Publ. Mat. 48 (2004), 335-367

MULTILINEAR COMMUTATORS FOR FRACTIONAL
INTEGRALS IN NON-HOMOGENEOUS SPACES

GUOEN Hu, YAN MENG AND DACHUNG YANG*

Abstract

Under the assumption that u is a non-doubling measure on R%,
the authors obtain the (LP, L?)-boundedness and the weak type
endpoint estimate for the multilinear commutators generated by
fractional integrals with RBMO(u) functions of Tolsa or with
OsCexp ~ (1) functions for r» > 1, where Oscexp 1,7 (1) is a space
of Orlicz type satisfying that Oscexp rr (1) = RBMO(u) if r =1
and Oscexp 1~ () C RBMO(p) if r > 1.

1. Introduction

Let u be a positive Radon measure on R¢ which only satisfies the
following growth condition

(1.1) w(B(z,r)) < Cr"

for all z € R? and r > 0, where n is a fixed number and 0 < n < d. The
doubling condition on p, namely, there exists some positive constant C'
such that
u(B(z,2r)) < Cu(B(z,1))

for all z € supp r and r > 0, is an essential assumption in the classical
theory of harmonic analysis. But recently, many classical results have
been proved still valid if the underlying measure p is substituted by a
non-doubling Radon measure as in (1.1); see [10], [17], [18], [11], [19],
[20], [21], [22], [23], [12], [13], [8], [6], [14], [2], [4], [5], [7] and their
references.

The purpose of this paper is to prove the (LP, L9)-boundedness and
the weak type estimate for any multilinear commutator generated by the
fractional integral I,, related to a measure p as in (1.1) for 0 < a < n
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with any RBMO(u) function of Tolsa in [20] or with any OscCexp - (1)
function for » > 1, motivated by [16], [3] for commutators on R in
the case that p is the d-dimensional Lebesgue measure there. Here, for
0 < a<nand all x €supp (u),

1
1f@) = || e F) ),

The behavior of such fractional integrals on a metric space was recently
studied by Garcia-Cuerva and Gatto in [4]. Chen and Sawyer [2] showed
that the first order commutator generated by I, and RBMO(u) function
enjoys the same (L?, L?) mapping properties as in the case that u is the
Lebesgue measure. However, it seems that the argument used in [2] does
not apply to the multilinear commutator here, we will employ some ideas
used in [2] and some new ideas different from ones used in [2].

Before stating our results, let us introduce some notation and recall
some definitions. Throughout this paper, we only consider closed cubes
with sides parallel to coordinate axes. Let o > 1 and 8 > «a™. We say
that a cube @ is a («, 3)-doubling cube if u(aQ) < Bu(Q), where aQ
denotes the cube with the same center as @ and [(aQ) = al(Q). In what
follows, for definiteness, if @ and § are not specified, by a doubling cube
we mean a (2,2%1)-doubling cube. Especially, for any given cube Q, we
denote by @ the smallest doubling cube which contains ) and has the
same center as Q.

Let 0 < v < n. Given two cubes Q C R in R?, set

Ng.r k 1—v/n
n(2"Q)
-1+ 3 |fgn]
where Ng r is the smallest positive integer k such that [(2¥Q) > I(R).

If v = 0, then we denote K(QO,)R by Kg,r. Tolsa in [20] first introduced
the concept of Kg r and gave its several useful properties. Chen and
Sawyer in [2] introduced K 8) and established some properties on K, (V)
similar to those on K¢ g.

Using K¢, g, Tolsa in [20] introduced the space RBMO(u) with the
non-doubling measure p, which is proved to be a good substitute of the
classical space BMO in this case.

Definition 1.1. Let p > 1 be some fixed constant. We say that a
function f € L (p) is in RBMO(p) if there exists some constant C' > 0
such that for any cube @ centered at some point of supp (p),

pQ/\f )| duly) < C
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and
Imq(f) —mr(f)] <CKq.r

for any two doubling cube @ C R, where mg(f) denotes the mean of f
over cube . The minimal constant C' as above is the RBMO(y) norm
of f and is denoted by || f]|-

It has been shown in [20] that the definition of RBMO(u) is indepen-
dent of chosen constant p. In this paper, we need to choose different p
in the proof of Theorem 1.1 and Theorem 1.2 below, respectively.

For any m € N, 0 < a < n and b; € RBMO(u), i = 1,2,...,m, the
multilinear commutator, In;p, ... b, , is defined by [bm, . . . ,[b2,[b1, Ia]] - - -],
that is,

.....

12 Lo @) = [ T - 0] L2 auto)

|z —y[n—

When m = 1, the operator I s, .5, is just the commutator [b1, I,],
which is a variant on the non-doubling measure of the classical commuta-
tor studied by Chanillo in [1]. In [16], Pérez and Trujillo-Gonzalez stud-
ied the boundedness of multilinear operators of this type generated by
Calderén-Zygmund operators with BMO(R?) functions or with OsCexp L™
functions for » > 1 in the case that p is the d-dimensional Lebesgue
measure. An extensive study of multilinear operators of this type can
also be founded in [9]. In [7], the authors obtained the corresponding
results of multilinear operators generated by Calderén-Zygmund opera-
tors with RBMO(u) functions or with Oscexp 1~ (@) functions for r > 1
in the case that u is a non doubling measure. The multilinear commuta-
tor In;b,,...b,, can be regarded as a natural variant of these multilinear
operators in [9], [16], [7].

Chen and Sawyer in [2] proved that I,.;, as in (1.2) is bounded
from LP(u) to L(p) provided that 1 < p < n/a and 1/¢g =1/p — a/n.
For m > 2, a conclusion similar to that for the case m = 1 in [2] can be
obtained as follows.

Theorem 1.1. Let m € N andb; € RBMO(u), j =1,2,...,m. Fora €
(0,n), let In; by bs,....b,, De asin (1.2). Then there exists a constant C' > 0
such that for all f € LP(u),

a1 s ey < C T N05 1 Fll o)

Jj=1

where 1 <p<n/a and1/qg=1/p— a/n.
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Remark 1.1. Tt is well-known that the commutator [b, I,] is a bounded
operator from LP(R?) to LI(R) provided 1 < p < d/a and 1/q=1/p—
a/d, if and only if b € BMO(R?) if the measure y is the d-dimensional
Lebesgue measure; see [1]. However, it is still open if b € RBMO(u) is a
necessary condition for the (LP(u), L(u))-boundedness of the multilin-
ear commutators Iy.p, ... »,, on non doubling measures.

To consider the endpoint case of Theorem 1.1, we introduce the fol-
lowing function space, which is a variant with a non-doubling measure
of the space Oscexp 1~ in [16].

Definition 1.2. For r > 1, a locally integrable function f is said to
belong to the space Oscexp (1) if there is a constant C; > 0 such that

(i) for any @,

1 = gD lexs 7 @2

B o 7@ = mg(F)\"
1nf{>\>0. M/Qexp <f> du(x) §2} <y,

(ii) for any doubling cubes Q1 C Q2,
Ima, (f) —mq,(f)| < C1Kq,,q.-

The minimal constant C; satisfying (i) and (ii) is the Oscexp £~ (1) norm
of f and is denoted by ||f||Osccxpu(u)-

Obviously, for any r > 1, Oscexp () € RBMO(u). Moreover, from
John-Nirenberg’s inequality in [20] (see also Lemma 3.1 below), it follows
that Oscexpr () = RBMO(p). We remark that it was pointed by Pérez
and Trujillo-Gonzélez in [16] that if p is the d-dimensional Lebesgue
measure in R, the counterpart in [16] of the space Oscexp 1~ (1) When
r > 1 is a proper subspace of the classical space BMO(R?). However,
it is still unknown if the space Oscexp 1~ (1t) is a proper subspace of the
space RBMO(p) when p is a non-doubling measure?

To state the weak type estimate for the multilinear commutator
Io; by, b, We still need to introduce the following notation. For 1 <j<m,
we denote by C7" the family of all finite subset o = {o(1),...,0(j)}
of {1,2,...,m} with j different elements. For any o € C}", the com-
plementary sequence ¢’ is given by ¢’ = {1,2,...,m}\o. For any o =
{o(1),0(2),...,0(j)} €CJ", we write for any m-tuple r=(r1,72,...,7m),
Vre = 1/rgqy + -+ 1/ryy and 1/rer = 1/r — 1/r,, where 1/r =
1/ri4 -+ 1/rm.
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The following weak type estimate is the main result of this paper,
which is new even when m = 1, namely, Theorem 1.2 is also new even
for the commutator of the first order, [b1, I,].

Theorem 1.2. Let 0 < a < n, ¢ = n/(n—a), m € N, r; > 1 and
bi € OSCexp ri() fori=1,2,...,m. Let In.p,, .. b, beasin (1.2). Then
there exists a constant C' > 0 such that for all bounded functions f with
compact support and all A > 0,

p({z €RY: Lagny b, f(2)] > A})
m q0
< C q)l/r H HijOscexerj (1)
J=1
q0

<ASTSNT @y (1R, O D]

7=0 UGC;"
where @4 (t) = tlog®(2+1t) for allt >0 and s > 0.

In what follows, C' denotes a constant that is independent of main
parameters involved but whose value may differ from line to line. For
any index p € [1, 00|, we denote by p’ its conjugate index, namely, 1/p+
1/p’ =1. For A ~ B, we mean that there is a constant C' > 0 such that
C-'B<A<CB.

Let 1 < s < oo. For a p-locally integrable function f and a cube @,
we define

Hf||L10gSL7Q7#/#(2Q)
_ L @), |f(2)]
1nf{)\>0. 120 Jo A log <2+ i\ ) du(z)gl}
and

1 s
Hf”eXpLs,Q,u/u(QQ) = lIlf {A > 0 : m /QeXp <|f()\-r)|> d‘LL(lL’) S 2} .

Then the generalized Holder inequality

1
13) /Q F@)b1(2) by ()] dis(z)

< CHfHLlogl/TL,Q,M/M(QQ) HblHexp L™,Q,p/n(2Q) " ° Hbm||exr>eryQyu/#(2Q)
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holds for u-locally integrable functions f and b;, ¢ = 1,2,...,m, and any
cube Q, provided that r1,7r9,...,r > 1, 1/r=1/r1+ -+ 1/ry. I p
is the d-dimensional Lebesgue measure, (1.3) was proved in [16]. It is
easy to see that the proof in [16] still works in non-homogeneous spaces.

2. Proof of Theorem 1.1

Before we begin to prove Theorem 1.1, we state one equivalent norm
for the space RBMO(p) and some lemmas which play important roles in
the proof.

Let p > 1. For any given function b € RBMO(u), there exists some
constant Cy > 0 and a collection of numbers {bg}¢q, namely, for each
cube @, there exists a number by € R, such that

1
5 /Q 1b(y) — bol du(y) < C»

sup
Q
and
lbg — br| < C2Kg.r

for any two cubes @ C R. Let ||b]|«x = inf{C>}, where the infimum is
taken over all Cy > 0 as above. Then there is a constant C' > 0 such
that for all b € RBMO(p),

(2.1) CHblls < [Iblls < Bl
see [20].

Lemma 2.1 ([6], [4]). Letl <p<oo,1/¢g=1/p—a/nand 0 < a <n.
Then

HaflLaguy < ClfllLeq-

Lemma 2.2 ([2]). Forn > 1 and 0 < 8 < n/p, we define the non
centered maximal operator

®) _ 1 » ok
Mp?(n)f(x)—jgg {W/Qlf(y)l du(y)] :

When 8 = 0, we denote Méi)n) simply by My . If p <r < n/B and
1/g=1/r — B/n, then

18D llagey < ClF o
and if ¢ > p, then

[Mp, ) fllLaguy < CllfllLag-
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Moreover, we also need to introduce another variant sharp maximal
operator M%) f defined by

M f(z) = sup — / 1F(y) — m ()] duly)
zeQ :U/
b el malr)
z K
Q,Redcggkfing @R

and non centered doubling maximal operator IN:

1
N () = i /Q 1F()| dpu(y)

By the Lebesgue differentiation theorem, it is easy to see that for any
f € Lloc( )

(2.2) [f (@) < Nf(z)
for p-a.e. x € R?; see [20] and [2].
Lemma 2.3 ([2]). Let f € L} (n) with

f(y)du(y) =0
Rd

if |pll < oo. For1 <p < oo, if inf(1, Nf) € LP(u), then for 0 < 3 < n,
we have

IN Fll Loy < CIUMPP) £l o

Proof of Theorem 1.1: For simplicity, we only consider the case of m=2.
If m > 2, we can deduce the conclusion of the theorem by induction on m.
We leave the details to the reader; see also the proof of Theorem 1.2
below.

For all r € (1,n/«a), we will prove the following sharp maximal func-
tion estimate

M (Lo, 1)) < Ol ool { M7 2)

M, 372 [T (D) ()}
+ OHbl ||*MT,(3/2) (Ia; b2f)(x)
+ Cllbal« My (3/2)(Ta; b, £) ().

(2.3)
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Then choose 7 such that 1 < r < p < n/a and 1/g = 1/p — a/n. By
(2.3), (2.2), Lemma 2.1, Lemma 2.2 and Lemma 2.3, we obtain

||Ia3b17b2f||Lq(,u) < C||N([0¢3b1,b2f)”Lq(#)

< O M5 (Las by 0y ) Lo

< ctpullteal { |42 ..,

1 AT

Mr,(3/2) (Ia; ba f)HLq(#)

+ C||b1 ]|«
+ C||b2]|« HMT,(3/2)(Ia;blf)HLq(#)

< Cloaflellb2ll [ £l 2o ¢y

which is the desired conclusion.
For j = 1,2, let {by,}q be a family of numbers satisfying

| 1) ol duty) < 20 -
for any cube @, and
b — Ukl < 2Kq,b]]
for all cubes @ C R. For any cube @, we let
hq = mq (Ia {(bl - bég)(b2 - bQQ)fX]R'i\%Q:D .
To establish (2.3), it suffices to verify that

1
@/Qlfa;bl,@f(y)hmdu(y)

2.4 «
(24) < Ol ol [ML) ) £ (&) + My o) (T ) )]

+ Cllb1][+ My (3/2)(La; by f) (@) +Cb2 |« My (3/2) (Lo 0, f) ()
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holds for any cube @ and any = € @, and

lhe = il < Clloalllball- K3, { KS ML ) £ ()

+ My a2 [a(1f1)] (=)}
+ C||b1 ]|« K@, r M, (3/2)(La; b, f) ()

+ C|b2||«Kq,r M, (3/2) (La; b, f ) ()

for any cubes Q C R with x € @, where @ is an arbitrary cube and R is
a doubling cube.

By a method similar to that in [2], from (2.4) and (2.5), it is then
easy to deduce the sharp maximal function estimate (2.3).

To obtain the estimate (2.4) for any fixed @ and x € Q, write

/ Lo F(4) — B dia(y)

<5 / I |0~ 2] oS 0 )
1 1

+ M/Q |b1(y) - bQ| |Ia;b2f(y)| du(y)
1 2

+ M/Q |b2(y) - bQ| |Ia;b1f(y)| du(y)

M/Q |Ia [(bl - bég)(bl - bb)ﬂ (y) — hQ| du(y)

=L +L+1Is+ 14
The Holder inequality and Corollary 3.5 in [20] yield that for 1 < r <

n/a,
) ) 1/r'
I < { 50 /|b1 (b2(y) — )| du(y)}

(2.6) , 1r
x{m/uﬂn <>}

< ol «l[b2ll« My (3/2) (L f) (),



344 G. Hu, Y. MENG, D. YANG

and

1/r'
5 < [@/Q\bl(y)bb\r du(y)]
(2.7)
X [@/@|Ia;b2f(y)|r du(y)]

< Olbal[« My (3/2)(Ta; b, [ ) ().

1/r

An estimate similar to that for I tells us that

(2.8) I3 < Ollba[« M, (3/2) (Tas 1, f) ().

To estimate Iy, let f1 = fX%Q and fo = fod\%Q. Decompose 14 into

< ; / 1. [( )] )] du(y)

/ o [0~ )2 — 1) 12] (5) ~ i dty)

=E+F.

Let s =+/r and 1/v = 1/s— a/n. From the Holder inequality, (2.1) and
Lemma 2.1, it follows that

1-1/v
B < e e [0 =802 =12 v,
1-1/v
(2.9) < C% [[(b1 = bg) (b2 = b)) ful 1.,

< Cllba ool M) 5 f ().
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To estimate F, by the Holder inequality, we first have that for y1,y2 € Q,

(2.10)
|Ia [(51 - bb)(b2 - bQQ)fQ] (y1) — In [(bl — bé?)(bQ — bQQ)fQ} (yg)‘
e e CORRSCOREAIRSIETS

2k2Q\2k-14Q |z =

X | (01(2) = Bhes@)(b2(2) = by )| 1£(2) dpl2)

- I(Q)
+ OZ ‘bé? - bé"%@’ / _ [l
k=1 2 v

k%Q\Qk—l%Q |Z -

% [ba(2) = Vs o 1F ()] da(2)

+OZ‘b2 wa’/Q %

kiQ\2k-14Q |Z — U

% [b1(2) = bhus o 1£ ()] da(2)

/2 % |£(2)| du(z)

k%Q\2k71%Q|Z—y1

+CZ‘ bQ b2k4Q b2k4Q)

- 1/r
_ 1 r
SC’ZkQQ AN lW /ngQ|f(Z)| du(z)]

k=1
< Cllball. ool ML) £ (),
where we used the estimate

165 = Vhr sl < CRlbjlle < CHllbs

for j = 1,2. From (2.10) and the choice of hq, it follows that

| 1o [(b1 = bG) (b2 — b)) fo] (1) — he| < Cllbaallball MG 5 f ().
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Therefore,
(211) F < Ol Ball My gy ()
The estimates (2.9) and (2.11) indicate

(2.12) Ly < O|lb |||z M (9/s)f( ).

Combining (2.6), (2.7), (2.8) and (2.12) yields (2.4).

We now check (2.5) for chosen {hg}¢ as above. Consider two cubes
@ C R with z € @ and a doubling cube R. Denote Ng r + 1 simply
by N. Write

Ihg — il = |ma (Lo [(b1 = ) (b2 — ¥3) P 3]
T ([ SR AT
< |mg (Lo [(br = bg) (b2 — b3) fxra\2v 0]
—maq (I [(by — bh) (b2 — b3) fxzaavg))|
+ ‘mR ( [(bl — bR)(b2 - bR)fXRd\QNQ])
—mp (1o [(b1 — bQ)(bg - bQ)fod\zNQm
+ |ma (I [ (b1 = bb) (b2 = B3) fravans0] )|
+ |m (T [ (01 = bR) 02 = ¥) Fravansa] )|
=Ly + Lo+ L + L.

Similar to the estimate for F, we easily obtain

(2.13) Ly < OKE),RHblH*HIbH M (9/8)f( ).
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We estimate Fy by decomposing it into

Ly < |mg (I [(b1 — by) (b2 — b%) fXra\2¥q))

—mp (Lo [(b1 — bk + by — bg) (b2 — bk + bk — 04)) fxraang)) |
ma (Io (b1 = bR) fxroav))|
+ CKqrlbi]l« |mr (Lo [(b2 — b%) fXRa\2N ) |

+ CK3 glbll<llball [ [Ia(fxan2xo)]]
= M; + Mz + Ms.

< CKq,gl|ba|«

From the fact that R is a doubling cube, it is easy to deduce that
(2.14) M;s < CKQ glIbillllball« M, (3/2) [La (I£])] (2)-

We further estimate M; by writing
o [(b1 = bR)Xsava] (8) = Lo [(b1=bR) ] ()~ Lo [(B1=bh) fran ) )
= (01(y) ~ BRI (1)) — Lot ()W)
— L |(br = bR)Fxam] )
— Lo [0 = B) Pxav o2 (0)-

From the fact that R is a doubling cube, it follows that

ﬁm /R |b1(y) — bk | 1o (N W)] dily) < Clballu My 3/2)1a(F)(2)
and
1
o [ et ()] dl0) = My 1))

An estimate similar to that for E and the fact that R is a doubling cube
tell us that

),

Lo [(b1 = bR)fx 48] )] duly) < Clloa M5, )1 (@),
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Noting that 1(2V¥Q) ~ I(R) and 2¥@Q D R, by the Holder inequality
and (2.1), for y € R, we have

I, [(bl - b}z>fX2NQ\%R} (y)’ -

Lo PO e

NQ\AR Y

c 1
< @ g M)~ BRI dne)

C 7’ 1/7"/
Sy

+ e -tz |

<[ )

1 1/r
<Ol | ergyas o, WO )]

< Olbr |1 ML) g, £ ().

Thus

),

All the estimates above lead to

Lo [ (b1 = V) Fxavan sm| )] du(y) < ClLll M, £ (@),

My < CKaqgllbr [l 1balls { M3/ (Tef) (@) + ML ) (1))}

+ CKq,rllba|l« My (3/2)(La; b, f) ().

(2.15)

Similarly, we can prove

My < CKaallbillellb2lle { Mr g3/ (Tef () + ML ) () () |

+ CKq r|b1]l«+ M, (3/2) Ta; vo f) ().

(2.16)
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Combining the estimates (2.14), (2.15) and (2.16) leads to
Ly < Clballu[b2ll K3 { MG ) £ (@) + Mgy a(11)] (2) }
(217) + Cllb1 ||« K, rM; (3/2)(La; b, f) (%)
+ Cllb2|l« K@, r M (3/2)(La; b, £) ().

Let us now estimate L3 by first decomposing

Io [(bl — bgy) (b2 — b%})fXQNQ\éQ} (y)’

<

o [0 = B) (02 = ¥) oo 30] W)
+ |[Ia [(b1 — le)(b2 - b%})fXQNQ\QQ} ()]

< Clbu 102l ML ) F ()

N-1

1 1 2
+OY gy T g 1)) ] di2)

< Clloa. ball M%) g f ()

+CKQ pllbll«[b2-

N-1
X
k=1

1/r

,LL 2k+2Q l1—a/n 1 B}
QkQ n—o |:M(2k+2Q)1ar/n /2k+1Q |f(Z)| dﬂ(z)

< CK3 p K5 b1l 1021 M. ) f (@),

where we used the Holder inequality and (2.1). Taking the mean over Q,
we then obtain

(2.18) L3 < CKQ RK RHb1|| [|b2]] M (9/8)f( ).
Similarly, we have
(2.19) Ly < Ollby||«[[b2]]« M 9/8)f( z).

Combining the estimates (2.13), (2.17), (2.18) and (2.19) yields the
estimate (2.5) and this finishes the proof of Theorem 1.1. O
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3. Proof of Theorem 1.2
We begin with some preliminary lemmas.

Lemma 3.1 ([20]). Let b € RBMO(u). There exist two positive con-
stants C1 and Ca such that for any cube Q and X > 0.

—CaA
p ({2 € Q: (@)~ m(B)] > A}) < Cru(2Q) exp (7) |
[bllREMO()
The following lemma on the Calderén-Zygmund decomposition in

non-homogeneous spaces can be found in [22], [19].

Lemma 3.2. Assume that ju satisfies (1.1). For any f € L'(u) and any
A >0 (with A > 27 £l g /Nl f [l < 00), we have

(a) There exists a family of almost disjoint cubes {Q;}; (that is,
Zj xq,(x) < C) such that

A 1
351 < gy |, V)

and
1

1(2nQ;) /an (@)l dp(e) < 55

for allp > 2.

(b) (@) <A pae. on R\ U, Q.

(c) For each fized j, let R; be a (6,6™"!)-doubling cube concentric
with Qj, with [(R;) > 4l1(Q;) and set w; = xq,; /> 1 XQ@.- Then
there exists a family of functions ¢; with supp¢; C R; and with
constant sign satisfying

/qﬁj ) dpu(z /f o) () dp(),

16, = (yi(R;) < C / )| dulz

and

Zlaﬁg )| < O

Proof of Theorem 1.2: To prove the theorem, without loss of general-
ity, we may assume that ||f| .1, = 1 and ||bjllosc ., (p) = 1 for

exp L' J
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j=1,...,m. In fact, let

b=t
’ Hbj ||Oscexerj (w)

for j =1,...,m. The homogeneity tells us that
3.1) p({z R Iosb,,...00 f(2)] > A})

:u({wew;“ SECH

Iz

A
> — )
T2t T 3TTome, e 0 })

Noting that

e, -
1A 22 1T )
and
g_’ —
H J Osc,, ., i (1)
for j =1,...,m, if the theorem is true when || f|[z1(,) = 1 and
10jllose,,r; oy =1 for j=1,...,m, by (3.1) and the inequalities
(3.2) Dy (tit2) < CPs(t1)Ps(t2)
for any s > 0, t1,t2 > 0 and
(3.3) D1y, [®1)r, (1)] < Oy (1)

for t > 0, we easily deduce that the theorem still holds for any bounded f
with compact support and any b; € Osceyp, 7 (1) for j =1,...,m.
In what follows, we prove the theorem by two steps.

Step I: In this step, we prove Theorem 1.2 for m = 1.

For any fixed bounded and compact supported function f and any
fixed

A > 28 fll g /Ll
applying the Calderén-Zygmund decomposition (see Lemma 3.2) to f at

level A%, we obtain a sequence of cubes {Q;}; with bounded overlaps,
that is,

Zij(x) < C < oo,
J
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such that
@
A0 1
551 < 50y [, e
J i
and
1 40
- d AN
w(2nQ;) /an Tl () = g
for all n > 2.

(ID) |f(z)] < A% p-a.e. on RN\ U; Q.

(III) For each fixed j, let R; be the smallest (6,6""!)-doubling cube of
the form 6¥Q;, k > 1. Set w; = xq,/> ; Xq.- Then there are a
function ¢; with supp ¢; C R; and a constant C' > 0 satisfying

[ = [ s @

10yl o (R;) < C / (@) dpa(z)

J

and
> o) < CA.
J

It is easy to see that the conclusion of the theorem still holds if

A< 2T L/l

when ||u|| < co.
Decompose f into f = g + h, where

9(w) = f(@)xpa\u,q, (T) + Z o (),

and
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Let 1 < p1 <n/aand 1/q; = 1/p1 — a/n. Recall that

lallziwy < Cllifllpr <C

and I, p, is bounded from LP*(u) to L9 (u) by Theorem 1.1 (see also [2]).
This via the fact that ||g|| e () < CA gives

p({z €RY: [Laspyg(x)| > A}) <CA™® /Rd Lo b g™ dpa(y)

—q q1
<CA ng”Lm(H)

< O\~ )\ (P1—1)a1/p1 Hf”lill/(pl)
- Iz

< CAT,

Noting that » = r; when m =1 and

p (U2 ) <en [ 1flaut) < ox.
J

therefore, the proof of the theorem can be reduced to proving that

(34) p |2 eRNJ2Q; : [Tasn, h(x)] > A
J
q0
< C [l WM + 21 O W 20)]

For each fixed j, set bgj)(x) =bi(x) — ma(bl) and write
J

Logn h(z) = Y09 (@) Iahj (@) + L (05 hy) (@) = 1(z) + 1 (x).
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The weak type (1, o) boundedness of I, (see Proposition 6.2 in [6])
tells us that

p({z e R [1(z)| > A})

<on |32 [ 10 why)] duty)

90

<o | Y [ i) - mg 6)ll£0)] dutw)

O | Sl [ ) = g (b dito)
7 3

=U+V.

It is obvious that R; is also (2, Bq)-doubling and R; = E Thus, by
Lemma 2.8 in [20],

[ ) =m0l du() < [ a(s) = m, ()] dt)

J J
+ (Ry) [z, (b1) = ma, (b0)]
+ |, 00) = mg ()
< Cu(2R;)+Cp(R)) (Koq, r, + Koa,,0;) -
A trivial computation shows that Keq, r; < C (see also Lemma 2.1 (3)
in [20]). This together with the estimate pu(2R;) < u(6R;) < 6" u(R;)

in turn implies that
90

33) V=Ox ™ | S oylmgont)| <ox | [ wlaut)

which is a desired estimate for V.
On the other hand, by the generalized Holder inequality (1.3) and
Lemma 3.1, we have
qo0

U<Coa ™™ ZM(QQj)||f||Llogl/TL,Qj”u/,u(QQj)||bg])||8Xp L™,Qj,n/1(2Q;)
J
q0

<COA® ZM(2Qj)||f||Llogl/TL,Qj,p/p(QQj)
J
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From the fact that

Hf”Llogl/T L,Qj,n/1n(2Qy)

y W (5, )
- f{t+ﬂ(2Qj)/czj e (241 )d”(y)}

q0 1 o 1/r M
<A +,U(2Qj)/Qj |/ (y)[log (2+ S0 ) dp(y)

(see [16] and the related references there) and the inequality
1og1/r(2 +tite) < C {logl/T(Q +1t1)+ logl/r(2 + tl)}

for tq,to > 0, it follows that

(3.6)

v<orn {Zumwﬂ w3 [ irwnog (24 H2) augy)

J
q0

+Z/Qj £ ()] dpa(y)log!/" (2+ ;)

1 _ . 1
<0 L3t + 3o (24 3) I lor

v f e (2 * @) du@)}qU

90
< 0 { @y (71 1260) + 1907 O 1D g}

which is a desired estimate for U.
Combining (3.5) and (3.6), we obtain that

(3.7) p({zeR: 1(z)] > A})

q0
< o U x0) + [0 O D}
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Now we turn our attention to I(x). Denote by x; the center of Q.
Let 6 be a bounded function with ||6| < 1 and the support con-

tained in R?\ U; 2Q;. Write
I(x)0(z) du(x
/Rd\ujmj ()0(z) du(z)

< / b9 (2)0(z)|
~JRd\2R; /R4

+Z / 69 (@)0(2)| Ly ()] dpu(z)

J\2QJ

L% (u)

b (2)6(=)|
gczz //\Q o e s ) du(9) du (@)

! Z/ ) (2)0()| T (32| ()

RJ \QQJ

+3 [, et e

—G+H+J.

Invoking the condition (1.1), we have

b(j) z)0(x
/ |bi (‘)nill du(z)
Rd\QQ |z — ]

k —n—1+«

ma;(bﬂ — kaf:l—éj (b1)‘ /2ij 0(zx)d

1/q0
q0
du(af)]

+C§: 2k1(Q,)] T

k=1
< CZ [ kl(Qj)]_n_ i [/2k+1Qj ’b1(l‘) — m2k+1Q (b1)

—n—1+a 1/q0

+CZKWQ @, [2°1Q))] p(2M1Q;)

k=1

<O 2RQ)] T @Ry Ve 1 Cu@)) !
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Therefore,

(3.8) G<CZHhHL1(M)<OZ/ )| duly <c/ |f(y)|dy,

which is a desired estimate for G.
On the other hand, applying the Holder inequality and the (LP*, L)
boundedness of I, (see Proposition 6.2 in [6]), we obtain

(3.9
1Y L, 110 =z 00 a0 du

+Z\m~61 g blr/ La5(2)102) | da(a)
1/90
<160, {Z [ / @) =gy @0 g 1" du<z>]
1/q0
/ L ()| du<z>] \ma;wl)mﬁj(bl)\}

‘|1/¢I01/¢I1

3

90(q1/40)’

dp(x) 1o ®jll Lo ()

< Z [/23 ‘bl(x) — mQ,I\Z/] (b1
] J
+ Z [,U/(4Rj)]1/q0_1/q1 HlozqﬁjHL"l (1) ’mb\;(bl) meE (bl)‘
J
<O AR Lo |l Lo gy [1 + ’m@j(b) - My (b1)H
J

<CZ 00 e 1] P

<cz AR g o oy ()]

< C/Rd |f ()] du(y),



358 G. Hu, Y. MENG, D. YANG
where we have used the estimate that

m—~(b1)—m

Qj 2/1\171(171)’ < ‘m/é;(bl)*ij(bl)‘jL’ij(bl) Mg (01)] = C,

2R;

by recalling that R, is (2, 34)-doubling and E; = R;.
To estimate H, observe that for = € 2R;\20Q);,

1
w; S E— du(y).
L (w, ) (2)] < /Q 1F@)] d(y)

|ac—x|"0‘ .
J

Write

chz{/ L TG

2r\R; |T—x;["

b (@)0()|
+/Rj\czj |& — aj]n—e d“(x)} / @)l duy)

J

1/q0

<CZZ naH ||L0(H){/ 189 ()% du(x } /|f )| dply)

N—-1
+szl(6ij)_n+a/6k+lQ \st}bl )= Mg, (1) }|9 N du(@)

Jj k=0
< [ 1) dnty

J

N-—1
+CY D ek Q) e
k=0

7 =

R —

g /Q 6(@)] dulz) /Q 1)l (),

J

where N is the positive integer such that R; = 6VQ;. Obviously, for
each 0 <k < N —1, 6*"1Q; C R; and so

ms-(b1) —

Q <CKQ 6k+1Q <OKQ R <C

g, (00
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which leads to that

H<CZ/

y)| duly

+CY Z_ 1(6%Q) ™" [u(2 x 6k+1@j)]1/q°/ |f ()] du(y)
j k=0

J

N—-1
O ST U6k Q) [u(61Q)) / £ @) duly)
Jj k=0 Qj

<oy {HZ_ 16*Qy) " [u(2 x 65+1Q;)] “’“} / | ()] dpa(y)-
j k=0

J

Note that there is no (6,6"*!)-doubling cube between @Q; and R;. It
follows that for each integer k with 0 <k < N — 1,

(6k+1Q]) (GNQJ)

= g D(N—k—1)
= Cl(6"Q;)"6" ™.
We thus obtain that for each fixed 7,

N-1

N—
1 1
(6 —nta (6k+2Q] /qo Z 6k 1Q n+a[u(6k+1Qj)] /90
k=0 =
+ 26N Qy) T (B R ™
<Cy 6 Mw 4
k=1
<C.
Thus

3

(3.10) H<CZ/ )| duly <C’/ | £ ()| dp(y).
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Combining the estimates (3.8), (3.9) and (3.10) above yields

I(z)0(x) du(x
/Rd\ujwj()(m()

and so

< CZ/Q‘ |f ()] duly) SC/Rd |f ()] duly),

reRN| J2Q,: |I(z)|>) p | <CA~ % I(z)]% du(z
(Sll)u N2 - ) < /Rd\ujij ()

e[t [ wiane]

The estimates (3.7) and (3.11) then yield (3.4), and we have completed
the proof of the theorem for m = 1.

Step II: In this step, we prove Theorem 1.2 for all m € N by induction
on m. To this end, we assume that m > 2 is an integer and that for
any 1 < i <m —1 and any subset 0 = {o(1),...,0(i)} of {1,...,m},
Theorem 1.2 is true. We now verify that Theorem 1.2 is also true for m.

For each fixed f and A > 0, we decompose f by the same way as in
Step I; see (I), (II) and (III) in the proof of Step I. And let Q;, R, ¢;,
wj, g, h be the same as in Step I. To prove the theorem in this case, it
suffices to verity

(3.12) p |4z eRAJ2Q;) : [Tany,. b, h(x)] > A
J

q0
SR PP (1220, 1D o]

where for o € CI", 1/ry = 1/r,y+- -+ 1/ry) and 1/ror = 1/7r—1/7,.

For simplicity, we first introduce some notation. Let b= {b1,...,bm}.
For all 1 < i < m and 0 = {o(1),...,0(i)} € C™, we define b, =
{bs(1ys -+, bo(iy} and set

Ia;bau) ----- ba(i)f(‘r) = Ia;ggf(x)'

In particular, when o = {1,...,m}, we denote In.p, ... »
For 1 <¢<m and all o0 € C]", we write

[b(y) —b(2)]o = [ba(l)(y) - ba(l)(z)] Ko X [ba(i) (y) — ba(i) (2)]

m

, simply by I_ ;.
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and

[ma(b) —b(y)]o = [mé(bo(l)) - ba(l)(y)] X X [mé(bo(i)) - bo(i) W],

where @ is any cube in R? and y, z € R?. With the aid of the formula

[Tims®) b2 =3 3 b) — b(=)orlm(0) — b(w)ls

i=1 i=0 ceCT

for y,z € R?, where if i = 0, then ¢’ = {1,...,m} and o = (), it is easy
to see

=33 [mg (00— bie)] Tuhy(@)

j i=1

B ;Ia (H [, 00 - b m) (@)

i=1

hj) (2)

o

"X %t (g 01

i =l o

SRICERIEED 3 Sp R It]

i=1 ECWL

An argument similar to that for I(x) in Step I gives us that

3.13) [ {r e 2@ 1! hia)|> A sc{w/R dlf(y)ldu(y)} |

and an argument similar to that for I7(x) as in Step I yields

(3.14) p |z eRN|J20;: |1 h(z)] > X

J

q0
< @ U x0) + [0 O D}
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Now we estimate Iglg h(z). For each fixed ¢ with 1 < ¢ <m — 1, the

induction hypothesis now states that

] ({x cR?: |Ii{%alh(x)| > )\})
r q0

<C mz_: S @ |||, A‘lemaj(b)—bth
J

=0peom

Lt (w)

m—1t

<C Z Z L1/ || ®1/ry A_IZHm@ (b)—bwaj’
J

l:lneC;VL—i

q0

+C Z Z (pl/’!‘n/ q)l/Tn AilZH:maj (b)ib:|a'¢j’
; J L' (p)

q0

=A+B~+D.
For A, we consider the following two cases.
Case I. A > 1. Set ¥, (¢) = expt” — 1. Note

U(t) ~ logtm (2 + 1),

T

O (t) ~ tlog ™M (2 4 1).

By Lemma 2.2 in [16], we see that for any 1 <i<m —1, 0 € C" and
any tg,t1,...,t; >0,

Dy, (totr - i) < C[@1yr 1/r, (t0) + Vi) (1) + -+ Ty ()] -
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From this, it follows that

. ()\‘1 > |[mg,®) —b] fu; )
I L ()

<X [ i, (7@ [mg ) - 4@)] [) dute)

“Hf@)) dpl)

N
Q
S8

i

=

3

+

=

3

)

+ czi /Q ey (Jmg, (o) = boy @)]) dala)

j =1

= OZ/Q, 11 /r, (AT (@)]) dp(e) +C Y p(20;)

J

< OZ/Q, D1/p1/m, (ATHS(@)]) dp(z) + CAT Z/Q \f ()] du(z)

<Cy [ s 0@ ) + €37 3 [, 1t
< C |1/ 1rre AT @D 11,

Case II. 0 < A < 1. In this case, we have

b (71 -4,
< CZ/ Py, (AT R, (A*q“

SOXN [ OIS )+ 3N 00
J J J

Lt (w)

f@) [mg,®) =] |) duta)

< OZ/Q )\*1|f(gg)|log1/rn+1/ra (2 + >\7QU|f(l’)|) du(z)
J Fi

+O1 Y [ 1) dnt

< O @1yrpirym, ATHF@ND | 1y + Prymyrrsme AT o) -
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Thus we always have
(315) A < C { Z Z q)l/rn/ (Hq)l/rn—i-l/rg(>‘71|f(z)|)HL1(#))
=1 nEClmfi 90
+ @1y A lzry)

Set sj(x) = A7%|¢;(x)| and denote by A a finite subset of N. From (I),
(II) and (III) of the decomposition of f, (3.2), the convexity of the

function @, (t) and the fact that K r,G; S < C, it follows that
1/ry Z ) XR ) M(Qj)
R Sen
< C(I)l/rn(/\q071)/ Q1/r, (Z Sz(@) P1/r,
R leA

x lz(%)}[ma(b)—b(a:)}a‘xm(w)] dp(x)

< OBy, (A7) Z/ . <l > )) <ZSl($)> s5(x)

jeA leA

wlm{\[ Q1<b>—b 7)) \xR] )} dul)
<%y, Aqolz/ si(@) | [m(b) - H dp(z

1 ||¢J||L°°(u) 2
<C®yyp, (AT ZA T w(R;) |1+ (KRJ,ZZ)
JE

1 ||¢J||L°°(u)
< CDyp, (AT ]EZA M)
<Cy Xlogl/T"(Q A AT 16| ooy 1(Ry)

JEA

1 |f ()| 1/ 1 /(@)
<C]€ZA Qj 0 A du(z)log! <2+@/Qj X du(:z:))
1 |/ ()]
Qj)/Qj v du(@)

<o [ Hhogro (24 ) dua) = €1y, 11D 0

Rd

= CZMQ»@m

JEA
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where in the second-to-last step, we used the Jenson inequality, and the
constant C' is independent of A. From the arbitrariness of A, it follows
that

@1, (A [[mg, 0] o] < Cl|@ym, A1) g -
J L ()
Thus,
m—i o
(3.16) B<C Z Z ‘I)l/w (H(I)I/Tn ()‘_1|f|)”L1(M))
=1 77€Clm’i

An argument similar to that for I7(x) as in Step I yields
D<C{@y,, [0, (V)]
q0
(3.17) @170, ([[@1/r, A DI 1) }

q0
< c {(I)l/r (A71||f||L1(#))+¢1/TUI (H(I)l/rg ()\71|f|)HL1(#))} .
Combining with (3.15), (3.16) and (3.17) tells us that

(3.18) 4 ({z e R IIL n(x)] > /\})

<0 2 Oy (1801 O @D )

=0 nec;’l*i 90

+ @1 (AT L)

Finally, the estimates (3.13), (3.14) and (3.18) tell us the estima-
te (3.12), and we have completed the proof of Theorem 1.2. O
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