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A PROOF OF THE WEAK (1,1) INEQUALITY FOR
SINGULAR INTEGRALS WITH NON DOUBLING

MEASURES BASED ON A CALDERÓN-ZYGMUND
DECOMPOSITION

Xavier Tolsa

Abstract
Given a doubling measure µ on Rd, it is a classical result of
harmonic analysis that Calderón-Zygmund operators which are
bounded in L2(µ) are also of weak type (1, 1). Recently it has
been shown that the same result holds if one substitutes the dou-
bling condition on µ by a mild growth condition on µ. In this
paper another proof of this result is given. The proof is very close
in spirit to the classical argument for doubling measures and it is
based on a new Calderón-Zygmund decomposition adapted to the
non doubling situation.

1. Introduction

Let µ be a positive Radon measure on R
d satisfying the growth con-

dition

µ(B(x, r)) ≤ C0 r
n for all x ∈ R

d, r > 0,(1.1)

where n is some fixed number with 0 < n ≤ d. We do not assume that
µ is doubling [µ is said to be doubling if there exists some constant C
such that µ(B(x, 2r)) ≤ C µ(B(x, r)) for all x ∈ supp(µ), r > 0]. Let
us remark that the doubling condition on the underlying measure µ
on R

d is an essential assumption in most results of classical Calderón-
Zygmund theory. However, recently it has been shown that a big part
of the classical theory remains valid if the doubling assumption on µ is
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substituted by the size condition (1.1) (see for example the references
cited at the end of the paper).

In this note we will prove that Calderón-Zygmund operators (CZO’s)
which are bounded in L2(µ) are also of weak type (1, 1), as in the usual
doubling situation. This result has already been proved in [To1] in
the particular case of the Cauchy integral operator, and by Nazarov,
Treil and Volberg [NTV2] in the general case. The proof that we will
show here is different from the one of [NTV2] (and also from the one
of [To1], of course) and it is closer in spirit to the classical proof of the
corresponding result for doubling measures. The basic tool for the proof
is a decomposition of Calderón-Zygmund type for functions in L1(µ)
obtained in [To4].

Our purpose in writing this paper is not only to obtain another proof
in the non doubling situation of the basic result that CZO’s bounded in
L2(µ) are of weak type (1, 1), but to show that the Calderón-Zygmund
decompositon of [To4] is a good substitute of its classical doubling ver-
sion.

Let us introduce some notation and definitions. A kernel k(·, ·) from
L1

loc((R
d ×R

d) \ {(x, y) : x = y}) is called a Calderón-Zygmund kernel if

1. |k(x, y)| ≤ C

|x− y|n ,

2. there exists 0 < δ ≤ 1 such that

|k(x, y) − k(x′, y)| + |k(y, x) − k(y, x′)| ≤ C |x− x′|δ
|x− y|n+δ

if |x− x′| ≤ |x− y|/2.

Throughout all the paper we will assume that µ is a Radon measure on
R

d satisfying (1.1). The CZO associated to the kernel k(·, ·) and the
measure µ is defined (at least, formally) as

Tf(x) =
∫
k(x, y) f(y) dµ(y).

The above integral may be not convergent for many functions f because
k(x, y) may have a singularity for x = y. For this reason, one introduces
the truncated operators Tε, ε > 0:

Tεf(x) =
∫
|x−y|>ε

k(x, y) f(y) dµ(y),

and then one says that T is bounded in Lp(µ) if the operators Tε are
bounded in Lp(µ) uniformly on ε > 0. It is said that T is bounded from
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L1(µ) into L1,∞(µ) (or of weak type (1, 1)) if

µ{x : |Tεf(x)| > λ} ≤ C ‖f‖L1(µ)

λ

for all f ∈ L1(µ), uniformly on ε > 0. Also, T is bounded from M(C)
(the space of complex Radon measures) into L1,∞(µ) if

µ{x : |Tεν(x)| > λ} ≤ C ‖ν‖
λ

for all ν ∈ M(C), uniformly on ε > 0. In the last inequality, Tεν(x)
stands for

∫
|x−y|>ε

k(x, y) dν(y) and ‖ν‖ ≡ |ν|(Rd).
The result that we will prove in this note is the following.

Theorem 1.1. Let µ be a Radon measure on R
d satisfying the growth

condition (1.1). If T is a Calderón-Zygmund operator which is bounded
in L2(µ), then it is also bounded fromM(C) into L1,∞(µ). In particular,
it is of weak type (1, 1).

2. The proof

First we will introduce some additional notation and terminology. As
usual, the letter C will denote a constant which may change its value
from one occurrence to another. Constants with subscripts, such as C0,
do not change in different occurrences.

By a cube Q ⊂ Rd we mean a closed cube with sides parallel to the
axes. We denote its side length by �(Q) and its center by xQ. Given
α > 1 and β > αn, we say that Q is (α, β)-doubling if µ(αQ) ≤ β µ(Q),
where αQ is the cube concentric with Q with side length α �(Q). For
definiteness, if α and β are not specified, by a doubling cube we mean a
(2, 2d+1)-doubling cube.

Before proving Theorem 1.1 we state some remarks about the exis-
tence of doubling cubes.

Remark 2.1. Because µ satisfies the growth condition (1.1), there are a
lot of “big” doubling cubes. To be precise, given any point x ∈ supp(µ)
and c > 0, there exists some (α, β)-doubling cube Q centered at x with
l(Q) ≥ c. This follows easily from (1.1) and the fact that β > αn.
Indeed, if there are no doubling cubes centered at x with l(Q) ≥ c, then
µ(αmQ) > βmµ(Q) for each m, and letting m → ∞ one sees that (1.1)
cannot hold.

Remark 2.2. There are a lot of “small” doubling cubes too: if β >
αd, then for µ-a.e. x ∈ R

d there exists a sequence of (α, β)-doubling
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cubes {Qk}k centered at x with �(Qk) → 0 as k → ∞. This is a prop-
erty that any Radon measure on R

d satisfies (the growth condition (1.1)
is not necessary in this argument). The proof is an easy exercise on
geometric measure theory that is left for the reader.

Observe that, by the Lebesgue differentiation theorem, for µ-almost
all x ∈ R

d one can find a sequence of (2, 2d+1)-doubling cubes {Qk}k

centered at x with �(Qk) → 0 such that

lim
k→∞

1
µ(Qk)

∫
Qk

f dµ = f(x).

As a consequence, for any fixed λ > 0, for µ-almost all x ∈ R
d such that

|f(x)| > λ, there exists a sequence of cubes {Qk}k centered at x with
�(Qk) → 0 such that

lim sup
k→∞

1
µ(2Qk)

∫
Qk

|f | dµ > λ

2d+1
.

In the following lemma we will prove an easy but essential estimate
which will be used below. This result has already appeared in previous
works ([DM], [NTV2]) and it plays a basic role in [To2] and [To4] too.

Lemma 2.3. If Q ⊂ R are concentric cubes such that there are no
(α, β)-doubling cubes (with β > αn) of the form αkQ, k ≥ 0, with Q ⊂
αkQ ⊂ R, then, ∫

R\Q

1
|x− xQ|n

dµ(x) ≤ C1,

where C1 depends only on α, β, n, d and C0.

Proof: Let N be the least integer such that R ⊂ αNQ. For 0 ≤ k ≤ N
we have µ(αkQ) ≤ µ(αNQ)/βN−k. Then,

∫
R\Q

1
|x− xQ|n

dµ(x) ≤
N∑

k=1

∫
αkQ\αk−1Q

1
|x− xQ|n

dµ(x)

≤ C
N∑

k=1

µ(αkQ)
�(αkQ)n

≤ C
N∑

k=1

βk−N µ(αNQ)
α(k−N)n �(αNQ)n

≤ C µ(α
NQ)

�(αNQ)n

∞∑
j=0

(
αn

β

)j

≤ C.
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The Calderón-Zygmund decomposition mentioned above has been ob-
tained in Lemma 7.3 of [To4] and in that paper it has been used to show
that if a linear operator is bounded from a suitable space of type H1 into
L1(µ) and from L∞(µ) into a space of type BMO , then it is bounded
in Lp(µ). We will use a slight variant of this decompositon to prove
Theorem 1.1. Let us state the result that we need in detail.

Lemma 2.4 (Calderón-Zygmund decomposition). Assume that µ satis-
fies (1.1). For any f ∈ L1(µ) and any λ > 0 (with λ > 2d+1‖f‖L1(µ)/‖µ‖
if ‖µ‖ <∞) we have:

(a) There exists a family of almost disjoint cubes {Qi}i (that is,∑
i χQi

≤ C) such that

1
µ(2Qi)

∫
Qi

|f | dµ > λ

2d+1
,(2.1)

1
µ(2ηQi)

∫
ηQi

|f | dµ ≤ λ

2d+1
for η > 2,(2.2)

|f | ≤ λ a.e. (µ) on R
d \ ⋃

iQi.(2.3)

(b) For each i, let Ri be a (6, 6n+1)-doubling cube concentric with Qi,
with l(Ri) > 4l(Qi) and denote wi = χQi∑

k
χQk

. Then, there exists a

family of functions ϕi with supp(ϕi) ⊂ Ri and with constant sign
satisfying ∫

ϕi dµ =
∫

Qi

f wi dµ,(2.4)

∑
i

|ϕi| ≤ B λ(2.5)

(where B is some constant), and

‖ϕi‖L∞(µ)µ(Ri) ≤ C
∫

Qi

|f | dµ.(2.6)

Let us remark that other related decompositons with non doubling
measures have been obtained in [NTV2] and [MMNO]. However, these
results are not suitable for our purposes.

Although the proof of the lemma can be found in [To4], for the
reader’s convenience we have included it in the last section of the present
paper.
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Proof of Theorem 1.1: We will show that T is of weak type (1, 1). By
similar arguments, one gets that T is bounded fromM(C) into L1,∞(µ).
In this case, one has to use a version of the Calderón-Zygmund decom-
position in the lemma above suitable for complex measures (see the end
of the proof for more details).

Let f ∈ L1(µ) and λ > 0. It is straightforward to check that we may
assume λ > 2d+1‖f‖L1(µ)/‖µ‖. Let {Qi}i be the almost disjoint family
of cubes of Lemma 2.4. Let Ri be the smallest (6, 6n+1)-doubling cube
of the form 6kQi, k ≥ 1. Then we can write f = g + b, with

g = f χ
Rd\

⋃
i
Qi

+
∑

i

ϕi

and

b =
∑

i

bi :=
∑

i

(wi f − ϕi) ,

where the functions ϕi satisfy (2.4), (2.5), (2.6) and wi = χQi∑
k

χQk

.

By (2.1) we have

µ

(⋃
i

2Qi

)
≤ C

λ

∑
i

∫
Qi

|f | dµ ≤ C

λ

∫
|f | dµ.

So we have to show that

µ

{
x ∈ R

d \
⋃
i

2Qi : |Tεf(x)| > λ
}

≤ C

λ

∫
|f | dµ.(2.7)

Since
∫
bi dµ = 0, supp(bi) ⊂ Ri and ‖bi‖L1(µ) ≤ C

∫
Qi

|f | dµ, using con-
dition 2 in the definition of a Calderón-Zygmund kernel (which implies
Hörmander’s condition), we get∫

Rd\2Ri

|Tεbi| dµ ≤ C
∫

|bi| dµ ≤ C
∫

Qi

|f | dµ.

Let us see that ∫
2Ri\2Qi

|Tεbi| dµ ≤ C
∫

Qi

|f | dµ(2.8)
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too. On the one hand, by (2.6) and using the L2(µ) boundedness of T
and that Ri is (6, 6n+1)-doubling we get

∫
2Ri

|Tεϕi| dµ ≤
(∫

2Ri

|Tεϕi|2 dµ
)1/2

µ(2Ri)1/2

≤ C
(∫

|ϕi|2 dµ
)1/2

µ(Ri)1/2

≤ C
∫

Qi

|f | dµ.

On the other hand, since supp(wif) ⊂ Qi, if x ∈ 2Ri \ 2Qi, then
|Tε(wi f)(x)| ≤ C

∫
Qi

|f | dµ/|x− xQi |n, and so

∫
2Ri\2Qi

|Tε(wi f)| dµ ≤ C
∫

2Ri\2Qi

1
|x− xQi

|n dµ(x) ×
∫

Qi

|f | dµ.

By Lemma 2.3, the first integral on the right hand side is bounded by
some constant independent ofQi andRi, since there are no (6, 6n+1)-dou-
bling cubes of the form 6kQi between 6Qi and Ri. Therefore, (2.8) holds.

Then we have∫
Rd\

⋃
k

2Qk

|Tεb| dµ ≤
∑

i

∫
Rd\

⋃
k

2Qk

|Tεbi| dµ

≤ C
∑

i

∫
Qi

|f | dµ ≤ C
∫

|f | dµ.

Therefore,

µ

{
x ∈ R

d \
⋃
i

2Qi : |Tεb(x)| > λ
}

≤ C

λ

∫
|f | dµ.(2.9)

The corresponding integral for the function g is easier to estimate. Tak-
ing into account that |g| ≤ C λ, we get

µ

{
x ∈ R

d \
⋃
i

2Qi : |Tεg(x)| > λ
}

≤ C

λ2

∫
|g|2 dµ

≤ C

λ

∫
|g| dµ.

(2.10)
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Also, we have∫
|g| dµ ≤

∫
Rd\

⋃
i
Qi

|f | dµ+
∑

i

∫
|ϕi| dµ

≤
∫

|f | dµ+
∑

i

∫
Qi

|f | dµ ≤ C
∫

|f | dµ.

Now, by (2.9) and (2.10) we get (2.7).

If we want to show that T is bounded from M(C) into L1,∞(µ), then
in Lemma 2.4 and in the arguments above f dµ must be substituted
by dν, with ν ∈ M(C), and |f | dµ by d|ν|. Also, condition (2.3) of
Lemma 2.4 should be stated as “On R

d\⋃iQi, ν is absolutely continuous
with respect to µ, that is ν = f dν, and moreover |f(x)| ≤ λ a.e. (µ)
x ∈ R

d\⋃
iQi”. With other minor changes, the arguments and estimates

above work in this situation too.

3. Proof of Lemma 2.4

(a) Taking into account Remark 2.2, for µ-almost all x ∈ R
d such

that |f(x)| > λ, there exists some cube Qx satisfying
1

µ(2Qx)

∫
Qx

|f | dµ > λ

2d+1
(3.1)

and such that if Q′
x is centered at x with l(Q′

x) > 2l(Qx), then
1

µ(2Q′
x)

∫
Q′

x

|f | dµ ≤ λ

2d+1
.

Now we can apply Besicovich’s covering theorem (see Remark 3.1 below)
to get an almost disjoint subfamily of cubes {Qi}i ⊂ {Qx}x satisfying
(2.1), (2.2) and (2.3).

(b) Assume first that the family of cubes {Qi}i is finite. Then we
may suppose that this family of cubes is ordered in such a way that
the sizes of the cubes Ri are non decreasing (i.e. l(Ri+1) ≥ l(Ri)). The
functions ϕi that we will construct will be of the form ϕi = αi χAi , with
αi ∈ R and Ai ⊂ Ri. We set A1 = R1 and ϕ1 = α1 χR1 , where the
constant α1 is chosen so that

∫
Q1
f w1 dµ =

∫
ϕ1 dµ.

Suppose that ϕ1, . . . , ϕk−1 have been constructed, satisfy (2.4) and
k−1∑
i=1

|ϕi| ≤ B λ,

where B is some constant which will be fixed below.
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Let Rs1 , . . . , Rsm be the subfamily of R1, . . . , Rk−1 such that Rsj ∩
Rk �= ∅. As l(Rsj

) ≤ l(Rk) (because of the non decreasing sizes of Ri),
we have Rsj

⊂ 3Rk. Taking into account that for i = 1, . . . , k − 1

∫
|ϕi| dµ ≤

∫
Qi

|f | dµ

by (2.4), and using that Rk is (6, 6n+1)-doubling and (2.2), we get

∑
j

∫
|ϕsj

| dµ ≤
∑

j

∫
Qsj

|f | dµ

≤ C
∫

3Rk

|f | dµ ≤ Cλµ(6Rk) ≤ C2λµ(Rk).

Therefore,

µ
{∑

j |ϕsj | > 2C2λ
}
≤ µ(Rk)

2
.

So we set

Ak = Rk ∩
{∑

j |ϕsj
| ≤ 2C2λ

}
,

and then µ(Ak) ≥ µ(Rk)/2.
The constant αk is chosen so that for ϕk = αk χAk

we have
∫
ϕk dµ =∫

Qk
f wk dµ. Then we obtain

|αk| ≤
1

µ(Ak)

∫
Qk

|f | dµ ≤ 2
µ(Rk)

∫
1
2 Rk

|f | dµ ≤ C3λ

(this calculation also applies to k = 1). Thus,

|ϕk| +
∑

j

|ϕsj | ≤ (2C2 + C3)λ.

If we choose B = 2C2 + C3, (2.5) follows.
Now it is easy to check that (2.6) also holds. Indeed we have

‖ϕi‖L∞(µ) µ(Ri) ≤ C |αi|µ(Ai) = C
∣∣∣∣
∫

Qi

f wi dµ

∣∣∣∣ ≤ C
∫

Qi

|f | dµ.
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Suppose now that the collection of cubes {Qi}i is not finite. For each
fixed N we consider the family of cubes {Qi}1≤i≤N . Then, as above, we
construct functions ϕN

1 , . . . , ϕ
N
N with supp(ϕN

i ) ⊂ Ri satisfying∫
ϕN

i dµ =
∫

Qi

f wi dµ,

N∑
i=1

|ϕN
i | ≤ B λ

and

‖ϕN
i ‖L∞(µ) µ(Ri) ≤ C

∫
Qi

|f | dµ.

Notice that the sign of ϕN
i equals the sign of

∫
f wi dµ and so it does

not depend on N .
Then there is a subsequence {ϕk

1}k∈I1 which is convergent in the
weak ∗ topology of L∞(µ) to some function ϕ1 ∈ L∞(µ). Now we can
consider a subsequence {ϕk

2}k∈I2 with I2 ⊂ I1 which is also convergent in
the weak ∗ topology of L∞(µ) to some function ϕ2 ∈ L∞(µ). In general,
for each j we consider a subsequence {ϕk

j }k∈Ij with Ij ⊂ Ij−1 that con-
verges in the weak ∗ topology of L∞(µ) to some function ϕj ∈ L∞(µ). It
is easily checked that the functions ϕj satisfy the required properties.

Remark 3.1. Recall that Besicovich’s covering theorem asserts that if
Ω ⊂ R

d is a bounded set and for each x ∈ Ω there is a cube Qx centered
at x, then there exists a family of cubes {Qxi}i with finite overlap, that
is

∑
i χQi ≤ C, which covers Ω.

In (a) of the preceeding proof we have applied Besicovich’s covering
theorem to Ω = {x : |f(x)| > λ}. However this set may be unbounded,
and the boundedness property is a necessary assumption in Besicovich’s
theorem (example: take Ω = [0,+∞) ⊂ R and consider Qx = [0, 2x] for
all x ∈ Ω).

We can solve this problem using different arguments. One possibility
is to consider for each r > 0 the set Ωr = {x : |x| ≤ r, |f(x)| > λ} and
to apply Besicovich’s covering theorem to Ωr. With the same arguments
as above, we can decompose f = g+ b, with |g| ≤ λ only on Ωr and b as
above. Then the proof of Theorem 1.1 can be modified to show that for
any fixed constants λ,R > 0 one has

µ{x ∈ B(0, R) : |Tεf(x)| > λ} ≤ C ‖f‖L1(µ)

λ
.
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However we prefer the following solution. We are interested in showing
that the Calderón-Zygmund decomposition of Lemma 2.4 works also
without assuming Ω = {x : |f(x)| > λ} bounded. Let us sketch the
argument. Consider a cube Q0 centered at 0 big enough so that

2d+1 ‖f‖L1(µ)/µ(Q0) < λ.

So for any cube Q containing Q0 we will have

2d+1 ‖f‖L1(µ)/µ(Q) < λ.(3.2)

Form ≥ 0 we set Qm :=
(

5
4

)m
Q0. For eachm we can apply Besicovich’s

covering theorem to the annulus Qm \Qm−1 (we take Q−1 := ∅), with
cubes Qx centered at x ∈ supp(µ) ∩ (Qm \Qm−1) as in (a) of the proof
above, satisfying (3.1).

In this argument we have to be careful with the overlapping among
the cubes belonging to coverings of different annuli. Indeed, there exist
some fixed constants N and N ′ such that if m ≥ N ′, for x ∈ supp(µ) ∩
(Qm \Qm−1) we have

Qx ⊂ Qm+N \Qm−N .(3.3)

Otherwise, it is easily seen that �(Qx) > 3
4�(Qm), choosingN big enough.

It follows that Q0 ⊂ 2Qx since �(Q0) � �(Qm) for N ′ big enough too.
This cannot happen because then 2Qx satisfies (3.2), which contradicts
(3.1).

Because of (3.3), the covering made up of squares belonging to the
Besicovich coverings of different annuli Qm \ Qm−1, m ≥ 0, will have
finite overlap.

Notice that in this argument, it is essential the fact that in (3.1) we
are not dividing by µ(Qx), but by µ(2Qx).
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