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COMPACT COMPLEX THREEFOLDS OF CLASS L

ASSOCIATED TO POLYNOMIAL AUTOMORPHISMS

OF C3

Karl Oeljeklaus and Julie Renaud

Abstract

We construct new families of non-Kähler compact complex three-
folds belonging to Kato’s Class L. The construction uses certain
polynomial automorphisms of C3. We also study basic properties
of our manifolds.

1. Introduction and Construction

We start by recalling the definition of Kato’s Class L, see [6]. Let

V :=
{
[z0 : z1 : z2 : z3] ∈ P3(C) | |z0|

2 + |z1|
2 > |z2|

2 + |z3|
2
}
.

A (not necessarily compact) irreducible complex space X is said to be of
Class L, if and only if X contains an open subset biholomorphic to U .
M. Kato studied several interesting (smooth) examples and properties of
Class L spaces, see [6] and its references. The aim of the present paper is
to construct new families of examples of non-Kähler class L spaces and
threefolds with fundamental group Z. All previously known examples of
such manifolds where quotients of the complement of two disjoint linear
rational curves in P3(C), which all admit projective structures (see [7]).

In order to simplify the approach, we give the construction and study
the properties in a special case. In the last section we give all quadratic
automorphisms of C3 which allow exactly the same arguments.

Consider the following polynomial automorphism H of C
3

H(x, y, z) =




x2 + cy2 + z

y2 + x

y



 ,
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the constant c ∈ C being chosen arbitrarily. The inverse automorphism
is given by

H−1(x, y, z) =




y − z2

z

x − (y − z2)2 − cz2



 .

We extend H and H−1 to P3 =
{
[x : y : z : t]

}
and, keeping the same

notations, we get:

H [x : y : z : t] = [x2 + cy2 + zt : y2 + xt : yt : t2]

H−1[x : y : z : t] = [yt3 − z2t2 : zt3 : xt3 − (yt − z2)2 − cz2t2 : t4].

The set of indeteminacy of H is given by

I+ = {x = y = t = 0}

which is the point [0 : 0 : 1 : 0], and that of H−1 equals to

I− = {z = t = 0}

which is the projective line
{
[x : y : 0 : 0]

}
.

It is clear that I+ ∩ I− = ∅, i.e. automorphism H is regular in the
sense of Sibony [8].

Definition 1.1. Let M be a metric space and f : M → M a conti-
nous mapping. A compact subset K ⊂ M is called attractor for f if
there is an open neighbourhood V ⊂ M of K such that f(V ) ⋐ V and⋂

n≥0 fn(V ) = K.

We have the following

Proposition 1.2 (see [8]). Let f be a regular polynomial automorphism
of Ck of algebraic degree d ≥ 2 considered as a birational map of Pk(C).
Then the set of indeterminacy I+ of f is an attractor for f−1 and,
conversely, the set of indeterminacy I− of f−1 is an attractor for f .

The hyperplane at infinity minus the indeterminacy set {t = 0} \ I+

is mapped by H to the projective line

X+ := I− = {z = t = 0} =
{
[x : y : 0 : 0]

}

which is an attractor for H .
Let

U+ :=
{
w ∈ C

3, lim
n→∞

Hn(w) ∈ X+
}

be the bassin of attraction of H in C3.
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The automorphism H being algebraic, it follows that its graph gr(H)⊂

C3 × C3 has the property that its topological closure W := gr(H) ⊂
P3 × P3 is a (not necessarily smooth) projective variety. We have the
following commutative diagram

W ⊂ P3 × P3

pr
1

��

pr
2

''P

P

P

P

P

P

P

P

P

P

P

P

P

P3
H

// P3

where pri, i = 1, 2 are the projections to the P3-factors. In the following
we denote by pi the restrictions of pri to W , i = 1, 2.

An easy calculation gives

W = gr(H) ∪ D1 ∪ D2

with

D1 :=
{
[z0 : z1 : z2 : 0], [z2

0 + cz2
1 : z2

1 : 0 : 0]
}

∪
{

[0 : 0 : 1 : 0], [y0 : y1 : 0 : 0]
}
,

D2 :=
{
[0 : 0 : 1 : 0], [y0 : y1 : y2 : 0]

}
.

For the intersection we have l :=D1∩D2 =
{
[0 : 0 : 1 : 0], [y0 : y1 : 0 : 0]

}
.

Let ε > 0 and Vε the neighbourhood of X+ in P3 of the form

Vε :=
{
[z0 : z1 : z2 : z3] ∈ P3 | |z2|

2 + |z3|
2 < ε(|z0|

2 + |z1|
2)

}
.

We note also Bε := ∂Vε the boundary of Vε.
Since X+ is a attractor for H there is an ε > 0 such that

X+ ⊂ Vε ⊂ U+ ∪
(
{z3 = 0}\

{
[0 : 0 : 1 : 0]

})

and

H(Vε) ⋐ Vε.

The mapping p−1
2 ◦ id ◦p1 is biholomorphic onto its image in a open

neighbourhood of p−1
1 (Bε) ⊂ W and therefore allows to identify holo-

morphically the two boundary components p−1
1 (Bε) and p−1

2 (Bε) of the

complex space A := p−1
2 (Vε) \ p−1

1 (Vε). This identification gives rise to
a compact complex space X with a global shell isomorphic B to Bε,
i.e. (X \ B) = A is connected.
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Let N := pr−1
1 (Vε) and M := pr−1

2 (Vε), i.e. A = M \N . The following
scheme illustrates the situation and the gluing up.
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Figure 1. Gluing up.

The coordinates of the points are:

a = [1 : 0 : 0 : 0] [1 : 0 : 0 : 0]

n = [0 : 0 : 1 : 0] [0 : 1 : 0 : 0]

c = [0 : 0 : 1 : 0] [1 : 0 : 0 : 0]

p = [0 : 0 : 1 : 0] [0 : 0 : 1 : 0]

e = [0 : 1 : 0 : 0] [0 : 1 : 0 : 0].

By construction, the space X is the union of the quotient U+/〈H〉Z
and of an irreducible divisor D with π1(D) = Z. Furthermore, the
space X is singular exactly in the points corresponding to l = D1 ∩ D2.
Of course it is possible to resolve the singularities by a finite sequence of
modifications of P3 × P3 in order to obtain a smooth model of X . But
since this process is not unique and does not change any of the properties
discussed in the sequel, we shall work in what follows with the singular
space. This space, and more generally all those that will be constructed



Manifolds of Class L 405

in the same way, provide examples of class L, since there are non-singular
rational curves in B ⊂ X admitting an open neighbourhood isomorphic
to V .

Let us remark that in [7], M. Kato classified all compact manifolds
of class L admitting a projective structure with fundamental group iso-
morphic to Z. We shall see in what follows that our manifolds have this
fundamental group. In view of Kato’s result, it is easy to see that no
smooth model of our spaces does admit any projective structure.

2. Properties

We shall use the same notations as in the previous paragraph.

Proposition 2.1. The fundamental group π1(X) is isomorphic to Z.

Proof: Using the Mayer-Vietoris exact sequence, Van Kampen theorem
and the fact that the space A is simply connected, the proof works like
in [1, pp. 11–12].

We continue by calculating the fundamental group of the attracting
basin U+ ⊂ C3 of H .

Proposition 2.2. π1(U
+) = 1.

Proof: Recall that

Vε =
{
ε(|z0|

2 + |z1|
2) > |z2|

2 + |z3|
2
}

in homogeneous coordinates [z0 : z1 : z2 : z3] in P3. It is evident that
Vε \ {z3 = 0} is simply connected.

Moreover, U+ = ∪n≥0H
−n(Vε \ {z3 = 0}). Let γ : S1 → U+ be a

closed curve with K :=γ(S1). There exists n∈N such as K⊂H−n(Vε\L)
that is such that Hn(K) ⊂ Vε\{z3 = 0}. Since Vε\L is simply connected,
we conclude that the curve γ is trivial in π1(U

+).

Our next step is to give a lower bound of the complex dimension
of H1(X,O).

Proposition 2.3. dimC H1(X,O) ≥ 1.

Proof: We shall show that dim H1(X,O∗)0 ≥ 1. To do so, we construct a

non trivial twisted holmorphic line bundle. We denote by X̃ the universal
cover of X and by H̃ the generator of the fundamental group π1(X)
induced by the initial automorphism H . Let us consider for λ 6= 1 the
map:

X̃ × C −→ X̃ × C

(x, z) 7−→ (H̃(x), λz).
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The projection onto the first component gives

X̃ × C/Z =: Lλ −→ X̃/Z = X.

The bundle Lλ is a flat line bundle and therefore belongs to H1(X,O∗)0,
since π1(X) = Z. Suppose that there exists a non-trivial section σ ∈

H0(X, Lλ). The section σ induces a holomorphic function f : X̃ → C

such that f(H(x)) = λf(x).

We know that X = U+ ∪ D̃/〈H̃〉Z = X̃/〈H̃〉Z, where D̃, the inverse

image of the divisor D in X̃, which is a connected infinite chaine of

rational surfaces. Here we have noted by 〈H̃〉Z the group generated by

the automorphism H̃ .
The function f is necessarly equal to zero on the irreducible compo-

nents of D̃, hence on the whole divisor D̃ ⊂ X̃ by connexity.
In what follows we shall see that there is a surface with global sperical

shell (GSS) naturally associated to the space X .
For the sake of simplicity, we consider the case c = 0, the other cases

working analogously. Then the automorphism H is given by

H(x : y : z : t) = (x2 + tz : y2 + tx : ty : t2).

The point p = [1 : 1 : 0 : 0] in l = X+ is a fixed point of saddle type.
This is seen by an easy calculation: there are two eigenvalues equal to
zero and one with absolute value strictly greater than one. At the point
p, there exists locally a stable manifold noted by Ws(p) ⊂ Vε which is
transversal to the attractor l, see [8]. Let V be a neighbourhood of 0 ∈ C2

immersed onto the stable manifold. This gives rise to the commutative
diagram:

(V , 0) −−−−→
ϕ

(V , 0)
yι

yι

Ws(p)
H

−−−−→ Ws(p)

where ι denotes the immersion and ϕ the induced selfmapping of (V , 0).
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Figure 2. Stable manifold Ws.

Coordinates:

a = [1 : 0 : 0 : 0]

b = [0 : 0 : 1 : 0]

c = [0 : 1 : 0 : 0]

p = [1 : 1 : 0 : 0]

e = [0 : 0 : 0 : 1].

Let C(ϕ) = ι−1(ι(V) ∩ L) (where L = {t = 0} is the hyperplane at
infinity) be the critical set of ϕ.

The restriction of ϕ to V \C(ϕ) is injective hence biholomorphic onto
its image. Consequently, ϕ is a strict germ of topological degree 1.
According to Ch. Favre [4], ϕ is a Dloussky germ and thus defines a
compact complex surface S with global spherical shell.

Now the holomorphic function f induces a holomorphic function h :=
ι ◦ f on V with h ◦ ϕ = λh, which is zero on C(ϕ). Since λ 6= 1, the
function h is identically zero on V . This follows from the well-known fact
that holomorphically non-trivial flat line bundles on surfaces with GSS
have no non-trivial holomorphic sections, see e.g. [3].

We consider the increasing union

Y :=
⋃

n≥0

H−n(Ws(p)\L) ⊂ U+,
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which is a 2-dimensional connected immersed submanifold of U+ and
which is, as an abstract manifold, biholomorphic to the complement of

the maximal divisor in the universal covering S̃ of the above mentioned
compact surface with GSS. Its topological closure in P3(C) contains all
the projective lines of the form

{
[x : y : t : 0] | t ∈ C

}
, where x/y ∈ S1

is a 2m-root of unity for some m ∈ N. Therefore the quotient S′ :=
Y/〈H〉Z ⊂ X is not contained in any closed complex hypersurface of X .
Since the function h is identically zero, this is implies that the section
σ ∈ H0(X, Lλ) vanishes identically, a contradiction to our assumption.
We have proved

dimH1(X,O) ≥ 1.

Now we show that there are no meromorphic functions on X .

Proposition 2.4. The algebraic dimension of the space X is equal to
zero.

Proof: We consider again S′ := Y/〈H〉Z ⊂ X which is, as an abstract
manifold biholomorphic to the complement of the maximal divisor in
the GSS surface S. Let us suppose that there exists a meromorphic
function f on X . Then f is constant on S′ according to the properties
of surfaces with global spherical shell. Since S′ is not contained in any
hypersurface in X , the function f is constant on X . Therefore, the
algebraic dimension a(X) is equal to zero.

3. Regular quadratic automorphisms allowing the
construction

The example with which we have worked for the moment is just a
particular case of a regular quadratic automorphism of C3 having a pro-
jective line as an attractor at infinity; such automorphims belong to the
fourth and fifth class in the classification of Fornæss-Wu. We shall give
their list.

Those of the fourth class for which we can construct a compact com-
plex space with global shell isomorphic to B are of the form:

H4(x, y, z) =





x2 + αxy + βy2 + δy + γ + az

y2 + ν + x

y

the coefficients are chosen arbitrarily with a 6= 0.
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The inverse automorphism is of the form

H−1
4 (x, y, z) =





y − ν − z2

z

1

a

(
x − P (y, z)

)
, P having degz(P ) = 4.

These automorphisms admit as set of indeterminacy the point

I+ = [0 : 0 : 1 : 0];

the inverse automorphisms the set I− = {z = t = 0}; we check immedi-
ately that I+ ∩ I− = ∅.

By the action of H4, the hyperplane at infinity {t = 0} minus I+ is
mapped to the P1 attractor X+ = [x : y : 0 : 0].

In order to get the topological closure of the graph in P3×P3 one has
to add the two divisors

D1 :=
{
[z0 : z1 : z2 : 0], [z2

0 + αz0z1 + βz2
1 : z2

1 : 0 : 0]
}

∪
{
[0 : 0 : 1 : 0], [y0 : y1 : 0 : 0]

}

D2 :=
{
[0 : 0 : 1 : 0], [y0 : y1 : y2 : 0]

}
.

As for the automorphisms of the fifth class, they are of the form:

H5(x, y, z) =





y2 + αxy + βx2 + δx + γ + az

x2 + θ + y

x

the constants are chosen arbitrarily with a 6= 0. The inverse automor-
phism is of the form

H−1
5 (x, y, z) =





z

y − θ − z2

1

a

(
x − P (y, z)

)
, P having degz(P ) = 4.

These automorphisms admit as the indetermination set the point

I+ = [0 : 0 : 1 : 0];

as for the inverse automorphisms the set I− = {z = t = 0}; it is again
clear that I+∩I− = ∅ and that H5 maps the hyperplane at infinity {t=0}
minus I+ to the P1 attractor X+ = [x : y : 0 : 0].
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Furthermore, for the topological closure of the graph in P3 × P3 one
adds

D1 :=
{

[z0 : z1 : z2 : 0], [z2
1 + αz0z1 + βz2

0 : z02 : 0 : 0]
}

∪
{

[0 : 0 : 1 : 0], [y0 : y1 : 0 : 0]
}

D2 :=
{

[0 : 0 : 1 : 0], [y0 : y1 : y2 : 0]
}
.

4. Conclusion

We gather the different results in:

Theorem 4.1. The regular quadratic automorphisms of C3 in the list
of Fornæss-Wu [5] from which one can construct a compact complex
threedimensional space of class L with a global spherical shell isomorphic
to B are:

(1) In the fourth class, those of the form

H4(x, y, z) =





x2 + αxy + βy2 + δy + γ + az

y2 + ν + x, a 6= 0

y.

(2) In the fifth class, those of the form

H5(x, y, z) =





y2 + αxy + βx2 + δx + γ + az

x2 + θ + y, a 6= 0

x.

The space X has the following properties:

• the fundamental group is π1(X) = Z,

• the fundamental group of the attraction basin in C3 is: π1(U
+) = 1,

• dimH1(X,O) ≥ 1,

• the algebraic dimension is equal to zero: a(X) = 0.
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Primera versió rebuda el 6 de setembre de 2005,
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