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CARLESON’S THEOREM:

PROOF, COMPLEMENTS, VARIATIONS

Michael T. Lacey

Abstract

Carleson’s Theorem from 1965 states that the partial Fourier sums
of a square integrable function converge pointwise. We prove an
equivalent statement on the real line, following the method devel-
oped by the author and C. Thiele. This theorem, and the proof
presented, is at the center of an emerging theory which comple-
ments the statement and proof of Carleson’s theorem. An outline
of these variations is also given.
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1. Introduction

L. Carleson’s celebrated theorem of 1965 [14] asserts the pointwise
convergence of the partial Fourier sums of square integrable functions.
We give a proof of this fact, in particular the proof of Lacey and
Thiele [50], as it can be presented in brief self contained manner, and a
number of related results can be seen by variants of the same argument.
We survey some of these variants, complements to Carleson’s theorem,
as well as open problems.

We are concerned with the Fourier transform on the real line, given by

f̂(ξ) =

∫
e−ixξf(x) dx

for Schwartz functions f . For such functions, it is an important elemen-
tary fact that one has Fourier inversion,

(1.1) f(x) = lim
N→∞

1

2π

∫ N

−N

f̂(ξ)eixξ dξ, x ∈ R,

the inversion holding for all Schwartz functions f . Indeed,

1

2π

∫ N

−N

f̂(ξ)eixξ dξ = DN ∗ f(x),

where DN(x) := sin Nx
πx is the Dirchlet kernel.

The convergence in (1.1) for Schwartz functions follows from the clas-
sical facts ∫ ∞

−∞

DN (x) dx = 1,

lim
N→∞

∫

|x|≥ε

DN (x) dx = 0, ε > 0.



Carleson’s Theorem on Fourier Series 253

L. Carleson’s theorem asserts that (1.1) holds almost everywhere,
for f ∈ L2(R). The form of the Dirchlet kernel already points out the
essential difficulties in establishing this theorem. That part of the kernel
that is convolution with 1

x corresponds to a singular integral. This can
be done with the techniques associated to the Calderón Zygmund theory.
In addition, one must establish some uniform control for the oscillatory
term sinNx, which falls outside of what is commonly considered to be
part of the Calderón Zygmund theory.

For technical reasons, we find it easier to consider the equivalent one
sided inversion,

(1.2) f(x) = lim
N→∞

1

2π

∫ N

−∞

f̂(ξ)eixξ dξ.

Schwartz functions being dense in L2, one need only show that the
set of functions for which a.e. convergence holds is closed. The standard
method for doing so is to consider the maximal function below, which
we refer to as the Carleson operator

(1.3) Cf(x) := sup
N

∣∣∣∣∣

∫ N

−∞

f̂(ξ)eixξ dξ

∣∣∣∣∣ , x ∈ R.

There is a straight forward proposition.

Proposition 1.4. Suppose that the Carleson operator satisfies

(1.5) |{Cf(x) > λ}| . λ−2‖f‖2
2, f ∈ L2(R), λ > 0.

Then, the set of functions f ∈ L2(R) for which (1.2) holds is closed and
hence all of L2(R).

Proof: For f ∈ L2(R), we should see that

Lf := lim sup
N→∞

∣∣∣∣∣f(x) − 1

2π

∫ N

−∞

f̂(ξ)eixξ dξ

∣∣∣∣∣ = 0 a.e.

To do so, we show that for all ε > 0, |{Lf > ε}| . ε. We take g to be

a smooth compactly supported function so that ‖f − g‖2 ≤ ε3/2. Now
Fourier inversion holds for g, whence Lf ≤ C(f − g) + |f − g|. Then, by
the weak type inequality, (1.5), we have

|{C(f − g) > ε}| . ε−2‖f − g‖2
2 . ε.

This is a standard proposition, which holds in a general context, and
serves as one of the prime motivations for considering maximal operators.
Note in particular that we are not at this moment claiming that C is a
bounded operator on L2. Inequality (1.5) is the so called weak L2 bound,
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and we shall utilize the form of this bound in a very particular way in
the proof below.

It was one of L. Carleson’s great achievements to invent a method to
prove this weak type estimate.

Theorem 1.6. The estimate (1.5) holds. As a consequence, (1.2) holds
for all f ∈ L2(R), for almost every x ∈ R.

Carleson’s original proof [14] was extended to Lp, 1 < p < ∞, by
Hunt. Also see [67]. Fefferman [26] gave an alternate proof that was
influential by the explicit nature of it’s “time frequency” analysis, of
which we have more more to say below. We follow the proof of Lacey
and Thiele [50]. More detailed comments on the history of the proof,
and related results will come later.

The proof will have three stages, the first being an appropriate de-
composition of the Carleson operator. The second being an introduction
of three lemmas, which can be efficiently combined to give the proof of
our theorem. The third being a proof of the lemmas.

We do not keep track of the value of generic absolute constants, in-
stead using the notation A . B iff A ≤ KB for some constant K.
And A ' B iff A . B and B . A. The notation 1A denotes the indi-
cator function of the set A. For an operator T , ‖T‖p denotes the norm
of T as an operator from Lp to itself.

2. Decomposition

The Fourier transform is a constant times a unitary operator on L2(R).
In particular, we shall take the Plancherel’s identity for granted.

Proposition 2.1. For all f, g ∈ L2(R),

〈f, g〉 = c〈f̂ , ĝ〉
for appropriate constant c = 1

2π .

The convolution of f and ψ is given by f ∗ψ(x) =
∫
f(x− y)ψ(y) dy.

We shall also assume the following lemma.

Lemma 2.2. If a bounded linear operator T on L2(R) commutes with
translations, then Tf = ψ ∗ f , where ψ is a distribution, which is to
say a linear functional on Schwartz functions. In addition, the Fourier
transform of Tf is given by

T̂ f = ψ̂f̂ .
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Let us introduce the operators associated to translation, modulation
and dilation on the real line.

Try f(x) := f(x− y),(2.3)

Modξ f(x) := eiξxf(x),(2.4)

Dilpλ f(x) := λ−1/pf(x/λ), 0 < p ≤ ∞, λ > 0.(2.5)

Note that the dilation operator preserves Lp norm. These operators are
related through the Fourier transform, by

(2.6) T̂ry = Mod−y, M̂odξ = Trξ , D̂il2λ = Dil21/λ .

And we should also observe that the Carleson operator commutes with
translation and dilation operators, while being invariant under modula-
tion operators. For any y, ξ ∈ R, and λ > 0,

Try ◦C = C ◦ Tr, Dil2λ ◦ C = C ◦ Dil2λ, C ◦ Modξ = C.
Thus, our mode of analysis should exhibit the same invariance properties.

We have phrased the Carleson operator in terms of modulations of

the operator P− f(x) =
∫ 0

−∞
f̂(ξ)eixξ dξ, which is the Fourier projection

on to negative frequencies. Specifically, since multiplication of f by an

exponential is associated with a translation of f̂ , we have

(2.7) Cf = sup
N

|P−(eiN ·f)|.

A characterization of the operator P− will be useful to us.

Proposition 2.8. Up to a constant multiple, P− is the unique bounded
operator on L2(R) which (a) commutes with translation (b) commutes
with dilations (c) has as it’s kernel precisely those functions with fre-
quency support on the positive axis.

Proof: Let T be a bounded operator on L2(R) which satisfies these three
properties. Condition (a) implies that T is given by convolution with
respect to a distribution. Such operators are equivalently characterized

in frequency variables by T̂ f = τ f̂ for some bounded function τ . Con-
dition (b) then implies that τ(ξ) = τ(ξ/|ξ|) for all ξ 6= 0. A function f

is in the kernel of T iff f̂ is supported on the zero set of τ . Thus (c) im-
plies that τ is identically 0 on the positive real axis, and non-zero on the
negative axis. Thus, T must be a multiple of P−.
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We move towards the tool that will permit us to decompose Car-
leson operator, and take advantage of some combinatorics of the time-
frequency plane. We let D be a choice of dyadic grids on the line. Of
the different choices we can make, we take the grid to be one that is
preserved under dilations by powers of 2. That is

(2.9) D = {[j2k, (j + 1)2k) : j, k ∈ Z}.

Thus, for each interval I ∈ D and k ∈ Z, the interval 2kI = {2kx : x ∈ I}
is also in D.

A tile is a rectangle s ∈ D × D that has area one. We write a tile
as s = I × ω, thinking of the first interval as a time interval and the
second as frequency. The requirement of having area one is suggested by
the uncertainty principle of the Fourier transform, or alternatively, our
calculation of the Fourier transform of the dilation operators in (2.6).
Let T denote the set of all tiles. While tiles all have area one, the ratio
between the time and frequency coordinates is permitted to be arbitrary.
See Figure 1 for a few possible choices of this ratio.

Figure 1. Four different aspects ratios for tiles. Each
fixed ratio gives rise to a tiling for the time frequency
plane.

Each dyadic interval is a union of its left and right halves, which are
also dyadic. For an interval ω we denote these as ω− and ω+ respectively.
We are in the habit of associating frequency intervals with the vertical
axis. So ω− will lie below ω+. Associate to a tile s = Is × ωs the
rectangles s± = Is × ωs±. These two rectangles play complementary
roles in our proof.
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Fix a Schwartz function ϕ with 1[−1/9,1/9] ≤ ϕ̂ ≤ 1[−1/8,1/8]. Define
a function associated to a tile s by

(2.10) ϕs = Modc(ωs−) Trc(Is) Dil2|Is| ϕ

where c(J) is the center of the interval J . Notice that ϕs has Fourier
transform supported on ωs−, and is highly localized in time variables
around the interval Is. That is, ϕs is essentially supported in the time-
frequency plane on the rectangle Is × ωs−. Notice that the set of func-
tions {ϕs : s ∈ T } has a set of invariances with respect to translation,
modulation, and dilation that mimics those of the Carleson operator.

It is our purpose to devise a decomposition of the projection P− in
terms of the tiles just introduced. To this end, for a choice of ξ ∈ R, let

(2.11) Qξ f =
∑

s∈T

1ωs+
(ξ)〈f, ϕs〉ϕs.

We should consider general values of ξ for the reason that the dyadic
grid distinguishes certain points as being interior, or a boundary point,
to an infinite chain of dyadic intervals. And moreover, for a given ξ,
only certain tiles can contribute to the sum above, those tiles being
determined by the expansion of ξ in a binary digits. See Figure 2. Let
us list some relevant properties of these operators.

ξ

Figure 2. Some of the tiles that contribute to the sum
for Qξ. The shaded areas are the tiles Is × ωs+.
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Proposition 2.12. For any ξ, the operator Qξ is a bounded operator

on L2, with bound independent of ξ. Its kernel contains those functions
with Fourier transform supported on [ξ,∞), and it is positive semidefi-
nite. Moreover, for each integer k,

Qξ = Dil22−k Qξ2−k Dil22k(2.13)

Qξ,k Tr2k = Tr2k Qξ,k,(2.14)

where Qξ,k =
∑

s∈T
|Is|≤2k

1ωs+
(ξ)〈f, ϕs〉ϕs.

Proof: Let {ω(n) : n ∈ Z} be the set of dyadic intervals for which
ξ ∈ ω(n)+, listed in increasing order, thus · · · ⊂ ω(n) ⊂ ω(n+ 1) ⊂ · · · .
Let T (n) = {s ∈ T : ωs = ω(n)}, and

Q(n) f =
∑

s∈T (n)

〈f, ϕs〉ϕs.

The intervals ω(n)− are disjoint in n, and since ϕs has frequency support
in ωs−, it follows that the operators Q(n) are orthogonal in n. The
boundedness of Qξ reduces therefore to the uniform boundedness of Q(n)

in n.
Two operators Q(n) and Q(n′) differ by composition with a modulation

operator and a dilation operator that preserves L2 norms. Thus, it
suffices to consider the L2 norm bound of a Q(n) with |Is| = 1 for all

s ∈ T (n). Using the fact that ϕs is a rapidly decreasing function, we see
that

(2.15) |〈ϕs, ϕs′〉| . dist(Is, Is′ )
−4
.

Now that the spatial length of the tiles is one, the tiles are separated by
integral distances. Since

∑
n n

−4 <∞,

‖Q(n) f‖2
2 =

∑

s∈T (n)

∑

s′∈T (n)

〈f, ϕs〉〈ϕs, ϕs′〉〈ϕs′ , f〉

. sup
n∈Z

∑

s∈T (n)

|〈f, ϕs〉〈f, ϕ(Is+n)×ω(n)〉|

.
∑

s∈T (n)

|〈f, ϕs〉|2.
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The last inequality following by Cauchy-Schwarz. The last sum is easily
controlled, by simply bringing in the absolute values. Since |〈f, ϕs〉|2 .∫
|f |2|ϕs| dx

∑

s∈T (n)

|〈f, ϕs〉|2 ≤
∫
|f |2

∑

s∈T (n)

|ϕs| dx

≤ ‖f‖2
2 sup

x

∑

s∈T (n)

|ϕs(x)|

. ‖f‖2
2.

This completes the proof of the uniform boundedness of Qξ.

Since all of the functions ϕs that contribute to the definition of Qξ

have frequency support below ξ, the conclusion abut the kernel of the
operator is obvious. And that it is positive semidefinite, observe that

(2.16) 〈Qξ f, f〉 =
∑

s∈T
ξ∈ωs+

|〈f, ϕs〉|2 ≥ 0.

In particular, 〈Qξ ϕs, ϕs〉 6= 0 for s ∈ T (n).

To see (2.13) recall (2.6) and our specific choice of grids, (2.9). To
see (2.14), observe that if I ∈ D has length at most 2k, then I + 2k is
also in D.

As the lemma makes clear, Mod−ξ Qξ Modξ serves as an approxima-
tion to P−. A limiting procedure will recover P− exactly. Consider

(2.17) Q= lim
Y →∞

∫

B(Y )

Dil22−λ Tr−y Mod−ξ Qξ Modξ Try Dil22λ µ(dλ, dy, dξ).

Here, B(Y ) is the set [1, 2]× [0, Y ]× [0, Y ], and µ is normalized Lebesgue
measure. Notice that the dilations are given in terms of 2λ, so that
in that parameter, we are performing an average with respect to the
multiplicative Haar measure on R+.

Apply the right hand side to a Schwartz function f . It is easy to see
that as k → −∞, the terms

Modξ Try Dil22λ Qξ,k f

tend to zero uniformly in the parameters ξ, y, and λ, with a rate that
depends upon f . Here, Qξ,k is as in (2.14). Similarly, as k → ∞, the
terms

Modξ Try Dil22λ(Q−Qξ,k)f
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also tend to zero uniformly. Hence, the limit is seen to exist for all
Schwartz functions. By Proposition 2.12, it follows that Q is a bounded
operator on L2. That Q is translation and dilation invariant follows
from (2.14) and (2.13). Its kernel contains those functions with Fourier
transform supported on [0,∞). Finally, if we verify that Q is not iden-
tically zero, we can conclude that it is a multiple of P−. But, for
e.g. f = Mod−1/8 ϕ, it is easy to see that

〈Qξ Modξ Try Dil22λ f,Modξ Try Dil22λ f〉 > 0

so that Qf 6= 0. Thus, Q is a multiple of P−.

We can return to the Carleson operator. An important viewpoint
emphasized by Fefferman’s proof [26] is that we should linearize the
supremum. That is we consider a measurable map N : R 7→ R, which
specifies the value of N at which the supremum in (1.3) occurs. Then, it
suffices to bound the operator norm of the linear (not sublinear) operator

P− ModN(x) .

Considering (2.17), we set

CNf(x) =
∑

s∈T

1ωs+
(N(x))〈f, ϕs〉ϕs(x).

Our main lemma is then

Lemma 2.18. There is an absolute constant K so that for all measurable
functions N : R 7→ R, we have the weak type inequality

(2.19) |{CNf > λ}| . λ−2‖f‖2
2, λ > 0, f ∈ L2(R).

By the convexity of the weak L2 norm, this theorem immediately
implies the same estimate for P− ModN(x), and so proves Theorem 1.6.
The proof of the lemma is obtained by combining the three estimates
detailed in the next section.

2.1. Complements.

At the conclusion to the different sections of the proof, some com-
plements to the ideas and techniques of the previous sections will be
mentioned, but not proved. These items can be considered as exercises.

2.20. For Schwartz functions ϕ and ψ, set

A f :=
∑

n∈Z

〈f,Trn ϕ〉Trn ψ

B f :=

∫ 1

0

Tr−y A Try dy.
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Then, B is a convolution operator, that is B f = Ψ ∗ f for some func-
tion Ψ, which can be explicitly computed.

2.21. The identity operator is, up to a constant multiple, the unique
bounded operator A on L2 which commutes with all translation and
modulation operators. That is A: L2 7→ L2, and for all y ∈ R and ξ ∈ R,

Try A = A Try, Modξ A = A Modξ .

2.22. The operators

Aj f :=
∑

s∈T
|Is|=2j

〈f, ϕs〉ϕs

are uniformly bounded operators on L2(R), assuming that ϕ is a Schwartz
function.

2.23. Assuming that ϕ 6≡ 0, the operator below is a non-zero multiple
of the identity operator on L2.

∫ 2j

0

∫ 2−j

0

Tr−y Mod−ξ Aj Modξ Try dξ dy.

3. The Central Lemmas

Observe that the weak type estimate of Lemma 2.18 is implied by

(3.1) |〈CNf,1E〉| . ‖f‖2|E|1/2,

for all functions f and sets E of finite measure. (In fact this inequality
is equivalent to the weak L2 bound.)

By linearity of CN , we may assume that ‖f‖2 = 1. By the invariance
of CN under dilations by a factor of 2 (with a change of measurableN(x)),
we can assume that 1/2 < |E| ≤ 1. Set

(3.2) φs = (1ωs+
◦N)ϕs.

We shall show that

(3.3)
∑

s∈T

|〈f, ϕs〉〈φs,1E〉| . 1.

To help keep the notation straight, note that ϕs is a smooth function,
adapted to the tile. On the other hand, φs is the rough function paired
with the indicator set 1ωs+

◦N . From this point forward, the function f
and the set E are fixed. We use data about these two objects to organize
our proof.

As the sum above is over strictly positive quantities, we may consider
all sums to be taken over some finite subset of tiles. Thus, there is
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never any question that the sums we treat are finite, and the iterative
procedures we describe will all terminate. The estimates we obtain will
be independent of the fact that the sum is formally over a set of finite
tiles.

We need some concepts to phrase the proof. There is a natural par-
tial order on tiles. Say that s < s′ iff ωs ⊃ ωs′ and Is ⊂ Is′ . Note
that the time variable of s is localized to that of s′, and the frequency
variable of s is similarly localized, up to the variability allowed by the
uncertainty principle. Note that two tiles are incomparable with respect
to the ‘<’ partial order iff the tiles, as rectangles in the time frequency
plane, do not intersect. A “maximal tile” will one that is maximal with
respect to this partial order. See Figure 1.

We call a set of tiles T ⊂ S a tree if there is a tile IT ×ωT, called the
top of the tree, such that for all s ∈ T, s < IT×ωT. We note that the top
is not uniquely defined. An important point is that a tree top specifies a
location in time variable for the tiles in the tree, namely inside IT, and
localizes the frequency variables, identifying ωT as a nominal origin.

We say that S has count at most A, and write

count(S) < A

iff S is a union
⋃

T∈T T, where each T ∈ T is a tree, and
∑

T∈T

|IT| < A.

Fix χ(x) = (1+ |x|)−κ, where κ is a large constant, whose exact value
is unimportant to us. Define

χI := Trc(I) Dil1|I| χ,(3.4)

dense(s) := sup
s<s′

∫

N−1(ωs′ )

χIs′
dx,(3.5)

dense(S) := sup
s∈S

dense(s), S ⊂ T .

The first and most natural definition of a “density” of a tile, would be

|Is|−1|N−1(ωs+)∩Is|. But ϕ is supported on the whole real line, though
does decay faster than any inverse of a polynomial. We refer to this as a
“Schwartz tails problem”. The definition of density as

∫
N−1(ωs)

χIs
dx,

as it turns out, is still not adequate. That we should take the supremum
over s < s′ only becomes evident in the proof of the “Tree Lemma”
below.

The “Density Lemma” is
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Lemma 3.6. Any subset S ⊂ T is a union of Sheavy and Slight for which

dense(Slight) <
1
2 dense(S),

and the collection Sheavy satisfies

(3.7) count(Sheavy) . dense(S)−1.

What is significant is that this relatively simple lemma admits a non-
trivial variant intimately linked to the tree structure and orthogonality.
We should refine the notion of a tree. Call a tree T with top IT × ωT

a ±tree iff for each s ∈ T, aside from the top, IT × ωT ∩ Is × ωs± is
not empty. Any tree is a union of a +tree and a −tree. If T is a +tree,
observe that the rectangles {Is × ωs− : s ∈ T} are disjoint. And, by the
proof of Proposition 2.12, we see that

∆(T)2 :=
∑

s∈T

|〈f, ϕs〉|2 . ‖f‖2
2.

This motivates the definition

(3.8) size(S) := sup{|IT|−1/2∆(T) : T ⊂ S, T is a +tree}.
The “Size Lemma” is

Lemma 3.9. Any subset S ⊂ T is a union of Sbig and Ssmall for which

size(Ssmall) <
1
2 size(S),

and the collection Sbig satisfies

(3.10) count(Sbig) . size(S)−2.

Our final lemma relates trees, density and size. It is the “Tree Lem-
ma”.

Lemma 3.11. For any tree T

(3.12)
∑

s∈T

|〈f, ϕs〉〈φs,1E〉| . |IT| size(T) dense(T).

The final elements of the proof are organized as follows. Certainly,
dense(T ) < 2 for κ sufficiently large. We take some finite subset S of T ,
and so certainly size(S) < ∞. If size(S) < 2, we jump to the next
stage of the proof. Otherwise, we iteratively apply Lemma 3.9 to obtain
subcollections Sn ⊂ S, n ≥ 0, for which

(3.13) size(Sn) < 2n, n > 0,

and Sn satisfies

(3.14) count(Sn) . 2−2n.
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We are left with a collection of tiles S ′ = S −⋃n>0 Sn which has both
density and size at most 2.

Now, both Lemma 3.6 and Lemma 3.9 are set up for iterative applica-
tion. And we should apply them so that the estimates in (3.7) and (3.10)
are of the same order. (This means that we should have density about
the square of the size.) As a consequence, we can achieve a decomposi-
tion of S into collections Sn, n ∈ Z, which satisfy (3.13), (3.14) and

(3.15) dense(Sn) < min(2, 22n).

Use the estimates (3.12)–(3.15). Write Sn as a union of trees T ∈ T̃n,
this collection of trees satisfying the estimate of (3.14). We see that

∑

s∈Sn

|〈f, ϕs〉〈φs,1E〉| =
∑

T∈T̃n

∑

s∈T

|〈f, ϕs〉〈φs,1E〉|

. 2n min(2, 22n)
∑

T∈T̃n

|IT|

. min(2−n, 2n).

(3.16)

This is summable over n ∈ Z to an absolute constant, and so our
proof (3.3) is complete, aside from the proofs of the three key lemmas.

3.1. Complements.

3.17. These two conditions are equivalent.

sup
λ>0

λ−2|{f > λ}| . 1,

∫

E

|f | dx . |E|1/2, |E| <∞.

3.18. Let A be an operator for which Dil22k A = A Dil22k for all k ∈ Z.
Suppose that there is an absolute constantK so that for all functions f ∈
L2(R) of norm one,

|{A f > 1}| ≤ K.

Then for all λ > 0,

|{A f > λ}| . λ−2‖f‖2
2.

See [22].

3.19. For any +tree T,
∑

s∈T

|〈f, ϕs〉|2 .

∫
|f |2 Trc(IT) Dil∞IT χdx.
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Moreover, one has the inequality

|IT|−1
∑

s∈T

|〈f, ϕs〉|2 . inf
x∈T

M|f |2(x).

Here, M is the maximal function,

M f(x) = sup
t>0

(2t)−1

∫ t

−t

|f(x− y)| dy.

4. The Density Lemma

Set δ = dense(S). Suppose for the moment that density had the
simpler definition

dense(s) :=
|N−1(ωs) ∩ Is|

|Is|
.

The collection Sheavy is to be a union of trees. So to select this collection,
it suffices to select the tops of the trees in this set.

Select the tops of the trees, Tops as being those tiles s with dense(s) ex-
ceeding δ/2, which are also maximal with respect to the partial order ‘<’.
The tree associated to such a tile s ∈ Tops would just be all those tiles
in S which are less than s. The tiles in Tops are pairwise incomparable
with respect to the partial order ‘<’, and so are pairwise disjoint rect-
angles in the time-frequency plane. And so the sets N−1(ωs) ∩ Is ⊂ E
are pairwise disjoint, and each has measure at least δ

2 |Is|. Hence the
estimate below is immediate.

(4.1)
∑

s∈Tops

|Is| . δ−1.

The Schwartz tails problem prevents us from using this very simple
estimate to prove this lemma, but in the present context, the Schwarz
tails are a weak enemy at best. Let Tops be those s ∈ S which have
dense(s) > δ/2 and are maximal with respect to ‘<’. It suffices to
show (4.1). For an integer k ≥ 0, and small constant c, let Sk be those
s ∈ Tops for which

(4.2) |2kIs ∩N−1(ωs)| ≥ c22kδ|Is|.
Every tile in Tops will be in some Sk, with c sufficiently small, and so it
suffices to show that

(4.3)
∑

s∈Sk

|Is| . 2−kδ−1.
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Fix k. Select from Sk a subset S ′
k of tiles satisfying {2kIs×ωs : s ∈ S ′

k}
are pairwise disjoint, and if s ∈ Sk and s′∈S ′

k are tiles such that 2kIs×ωs

and 2kIs′ × ωs′ intersect, then |Is| ≤ |Is′ |. It is clearly possible to select
such a subset. And since the tiles in Sk are incomparable with respect
to ‘<’, we can use (4.2) to estimate

∑

s∈Sk

|Is| ≤ 2k+1
∑

s′∈S′
k

|Is′ |

≤ 2
c 2−kδ−1.

That is, we see that (4.3) holds, completing our proof.

4.1. Complements.

4.4. Let S be a set of tiles for which there is a constant K so that for
all dyadic intervals J , ∑

s∈S
Is⊂J

|Is| ≤ K|J |.

Then for all 1 ≤ p <∞, and intervals J ,
∥∥∥∥∥∥∥

∑

s∈S
Is⊂J

1Is

∥∥∥∥∥∥∥
p

. Kp|J |1/p.

In fact, Kp . p.

5. The Size Lemma

Set σ = size(S). We will need to construct a collection of trees T ∈
T̃large, with Slarge =

⋃
T∈T̃large

T, and

(5.1)
∑

T∈T̃large

|IT| . σ−2,

as required by (3.10).

The selection of trees T ∈ T̃large will be done in conjunction with the

construction of +trees T+ ∈ T̃large+. This collection will play a critical
role in the verification of (5.1).

The construction is recursive in nature. Initialize

Sstock := S, T̃large := ∅, T̃large+ := ∅.
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While size(Sstock) > σ/2, select a +tree T+ ⊂ Sstock with

(5.2) ∆(T+) >
σ

2
|IT+

|.

In addition, the top of the tree IT+
×ωT+

should be maximal with respect
to the partial order ‘<’ among all trees that satisfy (5.2). And c(ωT+

)
should be minimal, in the order of R. Then, take T to be the maximal
tree (without reference to sign) in Sstock with top IT+

× ωT+
.

After this tree is chosen, update

Sstock := Sstock −T,

T̃large := T̃large ∪T,

T̃large+ := T̃large+ ∪T+.

Once the while loop finishes, set Ssmall := Sstock and the recursive
procedure stops.

It remains to verify (5.1). This is a orthogonality statement, but one
that is just weaker than true orthogonality. Note that a particular enemy
is the is the situation in which 〈ϕs, ϕs′ 〉 6= 0. When ωs = ωs′ , this may
happen, but as we saw in the proof of Proposition 2.12, this case may be
handled by direct methods. Thus we are primarily concerned with the
case that e.g. ωs− ⊂ 6= ωs′−.

A central part of this argument is a bit of geometry of the time-
frequency plane that is encoded in the construction of the +trees above.

Suppose there are two trees T 6= T′ ∈ T̃large+, and tiles s ∈ T and
s′ ∈ T′ such that ωs− ⊂ 6= ωs′−, then, it is the case that Is′ ∩ IT = ∅. We
refer to this property as ‘strong disjointness’. It is a condition that is
strictly stronger than just requiring that the sets in the time-frequency
plane below are disjoint in T.

⋃

s∈T

Is × ωs−, T ∈ T̃large+.

To see that strong disjointness holds, observe that ωT ⊂ ωs ⊂ 6= ωs′−.
Thus ωT′ lies above ωT. That is, in our recursive procedure, T was
constructed first. If it were the case that Is′ ∩ IT 6= ∅, observe that one
interval would have to be contained in the other. But tiles have area one,
thus, it must be the case that Is′ ⊂ IT. That means that s′ would have
been in the tree (the one without sign) that was removed from S stock

before T′ was constructed. This is a contradiction which proves strong
disjointness. See Figure 3.
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IT × ωT

s s′

Figure 3. The proof of strongly disjoint trees. Note
that the gray tile could be in the tree that was removed
after the selection of the +-tree with the top indicated
above.

We use this strong disjointness condition, and the selection crite-
ria (5.2), to prove the bound (5.1). The method of proof is closely
related to the so called T T∗ method. Set S ′ =

⋃
T∈T̃large+

T, and

F :=
∑

s∈S′

〈f, ϕs〉ϕs.

The operator f 7→ 〈f, ϕs〉ϕs is self-adjoint, so that

σ2
∑

T∈T̃large+

|IT| = 〈f, F 〉

≤ ‖f‖2‖F‖2.

And so, we should show that

(5.3) ‖F‖2
2 . σ2

∑

T∈T̃large+

|IT|.

This will complete the proof.

This last inequality is seen by expanding the square on the left hand
side. In particular, the left hand side of (5.3) is at most the sum of the
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two terms

∑

s,s′∈S′

ωs=ωs′

〈f, ϕs〉〈ϕs, ϕs′〉〈ϕs′ , f〉(5.4)

2
∑

s,s′∈S′

ωs⊂ 6=ωs′

|〈f, ϕs〉〈ϕs, ϕs′〉〈ϕs′ , f〉|.(5.5)

For the term (5.4), we have the obvious estimate on the inner product

|〈ϕs, ϕs′〉| .

(
1 +

dist(Is, Is′)

|Is|

)−4

.

(Compare to (2.15).) Thus, by Cauchy-Schwarz,

(5.4) .
∑

s∈S′

|〈f, ϕs〉|2 . σ2
∑

T∈T̃large+

|IT|.

For the term (5.5), we need only show that for each tree T,

(5.6)
∑

s∈T

∑

s′∈S′

ωs⊂ 6=ωs′

|〈f, ϕs〉〈ϕs, ϕs′〉〈ϕs′ , f〉|
2

. σ2|IT|.

Here, S(s) := {s′ ∈ S ′−T : ωs− ⊂ 6= ωs′−}. The implied constant should
be independent of the tree T.

Now, the strong disjointness condition enters in two ways. For s ∈ T,
and s′ ∈ S(s), it is the case that Is′ ∩ IT = ∅. But furthermore, for
s′, s′′ ∈ S(s), we have e.g. ωs− ⊂ ωs′− ⊂ ωs′′−, so that Is′ ∩ Is′′ is also
empty.

At this point, rather clumsy estimates of (5.6) are in fact optimal.
The definition of size gives us the bound

|〈ϕs′ , f〉| .
√
|Is′ |σ.

And, since ωs ⊂ ωs′ , we have |Is| ≥ |Is′ |, and Is, and Is′ are, in the
typical situation, far apart. An estimation left to the reader gives

(5.7) |〈ϕs, ϕs′〉| .
√
|Is′ ||Is|χIs

(c(Is′ )).
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Thus, we bound the left side of (5.6) by
∑

s∈T

∑

s′∈S(s)

|〈f, ϕs〉〈ϕs, ϕs′〉〈ϕs′ , f〉| . σ2
∑

s∈T

|Is′ ||Is|χIs
(c(Is′ ))

. σ2
∑

s∈T

∫

(IT)c

|Is|χIs
(x) dx

. σ2|IT|

(5.8)

as is easy to verify. This completes the proof of (5.6), and so finishes the
proof of Lemma 3.9.

5.1. Complements.

5.9. Concerning the inequality (5.8), for any tree T, we have

∑

s∈T

∫

Ic
T

|Is|χIs
(x) dx . |IT|.

5.10. Let T be a +tree and set

FT =
∑

s∈T

〈f, ϕs〉ϕs.

Then, the inequality below is true.

‖FT‖2 '
[∑

s∈T

|〈f, ϕs〉|2
]1/2

. size(T)|IT|1/2.

5.11. With the notation above, assume that 0 ∈ ωT. Then,

size(T) ' sup
J


|J |−1

∑

s∈T

Is⊂J

|〈f, ϕs〉|2



1/2

' sup
J

[
|J |−1

∫

J

∣∣∣∣FT − |J |−1

∫

J

FT

∣∣∣∣
2

dx

]1/2

,

where the supremum is over all intervals J . The last quantity is the
BMO norm of FT.
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5.12. It is an important heuristic that for a collection S of pairwise
incomparable tiles, the functions {ϕs : s ∈ S} are nearly orthogonal.
The heuristic permits a quantification in terms of the following weak type
inequality. Let S be a collection of tiles that are pairwise incomparable
with respect to ‘<’. Then for all f ∈ L2 and all λ > 0,

∑

s∈Sλ

|Is| . λ−2‖f‖2
2,

where Sλ = {s ∈ S : |〈f, ϕs〉| > λ
√

|Is|}. Note that this in an inequality
about the boundedness of a sublinear operator from L2(R) to L2,∞(R×S).
In the latter space, one uses counting measure on S.

5.13. Another important heuristic is that the notion of “strong dis-

jointness” for trees is as “pairwise incomparable” is for tiles. Let T̃ be
a collection of strongly disjoint trees. Show that for all f ∈ L2 and
all λ > 0, ∑

T∈T̃λ

|IT| . λ−2‖f‖2
2,

where T̃λ = {T ∈ T̃ : ∆(T) ≥ λ|IT|}.

5.14. Let S be a collection of tiles that are pairwise incomparable with
respect to ‘<’. Show that for all 2 < p <∞,

[∑

s∈S

|〈f, ϕs〉|p
]1/p

. ‖f‖p.

Notice that the form of this estimate at p = ∞ is obvious.

5.15. Let T̃ be a collection of strongly disjoint trees. Then for all 2 <
p <∞, ∑

T∈T̃

∆(T)p . ‖f‖p.

5.16. The Lp estimates of the previous two complements can in some
instances be improved. For each integer k,

∥∥∥∥∥∥∥∥∥



∑

s∈T
|Is|=2k

|〈f, ϕs〉|2
|Is|

1Is




1/2
∥∥∥∥∥∥∥∥∥

p

. ‖f‖p, 2 < p <∞.
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This can be seen by showing that

∑

s∈T
|Is|=2k

|〈f, ϕs〉|2
|Is|

1Is
. (Dil12k χ) ∗ |f |2.

6. The Tree Lemma

We begin with some remarks about the maximal function, and a par-
ticular form of the same that we shall use at a critical point of this proof.
Consider the maximal function

M f = sup
I∈D

1I |〈f, χI〉|.

It is well known that this is bounded on L2. A proof follows. Con-
sider a linearized version of the supremum. To each I ∈ D, associate a
set E(I) ⊂ I , and require that the sets {E(I) : I ∈ D} be pairwise dis-
joint. (Thus, for fixed f , E(I) is that subset of I on which the supremum
above is equal to |〈f, χI〉|.) Define

A f =
∑

I∈D

1E(I)〈f, χI〉.

We show that ‖A‖2 is bounded by a constant, independent of the choice
of the sets E(I).

The method is that of T T∗. Note that for positive f

A A∗ f ≤ 2
∑

I∈D

∑

|J|≤|I|

1E(I)〈χI , χJ〉〈1E(J), f〉

.
∑

I∈D

1E(I)〈f, χI 〉.

It follows that

‖A∗‖2
2 = sup

‖f‖2=1

〈A∗ f,A∗ f〉

= sup
‖f‖2=1

〈f,A A∗ f〉

. ‖A‖2

and so ‖A‖2 . 1, as claimed.
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We shall have recourse to not only this, but a particular refinement.
Let J be a partition of R into dyadic intervals. To each J ∈ J , associate
a subset G(J) ⊂ J , with |G(J)| ≤ δ|J |, where 0 < δ < 1 is fixed.
Consider

(6.1) Mδ f :=
∑

J∈J

1G(J) sup
I⊃J

|〈f, χI〉|.

Then ‖Mδ‖2 .
√
δ. The proof is
∫
|Mδ f |2 dx =

∑

J∈J

|G(J)| sup
I⊃J

|〈f, χI〉|

≤ δ
∑

J∈J

|J | sup
I⊃J

|〈f, χI〉|

≤ δ

∫
|M f |2 dx

. δ‖f‖2
2.

We begin the main line of the argument. Let δ = dense(T), and
σ = size(T). Make a choice of signs εs ∈ {±1} such that

∑

s∈T

|〈f, ϕs〉〈φs,1E〉| =

∫

E

∑

s∈T

εs〈f, ϕs〉φs dx.

By the “Schwartz tails”, the integral above is supported on the whole
real line. Let J be a partition of R consisting of the maximal dyadic
intervals J such that 3J does not contain any Is for s ∈ T. It is helpful
to observe that for such J if |J | ≤ |IT|, then J ⊂ 3IT. And if |J | ≥ |IT|,
then dist(J, IT) & |J |. The integral above is at most the sum over J ∈ J
of the two terms below.

∑

s∈T

|Is|≤|J|

|〈f, ϕs〉|
∫

J∩E

|φs| dx(6.2)

∫

J∩E

∣∣∣∣∣∣∣∣

∑

s∈T

|Is|>|J|

εs〈f, ϕs〉φs

∣∣∣∣∣∣∣∣
dx.(6.3)

Notice that for the second sum to be non-zero, we must have J ⊂ 3IT.
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The first term (6.2) is controlled by an appeal to the “Schwartz tails”.
Fix an integer n ≥ 0, and only consider those s ∈ T for which |Is| =
2−n|J |. Now, the distance of Is to J is at least & |J |. And,

|〈f, ϕs〉|
∫

J∩E

|φs| dx ≤ σδ(|Is|−1 dist(Is, J))−10|Is|.

The Is ⊂ IT, so that summing this over |Is| = 2−n|J | will give us

σδ2−n min
(
|J |, |IT|(dist(J, IT)|IT|−1)−10

)
.

This is summed over n ≥ 0 and J ∈ J to bound (6.2) by . σδ|IT|, as
required.

Critical to the control of (6.3) is the following observation. Let

(6.4) G(J) = J ∩
⋃

s∈T

|Is|≥|J|

N−1(ωs+).

Then |G(J)| . δ|J |. To see this, let J ′ be the next larger dyadic interval
that contains J . Then 3J ′ must contain some Is′ , for s′ ∈ T. Let s′′ be
that tile with Is′ ⊂ Is′′ , |Is′′ | = |J |, and ωT ⊂ ωs′′ . Then, s′ < s′′, and
by the definition of density,

∫

E∩N−1(ωs′′ )

χIs′′
dx ≤ δ.

But, for each s as in (6.4), we have ωs ⊂ ωs′′ , so that G(J) ⊂ N−1(ωs′′ ).
Our claim follows.

Suppose that T is a −tree. That means that the tiles {Is×ωs+ : s∈T}
are disjoint. We use an estimation absent of any cancellation effects.
Then, the bound for (6.3) is no more than

|G(J)|

∥∥∥∥∥∥∥∥

∑

s∈T

|Is|≥|J|

|〈f, ϕs〉φs|

∥∥∥∥∥∥∥∥
∞

. δσ|J |.

This is summed over J ⊂ 3IT to get the desired bound.
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Suppose that T is a +tree. (This is the interesting case.) Then, the
tiles {Is × ωs− : s ∈ T} are pairwise disjoint, and we set

F = Mod−c(ωT)

∑

s∈T

εs〈f, ϕs〉ϕs.

Here it is useful to us that we only use the “smooth” functions ϕs in
the definition of this function. Note that ‖F‖2 . σ

√
|IT|, which is a

consequence of the definition of size and Proposition 2.12. Set τ(x) =
sup{|Is| : s ∈ T, N(x) ∈ ωs+}, and observe that for each J , and x ∈ J ,

∑

s∈T

|Is|≥|J|

εs〈f, ϕs〉φs(x) =
∑

s∈T

τ(x)≥|Is|≥|J|

εs〈f, ϕs〉ϕs(x).

This is so since all of the intervals ωs+must contain ωT, and ifN(x)∈ωs+,
then it must also be in every other ωs′+ that is larger. What is significant
here is that on the right we have a truncation of the sum that defines F .

This last sum can be dominated by a maximal function. For any τ > 0
and J ∈ J , let

Fτ,J = Mod−c(ωT)

∑

s∈T

τ≥|Is|≥|J|

εs〈f, ϕs〉ϕs.

This function has Fourier support in the interval
[
− 7

8 |J |−1,− 1
4 τ

−1
]
. In

particular, recalling how we defined ϕ, we can choose 1
16 < a, b < 1

4 so
that

Fτ,J = (Dil1a|J| ϕ− Dil1bτ ϕ) ∗ F.
We conclude that for x ∈ J ,

|Fτ(x),J(x)| . Mδ F (x),

where Mδ is defined as in (6.1).
The conclusion of this proof is now at hand. We have

∑

J∈J
|J|≤3|IT|

∫

G(J)

|Fτ(x),J | dx .

∫
⋃

|J|≤3|I
T

|
G(J)

Mδ F dx

.

∣∣∣∣∣∣
⋃

|J|≤3|IT|

G(J)

∣∣∣∣∣∣

1/2

‖Mδ F‖2

. δ
√
|IT|‖F‖2

. σδ|IT|.
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6.1. Complements.

6.5. The estimate below is somewhat cruder than the one just obtained,
and therefore easier to obtain. For all trees T,

∥∥∥∥∥
∑

s∈T

〈f, ϕs〉φs

∥∥∥∥∥
2

.

[∑

s∈T

|〈f, ϕs〉|2
]1/2

. size(T)|IT|1/2.

6.6. The maximal function Mδ in (6.1) admits the bounds

‖Mδ‖p . δ1/p, 1 < p <∞.

This depends upon the fact that the maximal function itself maps Lp

into itself, for 1 < p <∞.

6.7. For any tree T,
∥∥∥∥∥
∑

s∈T

〈g, ϕs〉φs

∥∥∥∥∥
p

. δ1/p‖g‖p, 1 < p <∞.

6.8. For a +tree T,

∥∥∥∥∥
∑

s∈T

〈f, ϕs〉ϕs

∥∥∥∥∥
p

.

∥∥∥∥∥∥

[∑

s∈T

|〈f, ϕs〉|2
|Is|

1Is

]1/2
∥∥∥∥∥∥

p

, 1 < p <∞.

Conclude that∥∥∥∥∥
∑

s∈T

〈f, ϕs〉ϕs

∥∥∥∥∥
p

. size(T)|IT|1/p, 1 < p <∞.

7. Carleson’s Theorem on Lp, 1 < p 6= 2 < ∞

We outline a proof that the Carleson maximal operator maps Lp into
itself for all 1 < p < ∞. The key point is that we should obtain a
distributional estimate for the model operator.

Proposition 7.1. For 1 < p < ∞, there is an absolute constant Kp so
that for all sets E ⊂ R of finite measure and measurable functions N ,
we have

(7.2) |{|CN1E | > λ}| ≤ Kp
pλ

−p|E|.
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Interpolation provides the Lp inequalities. We shall in fact prove that
for all sets E and F , there is a set F ′ ⊂ F of measure |F ′| ≥ 1

2 |F |,

(7.3) |〈C1E ,1F ′〉| . min(|E|, |F |)
(
1 +

∣∣∣log |E|
|F |

∣∣∣
)
.

It is a routine matter to see that this estimate implies that

(7.4) |{|C1E| > λ}| . |E|
{
λ|logλ| if 0 < λ < 1/2

e−cλ otherwise.

Here, c is an absolute constant. This distributional inequality is in fact
the best that is known about the Carleson operator. See Sjölin [67] for
the Walsh case, and [68] for the Fourier case. A more recent publication
proving the same point is Arias de Reyna [2]. Both authors present a
proof along the lines of Carleson. We follow the weak type inequality
approach of Muscalu, Tao, and Thiele [56]. The relevance of this ap-
proach to the Carleson theorem was demonstrated by Grafakos, Tao,
and Terwilleger [30].

We shall find it necessary to appeal to some deeper properties of the
Calderón Zygmund theory, and in particular a weak L1 bound for the
maximal function, but also the bound in (7.11) below.

In proving (7.3), we can rely upon invariance under dilations, up to
a change in the measurable N(x), to assume that 1/2 < |E| ≤ 1. As we
already know the weak L2 estimate, (7.3) is obvious for 1

3 < |F | < 3.

The argument then splits into two cases, that of |F | < 1
3 or |F | ≥ 3.

Note that our measurable function N(x) is defined on the set F . It
is clear that our Density Lemma, Lemma 3.6, continues to hold in this
context, with the change that the measure of F should be added to the
right hand side of (3.7).

7.1. The case of |F | < 1

3
.

In this case, we will take F ′ = F . Recall that T denotes the set of
all tiles. Clearly, size(T ) . 1. We repeat the argument of (3.13)–(3.16).
Here, we should keep in mind that we want to balance out the estimate
for the count(·) function, and that we have a better upper bound on the
count function coming from the Density Lemma. Thus, T is a union of
collections Sn, for n ≥ 0, so that

dense(Sn) . 2−2n,(7.5)

size(Sn) . min(1, 2−n|F |−1/2),(7.6)

count(Sn) . 22n|F |.(7.7)
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Then by the calculation of (3.16), we have

∑

s∈Sn

|〈1E , ϕs〉〈φs,1F ′〉| . dense(Sn) size(Sn)22n|F |

. min(|F |, |F |1/22−n).

The sum of this terms over n ≥ 0 is no more than

. |F | · |log|F ||

which is as required.

7.2. The case of |F | ≥ 3.

This case corresponds to the analysis of the Carleson operator on Lp

for 1 < p < 2. We shall have need of a more delicate weak type inequality
below to complete this proof. To define the set F ′, let

Ω = {M1E > C1|F |−1}.

By the weak L1 inequality for the maximal function, for an absolute
choice of C1, we have |Ω| < 1

2 |F |. And we take F ′ = F ∩ Ωc. The inner
product in (7.3) is less than the sum of

∑

s∈T
Is⊂Ω

|〈f, ϕs〉〈φs,1F ′〉|(7.8)

∑

s∈T
Is 6⊂Ω

|〈f, ϕs〉〈φs,1F ′〉|.(7.9)

These sums are handled separately.

For (7.8), observe that ϕs is essentially supported inside of Ω while φs

is essentially not supported there. Thus, we should rely upon Schwartz
tails to handle this term. Let J ⊂ Ω be an interval such that 2kJ ⊂ Ω
but 2k+1J 6⊂ Ω. We observe two inequalities for such an interval, which
are stated using the function χJ , as defined in (3.4). The first is that

∫

F ′

χJ dx ≤
∫

(2kJ)c

χJ dx . 2−(κ−1)k.
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Here, κ is a large constant in the definition of χ. Also, we have
∫

E

χJ dx . 2k

∫

E

χ2k+1J dx

. 2k inf
x∈2k+1J

M1E(x)

. 2k|F |−1.

The last line follows as some point in 2k+1J must be in Ω.
Observe that among all tiles s with Is = J , there is exactly one tile s

with N(x) ∈ ωs+. Hence
∑

s∈T
Is=J

|〈f, ϕs〉〈φs,1F ′〉| . |J |
∑

s∈T
Is=J

〈1E , χJ 〉〈1F ′ , χJ〉

. 2−(κ−2)k|F |−1|J |.
Recall that k is associated to how deeply J is embedded in Ω, and
that Ω has measure at most . |F |. Hence the right hand side above can
be summed over J ⊂ Ω to see that

(7.8) . 1,

which is better than desired.

We turn to the second estimate. Set Tout := {s ∈ T : Is 6⊂ Ω}, which
is the collection of tiles summed over in (7.9). The essential aspect of
the definition of Ω is this lemma.

Lemma 7.10.

size(Tout) . |F |−1.

Assuming the lemma, we turn to the line of argument (3.13)–(3.16).
The collection Tout can be decomposed into collections Sn, for n ≥ 0, for
which (7.5) and (7.7) holds, and in addition

size(Sn) . min(|F |−1, |F |−1/22−n).

Then by the calculation of (3.16), we have
∑

s∈Sn

|〈1E , ϕs〉〈φs,1F ′〉| . min(1, |F |1/22−n),

making the sum over n ≥ 0 no more than log|F |, as required. This
completes the proof of the (7.2).
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Proof: This is a consequence of the particular structure of a +tree T, and
the fact for s ∈ T, the distance of supp(ϕ̂s) to ωT is approximately |ωs|.
The Calderón Zygmund theory applies, and shows that for any choice of
signs εs ∈ {±1}, for s ∈ T,

(7.11)

∣∣∣∣∣

{∑

s∈T

εs〈f, ϕs〉ϕs > λ

}∣∣∣∣∣ . λ−1‖f |IT|χIT‖1, λ > 0.

We apply this inequality for trees T ∈ Tout, and f = 1E. By taking
the average over all choices of signs, we can conclude a distributional
estimate on the square functions

(7.12) ∆T :=

[∑

s∈T

|〈1E , ϕs〉|2
|Is|

1Is

]1/2

.

Namely, that for each +tree T ⊂ Tout,

(7.13) |{∆T > λ}| . λ−1|IT||F |−1.

As this inequality applies to all subtrees of T, it can be strengthened.
(This is a reflection of the John Nirenberg inequality.) Fix the +tree T ⊂
Tout. We wish to conclude that

(7.14) |IT|−1

∫

IT

∆2
T
dx . |F |−1.

For a subset T′ ⊂ T, let

sh(T′) :=
⋃

s∈T′

Is

be the shadow of T′. A shadow is not necessarily an interval. Define ∆T′

as in (7.12). And finally set

(7.15) G(λ) = sup
T′⊂T

|F ||sh(T′)|−1|{∆T′ > λ}|.

Notice that (7.13) implies that G(λ) . λ−1, for λ > 0. If we show that
G(λ) . λ−4, for λ > 1, we can conclude (7.14). In fact we can show
that G(λ) decays at an exponential squared rate, which is the optimal
estimate.

Observe that (7.14), implies that we have

|〈1E , ϕs〉|√
|I |

≤ λ0 <∞.

Thus, the square functions we are considering ∆T can only take incre-
mental steps of a strictly bounded size.
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For any λ ≥
√

2λ0, let us bound G(
√

2λ). Fix T′ achieving the

supremum in the definition of G(
√

2λ). Consider a somewhat smaller
threshold, namely {∆T′ > λ}. In order to proceed, consider a func-
tion τ : shT′ 7→ R+ such that

∑

s∈T

|Is|≥τ(x)

|〈f, ϕs〉|2
|Is|

1Is
(x) ≥ λ2.

In addition require that τ(x) is the smallest such function satisfying this
condition. It is the case that the sum above can be no more than λ2+λ2

0.
Take T′′ ⊂ T′ to be the tree

T′′ := {s ∈ T′ : |Is| ≤ τ(x), x ∈ Is}.

The point of these definitions is that

∆T′(x) ≥
√

2λ implies ∆T′′(x) ≥
√
λ2 − λ2

0.

Therefore,

|F |−1sh(T′)G(
√

2λ) = |{∆T′ >
√

2λ}|

≤ |{∆T′′ >
√
λ2 − λ2

0}|

≤ |F |−1sh(T′′)G(
√
λ2 − λ2

0)

≤ |F |−1sh(T′)G(λ)G(
√
λ2 − λ2

0).

We conclude that G(
√

2λ) ≤ G(
√
λ2 − λ2

0)
2.

To conclude, we should in addition require that λ0 is so large that
G(κλ0) ≤ 1

2 , where

κ :=

∞∏

k=1

√
1 − 2−k.

An induction argument will then show that

(7.16) G(2k/2λ0) ≤ G(κλ0)
2k ≤ 2−2k

, k ≥ 0,

which is the claimed exponential decay. Our proof of the lemma is
done.
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7.3. Complements.

7.17. In the inequality (7.2), one can show that the constants Kp on
the right hand side obey

Kp .
p2

p− 1
.

7.18. If it is the case that for some 0 < α < 1, we have the inequality

sup
T′⊂T

|sh(T′)|−1/α‖∆T′‖α <∞

then, the stronger estimate below holds.

‖∆T‖1 . |sh(T)|.
7.19. In (7.2), we assert the restricted weak type inequality for 1<p<∞.
The weak type estimate for 2 < p <∞ is in fact directly available. That
is, for 2 < p <∞, and f ∈ Lp of norm one,

|{CNf > λ}| . λ−p, λ > 0.

The key point is to take advantage of the fact that f is locally square
integrable. A very brief sketch of the argument follows. (1) It suffices to
prove the inequality above for λ = 1. (2) Define Ω = {M|f |2 > 1}, and
show that |Ω| . 1. (3) Define sums as in (7.8) and (7.9), and control
each term separately. One will need to replace the Size Lemma as stated
with 5.15.

8. Remarks

8.1. After Carleson [14] proved his theorem, Hunt [32] extended the
argument to Lp, for 1 < p < ∞. A similar extension, in the Walsh
Paley case, was done by Billiard [9], in the case of L2, and Sjölin [67],
for all 1 < p < ∞. The Carleson theorem has equivalent formulations
on the groups R, T, and Z. The last case, of the integers, was explicitly
discussed by Máté [55]. This paper was overlooked until recently.

8.2. Fefferman [26] devised an alternate proof, which proved to be in-
fluential through it’s use of methods of analysis that used both time and
frequency information in an operator theoretic fashion. The proof of
Lacey and Thiele [50] presented here borrows several features of that
proof. The notion of tiles, and the partial order on tiles is due to Feffer-
man [26]. Likewise, the Density Lemma and the Tree Lemma, and the
proof of the same, have clear antecedents in this paper.
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8.3. Those familiar with the Littlewood Paley theory know that it is
very useful in decoupling the scales of operators, like those of the Hilbert
transform. The Carleson operator is, however, not one in which scales
can be decoupled. This is another source of the interest in this theorem.

8.4. We present the proof of the Carleson theorem on the real line due
to the presence of the dilation structure.

8.5. We choose to express the Carleson operator in terms of the projec-
tion P−. This operator is a linear combination of the identity operator
and the Hilbert transform given by

H f(x) := lim
ε→0

∫

ε<|y|<1/ε

f(x− y)
dy

y
.

Hence, an alternate form of the Carleson operator is

(8.6) sup
N

|H ◦ModN f | = sup
N

∣∣∣∣
∫
eiNyf(x− y)

dy

y

∣∣∣∣ .

This form is suggestive of other questions related to the Carleson Theo-
rem, a point we rely upon below.

8.7. Despite the fact that Carleson’s operator maps L2 into itself, all
three known proofs of Carleson’s theorem establish the weak type bound
on L2. The strong type bound must be deduced by interpolation. On the
other hand, the weak type bound is a known consequence of the point-
wise convergence of Fourier series. This was observed by Calderón, as
indicated by a footnote in [84], and is a corollary of a general observation
of Stein [70].

8.8. Hunt and Young [33] have established a weighted estimate for the
Carleson operator. Namely for a weight w in the class Ap, the Carleson
operator maps Lp(w) into itself, for 1 < p < ∞. The method of proof
utilizes the known Carleson bound, and distribution inequalities for the
Hilbert transform.

8.9. The Proposition 2.8 has a well known antecedent in a characteriza-
tion of (a constant times) the Hilbert transform as the unique operator A
such that A is bounded operator on L2 that commutes with dilation, is
invariant under dilations, A2 is the identity, but is not itself the identity.
See [71].

8.10. The inequality (3.3) eschews all additional cancellations. It shows
that all the necessary cancellation properties are already encoded in the
decomposition of the operator. In addition the combinatorial model of
the Carleson operator is in fact unconditionally convergent in s ∈ T .
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This turns out to be extremely useful fact in the course of the proof: one
is free to group the tiles in anyway that one likes.

8.11. The Size Lemma should be compared to Rubio de Francia’s ex-
tension of the classical Littlewood Paley inequality [66]. Also see the
author’s recent survey of this theorem [44].

8.12. A +tree T is a familiar object. Aside from a modulation by c(ωT),
it shares most of the properties associated with sums of wavelets. In
particular, if 0 ∈ ωT, note that

size(T) '
∥∥∥∥∥
∑

s∈T

〈f, ϕs〉ϕs

∥∥∥∥∥
BMO

where the last norm is the BMO norm.

8.13. The key instance of the Tree Lemma is that of a +tree. This
case corresponds to a particular maximal function applied to a function
associated to the tree. It is this point at which the supremum of Car-
leson’s theorem is controlled by a much tamer supremum: The one in
the ordinary maximal function.

8.14. The statement and proof of the size lemma, Lemma 3.9, replaces
the initial arguments of this type that are in [47]. This argument has
proven to be very flexible in it’s application. And, in some instances it
produces sharp estimates, as explained by Barrionuevo and Lacey [8].

8.15. The set of functions Tk := {s ∈ T : |Is| = 2k} is an example of a
Gabor basis. For appropriate choice of ϕ, the operator

Ak f :=
∑

s∈T
|Is|=2k

〈f, ϕs〉ϕs

is in fact the identity operator. See the survey of Daubechies [25].

9. Complements and Extensions

9.1. Equivalent formulations of Carleson’s theorem.

The Fourier transform has a formulation on each of the Euclidean
groups R, Z and T. Carleson’s original proof worked on T. Fefferman’s
proof translates very easily to R. Máté [55] extended Carleson’s proof
to Z. Each of the statements of the theorem can be stated in terms of
a maximal Fourier multiplier theorem, and we have stated it as such in
this paper. Inequalities for such operators can be transferred between
these three Euclidean groups, and was done so by Auscher and Carro [7].
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9.2. Fourier series near L1, Part 1.

The point of issue here is the determination of that integrability class
which guarantees the pointwise convergence of Fourier series. The natu-
ral setting for these questions is the unit circle T = [0, 1], and the partial
Fourier sums

SNf(x) =
∑

|n|≤N

f̂(n)e2πinx, f̂(n) =

∫ 1

0

f(x)e−inx dx.

In the positive direction, one seeks the “smallest” function ψ such that
if
∫

T
ψ(f) dx <∞, then the Fourier series of f converge pointwise.

Antonov [1] has found the best result to date,

Theorem 9.1. For all functions f ∈ L(logL)(log log logL)(T), the par-
tial Fourier series of f converges pointwise to f .

This extends the result of Sjölin [67], [68], who had the result above,
but with a double log where there is a triple log above. Arias de
Reyna [2], [3] has noted an extension of this theorem, in that one can
define a rearrangement invariant Banach space B, so that pointwise con-
vergence holds for all f ∈ B, and B contains L(logL)(log log logL).

The method of proof takes as it’s starting point, the distributional
estimate of (7.4). One seeks to “extrapolate” these inequalities to the
setting of the theorem above and Antonov nicely exploits the explicit
nature of the kernels involved in this maximal operator. Also see the
work of Sjölin and Soria [69] who demonstrate that Antonov’s approach
extends to other maximal operator questions.

9.3. Fourier series near L1, Part 2.

In the negative direction, Kolmogorov’s fundamental example [36],
[37] of an integrable function with pointwise divergent Fourier series
admits a strengthening to the following statement, as obtained by
Körner [40].

Theorem 9.2. For all ψ(x)=o(log logx), there is a function f : [0, 2π]→
R with divergent Fourier series, and

∫
|f |ψ(f) dx <∞.

The underlying method of proof was, in some essential way, unsur-
passed until quite recently, when Konyagin [38], [39] proved

Theorem 9.3. The previous theorem holds assuming only

(9.4) ψ(x) = o

(√
log x

log logx

)
.
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There is a related question, on the growth of partial sums of Fourier
series of integrable functions. Hardy [31] showed that for integrable
functions f , one has Snf = o(log n) a.e., and asked if this is the best
possible estimate. This question is still open, with the best result from
below following from Konyagin’s example. With ψ as in (9.4), there is
an f ∈ L1(T) with

lim sup
n→∞

Snf

ψ(n)
= ∞ for all x ∈ T.

Let δt denote the Dirac point mass at t ∈ T. The method of proof is
to construct measures

µ = K−1
K∑

k=1

δtk

a set E ⊂ T with measure at least 1/4, and choices of integers N for
which

sup
n<N

|Snµ(x)| ≥ ψ(N), x ∈ E.

Kolmogorov’s example consists of uniformly distributed point masses,
whereas Konyagin’s example consists of point masses that have a distri-
bution reminiscent of a Cantor set.

9.3.1. Probabilistic series.

It is of interest from the point of view of probability and ergodic
theory, to consider the version of the Hilbert transform and Carleson
theorem that arises from the integers. Here, we consider the probabilistic
versions. Let Xk be independent and identically distributed copies of a
mean zero random variable X . The question is if the sum

∞∑

k=1

Xk

k

converges a.s. Without additional assumption on the distribution of X ,
a necessary and sufficient condition is that EX log(2 + |X |) < ∞. One
direction of this is in [53]. If however X is assumed to be symmetric,
integrability is necessary and sufficient. This addresses the issue of the
Hilbert transform.

Carleson’s theorem, in this language, concerns the convergence of the
series

Y (t) :=

∞∑

k=1

Xk

k
e2πikt for all t ∈ T.
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The role of the quantifiers should be emphasized. Convergence holds
for all t ∈ T, on a set of full probability. Given this, abstract results
on 0–1 Laws assure us that if the series converges for all t, off of a
single set of probability zero, then the limiting function is continuous
with probability one. The paper of Talagrand [79] gives necessary and
sufficient conditions for the convergence of this series.

Theorem 9.5. Let Xk be independent identically distributed copies of
a mean zero symmetric random variable X. X ∈ L(log logL) iff the
series Y (t) converges to a continuous function on T almost surely.

The assumption of symmetry should be added to the statement of the
theorem in [79]. Cuzick and Lai [24] provide an example of a non sym-
metric mean zero X ∈ L(log logL) for which the series Y (t) is divergent.
This series is a borderline series in that it just falls out of the scope of
the powerful theory of Marcus and Pisier [54] on random Fourier series.

My thanks to several people who provided me with some references
for this section. They are James Campbell, Ciprian Demeter, Michael
Lin, and Anthony Quas.

9.4. The Wiener-Wintner question.

A formulation of Carleson’s operator on Z is

CZf(j) := sup
τ

sup
N

∣∣∣∣∣∣
∑

0<|k|<N

f(j − k)
eiτk

k

∣∣∣∣∣∣
.

See [55]. Unaware of this work which followed soon after Carleson,
Campbell and Petersen [12] considered this operator on `2, with equiva-
lence in `p established by Assani and Petersen [5], [12]. Also see Assani,
Petersen and White [6], for these and other equivalences. The latter
authors had additional motivations from dynamical systems, which we
turn to now.

Calderón [11] observed that inequalities for operators on Z which
commute with translation can be transferred to discrete dynamical sys-
tems. Let (X,µ) be a probability space, and T : X → X a map which
preserves µ measure. Thus, µ(T−1A) = µ(A) for all measurable A ⊂ X .
A Carleson operator on (X,µ, T ) is

Cmps f(x) := sup
τ

sup
N

∣∣∣∣∣∣
∑

0<|k|<N

f(T kx)
eiτk

k

∣∣∣∣∣∣
.

And it is a consequence of Calderón’s observation and Carleson’s theorem
that this operator is bounded on L2(X).
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There is however a curious point that distinguishes this case from the
other settings of Euclidean groups. It is the case that one has pointwise
convergence of

lim
N→∞

∑

0<|k|<N

f(T kx)
eiτk

k
exists for all τ

holding for almost every x ∈ X? The boundedness of the maximal
function Cmps shows that this would hold on a closed set in L2(X). The
missing ingredient is the dense class for which the convergence above
holds. Unlike the setting of Euclidean groups, there is no natural dense
class.

This conjecture was posed by Campbell and Petersen [12].

Conjecture 9.6. For all measure preserving systems (X,µ, T ), and all
f ∈ L2(X), we have the following:

µ



 lim

N→∞

∑

0<|k|<N

f(T kx)
eiτk

k
exists for all τ



 = 1.

A theorem of Wiener and Wintner [83] provides a classical motivation
of this question. This theorem concerns the same phenomena, but with
the discrete Hilbert transform replaced by the averages.

Theorem 9.7. For all measure preserving systems (X,µ, T ), and all
f ∈ L2(X), we have the following:

µ

{
lim

N→∞
N−1

N−1∑

k=0

f(T kx)eiτk exists for all τ

}
= 1.

This theorem admits a simple proof. And note that this theorem
trivially supplies a dense class in all Lp spaces, 1 ≤ p <∞.

The Wiener-Wintner theorem has several interesting variants, for
which one can phrase related questions by replacing averages by Hilbert
transforms. As far as is known to us, none of these questions is answered.

An attractive theorem proved by Lesigne [51], [52] is

Theorem 9.8. For any measure preserving system (X,µ, T ) and all
integrable functions f , there is a subset Xf ⊂ X of full measure so that
for all x ∈ Xf , all polynomials p, and all 1-periodic functions φ, the
limit below exists:

lim
N→∞

N−1
N∑

n=1

φ(p(n))f(T nx).
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Extending this theorem to the Hilbert transform would be an extraor-
dinary accomplishment, whereas if one replaced the discrete dynamical
system by flows, it could be that the corresponding result for the Hilbert
transform might be within reach.

In connection to this, Arkhipov and Oskolkov [4] have proved the
following theorem.

Theorem 9.9. For all integers d,

sup
deg(p)=d

∣∣∣∣∣∣
∑

n6=0

eip(n)

n

∣∣∣∣∣∣
<∞,

with the supremum formed over all polynomials of degree d.

This is a far more subtle fact than the continuous analog stated
in (9.10). Arkhipov and Oskolkov use the Hardy Littlewood Circle
method of exponential sums, with the refinements of Vinogradov. See [4],
[62], [63].

By Plancherel, this theorem shows that for a polynomial p which maps
the integers to the integers, the operators on the integers given by

Tpf(j) =
∑

n6=0

f(x− p(n))

is a bounded operator on `2(Z).
Stein and Wainger have established `2 mapping properties for certain

Radon transforms [76], [77].

9.5. E. M. Stein’s maximal function.

A prominent theme of the research of Stein and Wainger concerns
oscillatory integrals, with polynomial phases. It turns out to be of in-
terest to determine what characteristics of the polynomial govern allied
analytic quantities. In many instances, this characteristic is just the the
degree of the polynomial. For instance, the following is a corollary to a
theorem of Stein and Wainger from 1970 [75]. Namely, that one has a
bound

(9.10) sup
deg(P )=d

∣∣∣∣
∫
eip(y) dy

y

∣∣∣∣ . 1, d = 1, 2, . . .

A conjecture of Stein’s concerns an extension of Carleson’s maximal
operator to one in which one forms a supremum over all polynomial
choices of phase with a fixed degree. Thus,
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Conjecture 9.11. For each integer d, the maximal function below maps
Lp into itself for 1 < p <∞.

Cdf(x) = sup
deg(P )=d

∣∣∣∣
∫
eip(y)f(x− y)

dy

y

∣∣∣∣ .

Note that the case of d = 1 corresponds to Carleson’s theorem. Let
us set C′

d to be the maximal operator above, but with the the restriction
that the polynomials p do not have a linear term. It is useful to make
this distinction, as it is the linear terms that are intertwined with the
Fourier transform.

Stein [73] considered the purely quadratic terms, and showed that C ′
2

maps Lp into itself for all 1 < p < ∞. The essence of the matter is
the bound on L2, and there his argument is a variant on the method
of TT∗, emphasizing a frequency decomposition of the operator. Stein
and Wainger [78] have proved that C ′

d is bounded on all Lp’s, for all d ≥ 2.
Again the L2 case is decisive and the argument is an application of the
TT∗ method, but with a spatial decomposition of the operator.

Let us comment in a little more detail about how these results are
proved. If, for the moment, one consider a fixed polynomial P (y), and
the oscillatory integral

(9.12) TP f(x) :=

∫
eiP (y)f(x− y)

dy

y
.

One may utilize the scale invariance of the the Hilbert transform kernel to
change variables. With the correct change of variables, one may assume

that the polynomial P (y) =
∑d

j=1 ajy
j satisfies

∑|aj | = 1. Then, it is

evident that for |y| < 1, say, that the integral above is well approximated
by a truncation of the Hilbert transform. Thus, it is those scales of the
operator larger than 1 that must be controlled.

It is a consequence of the van der Corput estimates that some addi-
tional decay can be obtained from these terms. In particular, one has
this estimate. To set notation, in the one dimensional case only, set

P~a(x) = adx
d + · · · + a1x, ~a = (ad, . . . , a1).

Lemma 9.13. Let χ be a smooth bump function. Then we have the
estimate ∥∥∥ ̂eiP~a(y) χ(y)(ξ)

∥∥∥
∞

. (1 + ‖~a‖1)
−1/d.

In particular, by the Plancherel identity, we have the estimate

(9.14)
∥∥[eiP~a(y) χ(y)] ∗ f(x)

∥∥
2

. (1 + ‖~a‖1)
−1/d‖f‖2.
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Notice that these estimates are better than the trivial ones. And that
the second estimate can be interpolated to obtain a range of Lp inequal-
ities for which one has decay, with a rate that depends upon the degree
and the Lp space in question.

In a discussion of the extensions of this principle in for example [73],
[78], one establishes appropriate extensions of this last lemma, always
seeking some additional decay that arises from the polynomial. For
instance, in [78], Stein and Wainger prove a far reaching extension of
this principle.

Lemma 9.15. There is a constant δ > 0, depending only on the degree d,
so that we have the estimate ‖Sλ‖2 . (1 + λ)−δ, for all λ > 0, where

Sλ f(x) := sup
‖~a‖1≥λ
a1=0

sup
t>0

|[Dil1t eiP~a(·) χ] ∗ f |.

It is essential in this supremum be formed over polynomials P~a which do
not have a linear term.

Ionescu has pointed out that this lemma is not true with the linear
term included, even in the case of second degree polynomials. The ex-
ample, which we will see again below, begins by taking a function f(x),

and replacing it by the function g(x) = eiλx2

f(x). Then, in the supre-
mum defining Sλ above, take the dilation parameter to be t = 1, and
the polynomial to be P (y) = −y2 + 2xy. Note that as we are taking a
supremum, we can in particular take a polynomial that depends upon x.

In this example, the modulation of f by “chirp” is then canceled out
by the choice of P . There is no decay in the estimate. This estimate is
special to the case of the second power, so it is natural to guess that it
plays a distinguished role in these considerations. This also points out
an error in the author’s paper [43]. (The error enters in specifically at
the equation (2.9). The phase plane analysis of that paper might yet
find some use.) At this point, the resolution of Stein’s conjecture is not
settled. And it appears that a positive bound of the operator C2 will
in particular require a novel phase plane analysis with quadratic phase.
This should be compared to the notion of degeneracy in Section 9.8
below.

9.6. Fourier series in two dimensions.

In this section we extend the Fourier transform to functions of the
plane

f̂(ξ) =

∫
f(x)eix·ξ dx
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where ξ = (ξ1, ξ2), and x = (x1, x2). The possible extensions of Car-
leson’s theorem to the two dimensional setting are numerous. The state
of our knowledge is not so great.

9.6.1. Fourier series in two dimensions, Part I.

Consider the pointwise convergence of the Fourier sums in the plane
given by

∫

tP

f̂(ξ)eix·ξ dx.

Here, P is polygon with finitely many sides in the plane, with the origin
in it’s interior. Proving the pointwise convergence of these averages is
controlled by the maximal function

CP f := sup
t>0

∣∣∣∣
∫

tP

f̂(ξ)eix·ξ dx

∣∣∣∣ .

Fefferman [28] has observed that this maximal operator can be controlled
by a sum of operators which are equivalent to the Carleson operator.

For simplicity, we just assume that the polygon is the unit square.
And let

Qf =

∫ ∞

0

∫ ξ1

−ξ1

f̂(ξ1, ξ2)e
i(x1ξ1+x2ξ2) dξ2 dξ1.

This is the Fourier projection of f onto the sector swept out by the
right hand side of the square. Notice that CP ◦Q is the one dimensional
Carleson operator applied in the first coordinate.

Thus, CP is dominated by a sum of terms which are obtained from
the one dimensional Carleson operator, and so CP maps Lp into itself
for 1 < p < ∞. This argument works for any polygon with a finite
number of sides. While we have stressed the two dimensional aspect of
this argument, it also works in any dimension.

Nevertheless, it is of some interest to consider maximal operators of
the form

sup
ξ∈R2

∣∣∣∣
∫
f(x− y)eiξ·yK(y) dy

∣∣∣∣

where K is a Calderón Zygmund kernel. This is the question addressed
by Sjölin [28], and more recently by Sjölin and Prestini [64] and Grafa-
kos, Tao and Terwilleger [30].
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9.6.2. Fourier series in two dimensions, Part II.

What other methods can be used to sum Fourier series in the plane?
One method that comes to mind is over arbitrary rectangles. That is,
one considers the maximal operator

Rf(x) := sup
ω

∣∣∣∣
∫

ω

f̂(ξ)eiξ·x dξ

∣∣∣∣ .

The supremum is formed over arbitrary rectangles ω with center at the
origin. Fefferman [27] has shown however that this is a badly behaved
operator.

Proposition 9.16. There is a bounded, compactly supported function f
for which Rf = ∞ on a set of positive measure.

This maximal operator has an alternate formulation, see (8.6), as

(9.17) sup
α,β

∣∣∣∣
∫∫

f(x− x′, y − y′)ei(αx′+βy′) dx
′

x′
dy′

y′

∣∣∣∣ .

The example of Fefferman is a sum of terms fλ(x, y) = eiλxyχ(x, y),
where λ > 3, and χ is a smooth bump function satisfying e.g. 1[−1,1]2 ≤
χ ≤ 1[−2,2]. The key observation in the construction of the example is

Lemma 9.18. We have the estimate

Rfλ(x, y) & logλ

for (x, y) ∈
[
− 1

2 ,
1
2

]2
.

Proof: In the supremum over α and β in the definition of R, let α = λy
and β = λx, and consider

R(x, y) =

∫ [∫
fλ(x− x′, y − y′)eiλ(x′y+xy′) dx

′

x′

]
dy′

y′

= eiλxy

∫ [∫
eiλx′y′

χ(x− x′, y − y′)
dx′

x′

]
dy′

y′
.

The inside integral in the brackets admits these two estimates for all

(x, y) ∈
[
− 1

2 ,
1
2

]2
.

I(x, y, y′) =

[∫
eiλx′y′

χ(x− x′, y − y′)
dx′

x′

]

=

{
c sign(λy′) +O(λ|y′|)−1

O(1 + λ|y′|)
c is a non-zero constant. Both of these estimates are well-known.
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Then, we should estimate

R(x, y) =

∫

|y−y′|<1/λ

I(x, y, y′)
dy′

y′
+

∫

|y−y′|>1/λ

I(x, y, y′)
dy′

y′
.

The first term on the right is no more than O(1), and the second term
is & log 1/λ.

This example shows that there are bounded functions f for which

sup
|α|,|β|<N

∣∣∣∣
∫∫

f(x− x′, y − y′)ei(αx′+βy′) dx
′

x′
dy′

y′

∣∣∣∣ & logN.

It might be of interest to know if this estimate is best possible.
The integrals in (9.17) are singular integrals in the product setting.

There is as of yet no positive results relating to Carleson’s theorem in a
product setting.

9.6.3. Fourier series in two dimensions, Part III.

The exponential eiξ·x is an eigenfunction of −∆, the positive Lapla-
cian, with eigenvalue |ξ|2. It would be appropriate to sum Fourier series
according to this quantity. This concerns the operator of Fourier restric-
tion to the unit disc

Tf :=

∫

|ξ|<1

f̂(ξ)eiξ·x dξ.

It is a famous result of Fefferman [29] that T is bounded on L2(R2)
iff p = 2. The fundamental reason for this is the existence of the Besi-
covitch set, a set contained in a large ball, that contains a unit line seg-
ment in each direction, but has Lebesgue measure one. The relevance of
this set is indicated by the observation that the restriction of T to very
small disc placed on the boundary of the disc is well approximated by
a projection onto a half space. Such a projection is a one dimensional
Fourier projection performed in the normal direction to the disc. And
the normal directions can point in arbitrary directions. An extension of
Fefferman’s argument shows that the Fourier restriction to any smooth
set with a curved boundary can only be a bounded operator on L2.

Nevertheless, the question of summability in the plane remains open.
Namely,

Question 9.19. Is it the case that the maximal operator below maps
L2(R2) into weak L2(R2)?

sup
r>0

∣∣∣∣∣

∫

|ξ|<r

f̂(ξ)eiξ·x dξ

∣∣∣∣∣ .
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In the known proofs of Carleson’s theorem, the truncations of singular
integrals plays a distinguished role. In the proof we have presented, this
is seen in the Tree Lemma, also cf. 8.13. In view of this, it interesting
to suppose that if this conjecture is true, what could play a role similar
to the Tree Lemma. It appears to be this.

Question 9.20. Is it the case that the maximal operator below maps
L2(R2) into weak L2(R2)?

sup
k∈N

∣∣∣∣∣

∫

|ξ|<1+2−k

f̂(ξ)eiξ·x dξ

∣∣∣∣∣ .

It is conceivable that a positive answer here could lead to a proof of
spherical convergence of Fourier series.

9.6.4. Fourier series in two dimensions, Part IV.

In order to bridge the gaps between Parts I and III, the following
question comes to mind. Is there a polygon with infinitely many sides
which one could sum Fourier series with respect to?

Mockenhoupt pointed out to the author that there is a natural first
choice for P . It is a polygon Plac which in the first quadrant has vertices

at the points eπi2−k

for k ∈ N. Call this the lacunary sided polygon.
It is a fact due to Córdoba and Fefferman [23] that the lacunary

sided polygon is a bounded Lp multiplier, for all 1 < p < ∞. That is
the operator below maps Lp into itself for 1 < p <∞.

Tlac f(x) =

∫

Plac

f̂(ξ)eiξ·x dξ.

This fact is in turn linked to the boundedness of the maximal function
in a lacunary set of directions:

Mlac f(x) = sup
k∈N

sup
t>0

(2t)−1

∫ t

−t

|f(x− u(1, 2−k))| du.

Note that this is a one dimensional maximal function computed in a set
of directions in the plane that, in a strong sense, is zero dimensional.
Let us state as a conjecture.

Conjecture 9.21. For 2 ≤ p < ∞, the maximal function below maps
Lp(R2) into itself.

sup
t>0

∣∣∣∣
∫

tPlac

f̂(ξ)eiξ·x dξ

∣∣∣∣ .

Even a restricted version of this conjecture remains quite challenging.
In analogy to Question 9.20
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Conjecture 9.22. For 2 ≤ p < ∞, the maximal function below maps
Lp(R2) into itself.

sup
k∈N

∣∣∣∣∣

∫

(1+2−k)Plac

f̂(ξ)eiξ·x dξ

∣∣∣∣∣ .

Another question, with a somewhat more quantitative focus, considers
uniform polygons with N sides, but then seek norm bounds on these two
maximal operators, on L2 say, which grow logarithmically in N . We do
not have a good conjecture as to the correct order of growth of these
constants. If one could prove that the bounds where independent of N ,
then the spherical summation conjecture would be a consequence.

9.7. The bilinear Hilbert transforms.

The bilinear Hilbert transforms are given by

Hα(f, g)(x) :=

∫
f(x− αy)g(x− y)

dy

y
, α ∈ R,

with the convention that H0(f, g) = f H g, and H∞(f, g) = (H f)g. A
third degenerate value is α = 1.

These transforms commute with appropriate joint translations of f
and g, and dilations of f and g. They are related to Carleson’s theorem
through the observation that for α 6∈ {0, 1,∞}, Hα enjoys an invariance
property with respect to modulation. Namely,

Hα(Modβ f,Mod−αβ g) = Modβ−αβ Hα(f, g).

That is, the bilinear Hilbert transforms share the essential characteristics
of the Carleson operator.

It was the study of these transforms that lead Lacey and Thiele to
the proof of Carleson’s theorem presented here. The bilinear Hilbert
transforms are themselves interesting objects, with surprising properties.
Indeed, it is natural to ask what Lp mapping properties are enjoyed by
these transforms. Note that in the integral, the term dy/y is dimen-
sionless, so that the Lp mapping properties should be those of Hölder’s
inequality. Thus, Hα should map L2 × L2 into L1. Note that this is
false in the degenerate case of α = 1, as the Hilbert transform does
not preserve L1. Nevertheless, this was conjectured by Calderón in the
non-degenerate cases.

See [46]–[49] for a proof of this theorem.

Theorem 9.23. For 1 < p, q ≤ ∞, if 0 < 1/r = 1/p+ 1/q < 3/2, and
α 6∈ {0, 1,∞}, then

‖Hα(f, g)‖r . ‖f‖p‖g‖q.
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We should mention that in a certain sense the proof of this theorem
is easier than that for Carleson’s operator. The proof outlined in [42]
contains the notions of tiles, trees, and size. But the estimate that cor-
responds to the tree lemma is a triviality. The reason for this gain in
simplicity is that there is no need for a mechanism to control a supre-
mum.

The subject of multilinear operators with modulation invariance has
inspired a large number of results, and is worthy of survey on it alone.
We refer the reader to Thiele’s article [82] for a survey of recent activity
in this area.

9.8. Multilinear oscillatory integrals.

Consider the bilinear oscillatory integral

B2(f1, f2)(x) :=

∫
f1(x− y)f2(x+ y)

e2iy2

y
dy.

This is seen to be a disguised form of a bilinear Hilbert transform. Setting

gj(x) := eix2

fj(x), one sees that

B2(g1, g2)(x) := e2ix2

∫
f1(x − y)f2(x + y)

dy

y
.

(Compare this to Ionescu’s example mentioned at the end of Section 9.5.)
As it turns out, for a polynomial of any other degree, the integral above
is bounded. The proof demonstrates a multilinear variant of the van der
Corput type inequality, of which Lemma 9.13 is just one example.

More generally, Christ, Li, Tao and Thiele [20] define multilinear
functionals

(9.24) Λλ(f1, f2, . . . , fn) =

∫

Rm

eiλP (x)
n∏

j=1

fj(πj(x))η(x) dx

where λ ∈ R is a parameter, P : Rm 7→ R is a real-valued polynomial,
m ≥ 2, and η ∈ C1

0 (Rm) is compactly supported. Each πj denotes the
orthogonal projection from Rm to a linear subspace Vj ⊂ Rm of any
dimension κ ≤ m − 1, and fj : Vj → C is always assumed to be locally
integrable with respect to Lebesgue measure on Vj .

Notice that by taking n = 3, and taking projections πj : R2 7→ Vj

where
V1 = {(x, x) : x ∈ R},
V2 = {(x,−x) : x ∈ R},
V3 = {(x, 0) : x ∈ R},

(9.25)

we can recover for instance a bilinear Hilbert transform.
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And they say that a polynomial P has a power decay property if there
is a δ > 0, so that for all fj ∈ L∞(Vj), we have the estimate

|Λ(f1, . . . , fn)| . (1 + |λ|)−δ
n∏

j=1

‖fj‖∞.

From this estimate, a range of power decay estimates hold in all relevant
products of Lp spaces. This should be compared to Lemma 9.13 and in
particular (9.14) below.

Clearly, there are obstructions to a power decay property, and this
obstruction can be formalized in a definition. A polynomial P is said
to be degenerate (relative to {Vj}) if there exist polynomials pj : Vj →
R such that P =

∑n
j=1 pj ◦ πj . Otherwise P is nondegenerate. In

the case n = 0, where the collection of subspaces {Vj} is empty, P is
considered to be nondegenerate if and only if it is nonconstant. And in
the example (9.25), we see that P (y) = 2x2 + 2y2 = (x+ y)2 + (x− y)2

is degenerate.
It is natural to conjecture that non degeneracy is sufficient for a power

decay property. This is verified in a wide range of special cases in the
paper by Christ, Li, Tao, and Thiele [20], by a range of interesting
techniques. It is of interest to determine if the natural conjecture here
is indeed correct.

9.9. Hilbert transform on smooth families of lines.

This question has its beginnings in the Besicovitch set, which we al-
ready mentioned in connection to spherical summation of Fourier series.
One may construct Besicovitch sets with these properties. For choices
of 0 < ε, α < 1, there is a Besicovitch set K in the square [0, 4]2 say, for
which K has measure at most ε, and there is a function g : R2 → T, so
that for a set of x’s in [0, 4]2 of measure & 1, K ∩ {x + tv(x) : t ∈ R}
contains a line segment of length one, and v is Hölder continuous of
order α.

One can ask if the Hölder continuity condition is sharp. A beautiful
formulation of a conjecture in this direction is attributed to Zygmund.

Conjecture 9.26. Let v : R2 → T be Hölder continuous (of order 1).
Then for all square integrable functions f ,

f(x) = lim
t→0

(2t)−1

∫ t

−t

f(x− uv(x)) du a.e (x).

This is a differentiablity question, on a choice of lines specified by v.
The only stipulation is that v is Hölder continuous. This is only known
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under more stringent conditions on v, such as analytic due to Stein [72],
or real analytic due to Bourgain [10]. There is a partial result due to
Katz [35] (also see [34]) that demonstrates at worst “log log” blowup
assuming the Hölder continuity of v. The question is open, even if one
assumes that v ∈ C1000.

The difficulty in this problem arises from those points at which the
gradient of v is degenerate; assumptions such as analyticity certainly
control such degeneracies.

Stein [72] posed the Hilbert transform variant, namely defining

Hvf(x) := p.v.

∫ 1

−1

f(x− yv(x))
dy

y
,

is it the case that there is a constant c so that if ‖v‖Höl < c, thenHv maps
L2(R2) into itself. A curious fact about this question is that this inequal-
ity, if known, implies Carleson’s theorem for one dimensional Fourier
series.

To see this, observe that the symbol for the transform is ψ(ξ · v(x)),
where ψ is the Fourier transform of y−11{|y|<1}. Suppose the vector
field is of the form v(x) = (1, ν(x1)) where we need only assume that ν
is Hölder continuous of norm 1 say, and consider the trace of the symbol
on the line ξ2 = −N . Then, the symbol is ψ((ξ1, N) · (1, ν(x1)) =
ψ(ξ1 −Nν(x1)). We conclude that this symbol defines a bounded linear
operator on L2(R), with bound that is independent ofN . That is, for any
Lipschitz function ν(x1), and any N > 1 the symbol ψ(ξ1 −Nν(x1)) is
the symbol of a bounded linear operator on L2(R). By varying N and ν,
we may replace Nν(x1) by an arbitrary measurable function. This is the
substance of Carleson’s theorem.

But the implication is entirely one way: A positive answer to the
family of lines question seems to require techniques quite a bit more
sophisticated than those that imply Carleson’s theorem. Recently Lacey
and Li [45] have been able to obtain a partial answer, assuming only
that the vector field has 1 + ε derivatives.

Theorem 9.27. Assume that v ∈ C1+ε for some ε > 0. Then the
operator Hv is bounded on L2(R2). The norm of the operator is at most

‖Hv‖2 . [1 + log+‖v‖C1+ε ]2.

9.10. Schrödinger operators, scattering transform.

There is a beautiful line of investigation relating Schrödinger equa-
tions in one dimension to aspects of the Fourier transform, and in par-
ticular, Carleson’s theorem. There is a further connection to scattering
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transforms and nonlinear Fourier analysis. All in all, these topics are
extremely broad, with several different sets of motivations, and a long
list of contributors.

We concentrate on a succinct way to see the connection to Carleson’s
theorem, an observation made explicitly by Christ and Kiselev [15], [16],
also see [65]. The basic object is a time independent Schrödinger oper-
ator on the real line,

H = − d2

dx2
+ V

where V is an appropriate potential on the real line. The idea is that if V
is small, in some specific senses, then the spectrum of H should resemble

that of − d2

dx2 . In particular eigenfunctions should be perturbations of the
exponentials.

Standard examples show that one should seek to show that for almost
all λ, the eigenfunctions of energy λ, that is the solutions to

(H − λ2I)

are bounded perturbations of e±iλx.
Seeking such an eigenfunction, one can formally write

u(x) = eiλx +
1

iλ

∫ ∞

x

sin(λ(x − y))V (y)u(y) dy.

Iterating this formula, again formally, one has

u(x)=eiλx

+
1

iλ

∫ ∞

x

sin(λ(x − y))V (y)eiλy dy(9.28)

+
1

(iλ)2

∫∫

x≤y1≤y2

sin(x−y1)sin(y1−y2)V(y1)V(y2)u(y2) dy1 dy2.(9.29)

Observe that (9.28) no longer contains u, and is a linear combination
of

eiλx

∫ ∞

x

e2iλyV (y) dy(9.30)

eiλx

∫ ∞

x

V (y) dy.(9.31)

One seeks estimates of these in the mixed norm space of say, L2
λL

∞
x .

From such estimates, one deduces that for almost all λ, there is an
eigenfunction with is a perturbation of eiλx.

Concerning (9.30), notice that if V ∈ L2, we can, by Plancherel, re-

gard V as f̂ , for some f ∈ L2. The desired estimate is then a consequence
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of Carleson’s theorem. This is indicative of the distinguished role that
L2 plays in this subject. Also of the intertwining of the roles of frequency
and time that occur in the subject.

Concerning (9.31), unless V ∈ L1, there is no reasonable interpreta-
tion that can be placed on this term. In practice, a different approach
than the one given here must be adopted.

If one continues the expansion in (9.29), one gets a bilinear operator
with features that resemble both the Carleson operator, and the bilinear
Hilbert transform. See the papers by Muscalu, Tao, and Thiele [57],
[59]–[61].

We refer the reader to these papers by Christ and Kiselev [15]–[18].
For a survey of this subject, see [19]. The reader should also consult
the ongoing investigations of Muscalu, Tao, and Thiele [58]. This paper
begins with an interesting summary of the perspective of the nonlinear
Fourier transform.
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ner-Wintner pour les polynômes, Ergodic Theory Dynam. Systems
13(4) (1993), 767–784.
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