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HARMONIC MAPS AND THE TOPOLOGY OF
MANIFOLDS WITH POSITIVE SPECTRUM AND
STABLE MINIMAL HYPERSURFACES

QraoLING WANG*

Abstract

In this paper, we prove two Liouville theorems for harmonic maps
and apply them to study the topology of manifolds with positive
spectrum and stable minimal hypersurfaces in Riemannian mani-
folds with non-negative bi-Ricci curvature.

1. Introduction

Harmonic maps are natural generalizations of harmonic functions and
are critical points of the energy functional defined on the space of maps
between two Riemannian manifolds. The Liouville type properties for
harmonic maps have been studied extensively in the past years (Cf. [Ch],
[C], [EL1], [EL2], [ES], [H], [HIW], [J], [SY], [S], [Y1], etc.). In 1975,
Yau [Y1] proved that any harmonic function bounded from one side on a
complete Riemannian manifold with non-negative Ricci curvature must
be a constant. Schoen and Yau [SY] have shown that a harmonic map
of finite energy from a complete Riemannian manifold with non-negative
Ricci curvature to a complete manifold with non-positive sectional cur-
vature is constant. This Liouville theorem of Schoen-Yau was used [SY]
to show the important result which states that any smooth map of finite
energy from a complete Riemannian manifold with non-negative Ricci
curvature to a compact manifold with non-positive sectional curvature
is homotopic to constant on each compact set. In this paper, we use the
same idea of Schoen-Yau to study complete non-compact manifolds with
Ricci curvature bounded from below and stable minimal hypersurfaces
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in manifolds with non-negative bi-Ricci curvature. Our first result can
be stated as follows.

Theorem 1.1. Let M™ (n > 2) and N® (s > 1) be two complete Riman-
nian manifolds. Suppose that M™ is non-compact and that N° has non-
positive sectional curvature. Assume that the first eigenvalue Ay (M™)
of M™ is positive and that the Ricci curvature of M™ satisfies

1
. i n > — —_— n
(1.1) Ricprn > <1+2ns> A (M™) 446

for some § > 0. Then any harmonic map from M"™ to N® with finite
enerqgy s a constant.

It has been shown by Schoen-Yau (Cf. [SY]) that for any smooth
map f of finite energy from a complete Riemannian manifold M to a
compact manifold N with non-positive sectional curvature, there is a
harmonic map h: M — N with finite energy such that f is homotopic
to h on each compact set of M. Thus Theorem 1.1 implies immediately
the following

Corollary 1.2. Let s be a positive integer and let M™ (n > 2) be a
complete non-compact Rimannian manifold with A (M™) > 0 and

1
Ricpym > — (1 + > M(M™)+ 06
2ns

for some d > 0. Let N* be a compact manifold with non-positive sectional
curvature. If f: M™ — N? is a smooth map with finite energy, then f is
homotopic to constant on each compact set.

As an application of this corollary, one has the following result.

Corollary 1.3. Let M™ (n > 2) be as in Theorem 1.1 and let D be a
compact domain in M™ with smooth simply connected boundary. Then
there exists mo non-trivial homomorphism from w1 (D) into the funda-
mental group of a compact manifold N with non-positive sectional cur-
vature.

Proof: We use the arguments in [SY]. Let h: m(D) — m(N) be a
homomorphism. Since N is K(7,1), there is a smooth map f: D — N
such that f, = h. Observe that f is a homotopic to a constant map
on 0D because 0D is simply connected. Thus, f can be extended to
be a smooth map f: M — N such that outside a compact set, f is
constant. As f has finite energy, we conclude from Corollary 1.2 that
f is homotopic to a contant and that h is trivial. O
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Before stating our next result, we fix some notation. Let M be a
complete oriented minimal hypersurface immersed in an oriented Rie-
mannian manifold M. Let V be the gradient operator of M and denote
by |A|? the squared norm of the second fundamental form A of M in M.
M is said to be stable if

(1.2 [ AVHE = (1A + R ) ) = 0

for all f: M — R with compact support, where Ric(p, 1) is the Ricci
curvature of M in the unit normal direction p to M.

Definition 1.4 ([ShY], [T]). Let M be an m-dimensional complete
Riemannian manifold, and w, v be orthonormal tangent vectors. We set

b-Ric(u, v) = Ric(u, u) + Ric(v,v) — K (u,v),

and call it the bi-Ricci curvature in the directions u, v. Here Ric and
K denote the Ricci curvature and sectional curvature of M, respectively.

If m = 3, then b-Ric = s/2, where s denotes the scalar curvature
of M. Tt is clear from the definition that the non-negativity of the
sectional curvature implies the non-negativity of the bi-Ricci curvature
of M.

We then prove the following theorem which generalizes a main result
in [SY].

Theorem 1.5. Let M™ be an n-dimensional complete oriented non-
compact stable minimal hypersurface in a complete (n + 1)-dimensional

Riemannian manifold M with non-negative bi-Ricci curvature. As-
sume that N is a complete Riemannian manifold with non-positive sec-
tional curvature. If f: M™ — N is a harmonic map with finite energy,
then f is constant.

As in Corollaries 1.2 and 1.3, we have

Corollary 1.6. Let M be an n-dimensional complete oriented non-
compact stable minimal hypersurface in a complete (n + 1)-dimensional
Riemannian manifold M with non-negative bi-Ricci curvature. Assume
that N is a compact Riemannian manifold with non-positive sectional
curvature. If f: M — N is a smooth map with finite energy, then f is
homotopic to constant on each compact set.

Corollary 1.7. Let M be as in Corollary 1.6 and let D be a compact
domain in M with smooth simply connected boundary. Then there exists
no non-trivial homomorphism from m (D) into the fundamental group of
a compact manifold with non-positive sectional curvature.
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2. Preliminaries

Let M™ and N*® be complete Riemannian manifolds. Let f: M"™ — N*®
be a harmonic map. Let {e;}"; and {e,}_; be local orthonormal
frames of M™ and N¥, respectively. Suppose {w;}? ; and {0,}5_, are

the dual coframes of {e;}7_; and {€,}_1, respectively, and {w;;}7';_;

and {0a5};, g—; are the corresponding connection forms. Denote by R;;p
and Kup4s the curvature tensors of M™ and N?, respectively. Then we
have the structure equations:

dw; = Zj wij Awj

wij +wj; = 0

dwij = Zk Wik N\ Wgj — %Zk,l Rijriwr A wy.

dl, = Zﬁ Qag A\ 95

Hag + 65a =0

Aop =3 Oar NOyp — 3 25 Kapysty0s.
Define foi, 1 <a<s,1<i<mnby

(2.1) Fr(0a) = faiwi.
Then the energy density e(f) is given by
e(f) =) fa

Taking the exterior differentiation of (2.1), we get
fr(dba) = Z (dfai Awi + fai dw;),

K2

which gives

(2.2) Z df oi — Z fajw,’j — f*(eag)fgl Aw; = 0.
J

%

Define fosz by
(2.3) dfoi + > foif (0pa) + D fajwii = D faijw;.
B J J

Then (2.2) and (2.3) imply that fai; = fa;; and f is harmonic means
Zfan' =0, Va=1,...,s.



HARMONIC MAPS AND THE TOPOLOGY OF MANIFOLDS 305

Exterior differentiating (2.3), we have

(2.4) Z dfait + Z(fmjwjl + fajiwsi) + Z faif"(0pa) | Awi
J B

l

1 1
=3 Z Rijrifajwr Aw + 3 Z Kogys faifyr fsiwr A w.
g5kl B3,6,7,k,l

Define

Z faijrwr = dfai; + Z(faikwkj + fakjwri) + Z Tpij f*(0ap);
k k B

then (2.4) implies that

Jaikt — faitk = ZRijlk’frx]’ + Z Kogys faifyifor
J

B,7,0

Set e = e(f) and let A be the Laplacian operator acting on func-
tions on M". From the above formula, one can easily get the follow-
ing Bochner type formula for harmonic maps which was first derived by
Eells-Sampson [ES].

1
(255) §A€ = Z fiij + Z Rijfaifaj — Z Kopys foifsj frifsi
5,5 5,7 a,3,7,6,4,7
where R;; is the Ricci tensor of M™. Since

2

|V\/5|2=%Z Zfaifaij )

J

we have
1
D fa Vel = X0 (faifars — fonfais)”
a,i,J i,9.k,a,8
1 2
> % (faifajj — fajfaij)” -

g0



306 Q. WaANG

By Schwartz inequality,

S aifags — Fasfais)? = = S St iy — fai fois)

1,7, ? J,x

1
S b
i aj
1 2
- Livver.
ns
Therefore, it holds [SY]

(2.6) D AT (1 + 27113) Vel

a,%,]

3. Proofs of the Theorems

Proof of Theorem 1.1: Let f: M™ — N? be a harmonic map with finite
energy and set e = e(f). Let Ay = A;(M™); then by definition,

)\1/ Y2 S/ Ak
M M

for any compactly supported function ¢ € Hy o(M™).
Replacing ¢ by ¢+/e with ¢ € C5°(M™), we get

B M [ et < [ aveps [ @vVeR+ [ Veovveve.

Since N*® has non-positive sectional curvature, we conclude from (1.1),
(2.5) and (2.6) that

Thes (142 IVel* + | - 14— A+ e
2 2ns 2ns
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Thus one gets from the divergence theorem that

2 VedV/eVe = % / VeV 2

Mmn n

=—= $*Ae

2 Jasn

1
< - (1 + > ¢*|V/e|?
2ns ) Juyn

(e o

On the other hand, for any [ > 0, we also have

1
(33) 2 Veovveves: /

Mn Mn

VVel?d? + 1 / Vo[,
M”L

Take a sufficiently large [ so that 2ns(1 4+ 1)d > A\;. We get from (3.2)
and (3.3) that

2 VepV/eVe
M’IL
[ Ans(1+1) 21
B <2n8(1 +0)+1 2ns(1+1)+ l) M VeV Veve

< m {— (1 + 27115) /Mn P*|Vel?
+<(1+211w> A1—6>/ne¢2}
g IV CECRTY B
_ m ((1 ; 2}1) M- 5) | e [ avver

12 9
+ 2ns(1+1)+1 / elvel”
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which, combining with (3.1), gives

2ns(1+1) 1
(34) A /Mn ed? < s 1T 41 ((1 + %))\1 — 5) / i ed?

l2
1+ ——mM 2,
+ ( +2ns(1+l)+l>/ n Vel

Fix a point p € M. For r > 0, we choose ¢ to satisfy the properties that

1 on B(p,r)
0 on M™\ B(p,2r)

and
[Vo| < or—!

for some constant C' > 0, where B(p,r) is the geodesic ball of radius r
and center p. Thus, (3.4) becomes

(2ns(1+1)0 — )\1)/

B(p,r)

e<C?r (1 +1)(2ns +1)) / e.
B(p,2r)\B(p,r)
Letting  — oo, the right hand side tends to 0 since f has finite energy.
Since 2ns(1 4+ 1)é > A1, we conclude that e = 0 and consequently f is
constant. This completes the proof of Theorem 1.1. O

Proof of Theorem 1.5: Let eq,...,e,, 1t be a local orthonormal frame
on M such that eq,...,e, when restricted to M form a local orthonor-
mal frame in a neighborhood of a point g € M. Let wi,...,wp11
be the dual coframe. Let w;; be the connection 1-forms of M and
Wnt1i = 2?21 hijw; when restricted to M defines the second funda-
mental form of M. The squared norm of the second fundamental form

of M is then given by
2 _ 2
AP =D _hd.
0,J

The condition that M is stable is characterized by the following inequal-
ity

eo [ (S [ eRen < [ e
3 ,

for any compactly supported function ¢ € Hy o(M™).
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Set e = e(f). Replacing ¢ in (3.5) by /e¢ with ¢ € C§°(M™), we get

/ Zh + Ric(u, 1)

(3.6)

g/ ne|v¢|2+2 ﬁqsv\/évm/w ¢*| Vel

M™
1
[ evor g [ etack [ @wver,

Since M is minimal, we conclude from the Gauss equation that the Ricci
curvature tensor (R;;) of M is given by

(3.7) R;; = ZR(% €k, €j,€k) — Z hikhyj,
k=1 k=1

where R is the curvature tensor of M. Set u, = ZZ:1 farer; then
we have from (2.5), (2.6), (3.7) and the non-positivity of the sectional
curvature of IV that

—Ae> Z filj—i_z szfoczfag

[e3% l,] « Z,]

(38) Zfonj_‘_z RIC uaaua ‘U(X‘ K Ua, Z Zh”f‘”

a,i,j o,

>Zf§ﬂﬂ+z Rlc (Uqr, Uer) \ua| K( ua,u Zh e.

a,i,j

Substituting the above inequality into (3.6), we obtain

69) [ evop=[ & (&mw,mz (Ric(ua, ua>—|ua2f<<ua,u>>>

/ S 12, - Vel

a,t,j



310 Q. WaANG

Observe from the non-negativity of the bi-Ricci curvature of M that

eRic(u, p —|—Z Ric(ua, ta) — [tal*K (ta, 1))

(3.10) =3 {lual? (Ric(u, p) + Ric(ul, ) — K (uly, 1))}

=0,

where w, is the unit vector in the direction wu,. It then follows that

(3.11) [ ovor= [ oS g2, -1vver ).

a,i,j

which, combining with (2.6), gives

(3.12) = [ wver < [ dver
2ns M
Fix a p € M and choose ¢ to be a cut-off function with the properties
5 1 on B(p,r)
|0 on M™\ B(p,3r)
and
1

Vol < =

We then obtain from (3.12) that

/ VP < ().
B(p,r)

Letting » — 00, one knows that e is a constant.
Substituting the above ¢ into (3.11), taking r — co and noticing that
e is constant, we conclude that

fozijzoa V0477;7‘7'7
which in turn implies from (3.8) that

Z (ﬁ(ua,ua) K (g, u Zh e<0

[e3%

By introducing the above ¢ into (3.9), taking » — oo and using (3.10),
we get

€R,1C /,l,, + Z RIC uayua) - K(UQ,M)) =0.
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Therefore
e | Ric(u, p) + Y 0% | > 0.
0,J
On the other hand, it follows by introducing the above ¢ into (3.6) and
taking r — oo that

/e thj—km(u,u) <0.
M

1,J
Hence
(3.13) Zh +Ric(u,p) | =0
holds on M.

Let v be an arbitrary unit tangent vector to M. From the non-
negativity of the bi-Ricci curvature of M for the orthonormal pair {v, u},
it follows that

(3.14) Ric(v, v) + Ric(p, p) — K (v, ) > 0.

Set
v:Zaiei, Za?zl;
i i

then (3.7) implies that the Ricci curvature of M in the direction v sat-
isfies

Ric(v, v) E a;a; R;j

2
= aia;Rei e ej,ex) — (Z aihik>
Ko\ i

.5,k

(3.15) = ZR (v, ex, v, ex) Z (Zaz m)

K2

:TC( ) FU/,L Z(Zaz zk)

> Ric(v,v) — K(v, ) — Zh
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Assume now that e # 0. We get from (3.13)—(3.15) that
RiC(’U, ’U) > —ﬁ(/},’ M) - Z h?j
]

=0.

That is, M has non-negative Ricci curvature and so it has infinite volume
since it is non-compact [Y2]. But this contradicts to the fact that E(f) is
finite. Consequently, we conclude that e = 0 and f is constant. This
completes the proof of Theorem 1.5. O
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