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RESTRICTION AND DECAY FOR FLAT
HYPERSURFACES

Anthony Carbery and Sarah Ziesler

Abstract
In the first part we consider restriction theorems for hypersur-

faces Γ in Rn, with the affine curvature K
1/(n+1)
Γ introduced as

a mitigating factor. Sjőlin, [19], showed that there is a universal
restriction theorem for all convex curves in R2. We show that in
dimensions greater than two there is no analogous universal re-
striction theorem for hypersurfaces with non-negative curvature.

In the second part we discuss decay estimates for the Fourier trans-

form of the density K
1/2
Γ supported on the surface and investigate

the relationship between restriction and decay in this setting. It
is well-known that restriction theorems follow from appropriate
decay estimates; one would like to know whether restriction and
decay are, in fact, equivalent. We show that this is not the case
in two dimensions. We also go some way towards a classification
of those curves/surfaces for which decay holds by giving some
sufficient conditions and some necessary conditions for decay.

1. Universal restriction theorems

If S is a smooth (n − 1)-dimensional submanifold in Rn (n ≥ 3),
S0 is a compact subset with non-vanishing Gaussian curvature and dσ is
the induced Lebesgue measure then the Stein-Tomas restriction theorem
says that, for all f ∈ Lp(Rn),(∫

S0

|f̂(ξ)|q dσ(ξ)
)1/q

≤ C‖f‖p,(1)
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for 1 ≤ p ≤ 2n+2
n+3 , q ≤

(
n−1
n+1

)
p′, where 1

p + 1
p′ = 1. (See [22], and

[25] in the case of the sphere.) The inequality (1) is known as the
L(p, q) restriction property. Here and throughout, C denotes a universal
constant whose value may change from line to line. It is also well-known
that (1) must fail for p ≥ 2n

n+1 and for q >
(
n−1
n+1

)
p′; see [22] again.

However, for n = 2 (1) is known for the larger and optimal range, 1 ≤
p < 4/3, q ≤ p′/3; see [28] and [22].

There are various related results for surfaces whose Gaussian curva-
ture may vanish but which nevertheless satisfy some other conditions
such as being finite-type or having non-vanishing principal curvatures;
see for example [22], [9], [18], [20].

In higher dimensions, in the case of non-vanishing Gaussian curva-
ture, some exciting progress has been made in extending the range of p;
see [3], [2], [27], [16], [17], [23] and for the current best result in three
dimensions see [24].

In this paper we consider hypersurfaces which may be flat. We take
surfaces Γ(t) = (t, γ(t)) where t ∈ Rn−1 and γ : Rn−1 −→ R. We begin
by formulating the appropriate analogue of (1) for such surfaces. In
our discussion of restriction theorems for such surfaces in the present
paper, when n ≥ 3, we only consider the range of p, q in the Stein-
Tomas theorem and do not attempt an analogue of the improved higher-
dimensional results. To compensate for the possible lack of curvature we
insert a mitigating factor (which we shall choose in a moment) MΓ(t)
into the left-hand-side of (1) and look for inequalities of the form

(∫
|f̂(Γ(t))|qψ(t)MΓ(t) dt

)1/q

≤ C‖f‖p.

Here, to obtain positive results, we shall see that it is appropriate to
take ψ to be a smooth non-negative cut-off function when n ≥ 4 but in
dimensions 2 and 3 we can take ψ to be the characteristic function of
the set where Γ is defined.

One alternative approach in the absence of curvature, followed by
Bak, [1], is to look for Orlicz space theorems. Another approach, taken
by Brandolini, Iosevich and Travaglini, [4], is to average over rotations.

We would like to choose MΓ to reflect the affine-invariance of the
restriction property. Following Sjőlin, [19], and also [7], when q =(
n−1
n+1

)
p′ it is natural to take MΓ to be the affine curvature KΓ(t)1/(n+1)

where KΓ(t) = det(Hess γ(t)). The power 1
n+1 is the unique power

of KΓ which preserves the affine invariance of the problem; the resulting



Restriction and Decay for Flat Hypersurfaces 407

inequality is then also invariant under reparametrisation of the hypersur-
face and suggests that the restriction phenomenon might be a “universal”
or intrinsic property of a class of hypersurfaces.

This power of KΓ preserves affine invariance when q =
(
n−1
n+1

)
p′.

However in general we need K
q

p′(n−1)

Γ in order to have affine invariance
in an L(p, q) restriction theorem. Note that p = 1 gives the power 0.

So we wish to determine for which Γ one has

(∫
|f̂(Γ(t))|qψ(t)KΓ(t)

q

p′(n−1) dt

)1/q

≤ C‖f‖p,(2)

for 1 ≤ p ≤ 2n+2
n+3 , q ≤

(
n−1
n+1

)
p′. If one can show that

(∫
|f̂(Γ(t))|2ψ(t)KΓ(t)

1
n+1 dt

)1/2

≤ C‖f‖p,

for p = 2n+2
n+3 then interpolation with the p = 1 case gives the full range.

To distinguish the cases where ψ is a smooth cut-off or a characteristic
function we shall refer to the above inequality as (2)* when we mean to
take ψ as a characteristic function.

In two dimensions Sjőlin, [19], proved that there is a universal restric-
tion theorem for all convex curves:

Theorem 1.1 ([19]). Let Γ(t) = (t, γ(t)), where γ ∈ C2(0, 1) is convex.
Then (2)* holds for 1 ≤ p < 4

3 , q = 1
3p

′ and with a constant C
independent of γ.

It is worth noting that the proof of this given in [19] also applies in
the following case.

Theorem 1.2. Let Γ(t) = (t, γ(t)), where γ : R −→ R, and γ ∈ C2 is
convex.

Then
(∫

|f̂(t, γ(t))|qγ′′(t)q/p′ dt
)1/q

≤ C‖f‖p holds for 1 ≤ p < 4
3 ,

q = 1
3p

′ and with a constant C independent of γ.

We also note that the proof only requires that γ′′ be single-signed and
the argument will go through in exactly the same manner if one assumes
that γ is concave instead of convex.
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We now consider the situation in higher dimensions. We shall demon-
strate that there is no universal restriction theorem of the form (2)* for
hypersurfaces whose curvature is non-negative, in dimensions n ≥ 3. We
let t = (t1, t2, . . . , tn−1) and consider surfaces of the form Γ(t) = (t, γ(t)),
where γ : Rn−1 −→ R is C2[(0, 1) × (0, 1) × · · · × (0, 1)] and satisfies
det(Hess γ(t)) ≥ 0.

Theorem 1.3. Let Γ be as described above and p > 1. Then there is no
universal constant C such that (2)* holds for all such Γ.

Proof: Let t1 = r cos θ, t2 = r sin θ, y = (t3, . . . , tn−1) and define
γ(t) = r cosNθ + |y|2. Then KΓ(t) = 2n−3N2 sin2 Nθ

r2 ≥ 0. We now
choose f̂(ξ1, ξ2, . . . , ξn) = φ1(ξ1, ξ2, . . . , ξn−1)φ2(ξn) where φ1 and φ2

are smooth non-negative cut-off functions such that |φ1| ≤ 1, |φ2| ≤ 1,

φ1(ξ1, . . . , ξn−1) ≡
{

1 for |(ξ1, . . . , ξn−1)| ≤ 1
2 ,

0 for |(ξ1, . . . , ξn−1)| ≥ 1

and

φ2(ξn) ≡
{

1 for |ξn| ≤ 2,

0 for |ξn| ≥ 4.

Then (2)* gives∫∫∫
|φ1(r, θ, y)|q|φ2(γ̃(r, θ, y))|q

{
N2 sin2Nθ

r2

} q

p′(n−1)

r dr dθ dy ≤ C,

where γ̃ is γ written in cylindrical polar coordinates. Using the fact that
|γ| ≤ 2 on the support of φ1 this leads to∫ π/2

0

(N sinNθ)
2q

p′(n−1) dθ ≤ C.(3)

Since
∫ π/2
0

(sinNθ)
2q

p′(n−1) dθ ≥ c, (3) must fail as N −→ ∞.

In the setting of convex hypersurfaces the question seems considerably
more subtle and we have not arrived at any definitive conclusion. The
standard method to prove restriction results is to use decay estimates for
the Fourier transform of the measure K

1
2
Γ supported on the surface and

these estimates may fail even for finite-type convex surfaces, sometimes
quite dramatically, as was shown in [6]. By finite-type we mean that
the surface has finite order of contact with any tangent line, as defined
in [5]. We shall discuss decay estimates further, in the context of ra-
dial hypersurfaces, in Section 4 and Section 5. The standard means of
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finding a counterexample to restriction (via a Knapp-type homogeneity
argument, see [22], [10], [11]) leads one to an inequality which is true
for all convex hypersurfaces, as we shall see below. This leads one to
wonder whether there could indeed be a universal restriction theorem
for convex hypersurfaces in Rn, n ≥ 3.

For convex hypersurfaces with γ ≥ 0 the natural approach when
looking for a counterexample is to take a smooth non-negative cut-off
function φ which is identically 1 on (0, 1) and define f̂(ξ1, ξ2, . . . , ξn) =
φ( ξ1δ1 )φ( ξ2δ2 ) · · ·φ( ξn−1

δn−1
)φ( ξn

γ(δ1,δ2,...,δn−1)
). Then if (2)* holds for Γ we

have, for 0 < δi ≤ 1, i = 1, 2, . . . , n− 1,

∫ δn−1

0

· · ·
∫ δ1

0

KΓ(t)
q

p′(n−1) dt1 · · · dtn−1≤C[δ1 · · · δn−1γ(δ1, . . . , δn−1)]q/p
′
.

In fact, one can easily check that the optimal choice of the parameters
is δ1 = δ2 = · · · = δn−1 = 1. Then the above inequality becomes

∫ 1

0

· · ·
∫ 1

0

K
q

p′(n−1)

Γ dt1 · · · dtn−1 ≤ Cγ(1, . . . , 1)q/p
′
.(4)

However the isoperimetric inequality of affine differential geometry (see
for example [13, Chapter 5] and [14]) shows that (4) holds. A simple
argument, which we now give for the sake of completeness, verifies this
in the case of radial hypersurfaces. We let Γ(t) = (t, γ(|t|)) in Rn, where

n ≥ 3. In this case, KΓ(t) is given by KΓ(t) = γ′′(|t|)
(
γ′(|t|)
|t|

)n−2

.

Clearly, if γ is convex and γ′(0) = 0 then KΓ ≥ 0 for γ ∈ C2(0, 1) and
moreover Γ is convex.

Then (4) can be modified to

∫ 1

0

KΓ(r)
q

p′(n−1) rn−2 dr ≤ Cγ(1)q/p
′
.(5)

Lemma 1.1. When p′ ≥
(
n+1
n−1

)
q, (5) holds uniformly for all convex

γ ∈ C2(0, 1) such that γ(0) = γ′(0) = 0.
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Proof: We use
∫ 1

0
γ′′(r)(1−r) dr = γ(1) and Hőlder’s inequality to obtain

(∫ 1

0

γ′′(r)
q

p′(n−1) γ′(r)
q(n−2)
p′(n−1) r

(n−2)(1− q

p′(n−1)
)
dr

)

=
∫ 1

0

[γ′′(r)(1 − r)]
q

p′(n−1)
γ′(r)

q(n−2)
p′(n−1)

(1 − r)
q

p′(n−1)
r

(n−2)(p′(n−1)−q)
p′(n−1) dr

≤ γ(1)
q

p′(n−1)


∫ 1

0

γ′(r)
q(n−2)

p′(n−1)−q

(1 − r)
q

p′(n−1)−q

rn−2 dr




p′(n−1)−q

p′(n−1)

≤ γ(1)
q

p′(n−1)

(∫ 1

0

γ′(r) dr
) q(n−2)

p′(n−1)


∫ 1

0

r
(n−2)[(n−1)p′−q]

(n−1)(p′−q)

(1 − r)
q

(n−1)(p′−q)
dr




p′−q

p′

≤ Cγ(1)
q

p′

(∫ 1

0

1

(1 − r)
q

(n−1)(p′−q)
dr

) p′−q

p′

≤ Cγ(1)
q

p′ ,

when p′

q ≥ n+1
n−1 .

2. Restriction and decay

With the exception of the argument for n = 2, the typical proof of
an L(p, 2) restriction theorem hinges on a decay estimate such as∣∣∣∣

∫
S

eiξ.x dσ(x)
∣∣∣∣ ≤ C

(1 + |ξ|)r ,(6)

where r > 0 and dσ is the surface measure on S. If (6) holds then one
obtains an L(p, 2) restriction theorem for the surface S, for p ≤ 2(r+1)

r+2 .
The key value of r is r = n−1

2 . See for example, [22].
Some recent work of Iosevich, [10], and Iosevich and Lu, [11], shows

that in the cases of hypersurfaces with non-vanishing Gaussian curvature
or convex finite-type hypersurfaces, restriction and decay (both without
mitigating factors) are equivalent. More precisely, (2) holds for p =
2(r+1)
r+2 , q = 2 if, and only if, (6) holds.
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In our setting, the appropriate decay estimate to give restriction is
given in the following lemma. Part b) of the lemma also shows that if
the decay estimate misses by a logarithm, then one obtains restriction
up to the endpoint. The proof is an easy adaptation of the arguments
in [12]; see also [8] where the ideas originated.

Lemma 2.1. Suppose that Γ is defined on the open set Ω ⊂ Rn−1,
Γ: Ω −→ Rn and Γ is C2(Ω).

a) If, for 0 ≤ β ≤ 1
2 , and some N > 0,∣∣∣∣

∫
Ω

ei(ξ.Γ(t))|KΓ(t)|β+iα dt

∣∣∣∣ ≤ C
(1 + |α|)N
|ξn|β(n−1)

,

then (2)* holds for p = 2(1+(n−1)β)
2+(n−1)β , q = 2.

b) If, for 0 ≤ β ≤ 1
2 , some N > 0 and some ε > 0,∣∣∣∣

∫
Ω

ei(ξ.Γ(t))|KΓ(t)|β+iα dt

∣∣∣∣ ≤ C
(1 + |α|)N logε |ξn|

|ξn|β(n−1)
,

then (2)* holds for p < 2(1+(n−1)β)
2+(n−1)β , q = 2.

A corresponding statement holds for (2) if one inserts an appropriate
cut-off into the integral. This will be needed when we discuss dimen-
sions n ≥ 4.

If β = 1
2 in Lemma 2.1a) then one has p = 2n+2

n+3 and so interpolation

gives the full result, i.e. (2) for 1 ≤ p ≤ 2n+2
n+3 , q ≤

(
n−1
n+1

)
p′. If β = 1

2

in b) then we obtain (2) for 1 ≤ p < 2n+2
n+3 , q <

(
n−1
n+1

)
p′.

Decay estimates with mitigating factors have previously been consid-
ered in [12], [21], [6] and [18].

In Section 3 we shall show that, in our setting, restriction and decay
are not equivalent when n = 2. There are in fact convex curves for which
the decay estimate fails.

In Section 3 and Section 4 we also give a partial classification of the
curves/surfaces for which the desired decay estimates hold, in R2 and R3

respectively. The higher-dimensional case is considered in Section 5. In
dimensions three and above we consider only radial hypersurfaces Γ(t) =
(t, γ(|t|)).

Before proceeding, we state Van der Corput’s lemma, a crucial tool
in our estimates. See [22] for the proof.
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Lemma 2.2 ([22]). Suppose that φ is real-valued and smooth on [a, b]
and ψ is real-valued and C1([a, b]). If |φ(k)(x)| ≥ 1, then∣∣∣∣∣

∫ b

a

eiλφ(x)ψ(x) dx

∣∣∣∣∣ ≤ ckλ
−1/k

[
|ψ(b)| +

∫ b

a

|ψ′(x)| dx
]
,

when i) k ≥ 2, ii) k = 1, if φ′ is monotonic.

It follows that if ψ′ is single-signed then one can replace the right-
hand-side of the estimate by ckλ

−1/k max[a,b] |ψ(x)|; we shall use this
repeatedly.

3. Restriction and decay in 2-dimensions

Theorem 3.1. There is a γ : [0, 1] −→ R such that γ ∈ C2(0, 1), γ(0) =
γ′(0) = 0, γ is convex and∣∣∣∣

∫ 1

0

eiξ.(t,γ(t))γ′′(t)1/2 dt
∣∣∣∣ ≤ Cγ

|ξ2|1/2
(7)

fails.

It follows from this, together with Theorem 1.1, that restriction and
decay are not equivalent in a general setting. To prove the theorem we
first note that, taking ξ1 = 0 in the decay estimate one obtains∣∣∣∣

∫ 1

0

eiξ2.γ(t)γ′′(t)1/2 dt
∣∣∣∣ ≤ Cγ

|ξ2|1/2

and so if we choose ξ2 so that ξ2γ(1) ≈ 1
100 then∫ 1

0

γ′′(t)1/2 dt ≤ Cγ
|ξ2|1/2

≤ Cγγ(1)1/2.(8)

Proof of Theorem 3.1: By (8) it is enough to show that there is a
γ : [0, 1] −→ R so that γ(1) is finite but

∫ 1

0
γ′′(t)1/2 dt is not. For exam-

ple, we can choose γ so that

γ′′(t) =
1

(1 − t)2 log2 1
1−t

,

for 1/2 ≤ t ≤ 1. Then γ′′(t)1/2 is not integrable at 1. However, for
1/2 ≤ t < 1,

γ′(t) = γ′(1/2) +
∫ t

1/2

γ′′(s) ds,
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and

γ(t) = γ(1/2) + (t− 1/2)γ′(1/2) +
∫ t

1/2

(t− s)γ′′(s) ds,

for 1/2 ≤ t ≤ 1, so that

γ(1) = γ(1/2) + 1/2γ′(1/2) +
∫ 1

1/2

1
(1 − s) log2 1

1−s
ds,

which is finite.

This shows that the L(6/5, 2) restriction theorem for convex curves
does not imply the corresponding decay estimate with mitigating fac-
tor K1/2

Γ . We do not know whether restriction and decay are equivalent
for β < 1/2. In this case, the inequality analogous to (8) is

∫ 1

0
γ′′(t)β dt ≤

Cγγ(1)β , which is true for all convex curves with γ(0) = γ′(0) = 0.
We now consider necessary/sufficient conditions for uniform decay

estimates. Some results with a similar flavour can be found in [15].

Preliminary Remark. Let us suppose for a moment that we have uniform
decay for the class of curves γ that are C2(0, 1) and convex. (So the
decay estimate (7) holds with a constant independent of γ.) Then the
argument used for (8) together with dilation shows that∫ δ

0

γ′′(t)1/2 dt ≤ Cγ(δ)1/2,(9)

for all δ ≤ 1, with C independent of γ.

Proposition 3.1. Suppose that γ : [0, 1] −→ R satisfies γ, γ′ convex,

γ ∈ C2(0, 1] and γ ∈ C3(0, 1), γ(0) = γ′(0) = 0 and
(
γ′′1/2

γ′

)′
≤ 0. If

also γ′′(t) ≤ C γ′(t)2

γ(t) , for all 0 ≤ t ≤ 1, then

∣∣∣∣
∫ 1

0

ei(ξt+ηγ(t))γ′′(t)1/2+iα dt
∣∣∣∣ ≤ C(1 + |α|)

|η|1/2 for all η,(10)

with C independent of γ.

Conversely, if γ : [0, 1] −→ R is C2(0, 1), convex and
(
γ′′1/2

γ′

)′
≤ 0

and (10) holds for γ and all of its dilates γ(δ·), for δ ≤ 1, then γ′′(t) ≤
C γ′(t)2

γ(t) , for all 0 ≤ t ≤ 1 and with C independent of γ.
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Remarks. 1. The converse statement is a corollary of (9); in fact the
condition γ′′ ≤ C γ′2

γ is equivalent to (9), under the assumption

that
(
γ′′1/2

γ′

)′
≤ 0.

2. This result also shows that decay holds for flat curves such as
γ(t) = e−1/tm and γ(t) = t

log 1/t , for t small.

3. We have only considered the mitigating factor with power of the
curvature β = 1/2; conditions could also be formulated for β <
1/2.

Proof: We first prove the forward assertion. We begin by noting that∫ γ−1( 1
|η| )

0

γ′′(t)1/2 dt ≤ C

∫ γ−1( 1
|η| )

0

γ′(t)
γ(t)1/2

dt

=
C

|η|1/2 .

So, we need only consider
∫ 1

γ−1( 1
|η| )

ei(ξt+ηγ(t))γ′′(t)1/2+iα dt. We suppose

that ξ + ηγ′(t0) = 0 for t0 ∈ [γ−1( 1
|η| ), 1]. If there is no such t0 then

the argument below simplifies. For such a t0 to exist, clearly ξ and η

must have opposite signs and so γ′(t0) =
∣∣∣ ξη ∣∣∣. We then let t1 and t2

be such that γ′(t1) = 1
2γ

′(t0) and γ′(t2) = 2γ′(t0). We assume that

γ−1
(

1
|η|

)
< t1 < t0 < t2 ≤ 1. The other cases are either similar or

simpler. Then |ξ+ηγ′(t)| ≥ c|ξ| and |ξ+ηγ′(t)| ≥ c̃|η|γ′(t) on [0, t1] and
[t2, 1]. Then, using Van der Corput’s lemma, together with the convexity
of γ′ and the assumption γ′′ ≤ C γ′2

γ , we have

∣∣∣∣∣
∫ t1

γ−1( 1
|η| )

ei(ξt+ηγ(t))γ′′(t)1/2+iα dt

∣∣∣∣∣ ≤ C(1 + |α|)
|ξ| max

t∈[γ−1( 1
|η| ),t1]

γ′′(t)1/2

≤ C(1 + |α|)
|ξ|

γ′(t1)
γ(t1)1/2

≤ C(1 + |α|)
|ξ|

γ′(t1)
1

|η|1/2

=
C(1 + |α|)

|η|1/2 .
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Also using Van der Corput we obtain∣∣∣∣
∫ t2

t1

ei(ξt+ηγ(t))γ′′(t)1/2+iα dt
∣∣∣∣ ≤ C(1 + |α|)

|η|1/2
maxt∈[t1,t2] γ

′′(t)1/2

mint∈[t1,t2] γ
′′(t)1/2

.

To see that the right-hand side is bounded by C(1+|α|)
|η|1/2 we need to use

the assumptions that γ′ is convex and γ′′1/2

γ′ is decreasing. Then

maxt∈[t1,t2] γ
′′(t)1/2

mint∈[t1,t2] γ
′′(t)1/2

≤ γ′′(t2)1/2

γ′′(t1)1/2
≤ γ′(t2)
γ′(t1)

= 4.

For the remaining part of the integral we integrate by parts.

∣∣∣∣
∫ 1

t2

ei(ξt+ηγ(t)) γ′′(t)1/2+iα dt
∣∣∣∣

=
∣∣∣∣
∫ 1

t2

γ′′(t)1/2+iα

i(ξ + ηγ′(t))
d

dt
(ei(ξt+ηγ(t))) dt

∣∣∣∣
≤ γ′′(1)1/2

|ξ + ηγ′(1)| +
γ′′(t2)1/2

|ξ + ηγ′(t2)|
+

∫ 1

t2

∣∣∣∣∣
(
γ′′(t)1/2+iα

ξ + ηγ′(t)

)′∣∣∣∣∣ dt

≤ C

|η|

{
1 +

γ′′(t2)1/2

γ′(t2)
+ (1 + |α|)

∫ 1

t2

γ′′′(t)
γ′′(t)1/2γ′(t)

dt

+
∫ 1

t2

|η|2 γ′′(t)3/2

|ξ + ηγ′(t)|2 dt
}

≤ C

|η|γ(t2)1/2
+ C(1 + |α|) 1

|η|

∫ 1

t2

γ′′(t)3/2

γ′(t)2
dt

≤ C

|η|1/2 + C(1 + |α|) 1
|η|

∫ 1

t2

γ′(t)
γ(t)3/2

dt

≤ C

|η|1/2 + C(1 + |α|) 1
|η|

∫ 1

γ−1( 1
|η| )

γ′(t)
γ(t)3/2

dt

≤ C(1 + |α|)
|η|1/2 .
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We now turn to the proof of the converse statement. By (9) under
our assumptions on γ, the decay estimate gives∫ δ

0

γ′′(t)1/2

γ′(t)
γ′(t) dt ≤ Cγ(δ)1/2

=⇒ γ′′(δ)1/2

γ′(δ)
γ(δ) ≤ Cγ(δ)1/2,

which gives the stated inequality.

4. Decay estimates for n = 3

Examples of failure of decay with mitigating factor for finite-type
convex hypersurfaces in higher dimensions are given in [6]. In the radial
setting Schulz, [18], showed that decay with mitigating factor K1/2

Γ fails
for the example γ(r) = e−1/r for odd dimensions. We begin, in Theo-
rem 4.1, by extending this example in three dimensions. By considering
the curves γ(r) = e−1/rm

we show that decay can fail for mitigating
factors Kβ

Γ , for all 1
3 < β ≤ 1

2 . Of course, for n ≥ 3, failure of decay tells
us nothing about restriction.

Before proceeding we note that if γ is defined for 0 < |t| ≤ a and we
change to polar coordinates then the decay estimates we are considering
are of the form∣∣∣∣

∫ a

0

eiξ3γ(r)J0(r|ξ′|)KΓ(r)β+iαr dr

∣∣∣∣ ≤ C(1 + |α|)N
|ξ3|2β

,(11)

where ξ′ = (ξ1, ξ2) and J0 is the Bessel function of order zero.

Theorem 4.1. If γ(r) = e−
1

rm and β ≥ m+2
3m+4 then, for |ξ3| ≥ 100

γ(1/2) ,∣∣∣∣∣
∫ 1/2

0

eiξ3γ(r)KΓ(r)βr dr

∣∣∣∣∣ ≥ C

|ξ3|2β
(log |ξ3|)

(3m+4)β−(m+2)
m .

It follows that, for each 1
3 < β ≤ 1

2 there is a convex γ ∈ C∞[0, 1/2] with
γ(0) = γ′(0) = 0 such that (11) fails.

We note that this is in contrast to the two-dimensional setting where
decay with β = 1

2 holds for the curve (t, e−
1

tm ). (See Remark 2 after
Proposition 3.1.) We also recall that in two dimensions we had no such
results for β < 1/2. (See the comments after the proof of Theorem 3.1.)
Before proving Theorem 4.1 we need the following lemma.
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Lemma 4.1. Suppose f ≥ 0, f ′ ≤ 0, f ′′ ≥ 0 on [0, b] and b ≥ 2π
η . Then

∣∣∣∣∣
∫ b

0

eiηtf(t) dt

∣∣∣∣∣ ≥ C

|η|

[
f

(
2π
η

)
− f

(
2π[ ηb2π ]
η

)]
,

where [x] denotes the fractional part of x.

Proof: A change of variables shows that it is equivalent to show that,
for b > 1

η ,

∣∣∣∣∣
∫ b

0

e2πiηtf(t) dt

∣∣∣∣∣ ≥ C

|η|

[
f

(
1
η

)
− f

(
[ηb]
η

)]
.

We start by noting that∣∣∣∣∣
∫ b

0

e2πiηtf(t) dt

∣∣∣∣∣ ≥
∣∣∣∣∣
∫ b

0

sin(2πηt)f(t) dt

∣∣∣∣∣
=

1
η

∣∣∣∣∣
∫ ηb

0

sin(2πu)f
(
u

η

)
du

∣∣∣∣∣
=

1
η

∣∣∣∣∣∣
[ηb]−1∑
j=0

∫ j+1

j

sin(2πu)f
(
u

η

)
du

+
∫ ηb

[ηb]

sin(2πu)f
(
u

η

)
du

∣∣∣∣∣ .
Then∫ j+1

j

sin(2πu)f
(
u

η

)
du = − 1

2π

[
f

(
j + 1
η

)
− f

(
j

η

)]

+
1

2πη

∫ j+1

j

cos(2πu)f ′
(
u

η

)
du

= − 1
2πη

∫ j+1

j

(1 − cos(2πu))f ′
(
u

η

)
du

≥ 0.
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Also, ∫ ηb

[ηb]

sin(2πu)f
(
u

η

)
du = − 1

2πη

∫ ηb

[ηb]

(1 − cos(2πu))f ′
(
u

η

)
du

+
1
2π
f(b)(1 − cos(2πηb)

≥ 0.

Then, using f ′ increasing and the Mean Value Theorem, we have

∣∣∣∣∣
∫ b

0

e2πiηtf(t) dt

∣∣∣∣∣ ≥ − 1
2πη2

[ηb]−1∑
j=0

f ′
(
j + 1
η

) ∫ j+1

j

(1 − cos(2πu)) du

= − 1
2πη2

[ηb]−1∑
j=0

f ′
(
j + 1
η

)

≥ 1
2πη

[ηb]−2∑
j=0

[
f

(
j + 1
η

)
−f

(
j + 2
η

)]
− 1

2πη2
f ′

(
[η]b
η

)
,

=
1

2πη

[
f

(
1
η

)
− f

(
[η]b
η

)]
− 1

2πη2
f ′

(
[η]b
η

)

≥ 1
2πη

[
f

(
1
η

)
− f

(
[η]b
η

)]
.

Proof of Theorem 4.1: For γ(r) = e−
1

rm ,
KΓ(r) = m(m+1)

r3m+4 ( m
m+1 − rm) e−

2
rm ≥ 0 for 0 ≤ r ≤ 1/2, m ≥ 1. Then if

we take f(u) = (log 1
u )

(3m+4)β−(m+2)
m ( m

m+1 − 1
log 1

u

)β 1
u1−2β we have∣∣∣∣∣

∫ 1/2

0

eiξ3γ(r)K(r)βr dr

∣∣∣∣∣ =

∣∣∣∣∣
∫ γ(1/2)

0

eiξ3uf(u) du

∣∣∣∣∣ .
The given f satisfies the conditions of Lemma 4.1 if β ≥ m+2

3m+4 . It follows
that ∣∣∣∣∣

∫ 1/2

0

eiξ3γ(r)K(r)βr dr

∣∣∣∣∣ ≥ C

|ξ3|2β
(log |ξ3|)

(3m+4)β−(m+2)
m

for |ξ3| ≥ 100
γ(1/2) .
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We also remark that if we take γ as in the proof of Theorem 3.1,
i.e. γ′′(t)= 1

(1−t)2 log2 1
1−t

, then one can verify that γ′(t)β≥Cγ′′(t) 1
2−β for

1
3 < β ≤ 1

2 and all t ∈ [0, 1], from which it follows that
∣∣∣∫ 1

0
K(r)βr dr

∣∣∣ ≤
C must fail. This is enough to show that decay fails for this γ also.

We now give the three-dimensional (radial) analogue of Proposi-
tion 3.1. First we suppose that γ : [0, 1] −→ R is convex and C2(0, 1)
and decay holds with a constant independent of γ, for γ and all of its di-
lates γ(δ·), for δ ≤ 1. The relevant decay estimate is now for 0 ≤ β ≤ 1

2 ,

∣∣∣∣
∫ 1

0

eiξ3γ(r)J0(r|ξ′|)K(r)β+iαr dr

∣∣∣∣ ≤ C(1 + |α|)N
|ξ3|2β

,(12)

for all ξ3. Then the argument used for (8) together with dilation shows
that

∫ δ

0

K(r)βr dr ≤ Cγ(δ)2β(13)

for all δ ≤ 1, with C independent of γ. We have stated this for β rather
than β = 1

2 since in this case the inequality (13) may be violated for
values other than 1

2 .

Proposition 4.1. a) Suppose that γ : [0, 1] −→ R satisfies γ and
γ′ convex, γ ∈ C2(0, 1], γ ∈ C3(0, 1), γ(0) = γ′(0) = 0 and(
rγ′′(r)
γ′(r)

)′
≤ 0 for r ∈ (0, 1). If also γ′′(r) ≤ C γ′(r)

r and

γ′′′(r) ≤ C γ′′(r)
r for r ∈ (0, 1), then

∣∣∣∣
∫ 1

0

eiξ3γ(r)J0(r|ξ′|)K(r)1/2+iαr dr
∣∣∣∣ ≤ C(1 + |α|)N

|ξ3|
,(14)

for all ξ3, with C independent of γ.
Conversely, if γ : [0, 1] −→ R is convex and C3(0, 1],(
rγ′′(r)
γ′(r)

)′
≤ 0 for r ∈ (0, 1) and (14) holds for γ and all of its

dilates γ(δ·), for δ ≤ 1, then γ′′(r) ≤ C γ′(r)
r , for all 0 ≤ r ≤ 1,

with C independent of γ.
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b) Suppose that γ : [0, 1] −→ R satisfies γ and γ′ convex, γ ∈ C2(0, 1],

γ ∈ C3(0, 1), γ(0) = γ′(0) = 0 and
(
rγ′′(r)
γ′(r)

)′
≤ 0 for r ∈ (0, 1).

If also, γ′′(r) ≤ C γ′(r)
r

∣∣∣logµ 1
γ(r)

∣∣∣, for r ∈ (0, 1) and some µ ≥ 0,
then∣∣∣∣

∫ 1

0

eiξ3γ(r)J0(r|ξ′|)K(r)1/2+iαr dr
∣∣∣∣ ≤ C(1 + |α|)N

|ξ3|
∣∣∣log

µ
2 +1 |ξ3|

∣∣∣ ,
for all ξ3.

Remarks. 1. In parallel with the two-dimensional case, the converse
statement in a) is a consequence of (13) and in fact the condi-
tion γ′′(r) ≤ C γ′(r)

r is equivalent to (13), under the additional

assumption
(
rγ′′(r)
γ′(r)

)′
≤ 0.

2. If, in b), one adds the hypothesis that γ′′′(r) ≤ C γ′′(r)
r

∣∣∣logµ 1
γ(r)

∣∣∣
for some µ ≥ 0 then one can obtain a similar estimate but with a
power of 3µ

2 on the logarithm. See Proposition 5.1 below. There-
fore, with this extra condition the power of the logarithm may be
taken to be min{ 3µ

2 ,
µ
2 + 1}.

3. For the example γ(r) = e−
1

rm , one has rγ′′(r)
γ′(r) ≈ 1

rm and so the
conditions of b) hold but those of a) fail. This is in contrast to
what happens in two dimensions; the conditions of Proposition 3.1
are satisfied by this curve.

We shall prove only the converse in a) at this point, leaving the suf-
ficient conditions for decay to be dealt with simultaneously with the
higher-dimensional result in the following section.

Proof of the converse in Proposition 4.1a): Suppose that the stated de-

cay estimate holds. Then, by (13) we have
∫ δ
0

(
rγ′′(r)
γ′(r)

)1/2

γ′(r) dr ≤

Cγ(δ). Using the assumption that
(
rγ′′(r)
γ′(r)

)′
≤ 0 gives a lower bound of(

δγ′′(δ)
γ′(δ)

)1/2

γ(δ) for the integral and this gives the result.

5. Decay estimates for n ≥ 4

We consider radial hypersurfaces Γ(t) = (t, γ(|t|)) in Rn, where n ≥ 4.

We recall that KΓ(t) = γ′′(|t|)
(
γ′(|t|)
|t|

)n−2

.
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Following Lemma 2.1 we want inequalities such as∣∣∣∣∣
∫
|t|≤1

e(iξ.Γ(t))φ(t)KΓ(t)β+iα dt

∣∣∣∣∣ ≤ C(1 + |α|)N
|ξn|(n−1)β

(15)

for some N > 0 and 0 ≤ β ≤ 1/2 with β = 1/2 being the key value.
Without the smooth cut-off φ, one cannot hope for this decay to hold in
dimensions higher than 3, even for the nicest possible γ, that is γ(r) = r2.
This is because one cannot achieve decay better than 1

|ξn| near 1. It
follows that the restriction results one can obtain via decay estimates
must necessarily be of the form (2).

If we change to polar coordinates then (15) becomes

(16)

∣∣∣∣∣
∫ 1

0

eiξnγ(r)φ(r)
1

(r|ξ′|)n−3
2

Jn−3
2

(r|ξ′|)K(r)β+iαrn−2 dr

∣∣∣∣∣
≤ C(1 + |α|)N

|ξn|(n−1)β
,

where ξ′ = (ξ1, ξ2, . . . , ξn−1) and Jn−3
2

is the Bessel function of or-
der n−3

2 . Throughout this section φ will be a smooth cut-off which
vanishes at 1. It need not vanish at 0.

Sufficient conditions for decay are given in the following proposition.
We note that although our primary interest is now n ≥ 4, this result is
valid for n ≥ 3.

Proposition 5.1. Suppose that γ : [0, 1] −→ R satisfies γ(0) = γ′(0) =
0, γ ∈ Ck+2(0, 1) where k =

[
n
2

]
. Suppose that γ and γ′ are convex.

If
∣∣∣ rγ(i+1)(r)

γ(i)(r)

∣∣∣ ≤ C
∣∣∣logµ 1

γ(r)

∣∣∣ for some µ ≥ 0, i = 0, 1, . . . , k + 1, then∣∣∣∣∣
∫
eiξnγ(r)φ(r)

1

(r|ξ′|)n−3
2

Jn−3
2

(r|ξ′|)K(r)1/2+iαrn−2 dr

∣∣∣∣∣
≤ C(1 + |α|)N

|ξn|(n−1)/2

∣∣∣logµ(k+ 1
2 ) |ξn|

∣∣∣ .
Remarks. 1. Conditions could also be formulated to give decay for

β < 1/2.

2. For the full restriction result one needs to take µ = 0; in this case
the conditions on γ are closely related to the finite-type condition.
The lemma below clarifies this. First we recall (from [5]) that
(t, γ(|t|)) is finite-type m, m > 1, at 0 if γ ∈ C∞ is such that
γ′(0) = 0 and m is the least integer such that γ(m)(0) �= 0.
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Lemma 5.1. Suppose that γ : [0,∞) −→ R.

a) If γ ∈ C∞, γ ≥ 0, γ′ ≥ 0 and tγ′(t)
γ(t) ≤ C then γ is finite-type at 0.

b) If γ is finite-type m at 0 then
∣∣∣ tγ(r+1)(t)

γ(r)(t)

∣∣∣ ≈ C for r = 0, 1, . . . ,m−1.

If γ ∈ Ck with k > m then one also has
∣∣∣ tγ(r+1)(t)

γ(r)(t)

∣∣∣ ≤ C for r =
m, . . . , k − 1.

Proof: a) tγ′(t)
γ(t) ≤ C =⇒ log γ(1)

γ(t) ≤ log 1
tc =⇒ γ(t) ≥ γ(1)tc =⇒ γ is

finite-type, since γ ∈ C∞.

b) If γ(0) = γ′(0) = · · · = γ(m−1)(0) = 0 and γ(m)(0) > 0 then
γ(r)(t) ≈ tm−rγ(m)(0) + O(tm−r+1) for r = 0, 1, . . . ,m and γ(r)(t) ≈
γ(r)(0) +O(t) for r = m+ 1, . . . , k. The results follow easily.

We now turn to the proof of Proposition 5.1. We first need some
preliminary work.

Lemma 5.2. Suppose
∣∣∣ rγ(i+1)(r)

γ(i)(r)

∣∣∣ ≤ C
∣∣∣logµ 1

γ(r)

∣∣∣ for i = 1, 2, . . . ,m+ 1
and some µ ≥ 0.

a) Then ∣∣∣∣∣
(
K ′

K

)(m)

(r)

∣∣∣∣∣ ≤ C

rm+1

∣∣∣∣logµ(m+1) 1
γ(r)

∣∣∣∣ .
b) If also ||ξ′| + ξnγ

′(r)| ≥ c|ξn|γ′(r) then∣∣∣∣∣
(

ξnγ
′′

|ξ′| + ξnγ′

)(m)

(r)

∣∣∣∣∣ ≤ C

rm+1

∣∣∣∣logµ(m+1) 1
γ(r)

∣∣∣∣ .
Proof: A straightforward calculation.

We now define D1
rf(r) = d

dr

(
f(r)

|ξ′|+ξnγ′(r)

)
; Dk

r f(r) = d
dr

(
Dk−1

r f(r)
|ξ′|+ξnγ′(r)

)
for k ≥ 2.

Lemma 5.3. If
∣∣∣ rγ(i+1)(r)

γ(i)(r)

∣∣∣ ≤ C
∣∣∣logµ 1

γ(r)

∣∣∣ for i = 1, 2, . . . ,m + 1 and
some µ ≥ 0 and if ||ξ′|+ ξnγ

′(r)| ≥ c|ξn|γ′(r), then for some N > 0 and
all 0 ≤ β ≤ 1/2, we have, for ν ≥ 0 and 0 < a ≤ 1,∣∣∣Dm

r

(
Kβ+iα(r)rνφ

( r
a

))∣∣∣
≤ C(1 + |α|)N

|ξn|m
γ′(r)(n−1)β−mrν−(n−1)β

∣∣∣∣1r logµ
1

γ(r)
+

1
a

∣∣∣∣
m∣∣∣∣logµ/2

1
γ(r)

∣∣∣∣ .
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Proof: Let Hk(r) = (β + iα)K
′(r)

K(r) + ν
r − k ξnγ

′′(r)
|ξ′|+ξnγ′(r) and then observe

that

D1
r

(
Kβ+iα(r)rνφ

( r
a

))
=

K(r)β+iαrν

|ξ′| + ξnγ′(r)

(
1
a
φ′

( r
a

)
+ φ

( r
a

)
H1(r)

)

and

D2
r

(
Kβ+iα(r)rνφ

( r
a

))

=
K(r)β+iαrν

(|ξ′| + ξnγ′(r))2

((
1
a
φ′

( r
a

)
+ φ

( r
a

)
H1(r)

)′

+
(

1
a
φ′

( r
a

)
+ φ

( r
a

)
H1(r)

)
H2(r)

)
.

In general one finds

Dm
r

(
Kβ+iα(r)rνφ

( r
a

))
=

K(r)β+iαrν

(|ξ′| + ξnγ′(r))m
Fm(r)

where Fm(r) is an algebraic expression in
φ, φ′, . . . , φ(m), H0, H

′
0, . . . , H

(m−1)
0 , H1, H

′
1, . . . , H

(m−2)
1 , . . . , Hm−1 .

Using Lemma 5.2 we see that, for some N > 0,
|Fm(r)| ≤ C(1+ |α|)N

∣∣∣ 1
r logµ 1

γ(r) + 1
a

∣∣∣m and so using again the assump-
tion that ||ξ′| + ξnγ

′(r)| ≥ c|ξn|γ′(r) we have

∣∣∣Dm
r

(
Kβ+iα(r)rνφ

( r
a

))∣∣∣
≤ C(1 + |α|)N K(r)βrν

|ξnγ′(r)|m
(r)

∣∣∣∣1r logµ
1

γ(r)
+

1
a

∣∣∣∣
m

=
C(1 + |α|)N

|ξn|m
γ′′(r)βγ′(r)(n−2)β−mrν−(n−2)β

∣∣∣∣1r logµ
1

γ(r)
+

1
a

∣∣∣∣
m

≤ C(1 + |α|)N
|ξn|m

γ′(r)(n−1)β−mrν−(n−1)β

∣∣∣∣1r logµ
1

γ(r)
+

1
a

∣∣∣∣
m ∣∣∣∣logµ/2

1
γ(r)

∣∣∣∣ .
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Proof of Propositions 5.1 and 4.1b): In both propositions the integral
over [0, γ−1(1/|ξn|)] is dealt with via a size estimate. We first note that
if a < e−1 and α > 0 then∫ a

0

logα
1
u
du ≤ Cαa logα

1
a
.(17)

To see this we integrate by parts:∫ a

0

logα
1
u
du = a logα

1
a

+ α

∫ a

0

logα−1 1
u
du.

If α ≤ 1 then logα−1 1
u ≤ logα−1 1

a for all u ∈ (0, a) and since a < e−1

this is bounded by logα 1
a . This then gives∫ a

0

logα
1
u
du ≤ (1 + α)a logα

1
a
.

If α > 1, we integrate by parts repeatedly until the logarithm in the
integrand has a negative exponent and then argue in a similar way.

We now consider

∫ γ−1(1/|ξn|)

0

K(r)1/2rn−2 dr

=
∫ γ−1(1/|ξn|)

0

γ′′(r)1/2
(
γ′(r)
r

)(n−2)/2

rn−2 dr

≤ C

∫ γ−1(1/|ξn|)

0

γ′(r)(n−1)/2

∣∣∣∣logµ/2
1

γ(r)

∣∣∣∣ r(n−3)/2 dr,

using the assumption that γ′′(r) ≤ C γ′(r)
r

∣∣∣logµ 1
γ(r)

∣∣∣.
If n = 3, this is∫ γ−1(1/|ξ3|)

0

γ′(r)
∣∣∣∣logµ/2

1
γ(r)

∣∣∣∣ dr =
∫ 1

|ξ3|

0

∣∣∣∣logµ/2
1
u

∣∣∣∣ du.
For 1

|ξ3| < e−1, we can apply (17) to obtain a bound of Cµ

|ξ3|

∣∣∣logµ/2 |ξ3|
∣∣∣.

In all dimensions, for 1
|ξn| ≥ e−1, we have the trivial estimate

∫ γ−1( 1
|ξn| )

0

K(r)1/2rn−2 dr ≤ C ≤ C

|ξn|
∣∣∣logµ/2 |ξn|

∣∣∣ .
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We now consider the case n ≥ 4. From the argument above we see that
we may assume that 1

|ξn| < e−1. Then we use the additional assumption

that γ′(r) ≤ C γ(r)
r

∣∣∣logµ 1
γ(r)

∣∣∣, to obtain

∫ γ−1(1/|ξn|)

0

(
γ′(r)
r

)n−1
2

∣∣∣∣logµ/2
(

1
γ(r)

)∣∣∣∣ rn−2 dr

≤
∫ γ−1(1/|ξn|)

0

(
γ(r)
r

)(n−3)/2

γ′(r)
∣∣∣∣logµ( n−2

2 )

(
1

γ(r)

)∣∣∣∣ r(n−3)/2 dr

=
∫ 1

|ξn|

0

u
n−3

2

∣∣∣∣logµ( n−2
2 ) 1

u

∣∣∣∣ du
≤ Cµ

|ξn|(n−3)/2
.

1
|ξn|

∣∣∣logµ( n−2
2 ) |ξn|

∣∣∣ ,
by (17), which gives us the desired estimate.

For the integral over [γ−1(1/|ξn|), 1] there are several cases to consider.
We shall assume that |ξ′| ≥ 1 since the argument simplifies otherwise.
This gives us two cases to consider.

Case 1: γ−1( 1
|ξn| ) <

1
|ξ′| .

In this case we take φ1 to be a smooth cut-off which takes the value 1
on [0, 1

2 ] and vanishes at 1. Then we need to estimate

∣∣∣∣∣
∫ 2

|ξ′|

γ−1( 1
|ξn| )

eiξnγ(r)φ(r)φ1

(
r|ξ′|
2

)
1

(r|ξ′|)n−3
2

Jn−3
2

(r|ξ′|)K(r)
1
2+iαrn−2 dr

∣∣∣∣∣
(18)

and

∣∣∣∣∣
∫ 1

1
|ξ′|

eiξnγ(r)φ(r)
(
1−φ1

(
r|ξ′|
2

))
1

(r|ξ′|)n−3
2

Jn−3
2

(r|ξ′|)K(r)
1
2+iαrn−2 dr

∣∣∣∣∣ .
(19)

Here and throughout this proof we shall replace the Bessel func-
tion Jn−3

2
by the leading term in its expansion. The remainders are

dealt with by similar arguments. See [26, Section 7.21 and Section 3.1]
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for the asymptotic expansion and the series expansion for small argu-
ment respectively. Thus, instead of bounding (18) and (19), we shall
bound instead∣∣∣∣∣

∫ 2
|ξ′|

γ−1( 1
|ξn| )

eiξnγ(r)φ1

(
r|ξ′|
2

)
K(r)

1
2+iαrn−2 dr

∣∣∣∣∣(20)

and

1

|ξ′|n−2
2

∣∣∣∣∣
∫ 1

1
|ξ′|

ei(ξnγ(r)+r|ξ′|)φ(r)
(

1−φ1

(
r|ξ′|
2

))
K(r)

1
2+iαr

n−2
2 dr

∣∣∣∣∣ .(21)

We consider (20) for Proposition 4.1b) (n = 3) first. We remind the
reader that the conditions are slightly different from those in Proposi-
tion 5.1. In particular

(
rγ′′

γ′

)
is assumed to be decreasing. For notational

simplicity we let a = γ−1( 1
|ξ3| ). Integrating by parts once gives a bound

of

C

|ξ3|

{
K1/2(a)a
γ′(a)

+
∫ 2

|ξ′|

a

∣∣∣∣∣ ddr
[
φ1(

r|ξ′|
2 )K(r)1/2+iαr

γ′(r)

]∣∣∣∣∣ dr
}
.

Our assumption that rγ′′(r)
γ′(r) ≤C

∣∣∣logµ 1
γ(r)

∣∣∣ gives K1/2(a)a
γ′(a) ≤C

∣∣∣logµ/2 |ξ3|
∣∣∣.

For the integral we also use the monotonicity condition on rγ′′

γ′ to obtain
a bound of

C(1 + |α|)
|ξ3|

{∫ 2
|ξ′|

a

|ξ′|
∣∣∣∣φ′1

(
r|ξ′|
2

)∣∣∣∣ K(r)1/2r
γ′(r)

dr

+
∫ 2

|ξ′|

a

φ1

(
r|ξ′|
2

) [
K ′(r)
K(r)

+
γ′′(r)
γ′(r)

+
1
r

]
K(r)1/2r
γ′(r)

dr

}

≤ C(1 + |α|)
|ξ3|

{
K(a)1/2a
γ′(a)

(
1 +

∫ 2
|ξ′|

a

γ′′(r)
γ′(r)

dr

)

+
∫ 2

|ξ′|

a

K ′(r)
K(r)1/2

r

γ′(r)
dr

}
.
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We now note that integrating by parts we obtain

∫ 2
|ξ′|

a

K ′(r)
K(r)1/2

r

γ′(r)
dr ≤

∫ 2
|ξ′|

a

(
γ′′(r)
γ′(r)

+
1
r

)
K(r)1/2r
γ′(r)

dr

≤ C
K(a)1/2a
γ′(a)

∫ 2
|ξ′|

a

γ′′(r)
γ′(r)

dr.

So we finally obtain a bound of C(1+|α|)
|ξ3|

∣∣∣logµ/2 |ξ3|
∣∣∣ {

1 +
∣∣∣∣log

γ′( 2
|ξ′| )

γ′(a)

∣∣∣∣
}

,

which gives the estimate C(1+|α|)
|ξ3|

∣∣∣log
µ
2 +1 |ξ3|

∣∣∣, since we have the trivial

estimate
γ′( 2

|ξ′| )

γ′(a) ≤ C
γ′(a) ≤ C|ξ3|.

We now estimate (20) under the conditions for Proposition 5.1. First
we define D̃k

r exactly as we did Dk
r but with |ξ′| = 0. We again take

a = γ−1( 1
|ξn| ). Integrating by parts repeatedly leads to an upper bound

of

K(a)1/2an−2

|ξn|γ′(a)
+

k−1∑
i=1

1
|ξn|γ′(a)

∣∣∣∣D̃i
r

[
φ1

(
r|ξ′|
2

)
K(r)1/2+iαrn−2

]
(a)

∣∣∣∣

+

∣∣∣∣∣
∫ 2

|ξ′|

a

eiξnγ(r)D̃k
r

[
φ1

(
r|ξ′|
2

)
K(r)1/2+iαrn−2

]
dr

∣∣∣∣∣
= A + B + C.

Using the assumptions that γ′′(r) ≤ C γ′(r)
r

∣∣∣logµ 1
γ(r)

∣∣∣ and

γ′(r) ≤ C γ(r)
r

∣∣∣logµ 1
γ(r)

∣∣∣ allows us to bound A as follows;

A ≤ C

|ξn|
γ′(a)

n−3
2 a

n−3
2

∣∣∣logµ/2 |ξn|
∣∣∣

≤ C

|ξn|
γ(a)

n−3
2

∣∣∣logµ
n−2

2 |ξn|
∣∣∣

≤ C

|ξn|
n−1

2

∣∣∣logµ
n−2

2 |ξn|
∣∣∣ .
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For B we use Lemma 5.3;

B ≤ C(1 + |α|)
k−1∑
i=1

1
|ξn|i+1

γ′(a)
n−3

2 −ia
n−3

2

∣∣∣∣1a logµ |ξn| + |ξ′|
∣∣∣∣
i

logµ/2 |ξn|

≤ C(1 + |α|)

∣∣∣logµ/2 |ξn|
∣∣∣

|ξn|
n−1

2

k−1∑
i=1

∣∣∣logµ( n−3
2 −i) |ξn|

∣∣∣ |logµ |ξn| + |ξ′|a|i

≤ C(1 + |α|)

∣∣∣logµ( n−3
2 ) |ξn|

∣∣∣
|ξn|

n−1
2

.

Finally Van der Corput’s lemma and Lemma 5.3 give

C ≤
C(1 + |α|)N

∣∣∣logµ/2 |ξn|
∣∣∣

|ξn|k+1γ′(a)
max

[a, 2
|ξ′| ]

γ′(r)
n−1

2 −kr
n−3

2

∣∣∣∣1r logµ
1

γ(r)
+ |ξ′|

∣∣∣∣
k

≤
C(1 + |α|)N

∣∣∣logµ(k+1/2) |ξn|
∣∣∣

|ξn|k+1γ′(a)
max

[a, 2
|ξ′| ]

γ′(r)
n−1

2 −kr
n−3

2 −k.

The required estimate follows on choosing k =
[
n
2

]
and noting that

γ′(a) ≥ γ(a)/a.
This completes the estimates for (20); we now turn to (21). How

we proceed depends on whether or not the phase function has a critical
point in the interval of integration.

We take first the case when |ξnγ′(r) + |ξ′|| ≥ c|ξnγ′(r)| for all r ∈
[ 1
|ξ′| , 1]. As before we shall consider the three-dimensional case first. In

this case φ(r) ≡ 1 on the interval of integration. We note that the cut-off
[1 − φ1(

r|ξ′|
2 )] vanishes at 1

|ξ′| .
Integrating (21) by parts once gives a bound of

C

|ξ3||ξ′|1/2
K1/2(1)
γ′(1)

+
C

|ξ′|1/2
∫ 1

1
|ξ′|

∣∣∣∣∣ ddr
[

(1 − φ1(
r|ξ′|

2 ))K(r)1/2+iαr1/2

ξ3γ′(r) + |ξ′|

]∣∣∣∣∣ dr.
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The estimate of the integral is similar to that needed for the integral
over [a, 2

|ξ′| ]. With our assumptions on γ we have

C(1 + |α|)
|ξ3||ξ′|1/2

{∫ 1

1
|ξ′|

|ξ′|
r1/2

∣∣∣∣φ′1
(
r|ξ′|
2

)∣∣∣∣ K(r)1/2r
γ′(r)

dr

+
∫ 1

1
|ξ′|

(1 − φ1(
r|ξ′|

2 ))
r1/2

[
K ′(r)
K(r)

+
γ′′(r)
γ′(r)

+
1
r

]
K(r)1/2r
γ′(r)

dr

}

≤ C(1 + |α|)
|ξ3|

K( 1
|ξ′| )

1/2 1
|ξ′|

γ′( 1
|ξ′| )

{
1 +

∫ 1

1
|ξ′|

γ′′(r)
γ′(r)

dr

}

≤ C(1 + |α|)
|ξ3|

∣∣∣logµ/2 |ξ3|
∣∣∣
{

1 + log
γ′(1)
γ′( 1

|ξ′| )

}
,

which gives the required estimate.
For n ≥ 4 we integrate by parts repeatedly again, noting that this

time the cut-off vanishes both at 1 and 1
|ξ′| . This replaces (21) by

1

|ξ′|n−2
2

∣∣∣∣∣
∫ 1

1
|ξ′|

ei(ξnγ(r)+r|ξ′|)Dk
r

[
φ(r)

(
1−φ

(
r|ξ′|
2

))
K(r)1/2+iαr

n−2
2

]
dr

∣∣∣∣∣ .
Van der Corput’s lemma and Lemma 5.3 allow us to bound this by

C(1 + |α|)N
∣∣∣logµ(k+1/2) |ξn|

∣∣∣
|ξ′|n−2

2 |ξ′||ξn|k
max

[ 1
|ξ′| ,1]

γ′(r)
n−1

2 −k

r1/2+k

≤
C(1 + |α|)N

∣∣∣logµ(k+1/2) |ξn|
∣∣∣

|ξn|k|ξ′|
n−1

2 −k
max

[ 1
|ξ′| ,1]

γ′(r)
n−1

2 −k.

The required estimate follows on choosing k =
[
n
2

]
.

Next we suppose that the phase function has a critical point in [ 1
|ξ′| , 1].

So we take t0 such that γ′(t0) =
∣∣∣ ξ′ξn

∣∣∣. We also take t1 and t2 to be such

that γ′(t1) = 1
2

∣∣∣ ξ′ξn

∣∣∣ and γ′(t2) = 2
∣∣∣ ξ′ξn

∣∣∣ and we assume that 1
|ξ′| < t1 <

t0 < t2 ≤ 1. Of course, it could be that t1 and/or t2 lie outside the
interval of integration, however these cases can be treated in a similar
manner.
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For all dimensions n ≥ 3 we use Van der Corput’s lemma to give

1

|ξ′|n−2
2

∣∣∣∣∣
∫ t1

1
|ξ′|

ei(ξnγ(r)+|ξ′|r)φ(r)
(

1 − φ

(
r|ξ′|
2

))
K(r)1/2+iαr

n−2
2 dr

∣∣∣∣∣
≤ C(1 + |α|)

|ξ′|n−2
2

1
|ξ′|K(t1)1/2t1

n−2
2

≤ C(1 + |α|)
|ξ′|n

2
γ′′(t1)1/2γ′(t1)

n−2
2

=
C(1 + |α|)

|ξ′|n
2

(
t1γ

′′(t1)
γ′(t1)

)1/2
γ′(t1)

n−1
2

t1
1/2

≤ C(1 + |α|)
|ξ′|n

2

∣∣∣∣ ξ′ξn
∣∣∣∣

n−1
2

|ξ′|1/2
∣∣∣logµ/2 |ξn|

∣∣∣
≤ C(1 + |α|)

|ξn|
n−1

2

∣∣∣logµ/2 |ξn|
∣∣∣ .

Again, for all dimensions n ≥ 3, for the integral over [t1, t2] we use
convexity of γ and γ′ together with Van der Corput with the second
derivative to obtain

1

|ξ′|n−2
2

∣∣∣∣
∫ t2

t1

ei(ξnγ(r)+|ξ′|r)φ(r)
(

1 − φ

(
r|ξ′|
2

))
K(r)1/2+iαr

n−2
2 dr

∣∣∣∣
≤ C(1 + |α|)

|ξ′|n−2
2

γ′′(t2)1/2γ′(t2)
n−2

2

|ξn|1/2γ′′(t1)1/2

≤ C(1 + |α|)
|ξ′|n−2

2 |ξn|1/2

(
γ′′(t2)
γ′′(t1)

)1/2 ∣∣∣∣ ξ′ξn
∣∣∣∣

n−2
2

=
C(1 + |α|)
|ξn|

n−1
2

(
γ′′(t2)
γ′′(t1)

)1/2

.
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Now

γ′′(t2) ≤
γ′(t2)
t2

∣∣∣∣logµ
1

γ(t2)

∣∣∣∣
≤ C

γ′(t1)
t1

t1
t2

|logµ |ξn||

≤ Cγ′′(t1) |logµ |ξn|| ,

which gives the upper bound of C(1+|α|)
|ξn|

n−1
2

∣∣∣logµ/2 |ξn|
∣∣∣ for the integral.

For the remaining part of the integral we need to deal with the
case n = 3 separately. The argument for n = 3 follows that used for
[ 1
|ξ′| , 1] in the case where there was no critical point in the interval. For
n ≥ 4 we also follow the argument used in that setting and integrate by
parts repeatedly. This gives

1
|ξ′|(n−2)/2

∣∣∣∣
∫ 1

t2

ei(ξnγ(r)+|ξ′|r)φ(r)
(

1−φ1

(
r|ξ′|
2

))
K(r)1/2+iαr(n−2)/2 dr

∣∣∣∣
≤ 1

|ξ′|(n−2)/2

{
γ′′(t2)1/2γ′(t2)(n−2)/2

|ξnγ′(t2) + |ξ′||

+
1

|ξnγ′(t2)+|ξ′||

k−1∑
i=0

∣∣∣∣
[
Di
r

(
φ(r)

(
1−φ1

(
r|ξ′|
2

))
K(r)1/2+iαr(n−2)/2

)]
(t2)

∣∣∣∣
+

∣∣∣∣
∫ 1

t2

Dk
r

[
φ(r)

(
1−φ1

(
r|ξ′|
2

))
K(r)1/2+iαr(n−2)/2

]
ei(ξnγ(r)+|ξ′|r) dr

∣∣∣∣
}

= A + B + C.

Now A ≤ C
γ′(t2)

n−1
2

∣∣logµ/2 1
γ(t2)

∣∣
|ξ′|n/2t

1/2
2

≤ C
|logµ/2 |ξn||
|ξn|

n−1
2

. We use Lemma 5.3 to

estimate the terms in the sum for B. This gives

B ≤ C(1 + |α|)N
|ξ′|n/2

k−1∑
i=1

1
|ξn|i

γ′(t2)
n−1

2 −it
− 1

2−i
2

∣∣∣∣logµ(i+1/2) 1
γ(t2)

∣∣∣∣
≤ C(1 + |α|)N

|ξn|
n−1

2

∣∣∣logµ(k−1/2) |ξn|
∣∣∣ .
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Finally Lemma 5.3 and Van der Corput’s lemma give an upper bound
for C:

C ≤ C(1 + |α|)N

|ξ′|n−2
2 |ξn|k

|ξ′| 2k−1
2

∣∣∣logµ(k+1) |ξn|
∣∣∣ max

[t2,1]
γ′(t)

n−1
2 −k.

If we choose k =
[
n
2

]
this gives us the desired bound.

Case 2: 1
|ξ′| < γ−1( 1

|ξn| ).

In this case we need to bound

1

|ξ′|n−2
2

∣∣∣∣∣
∫ 1

γ−1( 1
|ξn| )

ei(ξnγ(r)+r|ξ′|)φ(r)K(r)1/2+iαr
n−2

2 dr

∣∣∣∣∣ .
All the arguments are similar to those already given. This completes the
proof of Proposition 5.1.
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