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CONTINUITY PROPERTIES FOR THE MAXIMAL
OPERATOR ASSOCIATED WITH THE COMMUTATOR
OF THE BOCHNER-RIESZ OPERATOR

ZONGGUANG Liu, GUOZHEN LU AND SHANZHEN LU*

Abstract

In this paper, we obtain some strong and weak type continuity
properties for the maximal operator associated with the commu-
tator of the Bochner-Riesz operator on Hardy spaces, Hardy type
spaces and weak Hardy type spaces.

1. Introduction

Let b € BMO(R") and T be a standard Calderén-Zygmund singular
integral operator, the commutator [b, T is defined by

b, T]f(x) = T((b(z) = b(-)).f)(x).
Many authors have investigated the properties for [b, T]. A celebrated
result of Coifman, Rochberg and Weiss [5] states that the commuta-
tor [b,T] is bounded on L? (1 < p < o0). Subsequently, Coifman and
Meyer [4] observed that the weighted LP (1 < p < oo0) boundedness
for [b, T] can be obtained by the weighted L? estimate with Muckenhoupt
A, weight for T. Later, Alvarez, Bagby, Kurtz and Pérez [2] extended
the idea of Coifman and Meyer and proved the following result: For a
general linear operator T, if 1 < p,¢ < oo and T is bounded on L?(w) for
all w € A, then [b,T] is bounded on LP(u) for all u € A,. In the case of
p =1, it is a well-known fact that Calderén-Zygmund singular integral
operator T' is a weak type (1,1) operator and a bounded operator from
the standard Hardy space H' to L'. Fairly recently, Pérez [13] observed
the fact that [b, T is neither a weak type (1,1) operator nor a bounded
operator from H' to L'. He obtained a weak type L log L inequality and
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the boundedness from a certain modified Hardy space H} to L' for [b, T].
In this paper, we will consider the commutator of Bochner-Riesz opera-
tor, let A and 7 be two positive numbers, the Bochner-Riesz operator T
in R” (n > 2) is defined in terms of Fourier transforms by

Tio - (1-5) o

+

where f denotes the Fourier transforms of f. It can be written as a
convolution operator

T (@) =pav. | B - i) dy
where Bj(z) is the kernel of T§ and B} (z) = =" B\ (%), it is well-known
that B)(x) satisfies the following inequality:

o8

57 B @) S C Ut [a)” O,

for any x € R" and r > 0 and any multi-index 8 € Z7}.
Let b € BMO(R™), the commutator generated by b and T is defined
by

T3 o f () = TX((b(x) = b(-)) f)(x), [ e SR"),

or

T3 pf(x) = p.v. / Bi(z —y)(b(z) —b(y))f(y) dy, [feSR").

n

The maximal operator associated with TY , is defined by
T34 (x) = sup | T30 (2.

If A > 251, Shi and Sun [14] showed that the maximal Bochner-Riesz
operator, T5 f(z) = sup|T5 f(z)|, is bounded on LP(w) provided that
r>0

1 <p < ooand w e A, Combining the above result due to Alvarez,
Bagby, Kurtz and Pérez with the result due to Shi and Sun [14], we can
easily observe that 7%, is bounded on LP(R"). Hu and Lu [7] further

1 1

discussed the L? boundedness for T , in the case of A > (n—1) |- — 3

and proved the following result
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Theorem A. If b € BMO(R"), 1 < p < 0o and A > (n — 1) ‘% ~ 1,
then T, is bounded on LP(R™) with bound C(n,p)|[b|..
We notice the fact that (n — 1) ’f — 11 < 221 whenever 1 < p < o0

and in this case T3 is not bounded on Lp (w) for w € Ap. It is natural
to investigate the properties for 75 , with 0 < p < 1. In Section 2 of this
paper, we consider the case of p = 1 and obtain the boundedness from H'!
to weak L' for TY - In Section 3 of this paper, we get some strong
and weak type boundedness estimates for Ty, on a certain modified
Hardy space, H} , and a certain modified weak Hardy space, Hi ™, where
0 < p < 1. However, we do not know whether the operator T;,b satisﬁes
the weak type Llog L inequality. After we submitted the paper, we
learned that Jiang, Tang and Yang [9] proved independently of us, the
similar results in H} and H}"™ when 5 < p < 1. Our range in this
paper allows to have all 0 < p < 1.

Now, let us recall some notations and definitions. Most of the no-
tations we use are standard. () denotes a cube with sides parallel to
the axes and AQ (A > 0) denotes the cube @ dilated by )\ For a lo-
cally integrable function f, fo denotes the average fo = a1 QI fQ ) dy.
Sometimes ag denotes an atom in certain Hardy spaces with compact
support included in cube Q. For b € BMO(R"), ||b]|. denotes the norm
of b on BMO(R").

Definition 1. Let 0 < p < 1 and b be a locally integrable function.
Given a bounded function a, we say that a is a (p,b,00) atom, if
1) SUPPCLCQ Qzq,7q): (2) llallpe @) <|QI77: (3) [gn alz)2” dr=
Jgn a(@)b(x)z” dz = 0, for |3 < [n(1/p—1)], where [2] denotes the inte-
ger part of x. A tempered distribution f is said to belong to the Hardy
type space H{ (R™) if, in the S’-sense, it can be written as f = > Aja;,
j=1
where a; are (p,b,00) atoms and > |A;|P < co. As usual, we define on
j=1
HY(R™) the quasinorm as

1/p

[y gy = Z ZI/\ P

ajf

Definition 2. Let b be a locally integrable function. We say that a tem-
pered distribution f belongs to the weak Hardy type space Hp *°(R"),
if there exists a sequence {f;}72 _ C L*(R") such that

—00
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1) f= i f&, in the &’-sense;

k=—o00

oo
(2) Each function fi can be decomposed as fr. = Y b in L> N H?,
i=1
where the functions b;? satisfy the following properties:

(2i) supp b;? C Qf with Sl;p le Xqk <0 and Sl;p 2kp ]21 \Q§| < 0.
(2ii) There exists a constant C'=C/(n,p) >0 such that [[b¥]| Lo (rn) <
C2F, for any k and j.

(2iii) fl)T z)z? de = [, b5 (2)b(z)z” dz = 0, for [B| < [n(1/p —
1)].

We define on the space H}'>°(R™) the following quasinorm

Hf”HP < (Rn) T inf sup 2kpz ‘Qk
( Zkz =f k€Z =1

For brevity, we will sometimes denote C; = sup 2~? Z \Qk|
kez  j=1

2. Weak type (H', L') estimate

In this section, we establish the weak type (H!, L) estimate for T5 s

where H!(R") is a well-known standard Hardy space. Our main result
is the following theorem.

Theorem 1. Let b € BMO(R") and A > 51, then 15, is a weak type
(H',LY) bounded operator, i.e. there exists a constant C > 0, such that
n * C
fr e R T, 0 (@) > o] < Sl Sl e,
for any a > 0 and any f € H'(R").

Remark. After the paper is accepted for publication, it has been proved
using similar method that T% , is bounded from H' to L' (see [11]).
However, we still do not know if 7% , is weak type (1,1).

To prove our Theorem 1, we first recall the following lemma due to
M. Christ [3].
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Lemma 1. For any o > 0 and any finite collection of dyadic cubes @
and associated positive scalars A\q, there exists a collection of pairwise
disjoint dyadic cubes S such that

(1) > Ao <8alS| forall S;
QCS

(2) ZISI<a™ ¥ Ags
S Q

(3> H Z )\Q|Q|_1XQ||LOQ(R71) Sa_
QZs

Now we begin to prove Theorem 1.

It is easy to see that the result of Theorem 1 follows from the inequal-
ity

n T C
{z e R" |15 , f(2)| > a}| < E”f”Hl(R"):

where C' is independent of r, f and «.
For any given f € H'(R"), we have the well-known atomic decompo-
o0

sition f = > Aja;, in the &'-sense, where each a; be a (1,00,0) atom
j=1

with || £z (re) = inf ( > |Aj|).
]:

We may assume that f is a finite sum » 5 Agag with 3 o [Ag| <
2|| fll 1 (rmy- Once Theorem 1 is proved for such f. For general f, it
is the limit of this kind of fx (in H' norm or almost everywhere sense)
where fi are finite sums having forms of ZQ Agaq, and then Theorem 1
follows by a limiting argument. It is convenient for us to assume that
each @ (the supporting cube of ag) in the given atomic decomposition
of fis dyadic and Ag > 0.

For fixed o > 0 and the finite collection of dyadic cube @) and asso-
ciated positive scalars Ag > 0 in the given atomic decomposition of f,
by Lemma 1, there exists a collection of pairwise disjoint dyadic cube S
such that

(1) > Ao <8alY|, for all S;
QCS
(2) XIS <a™t X Mg
S Q
3 AolQ| ™t <a.
(3) HQ%S QlQl XQHL&(M <a

Denote E = Jg 25, then |E| < £| f||l g (rn)-
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Set h(z) =3 > Agag and g(z) = f(x) — h(z). By (3), we easily
S Qcs

know that ||g|[Lern) < a. Using the L*(R") boundedness of 15, we
get that

{r e RO\ E 100(@) > T} < |[{z € RO\ B T00(0)| > T

C s
§||T,\,b9||2L2(Rn)
C
< §||9||2L2(Rn)
C
< EHQHLl(R")
< —|fllzr@®m

< — |1l rey-

2IQ 2]Q

Thus, we only need to prove the following inequality

{rer\ BT A@] > T < il .

For fixed cube Q = Q(xg,7q), by the vanishing moments of ag we
have

n

T{ yaq(x) = / (By(w — y) — B — 1)) (b(x) — bo)aq(y) dy

+ [ Bi@ - )b - Hy)ao(w) dy

= Io(x) + T3 ((bq — b)ag)(x).
Now, we first estimate Ig(z).

When 0 < r <rg and any z € R"\F and any y € Q, sincez € R"\ E
implies z € R™ \ 2Q for any @, we have that

|z — xq|

e =yl 2 o —xq| —|zq —yl 2 | —2q| —r@ 2 —5—,

this implies that

g\ . 1
By (z—y)| <Cr (1 n M) <O o—ag| O,
T
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Similarly we can get

[Bi(@ —2q)| < Cr* ™" [z — o O+,
These above estimates imply the following inequality
_n-1 —_ ntl
[o(@)| < O |z — x|~ 77 |b(z) — bgl-

Thus

l‘ERn'\E:ZZ)\Q|IQ |>Oé

S QCS
C
FOIDIPTY IS
<Oy Y Z/ T - gl "0 ) [b() — bl do
« S Ocs l+lQ\21Q
C n—1 © (2l+1’l"Q)n 1
S_ )\ ',")‘72 P b(x)_b |dx
o XS:QXC% @ ; (2lrg)Mt > [2101Q) 2l+1Q| 9
oubn A ,
S g ( > i)
S QCS =1
]l cnbn*
<=2 e <= -

S Qcs

-1 1
When r>rg, we can choose \g Satisfying < Ao <min ()\ L) .

2
By the mean value theorem and the boundedness of BY, we have

[z —zgl "
Lol <Cr " b(a) bl | lnqlly—sal 1+ dy

(ho+241)

<orr i)l | lagto)ly-gl (14272 )T

<Crrio ™+ [b(x) — ballz — |~ ).
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This implies the following estimate

IGR”\E:ZZ)\Q|IQ(IE)|>OL

S QCS

DBP IR Z/ rQr T [z —zq|” 0+ E) |b(x) — boldx

5 Qcs 1=/2Tene

C s Aol g _(AO_A'_"_H)_A'_n 1
< — 0~ ™2 2 [ _
<O S S e I et

S Qcs i=1

C||bH Sy /\Q< )AO__ZH I(o—251)

S QcCS

b||« C b||«

S QcCS

C

We notice the fact that T5 f(z) < CM f(x) with A > %51, where M
is the well-known Hardy-Littlewood maximal operator. Thus Ty is of
weak type (1,1) and TY is weak type (1,1) uniformly associated with r.
We get

z€RM\E:|) Y AT ((bg — blag)(x)| > a

S QcCs
C
<5 > Xalltbe —bagllL am
S QcCs
C
<= D Ay /\b ) —boldy
v i
S QCs

C||0]|«
< W s oy,

This finishes the proof of Theorem 1. O
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3. (HP,LP) type estimate

In this section we will establish the (H}f, LP) type estmate for Ty .
Our main result is the following theorem.

Theorem 2. Let b € BMO(R") and 0 < p < 1. If A > % — ”T'H, then
T, is a bounded operator from Hy (R™) to LP(R™).

Proof: By the definition of space H}(R™), we only need to prove the
following inequality for any (p,b, 00) atom ag,

/ 175 yaq ()P de < C,

where C' is a constant independent on ag and 7.
We easily get the following decomposition

/ 175 yao (2)|P de= / |T;,baQ<w>|pdx+/ 1T sao (@) de=1,+ 1.
Rn 20Q R™\2Q

By the LY(R") (1 < g < oo) boundedness of 7%, and the Hélder
inequality, we get

p/q
I < 207/ ( / T3 yao ()] dx)
2

< ClQI"laq | p
< C|QFPQP/ it = C.

Since 0 < p < 1, we have

IzSZ(/ b(z) — bo|"| T3 ag(x)|" dx
j=1 21+1Q\2JQ

L N P b)aQ><x>|de>
2H1Q\29Q

i (J1j + Joj) -

<.
Il
-
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First, we estimate each Ji;.

When 0 <7 <rg,z€27Q\2/Q andy € Q, j =1,2,..., we get

_ —(+25)
[By(z —y)| < Cr" (1 + M)

< ot |z — xQ|_(’\+nT+1).

This implies that
r _n=l pn(l1-— — ntl
T aq (@) < /Q B (c—)llaq(y)] dy < Cr="F 201 |y _go 28,
Thus we have

_n—1 _ ntly pip—1
Jiy <C | |b(@) — b [PrPO T ) |z — wg | PO )TQ(p ) da:
2H1Q\29Q
POA="21) i \—pOAt L) 4n n(p—1) 1 o
<Cr 7 (2rg) 2 o Q) 2]‘Jr1Q|b(33) bo|P dx

P(A="51)
< O ||p||p2i (n—PO+=ED) (L) ’
rQ

< CjP||b|[p2i PO+

n _ n

in the last inequality, we use the fact that A > > %1 implies that
)\—"T_120f0r0<p§1.

Since 0 < p < 1, it is easy to see that there exists a nonnegative
integer m such that ﬁ <p< n}:m. In this case, we notice the fact
that [n(1/p —1)] = m.

When 7 > rq, if & — 51 < X <m + "2, by the vanishing moments
of ag and (m + 1)-order Taylor expansion of B (z —y) at z — zg, we
have

_AJ,_"’_H
T} <Cp-tmn) [ omin (1 [Pl e d
[TRaq(z)|<Cr Q\y zq| +— laq(y)| dy

n+1 n+1 —
<O MR | — xQ\_(’H'T)rgHJrn(l 1/p),
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This implies that

Ji; <C Ib(2) — bg |[PrPA =m0
20+1Q\27Q
X |z — le_p(HnTﬂ)rg(nerH)*" dz

< Crp(’\*m*"T“)(QJTQ)*p(A+"T“)+nTg(n+m+1)—n

1
X m b0 |b($) — bQ|p dzx
ntl
< OjP|[b|[p2i PO+ ) (LQ)p("”” =
s * r

< P |2

When r > rq, if A >m + "7*1, Also by the vanishing moments of ag
and (m + 1)-order Taylor expansion of B} (x —y) at © — 2, we have

-+
T — |l‘—l‘ 2
(Tag(x)] < Cr—rm+) /Q y—xQ|m+1(1+—Q' lao(y)] dy

Sc,rf(nerJrl)/ \y—xQ|m+1 <1+ |£B*(£Q|
Q
—(n+m m+14n(1—1
<Clz — zo|~™F H)TQ (1=1/p)
Thus

Jlj <C ‘b(l‘) — bQ|p|JZ — $Q|_p("+m+l)rg(”+m+l)*n dr
2F1Q\2Q

< ij||b‘|€2j(n—p(n+m+1)).

Because of these above estimates and the condition that ﬁ <
p< oty and A > % — "T'H, we obtain

S ay < ol
j=1



56 Z. Liu, G. Lu, S. Lu

Now we start to estimate Jo;.

When 0 <r < rg, we also get

(b ~Haa)(@)| < | B3 ~)ba ~ bw)aatw)ldy
< OP 5 =gl O [ ) by

< O T o — wo O TP

and

Joy < OO e [ o g PO d
251Q\2/Q

< COrP - "’T‘l)rg(p—l) ||bH£(2j+1rQ)n—p(>\+"T“)

n—1

p(A—
<oppie (Z)" T peeny

)

< CHb||£2j(n*P(>‘+nTﬂ)).

When r > rg, if 2 — "TH <A<m+ "TH By the vanishing moments
of ag and Taylor formula, we also have

n+1)

_ 7()‘+ 2
T3 (bg=b)ag)(e)] < O 70 [ g (1+—'”” ‘”Q')
Q

r

X [b(y) — bellag(y)| dy

< CHb||*7“A_m_n2lr$+1+"(171/p)|x H#),

—xQ\_(

and

n+1

Joj < CHb||§7“p(k_m_7)rg(”+m“)7"/ |z — 2| PO da
2H1Q\27Q

< OHbHi’TP(/\fm,n;rl)rg(n+m+1)—n(2j’r@)nip()\iHTH)

< O|b|[p2itn—rO+ 25,
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When r > rg and A > m + ”TH, we also get

o O
13 (g -t)ag)(a)] < O+ Jy—sgprt (14 1222])
Q

X [b(y) = bollag(y)| dy

‘$_$Q| )(n+m+1)

< Cp~(tmtl) ly—xg|™T! (1+
Q T

X [b(y) — ballag(y)| dy

< Crgb+1+n(171/p)|x_ (n+m+1)Hb”*'

zQl”
This implies that

Ty < Cllp|pr2nmn = / & — 2| P dy
2+1Q\29Q

< C||bH€2j("_p("+m+l)).

Because of above estimates and the condition

A > % — "T'H, we obtain

<p< -2 and

_n
n+m+1 n+m

> oy < 2.

j=1

This completes the proof of Theorem 2. O

4. (HP™°, LP*) type estimate

In this section, we obtain the (H"*, LP*°) type estimate for Ty,
where LP*° is a well-known weak LP space.

Theorem 3. Let b € BMO(R™) and 0 < p < 1. If X\ > 5= ol then
Ty, is a bounded operator from Hy***(R™) to LP»>°(R").

Before proving Theorem 3, we need to recall the so-called superposi-
tion principle on the weak-type estimates.
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Lemma 2. Let 0 < p < 1, if a series of measurable functions {f}
satisfy

{z eR" : |fx(z)| > a}| <a™P, VEkeN,

o0
and Y |cx|P < oo, then
k=1

Hzem; . }

Now we begin to prove Theorem 3.

o0

ZCkfk(»’C)

k=1

()

Given f € H}"™(R"), let ka > bk be an atomic decomposi-
k j>1 J
tion for f as Definition 2.

N
Fix N =1,2,..., and consider > fi. By a usual limiting argument

k=—N
it is enough to prove that there exists C' = C(b, A) > 0 such that

N
{z € R": T}, ( Z fk> (x) >oz}
k=—N

forany N =1,2,....
Given a > 0, let ky € Z such that 2F0 < a < 20+! then we write

sup o
a>0

<CCy,

Z Je = Z Je + Z fre =Fi + Fb.

k=ko+1

Let us first observe that F; € LI(R™) for any 1 < ¢ < oo, in fact

|Fy(z)] < Z > )< Z zkszmc Z 2%xue -

k=—N j=1 k=—N j=1
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This implies that
1/q

| Fillarny < C Z 2" U QY

k=—N j=1

1/q
o0

ko
<C > 22 1Q)
k=—N Jj=1

ko
SCC’ll/q Z ok(1-p/q)
k=N

< CC}/19ko(1=p/a)
<cc/igtrl,
Thus we have
Pz € R" ¢ [T} ,(F1)(2)] > a}| < CaP™ q||F1HLq gy < CCL.

Now let Aka be the cube with the same center as Q;“ and sides Ay

times longer, where Aj being a positive number to be chosen later and
N

depending on k and p. Denote By, v = U U AkQ?, and Q;? be a
k=ko+1j=1

cube with center xf and side-length rf, we write

o | {w €R™H T3 4 (F2) ()] > o} S Ca? [{a € Bry v : IT5,(F2)(@)] > o}

+Ca?

{2 €R By s T,(F2) (@)] >
=K + K.
Let us first estimate K5. If ¢ is any complex number, we can write

Kz < a|[{z € R"\ By, : [b(e) = e[ T3 (F2)(w)] > a/2)]

+a|{w € R"\ By, + [TX((0 — ) Fa)(@)] > a/2}]

= Ko + Koo.
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Similar to proof of Theorem 2, there exists a nonnegative integer m

such that n+?n+1
Ky <C Ib(@) — P TS (Fo) ()P d
R™\ B,
N [e’e)
cy Z/ () — P TL(08) ()P de
k=ko-+1 j=1 R”\Aka

When%—"TH</\<m—|—”T+1,ifO<r<r;?forﬁxedk:andj,we
have

175,05) ()] = | |, B = wpi dy

o — 2k —(+5)
scr*”/k <1+ ’ > 105 ()| dy

r

n—

1 _(apntl
= — ok~ 24 Qh)

< COrt~

< C(F T o — 2| O 2k k),

and if r > r , by the vanishing moments of bk and the (m + 1)-order
Taylor formula of B{(z —y) at x — z¢, we have

—O+E

R @Icr D [y “(H% 650l dy
J

SCT)\fmf"T“(T;c)erlw . LIZ?|7()‘+”;1)2’€|Q;?‘

Sc(r;c))\— 5 \x—mk\ ()\+n+l)2k|Qk|
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These imply that

K <C / () — el (rkyr =)
E: jE:;E; 2041 AL Q5\21 4 Q}

k=ko+1 j=1

X |z — k| PO ke |k P gy

N 0o o
n n— ntl
¢ S S S ame
k=ko+1j5=11=1

1
>< e —
‘2l+1AkQ§‘ 21+1AkQ?

|b(x) — c|? dx

N oo oo
n— ntl n
<cBy Y 2t [ 3N | Ay TN gllnmp O )

k=ko+1 i=1 =1
ad n—p(A+241)
<caB 3 A0S
k=ko+1

where By = sup ﬁ Jo Ib(z) = c|P da.

When A > m + ”'H, ifo<r< rk for a fixed k and j, we also have
following estimate,

T30 ()| < O "7 | — = 5)2%|Q)),

and if 7 > 7y, ; for a fixed k and j,

(+255)
T3 (0F) ()| < Cr (D) o ly—aj] “(HTJ 165 (v)| dy

J

|Jj " | (n+m+1)
Scr*(n+m+1) " ly— xk|m+1<1 rj> |bf(y)|dy

J

< C<T;€)m+1 ‘37 _ x?|—(n+m+1)2k|Q§|.
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Thus we can get

Ko <C i iié

k=ko41j=1 =1 72T ARQF\2' A QF

|b(x) — C|p(’]"§:)p(>\_ ";1 )

n+

21)2kp|Q";‘deIj’

X |z — :cﬂ’p(/vr

N oo 0o
ey vy () — el
k=ko+1j=1 1=1 72T AQi\2' 4. QF

X | — x?|_p(’n+m+1)2k‘p|Q§|p de
=P + P

Because

N 0o oo
P, <C Z Z Z (QZAkr;g)—P(n—i-m—i-l) 2kp|Q;?|p(7,;c)p(m+1)
=1

k=ko+1j=1

X/ |b(z) —c|P dx
2LALQE\2 A Q
k k| gn—p(n+m-+1 I(n—p(n+m-+1
<c Y 2737 (QkA; S glnp(nim >>m
k=ko+1 j=1 -1 k J
(0]

X/ |b(x)—c|P dx
21+1AkQ§

N
<CC,B; Z AZ*p(n+m+1)’
ko+1

and

N
n— n+1
P, < CC,B; Z Ak p(A+25-)
k=ko+1
We obtain that

N N
— ntil
Ko SC’ClBl< Z AZ p(A+ 2k )Jr Z Az—p(n+m+1)>.

k=ko+1 k=ko+1
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(k—ko)max(#,+)
Let A =2 R

, then
Ky <CC1 By

=CC, supi/ |b(x) — c|? dx
@ 1Ql /g

P
<CCy (sgp ﬁ /Q |b(x) — ¢ dm) .

By taking the infimum with ¢ € C in the right-hand side of above
inequality, we obtain that

Ko < CC|b]I%-

Now let us estimate Ko.

Let
FlZ{(k,j):k0+1§k§N,j21and0<r<rf}
and
Iy={(k,j):ko+1<k<N,j>1r>rk}
Write

a
Ko <af |z €R"\ Bi,n - Z IT3((b = e)b}) ()| > 1
(k’j)erl

n . r k «
+aP |z eR"\ By~ : Z |T)\((b—c)bj)(m)|>z
(k’J)GFZ

= M, + M.
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For fix (k,j) € T'y1, we have

IT5((b = )b5) ()| < /Qk B (z = y)(b(y) — )b5 (y)| dy

J

2 — ] (+2E
<o /<H7> (o) — €ll65 )] dy

—nl _ ntl
< 0P a7 | ) —elay

J

-zt _ n+1
<O [z — 2O+ )28 B, Ql

C2sz( ))\+n+1
S |)\+n+l )

|z — 2]
where By = sgp ﬁ Jo Ib(y) — cldy.
Because of the facts that

" 1 o}

n
- nF1
<Ca ™

and

> (CQ’“B Gl “)@: 3 (C2’<32)@(r§)n

(k,j)€T (k,j)€r

__kn

<C Z B*Jr ;r 2A+”+1 Z‘Qk

n N n
)\Jrn;rl k(w—p)
S 00132 E 2 T2
k=ko+1

A+i ko(ﬁ*l’)

< CCl 2 2 s
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by Lemma 2, we obtain

—Z+1 ko(

M, < aPCCiB, % 2 255

n

n+1

<CCyB, 2

For (k,j) € D, if 2 — 251 < X < m + 231,

estimate by the vanishing moments of b? and Taylor formula,

we have the following

n+1)

(2L
r—ak 2
(oo <croenn [ sty (1020
Q¥

% [b(y) = clb5 ()| dy

<O el OV [ )~y
Q

J

ntl
< CZkBQ(’I“;-C)A_‘_ 2
|z — x§|’\+nT+l

Similar to the estimate of M7, we get

n
A n«zi»l

M, < CC, B,
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For (k,j) € To, if A >m + "T“, we also obtain

n+1

‘m—xlﬂ —O+5)
Tﬂ@—@@ﬂ@<%%(“m“%¥y—ﬁW“<H-TJ>

x [b(y) — clb} ()| dy

‘x—xk| —(n+m+1)
< Cr—(n+m+1)/ ‘y_xﬁm—i-l <1+ J )
Qk r

J

% [b(y) = cl[b ()] dy

sﬂﬁﬁﬂ@—ﬁﬁ“ﬁmf/’ww—d@
Qk

J

C B2 (rymmt
‘.’E _ xév |n+m+1

Since that

n
< Ca nFm¥1,

1 e’
n . hd
{.’EER \Bk07N'—|x_x;_€|n+m+1 > 4}

and

S (BT — 0 3 BT e |Qh)

(k,j)€T2 (k,j)€T

N
< CCBy T Y okl )
k=ko+1

n

< CC, B2n+m+1 21€0( e —P)7

using Lemma 2 we obtain
—_n n n
My < aPCCy By 77 2ko s =P) o~

< 00 BfT
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Thus we get that

n

Ko < CCy (

(o [ -0) ™
e [

By taking the infimum with ¢ € C in each term on the right hand of
above inequality, we obtain that

+ n
2 ntm1
BQ

At 3 AT
Ky < CCy ( ||6]]+ + [|]]: .

Finally let us estimate K,

N e’}
Ky < af| Byl <o Y A>T |QN

k=ko+1  j=1

N
<CCia? > Apah
k=ko+1

N
Scclapg—kop Z AZ'Z_(k_kO)p

k=ko+1
N
(ko) (max( 2y ) —)
<co, Y2 TS
k=ko+1

<CC.

Following above estimates, we have that
N
{x € R": T}, ( Z fk) ()| > )\}|
k=—N

<y (1 bl + IFT 4 7).
where C' is dependent on r, N and the atomic decomposition of f.

oP
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Finally, taking the limit as N — oo, the infimum of C; over all possible

representations > > b? = f and the supremum for r > 0 in the left-hand
k J
side of above inequality, we complete the proof of Theorem 3. O
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