach spaces in the domain. On the other hand, there
are results in [6] concerning versions of Corollary 7.7 in which the domain
is finite-dimensional, but the range is infinite-dimensional. There are
results in [6] as well about trouble that occurs when both the domain
and the range are infinite-dimensional.
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At any rate, one can get an affine approximation on B1 as in (7.11)
and (7.12) for a suitable constant k. As before, in the remarks just after
(7.10), the differential of A has bounded norm as well. This bound does
not depend on ε, i.e., does not blow up as ε gets small.

From now on, let us imagine that

B1 and A : Rm → Rn(7.13)

have been chosen and fixed, as above. (Note that B1 and A depend on ε,
though.) Our next task is to show that A is nondegenerate in a suitable
way, when ε is small enough, using the (m, t)-regularity of f .

Let L : Rm → Rn denote the linear part of A. That is, A(x) =
a + L(x) for all x ∈ Rm, where a is a (single) element of Rn (namely,
A(0)). Thus

L has bounded norm.(7.14)

This is the same as the statement above that the differential of A has
bounded norm. As before, this bound does not depend on ε. This will be
important later, in that how small ε should be taken to be will depend
on the constant in this bound.

The following is a standard fact from linear algebra.

Lemma 7.15. There is an orthonormal basis {vi}m
i=1 of Rm such that

the vectors L(vi) in Rn, 1 ≤ i ≤ m, are pairwise orthogonal.

This is a kind of substitute for diagonalization of L. Note that some
of the L(vi)’s may be 0 (which is necessarily the case when n < m).

To prove Lemma 7.15, consider the mapping Lt◦L : Rm → Rm, where
Lt denotes the transpose of L. This mapping is symmetric, and hence
admits a diagonalization by an orthonormal basis {vi}m

i=1 of Rm. From
this it follows that the vectors L(vi) are orthogonal in Rn, because the
inner product between L(vi) and L(vj) in Rn is the same as the inner
product between Lt ◦L(vi) and vj in Rm, by definition of the transpose.
This proves Lemma 7.15.

Lemma 7.16. Let L be as above, and let {vi}m
i=1 be a basis for Rm,

with the properties described in Lemma 7.15. If ε is small enough, de-
pending only on m and the (m, t)-regularity constants for f , then there
are positive integers i1, i2, . . . , it with 1 ≤ i1 < i2 < · · · < it ≤ m such
that

|L(vi�
)| ≥ C−1

0 , 1 ≤ $ ≤ t.(7.17)

Here C0 is a positive constant that depends only on m and the (m, t)-reg-
ularity constants for f (and not on ε in particular).
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In other words, |L(vi)| is reasonably large for at least t choices of i.
(It may be reasonably large for more than t choices of i.) In particular,
the rank of L is at least t. This is analogous to (6.6).

A version of this lemma comes up in [21], with t = m (so that one is
getting lower bounds for all of L, rather than just in some directions).
For this one can use simpler hypotheses, about the size of f(B1). For
instance, if t = n as well, then it is enough to have a bound from below
for the Lebesgue measure of f(B1), compared to the measure of B1.

To prove the lemma, we start with the (m, t)-regularity of f , and
try to convert it into a property for L. Let β be a ball in Rn. If
radius(β) ≤ radius(B1), then we may apply the (m, t)-regularity of f
(Definition 2.1) to obtain that

(7.18) f−1(β)∩B1 can be covered by ≤C ′(radius(B1)/ radius(β))m−t

balls in Rm with the same radius as β,

where C ′ is a positive constant.
Let us assume now that radius(β) > ε · radius(B1) as well. Let β̃

denote the ball in Rn with the same center as β, but with

radius(β̃) = radius(β) − ε · radius(B1).(7.19)

From (7.12) we get that

A−1(β̃) ∩B1 ⊆ f−1(β) ∩B1.(7.20)

In other words, if y ∈ B1 satisfies A(y) ∈ β̃, then f(y) ∈ β, because of
(7.12) and the definition of β̃. Combining (7.20) with (7.18) gives

(7.21) A−1(β̃) ∩B1 can be covered by ≤ C ′(radius(B1)/ radius(β))m−t

balls in Rm with the same radius as β.

The preceding observations apply to all balls β in Rn such that

ε · radius(B1) < radius(β) ≤ radius(B1).(7.22)

In particular, there is no restriction on the center of β. As a result, the
analogue of (7.21) with A replaced by L holds, since A and L differ only
by a translation. Similarly, one can use translations in the domain and
range to replace B1 in (7.21) (and its analogue for L instead of A) with
a ball which is centered at the origin, and has the same radius as before.
This uses the fact that A is affine (and L is linear), and it would not
work for general mappings like f .
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One can also make a rescaling in the domain and range, so that
radius(B1) is replaced by 1 in all occurrences, and for the same reasons
of linearity. To summarize, we can convert (7.21) to

(7.23) L−1(β̃) ∩B(0, 1) can be covered by

≤ C ′ ρt−m balls of radius ρ in Rm,

where

(7.24) β̃ is any ball of radius ρ− ε in Rn, and
ρ is a real number such that ε < ρ ≤ 1.

At this point, we can take β̃ to be centered at the origin. As in Section 3,
one might prefer to formulate (7.23) in terms of volume. This leads to

Volume(L−1(B(0, ρ− ε)) ∩B(0, 1)) ≤ C ′′ ρt for all ρ ∈ (ε, 1],(7.25)

where C ′′ is a suitable constant (depending on the regularity constant C ′

and the dimension m). (We are mistreating our notation somewhat here,
in that B(0, ρ− ε) is supposed to be a ball in Rn, while B(0, 1) is a ball
in Rm.)

We want to go from (7.25) to conclusions like the ones in Lemma 7.16.
Using the orthonormal basis {vi}m

i=1 for Rm from Lemma 7.15, we can
write L−1(B(0, ρ− ε)) down explicitly, as an ellipsoid. Namely,

L−1(B(0, ρ− ε)) =
{
x ∈ Rm :

m∑
i=1

|〈x, vi〉|2 |L(vi)|2 < (ρ− ε)2
}
.(7.26)

We can write B(0, 1) as

B(0, 1) =
{
x ∈ Rm :

m∑
i=1

|〈x, vi〉|2 < 1
}
.(7.27)

If we define an ellipsoid E(ρ) by

E(ρ) =
{
x ∈ Rm :

m∑
i=1

|〈x, vi〉|2 max
(

1,
|L(vi)|2
(ρ− ε)2

)
< 1

}
,(7.28)

then

E(ρ) ⊆ L−1(B(0, ρ− ε)) ∩B(0, 1).(7.29)

Thus,

Volume(E(ρ)) ≤ C ′′ ρt for all ρ ∈ (ε, 1],(7.30)

by (7.25).
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On the other hand, standard considerations give

Volume(E(ρ)) = cm

m∏
i=1

min
(

1,
ρ− ε

|L(vi)|

)
(7.31)

(when ρ > ε). Here cm is a constant which depends only on m (which is
in fact the volume of the unit ball in Rm). If |L(vi)| = 0 for some i, then
we interpret (ρ − ε)/|L(vi)| as being +∞, so that the minimum with 1
in (7.31) is 1.

Combining (7.30) and (7.31), we have that
m∏

i=1

min
(

1,
ρ− ε

|L(vi)|

)
≤ c−1

m C ′′ ρt for all ρ ∈ (ε, 1].(7.32)

Given ρ and ε, let us write ν(ρ−ε) for the number of integers i, 1 ≤ i ≤ m,
such that

(ρ− ε)
|L(vi)|

< 1.(7.33)

From (7.32) we get that

(ρ− ε)ν(ρ−ε) ≤ c−1
m C ′′ Cν(ρ−ε)

1 ρt for all ρ ∈ (ε, 1],(7.34)

where C1 is a bound for the norm of L as a linear mapping (as in (7.14)).
(Thus |L(vi)| ≤ C1 for each i.)

Let us restrict ourselves now to ρ’s such that ρ ≥ 2ε. In particular,
ρ− ε is then greater than or equal to ρ/2. Using this, and combining the
constants in (7.34), we obtain that

ρν(ρ−ε) ≤ C2 ρt for all ρ ∈ [2ε, 1],(7.35)

where C2 can be chosen to depend on m and the regularity constants
for f (which includes the Lipschitz constant for f), but nothing else. In
particular, we can choose C2 so that it does not depend on ρ or ε.

If ρ ∈ [2ε, 1] and ν(ρ− ε) < t, then (7.35) implies

C−1
2 ≤ ρ.(7.36)

Keep in mind that ν(ρ − ε) and t are integers, so that ν(ρ − ε) ≤ t − 1
when ν(ρ− ε) < t.

On the other hand, we are allowed to choose ε to be as small as we
like. For the purposes of Lemma 7.16, we ask that

2ε < C−1
2 .(7.37)

This is the only condition that we need to impose on ε, i.e., in connection
with the hypothesis in Lemma 7.16 that ε be small enough. (There is
no problem with consistency here, since C2 does not depend on ε.)
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If we choose ρ in the range [2ε, C−1
2 ), then (7.36) does not hold, and

so the hypotheses of (7.36) should not hold. This yields

ν(ρ− ε) ≥ t.(7.38)

Going back to the definition of ν(ρ − ε) (in the sentence containing
(7.33)), we get that

(7.39) ρ/2 ≤ ρ− ε ≤ |L(vi)| for at least t choices of i,

1 ≤ i ≤ m, when ρ ∈ [2ε, C−1
2 ).

If ε is small enough so that (7.37) holds, then the interval [2ε, C−1
2 ) is

nonempty. By choosing ρ to be less that C−1
2 , but close to it, one obtains

the conclusions of Lemma 7.16 (when (7.37) holds). (In the end, one can
take the constant C0 in (7.17) to be 2C2, for instance.) This completes
the proof of Lemma 7.16.

Remark 7.40. It is only here, in the proof of Lemma 7.16, that the as-
sumption of (m, t)-regularity of the mapping f : Rm → Rn is invoked,
beyond the requirement that f be Lipschitz, for the proof of Theorem 6.1.
Of course, the conclusions of Lemma 7.16 will be needed in the rest of
the argument, and so the (m, t)-regularity hypothesis will be implicitly
employed there as well, but it will not be called up separately again.

The (m, t)-regularity assumption was used here to get (7.18) (and
hence (7.21), and so on). In the end, for a particular choice of ini-
tial ball B (from the statement of Theorem 6.1, and a few lines before
(7.11)), we really only need to apply this condition on a bounded range
of locations and scales (compared to the radius of B). One can see this
from the proof, and the way that ρ was chosen finally. Notice, however,
that this range of possible scales and locations includes the range from
which B1 is chosen, as in (7.11) and (7.12), after B is fixed. In particu-
lar, it depends on the constant k from Corollary 7.7, and hence on the
(m, t)-regularity constants for f .

This should be compared with the “equidimensional” case, where
m = t, as in Section 4, and with the discussion in Section 5. In other
words, although the equidimensional case is generally more “stable”,
with substantially less than regularity needed for many assertions, one
does have some limits on the way that the (m, t)-regularity condition is
needed when m > t.

From now on, let us assume that ε is small enough for Lemma 7.16 to
be applied. Let us also assume that i1, i2, . . . , it are as in the conclusions
of Lemma 7.16.
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Let us write Q1 for the t-plane in Rm which is spanned by
vi1 , vi2 , . . . , vit

. Let Q2 denote the orthogonal complement of Q1 in
Rm, which is the same as taking the span of the vj ’s, where j ranges
among the integers between 1 and m (inclusively) which are not one of
the i
’s, $ = 1, 2, . . . , t. In particular, Q1 has dimension t, and Q2 has
dimension m− t.

Let P denote the plane in Rn which is spanned by
L(vi1), L(vi2), . . . , L(vit

). These vectors are all orthogonal, as in Lem-
ma 7.15, and they are all nonzero, by Lemma 7.16. Thus

the dimension of P is equal to t.(7.41)

In fact,

(7.42) the restriction of L to Q1 is an invertible mapping onto P ,

with the norm of the inverse bounded by C0.

Here C0 is as in Lemma 7.16. The bound in (7.42) follows from the one
in Lemma 7.16, together with the orthogonality of the vi’s and L(vi)’s.

We are now ready to choose a linear mapping λ : Rm → Rm−t, for
the purposes of Theorem 6.1. Specifically, λ should be a linear mapping
which satisfies the following conditions:

(7.43) λ ≡ 0 on Q1, and the restriction

of λ to Q2 is an isometry onto Rm−t.

In other words, λ is the composition of an orthogonal projection of Rm

onto Q2, and an isometry from Q2 onto Rm−t.
Let π denote the orthogonal projection from Rn onto P .

Lemma 7.44. Let C0 be as in Lemma 7.16, and let λ, π, etc., be as
above. If ε ≤ min(1, C−1

0 )/2, then the combined mapping (π ◦ f, λ),
which maps Rm into P × Rm−t, has the following property: the image
of the ball B1 in Rm under (π ◦ f, λ) contains a ball with radius equal to
(min(1, C−1

0 )/2) · radius(B1) in P ×Rm−t. (Remember that B1 is as in
(7.11), (7.12).)

Recall that ε is also assumed to be small enough for the purposes
of Lemma 7.16. Note that the constant C0 from Lemma 7.16 does not
depend on ε, so that there is no consistency problem with asking that ε
be smaller than min(1, C−1

0 )/2.
To prove Lemma 7.44, consider first the corresponding question where

f is replaced with our linear mapping L : Rm → Rn. In this case, the
combined mapping (π ◦ L, λ) : Rm → P × Rm−t is also linear. In fact
this mapping is invertible, and the norm of its inverse is ≤ max(1, C0).
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To see this, let us identify Rm with the Cartesian product of Q1

and Q2, using the usual orthogonal decomposition of vectors in Rm into
their components in Q1 and Q2. By construction, λ ≡ 0 on Q1. Also,
π ◦ L = 0 everywhere on Q2. Indeed, if w ∈ Rm lies in Q2, then it is a
linear combination of vj ’s with j not among i1, i2, . . . , it, so that L(w)
is a linear combination of L(vj)’s, with the same j’s. This implies that
L(w) is orthogonal to L(vi�

) for all $, 1 ≤ $ ≤ t, which means exactly
that L(w) is orthogonal to the t-plane P . Hence π(L(w)) = 0 when
w ∈ Q2, as desired.

In short, (π ◦ L, λ) : Rm → P × Rm−t is essentially the same as the
Cartesian product of π ◦ L : Q1 → P and λ : Q2 → Rm−t. The question
of invertibility of the combined mapping reduces to the invertibility of
the individual pieces. We chose λ so that it is an isometry from Q2 onto
Rm−t, and hence this part is fine. As for π ◦ L, notice that it is equal
to L on Q1, since P is the image of Q1 under L by definition, and π
projects Rn onto P . We already know that L is invertible as a linear
mapping from Q1 to P , with norm bounded by C0, as in (7.42).

Thus we obtain that (π ◦ L, λ) : Rm → P × Rm−t is invertible, with
the norm of its inverse bounded by max(1, C0). This implies that the
image of B1 under (π ◦ L, λ) contains a ball in P × Rm−t with radius
equal to min(1, C−1

0 ) · radius(B1).
Now let A : Rm → Rn be the affine mapping from before, as in (7.12).

By definition, L is the linear part of A. (See the lines just before (7.14).)
In particular, A and L differ simply by a translation in the image. The
same is true of π ◦ A and π ◦ L. Thus we conclude that the image of
B1 under (π ◦A, λ) contains a ball of radius min(1, C−1

0 ) · radius(B1) in
P × Rm−t.

It remains to go from A to our original mapping f : Rm → Rn. The
difference between A and f is bounded by ε · radius(B1) on B1, as in
(7.12). This implies that the difference between (π ◦A, λ) and (π ◦ f, λ)
is bounded by ε · radius(B1) on B1 as well.

At this point, the fact that the image of B1 under (π ◦ f, λ) contains
a ball in P ×Rm−t with radius equal to min(1, C−1

0 )/2 times radius(B1)
when ε ≤ min(1, C−1

0 )/2 can be derived in a standard way from degree
theory, as in [26]. Specifically, if we think of (π ◦ A, λ) as a mapping
from B1 into P × Rm−t, then this mapping has degree equal to 1 or
−1 everywhere on the image of B1. The value of 1 or −1 depends on
how orientations are chosen in the domain and in the image, and whether
(π◦A, λ) preserves or reverses orientations. (Keep in mind that (π◦A, λ)
is an affine homeomorphism from Rm onto P × Rm−t.)
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To be more precise, the degree of (π◦A, λ) as a mapping from B1 into
P ×Rm−t is defined for all points y in P ×Rm−t which do not lie in the
image of ∂B1 under (π ◦A, λ) (at least if orientations have been selected
for the domain and range spaces). The degree is automatically 0 on the
complement of the closure of the image of B1, but this will not matter
too much here.

Similarly, if we think of (π◦f, λ) as a mapping from B1 into P×Rm−t,
then the degree of f is defined for points y in P ×Rm−t that do not lie
in the image of ∂B1 under (π ◦ f, λ). Note that the image of ∂B1 under
(π ◦ f, λ) is compact, since ∂B1 is compact and (π ◦ f, λ) is continuous.
The degree is locally constant on the complement of the image of ∂B1

under (π ◦f, λ), and is thus constant on the components of this set. The
degree is zero at points which are not in the image of (π ◦ f, λ) (on B1).
These are general properties for degrees of (continuous) mappings.

In addition to (π ◦ f, λ) and (π ◦A, λ), one can look at convex combi-
nations of these two mappings (as mappings from B1 into P × Rm−t).
Another general property of the degree is that it does not change under
continuous deformations of mappings, as long as the point y in the range
at which the degree is being evaluated does not lie in the image of the
boundary of the domain (B1 in this case) under any of the mappings
under consideration.

In our situation, (π ◦ f, λ) and convex combinations of (π ◦ f, λ) and
(π◦A, λ) all differ from (π◦A, λ) on B1 by at most ε·radius(B1), because
of (7.12). Using this, one gets that the degree of (π ◦ f, λ) is the same as
the degree of (π◦A, λ) at any point y ∈ P ×Rm−t such that the distance
from y to the image of ∂B1 under (π ◦A, λ) is greater than ε · radiusB1.

We have already mentioned that the image of B1 under (π ◦ A, λ)
contains a ball in P × Rm−t of radius min(1, C−1

0 ) · radius(B1). Let us
call this ball β. In particular, the image of ∂B1 under (π ◦ A, λ) lies in
the complement of β, since (π ◦A, λ) is a homeomorphism (of Rm onto
P ×Rm−t). The degree of (π ◦A, λ) is equal to 1 or to −1 at all points
of β, as before.

Let β′ denote the set of points in β which lie at distance > ε·radius(B1)
from the complement of β. Combining the statements in the previous
paragraphs, we get that (π ◦ f, λ) and (π ◦ A, λ) have the same degree
at every point y in β′. We know that the degree of (π ◦ A, λ) at these
points is 1 or −1, and so the same is true for (π ◦ f, λ).

In particular, these points lie in the image of B1 under (π◦f, λ), since
otherwise the degree would be 0. In short, β′ is contained in the image
of B1 under (π ◦f, λ). The conclusions of Lemma 7.44 follow easily from
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this, when ε ≤ min(1, C−1
0 )/2, because of the definitions of β and β′.

This completes the proof of Lemma 7.44.
At this stage, it is easy to finish the proof of Theorem 6.1. Let us

now fix ε > 0, once and for all, and small enough for the purposes of
Lemmas 7.16 and 7.44. Although ε should be small enough for these
lemmas, one should not take it to be too small, because some of the
other estimates deteriorate as ε gets small. Thus one might as well take
it to be as large as possible, subject to the conditions of Lemmas 7.16
and 7.44.

The main point now is that we can apply results from [9], [21] (as
mentioned in Section 4) to the mapping (π◦f, λ) : B1 → P×Rm−t. Note
that P × Rm−t is essentially the same as Rm, since P has dimension t
(as in (7.41)).

Specifically, in applying the results from [9], [21], we are using two
pieces of information. The first is that (π ◦ f, λ) : B1 → P × Rm−t is
Lipschitz, with bounded constant. The constant for (π ◦ f, λ) is less
than or equal to the sum of 1 and the Lipschitz constant for f , because
π and λ are both Lipschitz with constant 1, by their definitions (as an
orthogonal projection and an orthogonal projection composed with an
isometry). The second piece of information is that the (m-dimensional)
Lebesgue measure of the image of B1 under (π ◦ f, λ) is greater than or
equal to a constant times the Lebesgue measure of B1. This follows from
Lemma 7.44.

Under these conditions, we obtain that there is a subset E of B1 such
that the measure of E is greater than or equal to a constant times the
measure of B1, and such that the restriction of (π◦f, λ) to E is bilipschitz.
The constants in these two properties are controlled in terms of the
constants mentioned in the previous paragraph, and the dimension m.

This is exactly what we want for Theorem 6.1, except for two points.
The first is that we should compare E with our original ball B (men-
tioned a few lines before (7.11)), rather than with B1. As in (7.11) and
the line preceding it, B1 is contained in B, and the radius of B1 is greater
than or equal to a constant times the radius of B. Thus E is contained
in the original ball B, and the measure of E is bounded from below by
a constant times the measure of B. Note that the constant from (7.11)
depends on ε, and hence this constant for the lower bound for the mea-
sure of E in terms of the measure of B does too. This is the place where
taking ε to be too small would have an effect.

The second point is that we get a bilipschitz condition for (π◦f, λ) on
E, rather than for (f, λ). Of course f and λ are already Lipschitz, and so
the only issue is with the lower bounds in the bilipschitz condition. For
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this the bilipschitzness of (π ◦f, λ) is a stronger property than for (f, λ),
since π is Lipschitz. (We shall make use of this stronger information in
a moment.) Thus one gets bilipschitzness for (f, λ) on E as well.

This completes the proof of Theorem 6.1.
Now let us prove Corollary 6.5. Let f : Rm → Rn be given, where f

is (m, t)-regular, and assume that the image f(Rm) is Ahlfors-regular of
dimension t. We would like to show that f(Rm) is uniformly rectifiable
(with dimension t), with suitable bounds for the constants involved.

Fix a point z ∈ f(Rm) and a radius r > 0. Since z ∈ f(Rm), there
is an element x of Rm such that f(x) = z. Also, let C be the Lipschitz
constant for f . We have that

f(B(x,C−1r)) ⊆ B(z, r),(7.45)

from these choices.
Let us now apply Theorem 6.1, with the ball B in Rm taken to

be B(x,C−1r), and with this mapping f . Thus we get a linear map-
ping λ : Rm → Rm−t and a set E ⊆ B such that the measure of E is
greater than or equal to a constant times the measure of B, and (f, λ)
is bilipschitz on E, with a bounded constant. As in the proof of Theo-
rem 6.1, we can take λ to be a composition of an orthogonal projection
and an isometry onto Rm−t.

For each point u ∈ Rm−t, λ−1(u) is an affine plane in Rm of dimen-
sion t. Put

Eu = E ∩ λ−1(u).(7.46)

On each Eu, f is bilipschitz (with bounded constant), because of the
bilipschitz condition for (f, λ) on E itself. On the other hand, there exist
u’s in Rm−t such that the t-dimensional measure of Eu is bounded from
below by a constant times (C−1r)t. This follows easily from a Fubini
theorem argument, since the measure of E is bounded from below by a
constant times the measure of B, and since the relevant u’s (for which
Eu �= ∅) lie in λ(B), which is a ball in Rm−t with the same radius as B.

The bilipschitz property for f on Eu then gives the kind of “big bilip-
schitz piece” for f(Rm) in B(z, r) which is required in the definition of
uniform rectifiability, as in Definition 4.4. This completes the proof of
Corollary 6.5.

Remark 7.47. Under the assumptions of Corollary 6.5, one can get a
slightly stronger conclusion for f(Rm), which is that it has “big pieces
of Lipschitz graphs” (BPLG). This property is defined in practically
the same manner as uniform rectifiability was, except that instead of
asking that f(Rm) ∩ B(z, r) have a subset of substantial size which is
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bilipschitz equivalent to a subset of Rt, with uniform bounds, we want
to have a substantial subset of f(Rm)∩B(z, r) which lies in the graph of
a Lipschitz mapping (over some t-dimensional plane in Rn), again with
uniform bounds.

The BPLG condition for f(Rm), under the hypotheses of Corol-
lary 6.5, can be established through nearly the same argument as above,
for the uniform rectifiability of f(Rm). The main difference is the fol-
lowing. Instead of the bilipschitzness of (f, λ) on the set E, as provided
by the statement of Theorem 6.1 and used in the argument above, one
employs the stronger feature of bilipschitzness for (π◦f, λ) on E, where π
is an orthogonal projection of Rn onto an t-dimensional subspace. This
was given in the proof of Theorem 6.1, and was indicated at the very
end of the proof in particular. This leads to bilipschitzness for π ◦ f on
the slices Eu, rather than just for f itself. Once one has this, it is not
hard to get a big piece of a Lipschitz graph for f(Rm), in the given ball
in the image, as before. This is analogous to the situation in [9], for
ordinary regular mappings.

Remark 7.48. The conditions “f : Rm → Rn is (m, t)-regular” and
“f(Rm) is Ahlfors-regular of dimension t” each make sense for positive
real numbers t, whether or not t is an integer. However, if one assumes
both conditions at the same time, as in the context of Corollary 6.5,
then that implies that t is an integer. Indeed, if f is (m, t)-regular, then
it is Lipschitz in particular, and hence differentiable almost everywhere
on Rm. Let x be a point of differentiability of f . One can show that
the rank of the differential dfx of f at x should be less than or equal
to t, under the condition that f(Rm) be Ahlfors-regular of dimension t.
Similarly, the assumption that f be (m, t)-regular implies that the rank
of dfx should be at least t, as in (6.6). Thus t should be equal to the
rank of dfx, and this is automatically an integer.

8. Comparisons with the co-Lipschitz property

Proposition 8.1. Let m and t be positive integers, with m ≥ t. Suppose
that f : Rm → Rt is an (m, t)-regular mapping. Then there is a constant
C > 0 so that for every ball B in Rm there is a ball B′ in Rt such that

f(B) ⊇ B′(8.2)

and

radius(B′) ≥ C−1 radius(B).(8.3)

This constant C can be chosen to depend only on m, t, and the constants
involved in the (m, t)-regularity condition for f .
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The conclusion of this proposition is somewhat close to the co-Lips-
chitz property in [6]. The difference is that the ball B′ is not required
to be centered at the image of the center of B under f . Let us refer to
the condition in the conclusion of the proposition as the “non-centered
co-Lipschitz property”.

Proposition 8.1 would not work in general if one did ask that the center
of B′ be the image of the center of B under f . For example, consider
the mapping f : R → R given by f(x) = |x| for all x. It is easy to see
that this mapping is regular (or (m, t)-regular, with m = t = 1), as in
Examples 1.5. This mapping satisfies the conclusions of Proposition 8.1,
but this would not be true with the additional condition on the center
of B′. Specifically, the additional condition does not work when B is
centered at the origin in R.

One can make similar examples in other dimensions, covering all pairs
of positive integers (m, t) with m ≥ t. Thus Proposition 8.1 is reasonably
sharp, as a statement which gives part of co-Lipschitzness. In Section 9
we shall go in the opposite direction, and look at some consequences of
conditions like the co-Lipschitz property.

The proof of Proposition 8.1 is approximately contained in the proof
of Theorem 6.1 in Section 7 already. In particular, Lemma 7.44 pro-
vides a conclusion which is close to the one being sought here. The
main difference is that what was Rn is now Rt. This implies that what
was the t-dimensional plane P in Rn before (as in (7.41) and the lines
just before it) is now simply Rn = Rt itself. Similarly, what was the
projection π : Rn → P (as defined just before Lemma 7.44) is now the
identity mapping on Rt. With these changes, Lemma 7.44 gives almost
exactly the result desired for Proposition 8.1. (One has just to be a little
careful about the choice of ε, and the relationship of B1 in Lemma 7.44
to the original ball B. These points are essentially the same as in Sec-
tion 7, for the last part of the proof of Theorem 6.1 (after Lemma 7.44)
in particular.)

For the present purposes, one could also simplify Lemma 7.44 and its
proof. Instead of working with the mapping (π ◦f, λ), as before, one can
use the restriction of f to the t-dimensional plane Q1 (defined a couple of
paragraphs before the statement of Lemma 7.44). One would then want
to show that f(B1 ∩Q1) contains a ball in Rt with radius greater than
or equal to a constant times the radius of B1. One can do this through
much the same argument as before, using degree theory, applied to f as
a mapping from B1 ∩Q1 to Rt (and the affine approximation of f).
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9. Noncollapsing mappings

Let us begin with an auxiliary definition. Given a set E ⊆ Rn and a
nonnegative number t, define the t-dimensional Hausdorff content of E,
Ht

con(E), as follows. For any sequence of sets {Aj}j in Rn, consider the
sum ∑

j

(diamAj)t.(9.1)

To get Ht
con(E), one takes the infimum of this sum over all sequen-

ces {Aj}j of sets which cover E.
If Ht(E) denotes the ordinary t-dimensional Hausdorff measure of E,

then

Ht
con(E) ≤ Ht(E)(9.2)

automatically. This is because Ht(E) is defined in terms of the same
kind of sums (9.1), but with more restrictions on the coverings {Aj}j .
Namely, the Aj ’s would be required to have diameter less than a positive
number δ, where one takes the limit as δ → 0 at the end, after first taking
the infimum of the sums (9.1) over these coverings. However, it is true
that

Ht
con(E) = 0 implies Ht(E) = 0.(9.3)

This is not hard to verify. (If Ht
con(E) = 0, then the coverings of E that

one gets consist of sets with small diameter anyway.)
If E is contained in a set which is Ahlfors-regular of dimension t, then

one does have bounds of the form

Ht(E) ≤ C Ht
con(E).(9.4)

This is easy to check, just using the definitions. It works as well if one
only has the upper bound in (3.2) (with s replaced with t).

Hausdorff content behaves in essentially the same manner under Lip-
schitz and bilipschitz mappings as Hausdorff measure, i.e., it does not
increase by more than a constant factor for Lipschitz mappings (de-
pending on the dimension t and the Lipschitz constant), and it does not
decrease by more than a constant factor either for bilipschitz mappings.
This follows easily from the definition.

Definition 9.5. Let m and n be positive integers, and let t be a positive
real number with t ≤ m. Suppose that f : Rm → Rn is a mapping which
is Lipschitz. We say that f is (m, t)-noncollapsing if there is a constant C
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so that

Ht
con(f(B)) ≥ C−1(radius(B))t(9.6)

for all balls B in Rm.

There are obviously some natural generalizations and variants of this.
In particular, one might consider the condition in which t-dimensional
Hausdorff measure is used in (9.6) instead of Hausdorff content. If the
image set f(Rm) is contained in a set which is Ahlfors-regular of dimen-
sion t (or satisfies the corresponding upper bounds from (3.2)), then the
two conditions are equivalent, i.e., using Hausdorff content or Hausdorff
measure.

If f : Rm → Rn is (m, t)-regular, then it is (m, t)-noncollapsing. This
is not too hard to verify, directly from the definitions. That is, if the
t-dimensional Hausdorff content of the image of a ball B were ever too
small, then it would mean that there is a covering of f(B) for which a
sum like (9.1) would be too small. This covering could then be converted
into one for the ball B itself, using the (m, t)-regularity property, in
a way that would give a contradiction. Specifically, it would lead to
the m-dimensional Lebesgue measure of B being too small compared
to (radius(B))m. (Similar observations are described in more detail in
[31].)

If t is an integer, and f : Rm → Rt is Lipschitz and co-Lipschitz
(in the sense of [6]), then f is (m, t)-noncollapsing as well. Indeed, in
this case f(B) will contain a ball in Rt with radius ≥ C−1 radius(B)
for some constant C (that does not depend on B), so that the t-di-
mensional Lebesgue measure will be bounded from below by a constant
times (radius(B))t. The same will be true of the t-dimensional Hausdorff
content, as in (9.4).

This argument also works if f is Lipschitz and satisfies the non-
centered co-Lipschitz property from Section 8. In other words, one does
not need to know anything about the center of the ball in Rt which is
contained in f(B), but only the lower bound for the radius.

Conversely, if f : Rm → Rn is Lipschitz and (m, t)-noncollapsing,
then one has the same kinds of conclusions as for (m, t)-regular mappings
in Sections 6, 7, and 8. We can state the main part of this as follows.

Proposition 9.7. Theorem 6.1, Corollary 6.5, and Proposition 8.1 still
hold if one asks that f : Rm → Rn be Lipschitz and (m, t)-noncollapsing,
instead of (m, t)-regular.
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Corollary 9.8. If t is an integer, and if f : Rm → Rt is Lipschitz,
then f is (m, t)-noncollapsing if and only if it satisfies the non-centered
co-Lipschitz property.

The “if” part of the corollary was mentioned before the statement
of Proposition 9.7, and the “only if” part follows from the extension of
Proposition 8.1 to (m, t)-noncollapsing mappings indicated in Proposi-
tion 9.7.

Let us look at the reasons why Theorem 6.1, Corollary 6.5, and Propo-
sition 8.1 extend to the case of Lipschitz mappings that are (m, t)-non-
collapsing, as well as the other observations from Sections 6, 7, and
8. The main point is that affine approximations of (m, t)-noncollaps-
ing mappings satisfy the same kind of nondegeneracy properties as for
(m, t)-regular mappings. For this we shall use the following lemma.

Lemma 9.9. Let E be a subset of Rn. Assume that

diamE ≤ k R(9.10)

for some positive real numbers k and R, and that P is a d-dimensional
plane in Rn such that

dist(z, P ) ≤ τ R for all z ∈ E.(9.11)

Here τ is another positive real number, which we assume to be less than 1.
(Normally τ will be small, k will be bounded, and R will reflect an arbi-
trary choice of scale.) If t is a positive real number with t ≥ d, then

Ht
con(E) ≤ C Rt τ t−d.(9.12)

Here C is a constant which may depend on k, d, and t, but does not
depend on R or τ .

To see this, one first observes that

E can be covered by ≤ C1 τ−d balls of radius 2 τ R,(9.13)

where C1 is a constant which depends only on k and d. This covering
can be obtained as follows. Let π denote the orthogonal projection of
Rn onto P . Thus π(E) is a subset of P with diameter which is less
than or equal to the diameter of E. Because diamE ≤ k R and P has
dimension d, one can cover π(E) with ≤ C1 τ−d balls in P of radius τ R,
where C1 depends only on k and d. To get the covering indicated in
(9.13), one takes the balls in Rn with the same centers as these balls in
P , but with radii 2 τ R instead of τ R. This gives a covering of E itself,
because of the assumption (9.11).
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Once one has a covering as in (9.13), the estimate (9.12) follows im-
mediately from the definition of the Hausdorff content. This proves
Lemma 9.9.

Notice that the same argument would work when t < d. However,
in this case one can simply use the diameter bound (9.10) to get that
Ht

con(E) ≤ (k R)t. One does not need the power of τ in (9.12), which
would now be negative, and not helping the estimate.

Now let us return to the discussion of mappings between Euclidean
spaces. Suppose that f : Rm → Rn is Lipschitz and (m, t)-noncollapsing.
Let x ∈ Rm be a point at which f is differentiable (which includes almost
all points in Rm, since f is Lipschitz). Then the rank of the differential
of f at x is greater than or equal to t. To see this, suppose to the
contrary that the rank of the differential at some point x is strictly less
than t. Let B be a small ball which is centered at x. We would like
to apply Lemma 9.9, with E = f(B) and R = radius(B). In this case
(9.10) holds automatically, with k equal to twice the Lipschitz constant
for f .

Let P be the plane in Rn which is the image of Rm under the affine
mapping α defined by

α(y) = f(x) + dfx(y − x).(9.14)

In other words, α is the affine mapping which approximates f well near
x, in the sense that

lim
y→x

|f(y) − α(y)|
|y − x| = 0,(9.15)

because of differentiability. With this choice of P , the condition (9.11)
holds with τ as small as one would like (for E = f(B)), when the ball B
is sufficiently small.

If d is the dimension of P , then d is the rank of the differential of f
at x, which we are assuming is less than t. The estimate (9.12) then
applies to say that

Ht
con(f(B)) ≤ C Rt τ t−d,(9.16)

where C depends only on d, t, and the Lipschitz constant for f . This
inequality contradicts the (m, t)-noncollapsing condition for f , when τ
is small enough.

This shows that the rank of the differential of f is always at least t.
More generally, the following is true. Let B be a ball in Rm, and suppose
that f is well-approximated by an affine mapping A : Rm → Rn in a



406 G. David, S. Semmes

ball B. This means that

|f(y) −A(y)| ≤ ε radius(B) for all y ∈ B(9.17)

(as in (7.12)), where ε is a small positive number. Let L denote the
linear part of A, as in Section 7, so that A(x) = a + L(x) for some
a ∈ Rn and all x ∈ Rm. If ε is small enough, depending only on t and
the Lipschitz and (m, t)-noncollapsing constants for f , then L satisfies
the same kind of t-dimensional nondegeneracy conditions (with bounds)
as in Lemma 7.16. This can be shown with the same kinds of arguments
as above, using also the orthonormal basis {vi}m

i=1 for Rm provided by
Lemma 7.15.

To be more precise, suppose that one does not have a good lower
bound for |L(vi)| for at least t choices of i, as in (7.17) in Lemma 7.16.
This means that there is an integer d < t such that |L(vi)| is small
for all but d choices of i. Let Q0 denote the span of d choices of vi in
Rm which cover all of the vj ’s for which |L(vj)| is not too small, and
let P0 denote the image of Q0 under the affine mapping A. Then each
point in f(B) lies within ε · radius(B) of a point in A(B), because of
(9.17), and each point in A(B) lies close to P0 (compared to radius(B)),
because of our assumption about the small values of |L(vk)| (when vk is
not among the d choices of vi of which Q0 is composed). In other words,
the small values of |L(vk)| lead to an estimate like (9.11), with P = P0

and E = f(B) again. If ε and the values of |L(vk)| for vk not in Q0 are
small enough, then Lemma 9.9 gives an upper bound for the Hausdorff
content for f(B) which would be too small for the (m, t)-noncollapsing
condition, in much the same manner as before.

In this way one can get the same kind of t-dimensional nondegeneracy
conclusions as in Lemma 7.16. One can also use an argument more like
the one employed for Lemma 7.16 before, in which the (m, t)-noncol-
lapsing condition for f on B is converted into a similar condition for the
affine approximation A, and then its linear part L, and then one looks
at the ellipsoid which is the image of B under L. In the end, the two
arguments are about the same anyway.

Once one has the analogue of Lemma 7.16 in this setting, the rest
is practically the same as before. That is, it was only for getting Lem-
ma 7.16 that we really needed the (m, t)-regularity assumption in Sec-
tion 7. This was mentioned in Remark 7.40.

The same is true for the arguments in Section 8, which were closely
based on the ones in Section 7. In Section 6 some remarks were made
about more “classical” statements for the behavior of (m, t)-regular map-
pings, as in Lemma 6.8. For these all that was really needed was the
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fact that the differential has rank at least t at any point where it exists
(as in (6.6)), and we have already looked at this in the present setting.

In short, this is why the results and observations about (m, t)-regu-
lar mappings from Sections 6, 7, and 8 carry over to mappings that are
Lipschitz and (m, t)-noncollapsing. This includes Theorem 6.1, Corol-
lary 6.5, and Proposition 8.1, as in the statement of Proposition 9.7. In
particular, these assertions apply to mappings from Rm to Rt which are
Lipschitz and co-Lipschitz, in the sense of [6] (since co-Lipschitz implies
(m, t)-noncollapsing in this case).

Although mappings that are Lipschitz and (m, t)-noncollapsing have
several properties in common with (m, t)-regular mappings in this way,
it is not true that Lipschitz (m, t)-noncollapsing mappings are (m, t)-reg-
ular. A counterexample to this is given by an example in [12], namely,
Example (j) on p. 869 of [12]. This occurs already for mappings on the
real line. The basic construction uses “tent” mappings. Given a closed
interval I = [a, b] in R, define a corresponding “tent” mapping tI(x) by
setting

tI(x) =
b− a

2
−

∣∣∣∣x− a + b

2

∣∣∣∣.(9.18)

In other words, this mapping vanishes at the endpoints a, b of I, it takes
the value (b − a)/2 = |I|/2 at the midpoint of I, and it is linear on the
two halves of I (between the endpoints and the midpoint). By com-
bining a lot of “tent” mappings like this, on dyadic intervals [2j , 2j+1],
[−2j+1,−2j ], j ∈ Z, for instance, one can get mappings from the real line
to itself which are Lipschitz and (1, 1)-noncollapsing, but not (1, 1)-regu-
lar. In particular, the mapping would take the value 0 at infinitely many
points, while a (1, 1)-regular mapping should take any given value only
finitely many times.

10. A variant of Theorem 6.1

In Theorem 6.1, one chooses a location and scale in Rm, as represented
by a ball B, and then there is a linear mapping λ : Rm → Rm−t so that
the combined mapping (f, λ) : Rm → Rn × Rm−t is bilipschitz on a
subset E of B which is of substantial proportion (in terms of Lebesgue
measure). The choice of λ depends on B, even if the estimates do not.

Instead of this, one might try to find a single mapping g : Rm → Rm−t

so that the combined mapping (f, g) : Rm → Rn ×Rm−t has some kind
of good behavior uniformly over all scales and locations at once. For this
one should not be able to take g to be linear, in general, but one would
still look for something like a Lipschitz condition.
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As a basic example, f : Rm → Rn might be obtained from a bilip-
schitz mapping by throwing away m − t coordinates. The idea would
then be to try to recover those m − t coordinates, or some reasonable
versions of them.

There are results of this nature that one can get, and which will be
discussed in this section. For simplicity (and brevity), we shall only give
an outline of some of the main points, rather than precise statements
and arguments (which could take a while).

A reasonable framework for these issues is provided by the notions of
“weakly Lipschitz” and “weakly bilipschitz” mappings from [12]. These
notions can be described roughly as follows. First, let us reformulate
the usual Lipschitz condition by saying that a mapping h : Rm → Rk is
Lipschitz if there is a constant C so that

diamh(B) ≤ C diamB(10.1)

for all balls B in Rm. It is easy to see that this is equivalent to the
usual Lipschitz condition. For a weakly Lipschitz mapping, one asks
that (10.1) hold for “most” balls B in Rm, where “most” means that
the exceptional balls B(x, r) are parameterized by a set of pairs (x, r)
in Rm × (0,∞) which is a Carleson set (as defined in the statement of
Theorem 7.4).

For the exceptional balls, no condition at all is placed on the mapping.
The idea is that the fact that the set of exceptional balls is small, in the
sense of the Carleson condition, makes up for this.

The lack of restriction on the exceptional balls has the effect of al-
lowing arbitrary behavior of the mapping on reasonably “thin” subsets
of Rm. For instance, if P is any plane in Rm (of dimension strictly
less than m), then the set of all balls B(x, r) which intersect P corre-
sponds to a Carleson set of pairs (x, r) in Rm × (0,∞). This is not
hard to check, and it implies that a weakly Lipschitz mapping can have
arbitrary behavior along such a plane P .

As a variant of this, suppose that P is a hyperplane in Rm, so that
Rm\P consists of two components. If a given mapping h is Lipschitz
on each of these two complementary half-planes, then it is automatically
weakly Lipschitz on all of Rm. This holds no matter how much the two
Lipschitz mappings may behave differently along the common boundary.
Note that h would be Lipschitz on all of Rm under these conditions if it
were continuous along the common boundary P .

Now let us consider bilipschitz conditions. Let us say that a map-
ping h : Rm → Rk is “approximately bilipschitz” on a ball B if it satisfies
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a condition like (10.1), and also

(10.2) |h(x) − h(y)| ≥ C−1 |x− y|
whenever x, y ∈ B satisfy |x− y| ≥ (diamB)/2.

In other words, (10.2) provides the kind of lower bound for |h(x)−h(y)|
that one has for bilipschitz mappings, but only for x, y in B which are
not too close together compared to the size of B. (The precise choice of
(diamB)/2 in (10.2) is not too important, though.)

It is easy to check that h is bilipschitz in the usual sense exactly when
it satisfies this kind of approximate bilipschitz condition for all balls B
in Rm, and with a uniform choice for the constant C (in (10.1) and
(10.2)). As before, we shall say that h is weakly bilipschitz if there is
a constant C so that the same condition of approximate bilipschitzness
holds on “most” balls B, where “most” means that the collection of
exceptional balls B(z, r) should correspond to a set of pairs (z, r) in
Rm × (0,∞) which is a Carleson set. For these exceptional balls, one
does not ask for any condition on h.

As for weakly Lipschitz mappings, weakly bilipschitz mappings can
have arbitrary behavior along “thin” subsets of Rm, such as planes (of
dimension strictly less than m). In particular, one can obtain weakly
bilipschitz mappings by combining ordinary bilipschitz mappings on two
half-spaces as before, without any conditions on how they might match
up on the common boundary. Of course, one can have singular behavior
for weakly Lipschitz or bilipschitz mappings which is more diffuse than
that, but this construction illustrates some of the basic points.

This formulation of weak bilipschitzness is slightly different from the
one [12], but the difference is not significant. (E.g., one uses cubes in [12]
instead of balls, and the definition is given in a way that accommodates
more general spaces.)

Although weakly Lipschitz and bilipschitz mappings can have essen-
tially arbitrary behavior on sufficiently thin sets in Rm, their average
behavior on sets of positive measure is more like that of ordinary Lip-
schitz and bilipschitz mappings. Results of this nature are given in [12]
(and have their genesis in arguments in [21]).

With weakly Lipschitz and bilipschitz mappings one has more flexibil-
ity for making constructions than for ordinary Lipschitz and bilipschitz
mappings. In the present setting, one gets a more global version of The-
orem 6.1, in which the conclusion is that there is a weakly Lipschitz
mapping g : Rm → Rm−t so that the combined mapping (f, g) : Rm →
Rn × Rm−t is weakly bilipschitz.
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This applies to mappings f : Rm → Rn which are (m, t)-regular, as in
Theorem 6.1, and more generally to mappings f which are Lipschitz and
(m, t)-noncollapsing, as in Section 9. In the special case where m = t,
one does not need an extra mapping g, and the conclusion is that f itself
is weakly bilipschitz. This case is discussed in [12] (and is closely related
to [9], [21]). (See Examples (g) and (i) on p. 869 of [12].)

In general, when t < m, how might one produce such a complementary
mapping g? The basic idea is to use mappings λ as in Theorem 6.1 as
the initial ingredients, and then to combine these mappings at different
scales and locations to get g. One has to do these things with some
care, and in particular one should not try to combine too many of these
initial mappings. Otherwise, the estimates will not work properly, like
the Carleson conditions in the weak Lipschitz and bilipschitz properties.

One could try to do this by iterating the kind of information that one
gets in Theorem 6.1. Instead of this, let us indicate a more direct method,
in which one uses arguments like those in the proof of Theorem 6.1,
together with some extra information.

Part of Section 7 already fits nicely with the present discussion. Na-
mely, Theorem 7.4 already provides for the existence of good affine ap-
proximations for our mapping f : Rm → Rn (which is Lipschitz by as-
sumption) on all balls B in Rm, except for a collection of balls B(x, r)
corresponding to a Carleson set in Rm × (0,∞).

As in Lemma 7.16, we also have good bounds for the t-dimensional
nondegeneracy of the linear parts of the affine approximations that come
from Theorem 7.4, at least if the parameter ε in Theorem 7.4 is chosen
small enough. How small ε needs to be depends only on the dimensions
and (m, t)-regularity constants for f (or Lipschitz and (m, t)-noncollaps-
ing constants, as in Section 9).

Suppose that B is a ball for which one has a good affine approximation
for f like this. If ε is small enough, one can then get approximate bilip-
schitzness on B, in the sense of (10.1) and (10.2), by combining f with a
linear mapping from Rm to Rm−t which complements the linear part of
the affine approximation to f on B in a suitable way. We did something
very similar to this in Section 7, with the choice of λ in (7.43), and in
Lemma 7.44. In particular, in first part of the proof of Lemma 7.44, we
saw that the linear mapping (π ◦ L, λ) : Rm → P × Rm−t is invertible,
with a bound for the norm of its inverse. (Here L is the linear part of
the affine approximation to f on B, π is a certain projection, and P is
a t-dimensional plane in Rn.) If ε is small enough, depending only on
suitable constants, then this leads to the desired approximate bilipschitz
property of f on B, and with uniform bounds for the constants.
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For the present purposes, the problem with this is that the choice of
the linear mapping λ : Rm → Rm−t depends on B. However, there is
some extra information that we can bring in, coming from Carleson’s
Corona construction. This has the effect of saying that the affine ap-
proximations to f can be chosen in such a way that their linear parts
do not change too often, while still maintaining a good degree of ap-
proximation to f , as in Theorem 7.4. The precise statement for this is a
little bit complicated, but it basically says that the set of pairs (x, r) in
Rm × (0,∞) around which the linear parts of the affine approximations
have to change is a Carleson set.

Carleson’s Corona construction is actually more directly concerned
with the behavior of averages of bounded measurable functions. In the
context of affine approximations for a Lipschitz mapping f , one would
look at the Corona construction in connection with the differential of
f , which gives a bounded measurable function. (The differential is a
matrix-valued function, but that is okay.) An excellent reference con-
cerning the Corona construction and related results is [18], especially
Chapter VIII. Theorem 6.1 and Section 6 in general in Chapter VIII of
[18] are particularly relevant and useful here. A version of this is also
reviewed in Chapter 2 of Part IV of [13], especially Section 2.2 there.
A translation to the setting of Lipschitz functions and affine approxima-
tions of them is also provided there.

At any rate, with this one is able to get some information about the
dependence of the “complementary” linear mappings λ = λB : Rm →
Rm−t on the ball B. In particular, one finds that these mappings do
not have to be changed too often, as one varies the ball B (in terms of
both its center and its radius). The occasions when the λB ’s have to be
changed is controlled by a Carleson set of pairs (x, r) in Rm × (0,∞).
This is a crucial point for making more global constructions, with weakly
Lipschitz and bilipschitz mappings.

We shall not go into details about the constructions involved, but
let us mention a few of the main points. The first is that it is more
convenient to work with dyadic cubes instead of balls. Imagine that
Q0 is some dyadic cube, and that λ0 : Rm → Rm−t is a linear mapping
associated to it, as above. In particular, let us imagine that the combined
mapping (f, λ0) : Rm → Rn×Rm−t is approximately bilipschitz around
Q0, in the same sense as described before for balls, in (10.1) and (10.2).
(Actually, one would normally ask for behavior like this on something
like the double of Q0, as in [12].)

The information that we have about the λ’s not changing too often
implies that this linear mapping λ0 will normally work well not only
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for Q0, but for many of its dyadic subcubes too. In general, λ0 would
not work for all of the dyadic subcubes of Q0, however. As one goes
“down” through the locations and scales, one would have to “stop” at
various subcubes of Q0. One would then want to start over again, for
the purpose of constructing a global mapping g : Rm → Rm−t from the
various λ’s.

For some cubes there is trouble, simply because f does not have any
sufficiently-good affine approximation (on the double of the cube, say)
with which to work. As before, we know that this does not happen too
often, with the exceptional locations and scales controlled by a Carleson
condition. When one runs into cubes like these, one simply skips over
them, without worrying about it too much, and goes on to cubes for
which good affine approximations do exist.

Thus one gets to cubes for which there are sufficiently-good affine ap-
proximations (on the double of the cube), and hence for which there are
corresponding complementary linear mappings λ : Rm → Rm−t. Imag-
ine that we are working inside of the cube Q0, from before, and we have
now arrived to a dyadic cube Q1 contained in Q0, for which the lin-
ear mapping λ0 : Rm → Rm−t that we have already does not work so
well. That is, λ0 does not provide a good complement to f in terms of
having approximate bilipschitz properties around Q1, even if it might
do so at larger scales in Q0. Assume however that a new linear map-
ping λ1 : Rm → Rm−t does behave well in this way. We would like to
combine λ1 with λ0 on Q1, in such a manner as to keep the good proper-
ties of λ0 at other scales and locations in Q0 where λ0 works fine, while
bringing in the new mapping λ1 for use inside of Q1.

To be more precise, we shall focus (in a moment) on what happens
for a single cube Q1 inside Q0 like this, but normally there will be many
cubes in this situation. These “stopping places” inside Q0 will also occur
at many different scales in general. I.e., the earlier choice of λ0 will stop
working at variable scales and locations in Q0. The cubes Q1 that arise
in this manner will have disjoint interiors, by construction. (Essentially
one takes them to be as large as possible.)

It turns out that one does not have to worry too much about what
happens across cubes like the Q1’s, inside Q0. This is because the notions
of weakly Lipschitz and weakly bilipschitz functions allow for sets of
locations and scales on which one does not have information about the
given mapping, at least if these sets satisfy Carleson conditions. We shall
return to this later. At any rate, the basic point is that the problems
that occur in going across the Q1’s can be included in exceptional sets
of locations and scales like these. In particular, one does not have to try
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to smooth out these transitions, and this is a useful feature in working
with weakly Lipschitz and bilipschitz mappings.

One does have to be careful about what happens inside the individ-
ual Q1’s, and what happens in the original cube Q0 at locations and
scales which lie above the ones described by the Q1’s. To see what hap-
pens for these issues, let us fix a single Q1, as before, and just look at
it. In the actual construction, one would deal with all of the Q1’s in the
same way, in parallel.

Let cQ1 denote the center of Q1. On Q1, let us imagine replacing our
original mapping λ0(x) with

λ̃0(x) = λ0(cQ1) + (λ1(x) − λ1(cQ1)).(10.3)

From the point of view of scales larger than Q1, this function still looks
like λ0(x). To make this precise, notice that

sup
x∈Q1

|λ0(x) − λ0(cQ1)| ≤ C diamQ1(10.4)

and

sup
x∈Q1

|λ1(x) − λ1(cQ1)| ≤ C diamQ1(10.5)

for a suitable constant C (which in fact can normally be taken to be 1).
This is because the norms of λ0 and λ1 as linear mappings are bounded
(and can be taken to be bounded by 1), by the way that the λ’s are
chosen. Combining (10.4) and (10.5), we get that

sup
x∈Q1

|λ̃0(x) − λ0(x)| ≤ 2C diamQ1.(10.6)

Thus λ̃0(x) and λ0(x) are nearly the same on Q1, up to errors which are
comparable to diamQ1 (which would be small at larger scales).

On the other hand, λ̃0(x) is also close to λ1(x) on Q1, in the sense
that

λ̃0(x) − λ1(x) is constant on Q1.(10.7)

For the purposes of Lipschitz and bilipschitz conditions, λ̃1(x) is essen-
tially the same as λ1(x), because of this.

This is the basic method by which one puts mappings like the λ’s on
top of each other for this construction. Here one should modify λ0 in
this manner for all of the Q1’s in Q0, in parallel, as mentioned earlier.
In each of the Q1’s, one repeats the process, with Q1 in the role that Q0

had before, and using λ̃0(x), as above. For the internal properties of Q1,
this is practically the same as λ1(x), because of (10.7).
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One can organize this construction in such a way as to build a global
mapping on Rm. As one goes through successive repetitions of the pro-
cedure, one makes many modifications along these lines. At each step,
an individual modification is localized to some cube, and the size of the
modification is bounded in terms of the diameter of this cube. This
ensures that the modifications add up in reasonable ways as one goes
through the generations of the construction, i.e., they are controlled by
geometric series.

(Let us mention that one never runs up to infinity in scales, but
instead one starts on some dyadic cubes in Rm and goes down the scales
inside them. These starting cubes are chosen in such a way that every
dyadic cube in Rm is contained in one of them, except for a collection
of cubes that satisfies a Carleson condition. Basically, the exceptional
cubes can be chosen to lie near a single point, like the origin. Because
of the Carleson condition, one does not have to worry about the cubes
in Rm that are skipped in this way.)

For Lipschitz and bilipschitz conditions, these modifications do cause
trouble at some locations and scales. In particular, one can have trou-
ble along the boundaries of cubes like the Q1’s above. More precisely,
in replacing λ0(x) with λ̃0(x) as above, one has good properties away
from the Q1’s, at scales larger than the Q1’s in Q0, and inside the in-
dividual Q1’s, but one does not normally maintain good properties for
measurements that cross the boundary of Q1 (i.e., as in Lipschitz of
bilipschitz conditions).

The main point is then to control the total collection of scales and
locations for which this kind of trouble occurs, in terms of Carleson
conditions. This uses the Carleson conditions that we have from the be-
ginning, and discussed before, i.e., the Carleson conditions for how often
the λ’s need to be changed, and for the exceptional scales and locations
at which sufficiently-good affine approximations of the original Lipschitz
mapping f do not exist (so that one may not have suitable λ’s to be-
gin with). These conditions control how often the Q0’s and Q1’s come
up, which is to say, the cubes at which one starts and stops, as well as
some nearby cubes over which one might skip. The estimates for the
total collection mentioned above also uses some elementary observations
about obtaining Carleson conditions for sets of locations and scales as-
sociated to other such sets which are already known to satisfy Carleson
conditions.

For instance, if some set of locations and scales satisfies a Carleson
condition, then so do collections of locations and scales which are not too
far from the ones in the first set. Also, if {Qi}i is a family of dyadic cubes
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in Rm which satisfies a Carleson condition, then one also has Carleson
conditions for sets of locations and scales that lie near the boundaries
of the Qi’s. In other words, this includes locations and scales near the
locations and scales of the Qi’s themselves, and also ones where the
scales are much smaller than that, as long as the locations are close to
the boundaries of the Qi’s. This observation uses the fact that the Qi’s
have reasonably “small boundaries”. In particular, the set of locations
and scales near the boundary of a single dyadic cube satisfies a Carleson
condition. This is easy to check.

This gives an outline of how the construction works. Note that this
argument does not use topological degree theory, unlike the one before
(in the proof of Lemma 7.44). One makes up for this by using affine
approximations of f in stronger ways.
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