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L
p REGULARITY OF THE DIRICHLET PROBLEM FOR

ELLIPTIC EQUATIONS WITH SINGULAR DRIFT

Cristian Rios

Abstract

Let L0 and L1 be two elliptic operators in nondivergence form,
with coefficients Aℓ and drift terms bℓ, ℓ = 0, 1 satisfying

sup
|Y −X|≤

δ(X)
2

|A0 (Y ) − A1 (Y )|2 + δ (X)2 |b0 (Y ) − b1 (Y )|2

δ (X)
dX

is a Carleson measure in a Lipschitz domain Ω ⊂ R
n+1, n ≥ 1,

(here δ (X) = dist (X, ∂Ω)). If the harmonic measure dωL0
∈ A∞,

then dωL1
∈ A∞. This is an analog to Theorem 2.17 in [8] for

divergence form operators. As an application of this, a new ap-
proximation argument and known results we are able to extend
the results in [10] for divergence form operators while obtaining
totally new results for nondivergence form operators. The theo-
rems are sharp in all cases.

1. Introduction and Background

Given a bounded Lipschitz domain Ω ⊂ R
n+1, n ≥ 1, and an opera-

tor L given by

L =

{

div A∇ (divergence fom) or

A · ∇2 (nondivergence form),

the harmonic measure at X ∈ Ω, dωX
L , is the unique Borel measure

on ∂Ω such that for all continuous functions g ∈ C (∂Ω),

u (X) =

∫

∂Ω

g (Q) dωX
L (Q)
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is continuous in Ω and it is the unique solution to the Dirichlet problem

(1.1)

{

Lu = 0 in Ω

u = g on ∂Ω.

Where we assume that the equality Lu = 0 holds in the weak sense for
divergence form operators and in the strong a.e. sense for nondivergence
form operators. Here A = A (X) is a symmetric (n+ 1) × (n+ 1) ma-
trix with bounded measurable entries, satisfying a uniform ellipticity
condition

(1.2) λ |ξ|2 ≤ ξ · A (X) ξ ≤ Λ |ξ|2 , X, ξ ∈ R
n+1,

for some positive constants λ, Λ. In the nondivergence case the entries
of the matrix A are assumed to belong to BMO(Ω) with small enough
norm. For a given operator L, the harmonic measures dωX

L , X ∈ Ω, are
regular probability measures which are mutually absolutely continuous
with respect to each other. That is,

k (X,Y,Q) =
dωY

L

dωX
L

(Q) ∈ L1
(

dωX
L , ∂Ω

)

, X, Y ∈ Ω, Q ∈ ∂Ω.

By the Harnack’s principle the kernel function k (X,Y,Q) is positive and
uniformly bounded in compact subsets of Ω×Ω×∂Ω. As a consequence,
to study differentiability properties of the family

{

dωX
L

}

X∈Ω
with respect

to any other Borel measure dν on ∂Ω, it is enough to fix a point X0 ∈ Ω
and study dω

dν
, where dω = dωX0

L is referred as the harmonic measure
of L on ∂Ω. If there is unique solvability of the continuous Dirichlet
problem and a boundary Maximum Principle is available, then the well
definition of the harmonic measure follows from Riesz’s representation
theorem.

Definition 1.1 (Continuous Dirichlet problem - CD). Given an elliptic
operator L, we say that the continuous Dirichlet problem is uniquely
solvable in Ω, and we say that CD holds for L, if for every continuous
function g on ∂Ω, there exists a unique solution u of (1.1), such that
u ∈ C0

(

Ω
)
⋂

W 2,p (Ω) for some 1 ≤ p ≤ ∞.

Remark 1.2. By Theorem 3.2 below [16], a sufficient condition for CD
to hold for a nondivergence form operator L = A · ∇2 is that there
exists ρ > 0 depending on n and the ellipticity constants such that

(1.3) ‖A‖BMO(Ω) ≤ ρ,

where ‖·‖BMO(Ω) denotes the BMO norm in Ω (see Definition 3.1 be-

low). It is not known whether or not the continuous Dirichlet problem
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is uniquely solvable in the case of elliptic nondivergence form operators
with just bounded measurable coefficients. On the other hand, even
under the restrictions (1.3) for any ρ > 0 it is known [18] that the con-
tinuous Dirichlet problem has non-unique “good solutions”. That is, for
any ρ > 0 there exists A (X) ∈ BMO(Ω) with ‖A‖BMO(Ω) ≤ ρ and

two sequences of C∞ symmetric matrices A0,j and A1,j with the same
ellipticity constants as A, such that Aℓ,j (X) → A (X) as j → ∞ for
a.e. X , ℓ = 0, 1, and such that for some continuous function g on ∂Ω the
solutions u0,j and u1,j to the Dirichlet problems

{

L0,ju0,j = 0 in Ω

u0,j = g on ∂Ω,
and

{

L1,ju1,j = 0 in Ω

u1,j = g on ∂Ω,

converge uniformly in Ω̄ to different continuous limits u0 and u1.

Given two regular Borel measures µ and ω in ∂Ω, dω ∈ A∞ (dσ) if
there exist constants 0 < ε, δ < 1 such that for any boundary ball ∆ =
∆r (Q) and any Borel set E ⊂ ∆,

µ (E)

µ (∆)
< δ =⇒

ω (E)

ω (∆)
< ε.

The relation dω ∈ A∞ (dµ) is an equivalence relation [15], and any two
measures related by the A∞ property are mutually absolutely continuous
with respect to each other. From classic theory of weights, if dω ∈
A∞ (dµ) then there exists 1 < q < ∞ such that the density h = dω

dµ

satisfies a reverse Hölder inequality with exponent q:

{

1

µ (∆)

∫

∆

hq dµ

}
1
q

≤ C
1

µ (∆)

∫

∆

h dµ.

This property is denoted dω ∈ Bq (dµ), and dω ∈ Bq (dµ) is equivalent
to the fact that the Dirichlet problem (1.1) for the operator L is solvable
in Lp (dµ, ∂Ω), 1

p
+ 1

q
= 1 (see [7] for details). When µ = σ, the Euclidean

measure, we write A∞ for A∞ (dσ).

Definition 1.3 (Lp - Dirichlet problem, Dp). Let L be an elliptic op-
erator that satisfies CD and let µ be a doubling measure in ∂Ω. We
say that the Lp (dµ)-Dirichlet problem is uniquely solvable in Ω, and we
write that Dp (dµ) holds for L, if for every continuous function g on ∂Ω,
the unique solution u of (1.1) satisfies

‖Nu‖Lp(dµ) ≤ C ‖g‖Lp(dµ) ,
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for some constant independent of g. Here Nu denotes the nontangential
maximal function of u on ∂Ω. When µ = σ is the Lebesgue measure
on ∂Ω we simply say that Dp holds for L.

Definition 1.4 (Carleson measure). Let Ω be an open set in R
n+1 and

let µ be a nonnegative Borel measure on ∂Ω. ForX∈∂Ω and r>0 denote
by △r (X)={Z∈∂Ω : |Z −X | < r} and Tr (X)={Z∈Ω : |Z −X | < r}.
Given a nonnegative Borel measure ν in Ω, we say that ν is a Carleson
measure in Ω with respect to µ, if there exist a constant C0 such that for
all X ∈ ∂Ω and r > 0,

ν (Tr (X)) ≤ C0µ (△r (X)) .

The infimum of all the constants C0 such that the above inequality holds
for all X ∈ ∂Ω and r > 0 is called the Carleson norm of ν with respect
to µ in Ω. For conciseness, we will write ν ∈ C (dµ,Ω) when v is a
Carleson measure in Ω, and we denote by ‖ν‖

C(dµ,Ω) its Carleson norm.

When µ = σ is the Lebesgue measure on ∂Ω we just say that ν is a
Carleson measure in Ω.

Definition 1.5. Throughout this work, Qγ (X) denotes a cube centered
at X with faces parallel to the coordinate axes and sidelength γ; i.e.

Qγ (X)=
{

Y = (y1, . . . , yn+1) ∈ R
n+1 : |yi − xi| <

γ

2
, i=1, . . . , n+ 1

}

.

When X belongs to a domain Ω, we write δ (X) = dist (X, ∂Ω). In
particular, when Ω = R

n+1
+ and X ∈ Ω, it follows that δ (X) = xn+1.

In the remarkable work [7], the authors established a perturbation
result relating the harmonic measures of two operators in divergence
form. The analogue result was later obtained by the author in [17] for
nondivergence form operators.

Theorem 1.6 ([7]–[17]). Let Ld,0 = div A0∇ and Ld,1 = div A1∇ be
two elliptic operators with bounded measurable coefficients in Ω, and let
ωd,0 and ωd,1 denote their respective harmonic measures. Let σ be a
doubling measure on ∂Ω and suppose that

(1.4) δ (X)
−1

sup
Y ∈Q δ(X)

2
√

n

|A0 (Y ) − A1 (Y )|2 dX ∈ C (dσ,Ω) .

If dωd,0 ∈ A∞ then dωd,1 ∈ A∞. Also, if CD holds for the opera-
tors Ln,0 = A0 ·∇2 and Ln,1 = A1 ·∇2 (see Definition 1.1), then their re-
spective harmonic measures ωn,0, ωn,1, satisfy dωn,0∈A∞⇒dωn,1∈A∞.
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The theorems above were stated in terms of the supremum of the

differences |A0 (Y ) − A1 (Y )| for Y in Euclidean balls |Y −X | < δ(X)
2 .

The above formulation is equivalent. In [8], Theorem 1.6 was extended
to elliptic divergence form operators with a singular drift:

Theorem 1.7 (Theorem 1.9, Chapter III of [8]). If LD,0 = div A0∇ +
b0 · ∇ and LD,1 = div A1∇+b1 · ∇ where A0 and A1 satisfy (1.4), and

bi =
(

bij
)n+1

j=1
, i = 0, 1 satisfy

(1.5) δ (X) sup
Y ∈Q δ(X)

2
√

n

(X)

|b1 (Y ) − b0 (Y )|2 dX ∈ C (dσ,Ω) ,

then dωD,0 ∈ A∞ ⇒ dωD,1 ∈ A∞.

The results in Theorems 1.6 and 1.7 concern perturbation of elliptic
operators. They provide solvability for the Lq Dirichlet problem (for
some q > 1) for an operator L1 given that there exists an operator L0

for which the Lp Dirichlet problem is solvable for some p > 1 and the
disagreement of their coefficients satisfy the Carleson measure condi-
tions (1.4) and (1.5). In [10], the authors answer a different question:
What are sufficient conditions on the coefficients A and b so that a given
operator LD = div A∇ + b has unique solutions for the Lp-Dirichlet
problem for some p > 1? See also [9].

Theorem 1.8 ([10]). Let LD = div A∇ + b · ∇, where A satisfies

(1.6) δ (X) sup
|Y −X|≤ δ(X)

2

|∇A (Y )|2 dX ∈ C (dσ,Ω) ,

and b satisfies

δ (X) sup
Y,Z∈Q δ(X)

2
√

n

(X)

|b (Y ) − b (Z)|2 dX ∈ C (dσ,Ω) .

Then dωLD
∈ A∞.

2. Statement of the results

One of the main results in this work is an analog of Theorem 1.7 for
nondivergence form operators.
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Theorem 2.1. Let LN,0=A0·∇2+b0·∇ and LN,1 = A1∇2+b1·∇ where

Aℓ =
(

Aℓ
ij

)n+1

i,j=1
and bℓ =

(

bℓj
)n+1

j=1
ℓ = 0, 1 are measurable coefficients

and Aℓ satisfy the ellipticity condition (1.2) for ℓ = 0, 1 in a bounded
Lipschitz domain Ω. Suppose that CD holds for LN,ℓ, ℓ = 0, 1 and that

(2.1)
{

sup
Y∈Q δ(X)

2
√

n

(X)

|A1(Y )−A0(Y )|2+δ2(X) |b1(Y )−b0(Y )|2

δ (X)

}

dX∈C (dσ,Ω) ,

where σ is Lebesgue’s measure on ∂Ω. Then dωN,0∈A∞ ⇒ dωN,1 ∈ A∞.
That is, if the Lp-Dirichlet problem is uniquely solvable for LN,0 in Ω,
for some 1 < p < ∞, then there exists 1 < q1 < ∞ such that the
Lq-Dirichlet problem is uniquely solvable for LN,1 in Ω, 1 ≤ q ≤ q1.

As an application of this result, Theorem 1.6 (nondivergence case)
and a simple averaging of the coefficients argument we obtain an analog
to Theorem 1.8. Moreover, this averaging argument and Theorem 1.7
yield an extension of Theorem 1.8 to the case when condition (1.6) is
replaced by the weaker assumption (1.4).

Remark 2.2. In the divergence form case considered in [8], it was only
necessary to assume that condition CD held for just the operator LD,0,
and not both of LD,0 and LD,1. As mentioned in Remark 1.2, in the non-
divergence case there is no well defined notion of solution for operators
with measurable coefficients satisfying the hypotheses of Theorem 2.1.
Hence, without the CD assumption the harmonic measure for LN,1 would
not be defined in general.

To make the statements of the results below more concise, we intro-
duce the following definition.

Definition 2.3 (Oscillation). For r > 0, the r-oscillation of a mea-
surable function f (X) (scalar or vector-valued) at a point X , denoted
oscr f (X), is given by

oscr f (X) = sup
Y,W∈Qr(X)

|f (W ) − f (Z)| .
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Theorem 2.4. Let LD = div A∇ + b · ∇ and LN = A · ∇2 + b · ∇ be
uniformly elliptic operators in divergence form and nondivergence form,
respectively, with bounded measurable coefficient matrix A and drift vec-
tor b in a bounded Lipschitz domain Ω. In the nondivergence case we
assume that CD holds for LN . Suppose that the coefficients A, b satisfy

(2.2)

(

osc δ(X)

2
√

n

A (X)

)2

+ δ2 (X)

(

osc δ(X)

2
√

n

b (X)

)2

δ (X)
dX ∈ C (dσ,Ω) .

Then dωLD
∈ A∞ and dωLN

∈ A∞. That is, there exist indexes 1 <
pD, pN < ∞ such that the Lp-Dirichlet problem is uniquely solvable
for LD in Ω, 1 ≤ p ≤ pD, and the Lq-Dirichlet problem is uniquely
solvable for LN in Ω, 1 ≤ q ≤ pN .

Remark 2.5. The following extensions and generalizations can be ob-
tained (and might be subject for a subsequent work):

(1) The techniques used to obtain Theorems 2.1 and 2.4 also yield ana-
log results with the Euclidean measure dσ replaced by any doubling
measure dµ on ∂Ω.

(2) Appropriate parabolic versions of Theorems 2.1 and 2.4 are possi-
ble in the nondivergence case (the divergence case was considered
in [8]).

(3) Stronger conclusions can be obtained in Theorems 2.1 and 2.4 if the
Carleson measure conditions are replaced by vanishing Carleson
measures (the Carleson norm vanishes as the radius of the regions
goes to zero). Under such assumptions, it can be shown that the
harmonic measures dω·,0 and dω·,1 from Theorem 2.1 preserve the
Ap condition for any 1 ≤ p ≤ ∞. That is, dω·,0 ∈ Ap ⇒ dω·,1 ∈ Ap.
In the case of Theorem 2.4, it can be shown that under vanishing
Carleson measure conditions dωLD

∈ A1 and dωLN
∈ A1.

2.1. The theorems are sharp. In [7] it was shown that Theorem 1.6
is sharp for divergence form equations in two fundamental ways (see The-
orems 4.11 and 4.2 in [7]). The examples provided in that work were
constructed using Beurling-Ahlfors quasiconformal mappings on the half
plane R

2
+ [2]. Quasi-conformal mappings preserve the divergence form-

structure of an elliptic operator LD, but when composed with a nondi-
vergence form operator LN the transformed operator has first order drift
terms.

The more recent work [10] for divergence form operators (Theo-
rem 1.8) can be applied to obtain regularity of elliptic equation in nondi-
vergence form in the special case that the coefficient matrix satisfies (1.6).
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The approximation technique to be introduced in the next section, to-
gether with Theorem 2.1, show that Theorem 1.8 can be extended to
operators in divergence and nondivergence form with coefficients sat-
isfying the weaker condition (2.2). At the same time, this opens the
door to extend the scope of the examples provided in Theorem 1.6 to
this wider class of operators. The following theorem is a nondivergence
analog to Theorem 4.11 in [7].

Theorem 2.6. Given any nonnegative function α (X) in R
2
+ = {(x, t) :

t > 0} such that α (X) satisfies the doubling condition: α (X) ≤ Cα (X0)
for all X = (x, t), X0 = (x0, t0) : |X −X0| <

t0
2 and such that

sup
Y ∈Q δ(X)

2
√

n

(X)

α (Y )
2

δ (X)
dX /∈ C

(

dσ, [0, 1]2
)

,

where dσ is the Euclidean measure in ∂
(

[0, 1]
2
)

and δ ((x, t)) = t. There

exists a coefficients matrix A such that

(1) the function a (X) = supY ∈Q δ(X)
2
√

n

(X) |A (Y ) − I|, satisfies that for

all I ⊂ R,

1

|I|

∫∫

T (I)

a2 (x, y) dx
dy

y
≤ C

[

1

|I|

∫∫

T (2I)

α2 (x, y) dx
dy

y
+ 1

]

;

(2) the function ã (X) = oscQ δ(X)

2
√

n

A (X), satisfies that for all I ⊂ R,

1

|I|

∫∫

T (I)

ã2 (x, y) dx
dy

y
≤ C

[

1

|I|

∫∫

T (2I)

α2 (x, y) dx
dy

y
+ 1

]

;

and

(3) if LN = A · ∇2 on R
2
+, the elliptic measure dωLN

is not in
A∞ (dx, [0, 1]).

The above theorem shows that the Carleson measure condition (1.4)
in Theorem 1.6 is sharp also in the nondivergence case. In particular,
it shows that the main result in [17] is sharp. The proof is a simple
application of Theorem 4.11 in [7] and the approximation argument given
in the section below (Lemma 3.9). Indeed, by Theorem 4.11 in [7] there
exists a coefficients matrix A such that (1) and (2) hold for A and
(3) holds for dωLD

, with LD = div A∇. For simplicity, let say that
two elliptic operators L0 and L1 are simultaneously in A∞, and write
L0 ≈ L2 if their respective harmonic measures dωL0 and dωL1 satisfy:
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dωL0 ∈ A∞ ⇔ dωL1 ∈ A∞. Using Lemma 3.9 we can construct a
coefficient matrix A∗ such that if L∗ = div A∗∇ = A∗ · ∇2 + b · ∇ and
L∗

N = A∗ · ∇2 then Theorems 2.1 and 2.4 can be applied to show that
LD ≈ L∗ ≈ L∗

N ≈ LN . See the proof of Theorem 2.1 in Section 4 for a
detailed application of this technique.

2.2. Organization of the paper. In the following section we define
several function spaces where the coefficients or the solutions to our
equations will belong. The basic objects associated to the geometry
of Lipschitz domains are also introduced. In this section we also list
useful known properties of solutions and the harmonic measure, and we
establish some auxiliary results that will allow us to treat the problems
locally. In Section 4 we prove Theorem 2.1 by reducing it to a special case
(Theorem 2.1). Theorem 2.4 then follows from the result just established
and previous theory. Finally, in Section 4.1 we prove Theorem 2.1 by
implementing the techniques from [17] (originally adapted from [7]) to
this special case.

Acknowledgement. We are grateful to the referee for useful comments
and insights that added clarity and elegance to the exposition. In par-
ticular we wish to acknowledge the referee’s suggestions leading to a
simplification of the proof of Theorem 2.4.

3. Preliminary results

Given a weight w in the Muckenphout class Ap (Ω), we denote by
Lq (Ω, w), 1 ≤ p ≤ q < ∞, the space of measurable functions f such
that

‖f‖Lq(Ω,w) =

(
∫

Ω

|f (x)|q w (x) dx

)

<∞.

And for a nonnegative integer k, we define the Sobolev space W k,q (Ω, w)
as the space of functions f in Lq (Ω, w) such that f has weak deriva-
tives up to order k in Lq (Ω, w). Under the assumption w ∈ Ap, the
space W k,q (Ω, w) is a Banach space and it is also given as the closure
of C∞

0 (Ω) (smooth functions of compact support in Ω) under the norm

‖f‖W k,q(Ω,w) =
k

∑

ℓ=0

∥

∥∇ℓf
∥

∥

Lq(Ω,w)
,

see [6], [11]. We recall now some definitions.
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Definition 3.1 (BMO). Given a locally integrable function f in Ω ⊂ R
n,

the BMO modulus of continuity of f , ηΩ,f (r), is given by

(3.1) ηΩ,f (r) = sup
x∈Ω

sup
0<s≤r

1

|Bs (x)
⋂

Ω|

∫

Bs(x)
T

Ω

|f (y) − fs (x)| dy,

where

fs (x) =
1

|Bs (x)
⋂

Ω|

∫

Bs(x)
T

Ω

f (z) dz.

The space BMO(Ω) of functions of bounded mean oscillation in Ω is
given by

BMO(Ω) =
{

f ∈ L1
loc (Ω) : ‖ηΩ,f‖L∞(R+) <∞

}

.

For ̺ ≥ 0, we let BMO̺ (Ω) be given by

BMO̺ (Ω) =

{

f ∈ BMO (Ω) : lim inf
r→0+

ηΩ,f (r) ≤ ̺

}

.

It is easy to check that BMO̺ (Ω) is a closed convex subset of BMO (Ω)
under the BMO norm ‖f‖BMO(Ω)=‖ηΩ,f‖L∞(R+). When ̺=0, BMO0 (Ω)

is the space VMO (Ω) of functions of vanishing mean oscillation. We say
that a vector or matrix function belongs to a space of scalar functions X
if each component belongs to that space X . For example, we sat that
the coefficient matrix A ∈ BMO if Aij ∈ BMO for 1 ≤ i, j ≤ n+ 1. The
following theorem establishes the solvability of the continuous Dirichlet
problem for a large class of elliptic operators in nondivergence form. In
particular, for such operators the harmonic measure is well defined.

Theorem 3.2 ([16]). Let Ln = A · ∇2 be an elliptic operator in non-
divergence form in Ω ⊂ R

n+1 with ellipticity constants (λ,Λ). There
exists a constant ̺ = ̺ (n, λ,Λ), such that if A ∈ BMO̺ (Ω) then for
every g ∈ C (∂Ω) there exists a unique

u ∈ C
(

Ω̄
)

⋂

1≤p<∞

W 2,p
loc (Ω)

such that Lnu = 0 in Ω and u ≡ g on ∂Ω. Moreover, for any subdomain
Ω′

⋐ Ω and 1 ≤ p < ∞, there exists C = C (n, λ,Λ, p,Ω, dist (Ω′, ∂Ω))
such that the above solution satisfies

‖u‖W 2,p(Ω′)≤C ‖u‖
Lp(Ω̃′) , where Ω̃′=

{

X∈Ω : δ (X)>
1

2
dist (Ω′, ∂Ω)

}

.
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Theorem 3.3. Let w ∈ Ap, p ∈ [n,∞) and Ω ⊂ R
n be a Lips-

chitz domain. For any 0 < λ ≤ Λ < ∞ there exist a positive ̺ =
̺(n, p, λ,Λ, |[w]|Ap

), such that if LN=A (X) · ∇2, A ∈ BMOρ (Ω) then

for any f ∈ Lp(Ω, w), there exists a unique u ∈ C(Ω)
⋂

W 2,p
loc (Ω, w)

such that LNu = f in Ω and u = 0 on ∂Ω. Moreover, if ∂Ω is of
class C2, then u ∈ W 1,p

0 (Ω, w)
⋂

W 2,p(Ω, w) and there exists a posi-
tive c = c(n, p, λ,Λ, |[w]|Ap

, ηΩ,A, ∂Ω), with ηΩ,A given by (3.1), such
that

‖u‖W 2,p(Ω,w) ≤ c‖f‖Lp(Ω,w).

The following comparison principle is the main tool that allows us to
treat nondivergence form equations with singular drift. Since we assume
that our operator satisfies CD, the result from [1] originally stated in a C2

domain and for continuous coefficients extends to the more general case
stated here. Before stating the theorem, we introduce more notation.

If Ω ⊂ R
n+1 is a Lipschitz domain and Q ∈ ∂Ω, r > 0, we define the

boundary ball of radius r at Q as

△r (Q) = {P ∈ ∂Ω : |P −Q| < r} .

The Carleson region associated to △r (Q) is

Tr (Q) = {X ∈ Ω : |X −Q| < r} .

The nontangential cone of aperture α and height r at Q, α, r > 0, is
defined by

Γα,r (Q) = {X ∈ Ω : |X −Q| < (1 + α) δ (X) < (1 + α) r} .

Theorem 3.4 (Comparison Theorem for Solutions [1]). Let Ω ⊂ R
n+1

be a Lipschitz domain and L = A · ∇2 + b · ∇, be a uniformly elliptic
operator such that b satisfies

(3.2) δ (X) sup
Y ∈Q δ(X)

2
√

n

(X)

|b (Y )|2 dX ∈ C (dσ,Ω)

and L satisfies CD. There exists a constant C, r0 > 0 depending only
on L and Ω such that if u and v are two nonnegative solutions to Lw = 0
in T4r (Q), for some Q ∈ ∂Ω, and such that u ≡ v ≡ 0 continuously on
△2r (Q), then

C−1 u (X)

u (Xr (Q))
≤

v (X)

v (Xr (Q))
≤ C

u (X)

u (Xr (Q))
,

for every X ∈ Tr (Q), 0 < r < r0. Here Xr (Q) ∈ Ω with dist (Xr (Q)) ≈
|X −Q| ≈ r.
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Remark 3.5. In [1] the hypothesis on b is δ (X) |b (X)| ≤ η (δ (X)) where
η is an non-decreasing function such that η (0) = lims→0+ η (s) = 0.
Nevertheless, the main tools used to obtain Theorem 3.4 were

(1) L satisfies property DP
(2) a maximum principle
(3) Harnack inequality.

We assume (1) holds, while (2) and (3) follow as in [1] once we notice
that (3.2) implies that b is locally bounded in Ω. Therefore, Theorem 3.4
also holds under our assumptions.

We list now some consequences of the above result that will be useful
to us.

Lemma 3.6. Let Ω ⊂ R
n+1 be a Lipschitz domain and L = A · ∇2 +

b · ∇, be a uniformly elliptic operator such that b satisfies (3.2) and L
satisfies CD. Let △r (Q), Tr (Q), Xr (Q) and r0 be as in Theorem 3.4.
Let △ = △r (Q) for some 0 < r ≤ r0 and Q ∈ ∂Ω.

(1) ωXr(Q) (△) ≈ 1.

(2) If E ⊂ △ and X ∈ Ω\T2r (Q), then

ωXr(Q) (E) ≈
ωX (E)

ωX (△)
.

(3) (Doubling property) ωX (△r (Q)) ≈ ωX (△2r (Q)) whenever X ∈
Ω\T2r (Q).

An important consequence of the properties listed in Lemma 3.6 is the
following analog to the “main lemma” in [4]. Before stating the result
we need to introduce the concept of saw-tooth region.

Definition 3.7 (Saw-tooth region). Given a Lipschitz domain Ω and
F ⊂∂Ω a closed set, a “saw-tooth” region ΩF above F in Ω of height r>0
is a Lipschitz subdomain of Ω with the following properties:

(1) for some 0 < α < β, 0 < c1 < c2 and all α < α′ < α′′ < β,
⋃

P∈F

Γα′,c1r (P ) ⊂ ΩF ⊂
⋃

P∈F

Γα′′,c2r (P ) ;

(2) ∂Ω
⋂

∂ΩF = F ;

(3) there existsX0 ∈ ΩF (the center of ΩF ) such that dist (X0, ∂ΩF ) ≈
r;

(4) for any X ∈ Ω, Q ∈ ∂Ω such that X ∈ Γα0,r0 (Q)
⋂

ΩF 6= ∅,
∃ P ∈ F : Q δ(X)

2
√

n

(X) ⊂ Γα0,r0 (P );
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(5) ΩF is a Lipschitz domain with Lipschitz constant depending only
on that of Ω.

With these provisos, now we state the following:

Lemma 3.8. Let Ω be a Lipschitz domain and L = A · ∇2 + b · ∇, be
a uniformly elliptic operator that satisfies CD. Let F ⊂ ∂Ω be a closed
set, and let ΩF be a saw-tooth region above F in Ω. Let ω = ωL,Ω and

let ν = ωX0

L,ΩF
, where X0 is the center of ΩF . There exists θ > 0 such

that
ω (E

⋂

F )

ω (△)
≤ ν

(

E
⋂

F
)θ

, for E ⊂ △ = △r (Q) .

Here θ depends on the Lipschitz character of Ω, but not on E or △.

The following result will allow us to relax the hypothesis (1.6) in
Theorem 1.8. We adopt the following notation

W = (w, r) , where w = (w1, . . . , wn) , r = wn+1

Y = (y, s) , where y = (y1, . . . , yn) , s = yn+1

X = (x, t) , where x = (x1, . . . , xn) , t = xn+1.

Given a measurable function f (X) and γ > 0, we recall that the oscil-
lation of f in the cube Qγ (X) (see Definition 1.5) is given by

oscγ f (X) = sup
Y,W∈Qγ(X)

|f (W ) − f (Z)| .

Lemma 3.9. Let Ω be a Lipschitz domain in R
n+1, µ be a doubling

measure on ∂Ω, δ (X) = dist (X, ∂Ω), and suppose that g is a measurable
function (scalar or vector valued) such that for some constant 0 < α < 1
it satisfies

dν = δ (X) oscαδ(X) g (X)
2
dX ∈ C (dµ,Ω) .

The for every Lipschitz subdomain Ω̃ ⊂ Ω, there exists a doubling mea-
sure µ̃ on ∂Ω̃, with doubling constant depending only on the doubling
constant of µ, such that µ̃ = µ in ∂Ω

⋂

∂Ω̃, and

dν̃ = δ̃ (X) oscαδ(X) g (X)
2
dX ∈ C

(

dµ̃, Ω̃
)

,

where δ̃ (X) = dist
(

X, ∂Ω̃
)

. Moreover, the Carleson norm ‖dν̃‖
C(dµ̃,Ω̃)

depends only on the Carleson norm of dν, the doubling constant of µ,
and the Lipschitz character of Ω̃. If µ is the Lebesgue measure on ∂Ω
then µ̃ can be taken as the Lebesgue measure on ∂Ω̃.
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Proof: In the case that dσ is the Euclidean measure dσ on ∂Ω, the result
follows as in the proof of Lemma 3.1 in [10]. To obtain the Lemma 3.9 for

an arbitrary doubling measure σ, given a Lipschitz subdomain Ω̃ ⊂ Ω,
we will construct an appropriate extension of σ from ∂Ω

⋂

∂Ω̃ to ∂Ω̃. We
may assume that Ω = R

n+1
+ = {(x, t) : x ∈ R

n, t > 0}, the general case
follows by standard change of variables techniques. For X = (x, t) ∈

R
n+1
+ , let △X = {(y, 0) : |x− y| ≤ t} and define M (X) = µ(△X )

σ(△X ) , where

σ is the Euclidean measure in R
n = ∂Ω. Since µ is doubling, M (X)

is continuous in R
n+1
+ and M → dµ

dσ
as t → 0 in the weak∗ topology of

measures. Now, for any Borel set E ⊂ ∂Ω̃, we define

µ̃ (E) = µ
(

E
⋂

∂Ω
)

+

∫

E\∂Ω

M (X) dσ̃ (X) ,

where dσ̃ (X) denotes the Euclidean measure on ∂Ω̃. Then obviously

µ̃ is an extension of µ from ∂Ω
⋂

∂Ω̃ to ∂Ω̃. It remains to check that µ̃ is

a doubling measure and that dν̃ ∈ C

(

dµ̃, Ω̃
)

. Let △ ⊂ ∂Ω̃ be a surface

ball centered at X0 = (x0, t0) ∈ ∂Ω̃ and let T (△) ⊂ Ω̃ be the associated
Carleson region. Following the ideas in [10], we consider two cases.

In case 1, we assume that d0 = diamT (△) is smaller than t0
10 . If

X = (x, t) ∈ R
n+1
+ belongs to T (△), then |t0 − t| ≤ t0

10 and so δ (X0) =

t0 ≤ 10
9 t = 10

9 δ (X). From the definition of M (X), and the doubling
property of µ, it follows that for all X ∈ B t0

10
(X0), M (X) ≈ M (X0)

with constants depending only on the doubling constant of µ. Since Ω̃ is
a Lipschitz domain, it follows that

µ̃ (△)=

∫

△

M (X) dσ̃ (X)≈M (X0)

∫

△

dσ̃ (X)≈dn
0M (X0)≈

dn
0

tn0
µ (△X0) .

Similarly, µ̃ (2△) ≈ 2ndn
0

tn
0
µ (2△X0), which shows that µ̃ (△) ≈ µ̃ (2△).

On the other hand, because dν (X) ∈ C (dµ,Ω), we have

sup
Y,Z∈Bαδ̃(X)(X)

|g (Y ) − g (Z)| ≤
C

t

(

µ (△X)

tn

)
1
2

,
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whereC depends only on n, α, the doubling constant of σ and ‖dν‖
C(dσ,Ω).

Since Ω̃ ⊂ Ω, we have δ̃ (X) ≤ δ (X) = t for all X ∈ Ω̃. Then

∫

T (△)

dν̃ (X) =

∫

T (△)

δ̃ (X) sup
Y,Z∈Bαδ̃(X)(X)

|g (Y ) − g (Z)|2 dX

≤ C

∫

T (△)

δ̃ (X)
C

t2
µ (△X)

tn
dX

≤ C
µ (△X0)

tn+1
0

|T (△)|

≤ C
dn+1
0

tn+1
0

µ (△X0) ≤ Cµ̃ (△) .

In case 2, when d0 = diamT (△) > t0
10 , let Q0 = Qcd0 (x0, 0) be the

cube in R
n+1 centered at (x0, 0), with faces parallel to the coordinate

axes and side-length cd0. For c big enough depending only on the Lip-
schitz character of Ω̃, we have T (△) ⊂ T̃ = Q0

⋂

R
n+1
+ . Then, since

δ̃ (X) ≤ δ (X) for all X ∈ Ω̃ and dν (X) ∈ C (dσ,Ω),

∫

T (△)

dν̃ (X) =

∫

T (△)

δ̃ (X) oscαδ̃(X) g (X)
2
dX

≤

∫

T̃

δ (X) oscαδ(X) g (X)
2
dX

=

∫

T̃

dν (X)

≤ Cµ
(

Q0

⋂

R
n × {0}

)

≤ Cµ
(

Qd0 (x0, 0)
⋂

R
n × {0}

)

,

(3.3)

where we used the doubling property of µ. Let {Qi}
∞
i=1 be a Whit-

ney decomposition of R
n+1
+ into cubes, i.e. for each i, diam (Qi) ≈

dist
(

Qi, ∂R
n+1
+

)

, for different indexes ι and j, Qi

⋂

Qj has no interior,

and R
n+1
+ =

⋃∞
i=1 Qi. Let {Pj}

∞
j=1 ⊂ {Qi}

∞
i=1 be the collection of cubes

such that Pj

⋂

△ 6= ∅, and let Xj be an arbitrary point in Pj

⋂

△. Then
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from the definition of µ̃ and since diam (Qi) ≈ dist
(

Qi, ∂R
n+1
+

)

,

µ̃
(

Pj

⋂

△
)

=

∫

Pj

T

△

M (X) dσ̃ (X) ≈
µ

(

△Xj

)

σ
(

△Xj

)

∫

Pj

T

△

dσ̃ (X)

≈ C
µ

(

△Xj

)

diam (Pi)
n

∫

Pj

T

△

dσ̃ (X) ≈ Cµ
(

△Xj

)

.

Then

µ̃ (△)=µ
(

△
⋂

Ω
)

+
∞
∑

j=1

µ̃
(

Pj

⋂

△
)

≈µ
(

△
⋂

Ω
)

+
∞
∑

j=1

µ
(

△Xj

)

≥Cµ
(

Qd0 (x0, 0)
⋂

R
n × {0}

)

,

(3.4)

the last inequality follows from a simple geometrical argument. From
this and (3.3) we have

∫

T (△)
dν̃ (X) ≤ Cµ̃ (△) as wanted. From (3.4) we

also have µ̃ (△) ≈ µ̃ (2△) in this case.

The following lemma estates the local character of the regularity of
the harmonic measure.

Lemma 3.10. Let L be an elliptic operator in divergence form or nondi-
vergence form with drift b in a Lipschitz domain Ω; i.e. L = A ·∇+b ·∇
or L =A · ∇2 + b · ∇ where A satisfies the ellipticity condition (1.2).
Suppose that b is locally bounded in Ω and it satisfies

(3.5) δ (X) osc δ(X)

2
√

n

b (X)
2 ∈ C (Ω) .

Then dωL ∈ A∞ if and only if there exists a finite collection of Lipschitz

domains {Ω}N
i=1 and compact sets Ki ⋐ ∂Ωi

⋂

∂Ω such that
⋃n

i=1 Ωi⊂Ω,
∂Ω ⊂

⋃n
i=1Ki, and

dωLi|Ki
∈ A∞ (dσ) , i = 1, . . . , N,

where Li denotes the restriction of L to the subdomain Ωi.

Proof: If b = 0, the result is an immediate consequence of the “main
lemma” in [4] for the divergence case and the analog to the main lemma
in the nondivergence case, contained in [5] (see also Lemma 3.8). The
case b 6= 0 then follows from Theorem 1.7 for the divergence case and
Theorem 4.1 from next section for the nondivergence case. Indeed, by
the mentioned theorems, if L is the operator with drift b and L0 is
the operator with the same second order coefficients but without a drift
term, then dωL ∈ A∞ (dσ) ⇔ dωL0 ∈ A∞ (dσ). On the other hand,
by Lemma 3.9 with g (X) = b (X), the restriction of b to any Lipschitz
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subdomain Ω′ ⊂ Ω also satisfies (3.5) in Ω′. Hence, by Theorems 1.7 and
4.1, for any doubling measure dσ′ on ∂Ω′, we have dωL|Ω′ ∈ A∞ (dσ′) ⇔
dωL0|Ω′ ∈ A∞ (dσ′). Now, for Ωi, Ki as in the statement of Lemma 3.10,
dσ|Ki

, the restriction of dσ to the compact set Ki, can be extended to
a doubling measure dσi on ∂Ωi with the same doubling constant. Then
dωL|Ωi

∈ A∞

(

dσi
)

⇔ dωL0|Ωi
∈ A∞

(

dσi
)

, which implies that

dωL|Ωi
|Ki

∈ A∞ (dσ|Ki
) ⇔ dωL0|Ωi

|Ki
∈ A∞ (dσ|Ki

) ,

where dωL|Ωi
|Ki

denotes the restriction to Ki of the harmonic measure
of L in Ωi, with a similar definition for dωL0|Ωi

|Ki
. This shows that

Lemma 3.10 in the case b 6= 0 follows from the case b = 0.

4. Proofs of the Theorems

We recall that Qr (X) denotes a cube centered at X with sidelength r,
and δ (x) denotes the distance of X to the boundary (see Definition 1.5).
The proof of Theorem 2.1 relies on the following special case.

Theorem 4.1. Let L̃N,0 = A · ∇2 and L̃N,1 = A∇2 + b · ∇ where

A = (Aij)
n+1
i,j=1 and b = (bj)

n+1
j=1 are bounded, measurable coefficients

and A satisfy the ellipticity condition (1.2) in a Lipschitz domain Ω.

Suppose that CD holds for L̃N,ℓ, ℓ = 0, 1 in Ω and that

(4.1) δ (X) sup
Y ∈Q δ(X)

2
√

n

(X)

|b (Y )|2 dX ∈ C (dσ,Ω) .

Then dωL̃N,0
∈ A∞ ⇒ dωL̃N,1

∈ A∞.

We defer the proof of this result (which contains the main substance
of Theorem 2.1) to next section. Now we obtain Theorem 2.1 from
Theorem 4.1.

Proof of Theorem 2.1: Let LN,0=A0·∇
2+b0·∇ and LN,1=A1∇

2+b1·∇
where Aℓ, bℓ and LN,ℓ satisfy the hypotheses of Theorem 2.1 for ℓ = 0, 1.
Then if dωLN,0 ∈ A∞, by Theorem 4.1 it follows that dωL∗

N,0
∈ A∞ where

L∗
N,0 = A0 · ∇2. By Theorem 1.6 [17] and Theorem 4.1 again, we have

that if L∗
N,1 = A1 · ∇2, then

dωL∗
N,0

∈ A∞ ⇒ dωL∗
N,1
A∞ ⇒ dωLN,1 ∈ A∞,

as wanted.

Theorem 2.4 will follow by reduction to the special case Ω = R
n+1
+ ,

the localization given by Lemma 3.10 and an approximation of the co-
efficients matrix A by appropriate smooth matrices.
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Proof of Theorem 2.4: Given P0 ∈ ∂Ω let X = (x, t) be a coordinate
system such that P0 = (x0, t0) ∈ ∂Ω and there exists a Lipschitz func-
tion ψ : R

n → R defining a local coordinate system of Ω in a neighbor-
hood of P0. That is, for some r0 = r0 (Ω) > 0 we have

∂Ω
⋂

{|x− x0| < r0} × R = {(x, ψ (x)) : |x− x0| < r0}

Ω′ = {(x, t) : |x− x0| < r0, ψ (x) < t < ψ (x) + r0} ⊂ Ω.
(4.2)

Let ηs (y) = s−nη
(

y
s

)

, where η is an even C∞ approximate identity

in R
n supported in

{

|y| ≤ 1
2

}

. Set ρ (y, s) = (y, c0s+ F (y, s)) with

F (y, s) = ηs ∗ ψ (y) =
∫

Rn ηs (y − z)ψ (z) dz. We have

∇Y ρ =

(

I ∇yF
0 c0 + ∂F

∂s

)

.

Since
∥

∥

∂F
∂s

∥

∥

∞
≤ Cn ‖∇yψ‖∞, where Cn = n

∫

η (y) |y| dσ, (note that, for

appropriate η, Cn is a universal constant), taking c0 = 1+Cn ‖∇yψ‖∞, ρ

is a 1-1 map of R
n+1
+ onto {(x, t) : t > ψ (x)}, moreover, ρ is bi-Lipschitz

and 1 ≤ |det∇Y ρ| ≤ 1 + 2Cn ‖∇yψ‖∞. This transformation gives rise
to the Dahlberg-Kenig-Stein adapted distance function. For α > 0, let

Φα = {y : |y − x0| < α} ×
(

0, α
c0

)

, and Ωα = ρ (Φα). For α = α0 small

enough depending only on ‖∇yψ‖∞ and n, we have Ωα0 ⊂ Ω′, where
Ω′ is given by (4.2). Moreover, Ωα0 is a Lipschitz domain with Lipschitz
constant depending only on the constant of Ω.

We note that because of Theorem 1.7 from [8] in the divergence case
and because of Theorem 2.1 in the nondivergence case we might as-
sume b ≡ 0. We will first consider the divergence case, suppose that
LD = div A∇ is a uniformly elliptic operator in divergence form with
bounded measurable coefficient matrix A satisfying (2.2), i.e.

(4.3) δ−1 (X) oscQ δ(X)
2
√

n

(X) A (X)
2
dX ∈ C (dσ,Ω) .

Since P0 is an arbitrary point on ∂Ω and ∂Ω is compact, by Lem-
ma 3.10, to prove Theorem 2.4 it is enough to prove that if ω is the
harmonic measure for LD in Ωα0 , then

(4.4) ω|K ∈ A∞ (dσ|K) ,

where K ⊂ ∂Ωα0 is the compact set given by

(4.5) K = ρ
{

Y = (y, s) : |y − x0| ≤
α0

6
, s = 0

}

⊂ ∂Ωα0 .



Dirichlet Problem 493

For simplicity, we will write Ω = Ωα0and Φ = Φα0 . Since ψ is Lipschitz,
it follows that the transformation ρ : Φ → Ω can be extended to a home-
omorphism from Φ to Ω and such that the restriction of ρ to ∂Φ is a
bi-Lipschitz homeomorphism from ∂Ω to ∂Ω. Indeed, since {ηs}s>0 is a
smooth approximation of the identity, it easily follows that ρ restricted
to ∂Φ is given by
(4.6)

ρ (Y )=ρ (y, s)=























(y, ψ (y)) , s = 0

(y, c0s+ F (y, s)) , 0 < s <
α0

c0
, |y − x0| = α0

(

y, c0
α0

c0
+ F

(

y,
α0

c0

))

s =
α0

c0

whenever Y ∈ ∂Φ. If δ̃ (Y ) = dist (Y, ∂Φ), then for some constant C̃
depending only on ‖∇yψ‖∞ and n, the following estimate holds for the

distance functions δ and δ̃:

(4.7) C̃−1δ̃ (Y ) ≤ δ (ρ (Y )) ≤ C̃δ (Y ) , Y ∈ Φ.

To see this, let Y0 ∈ Φ and let δ̃0 = δ (Y0). Now, δ (ρ (Y0)) = dist (ρ (Y0) ,
∂Ω) = |ρ (Y0) −X ′| for some X ′ ∈ ∂Ω. Let Y ′ = ρ−1 (X ′), and X0 =
ρ (Y0), thus, Y ′ ∈ ∂Φ and since ρ−1 is Lipschitz in Φ, we have

δ̃ (Y0) ≤ |Y0 − Y ′|=
∣

∣ρ−1 (X0) − ρ−1 (X ′)
∣

∣ ≤ C |X0 −X ′| = Cδ (ρ (Y0)) ,

with C = C
(

n, ‖∇yψ‖∞
)

. The other inequality in (4.7) follows in a
similar manner.

The Lebesgue measure σ on ∂Ω induces a doubling measure µ̃ on ∂Φ
by the relation

µ̃ (E) = σ (ρ (E)) , for any Borel set E ⊂ ∂Φ.

Let σ̃ be the Lebesgue measure on ∂Φ, then from the definition of µ̃ and
the fact that ρ is bi-Lipschitz it easily follows that dµ̃

dσ̃
≈ 1. Hence we

can replace µ̃ by σ̃ in our calculations. Now, if u (x, t) is a solution of
LDu = divX A∇Xu = 0 in Ω, then v (y, s) = u (ρ (y, s)), defined in Φ, is

a solution of L̃Dv = divY Ã∇Y v = 0, where

(4.8) Ã (Y ) =
(

(∇Y ρ)
−1

(Y )
)t

A (ρ (Y )) (∇Y ρ)
−1

(Y ) det (∇Y ρ) (Y ) .

We claim that Ã satisfies

(4.9) δ̃ (Y )
−1

oscQ δ(Y )
2
√

n

(Y ) Ã (Y )
2
dY ∈ C (dσ̃,Φ) .
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Let Y0 ∈ Φ let Y1, Y2 such that |Y1 − Y0| ≤
1
2δ0 and |Y2 − Y0| ≤

1
2δ0,

where δ0 = δ̃ (Y0), then by (4.8)

∣

∣

∣
Ã (Y1) − Ã (Y2)

∣

∣

∣

2

δ̃0

= δ̃−1
0

∣

∣

∣

∣

(

(∇Y ρ)
−1

(Y1)
)t

A (ρ (Y1)) (∇Y ρ)
−1

(Y1) det (∇Y ρ) (Y1)

−
(

(∇Y ρ)
−1

(Y2)
)t

A (ρ (Y2)) (∇Y ρ)
−1

(Y2) det (∇Y ρ) (Y2)

∣

∣

∣

∣

2

≤ C

∣

∣

∣

∣

(

(∇Y ρ)
−1

(Y1)
)t

−
(

(∇Y ρ)
−1

(Y2)
)t

∣

∣

∣

∣

2

δ̃0

×
∣

∣

∣
A (ρ (Y1)) (∇Y ρ)

−1
(Y1) det (∇Y ρ) (Y1)

∣

∣

∣

2

+ C

∣

∣

∣
(∇Y ρ)

−1
(Y1) − (∇Y ρ)

−1
(Y2)

∣

∣

∣

2

δ̃0

×

∣

∣

∣

∣

(

(∇Y ρ)
−1

(Y2)
)t

A (ρ (Y1))

∣

∣

∣

∣

2

|det (∇Y ρ) (Y1)|
2

+ C
|det (∇Y ρ) (Y1) − det (∇Y ρ) (Y2)|

2

δ̃0

×

∣

∣

∣

∣

(

(∇Y ρ)
−1 (Y2)

)t

A (ρ (Y1)) (∇Y ρ)
−1 (Y2)

∣

∣

∣

∣

2

+ C
|A (ρ (Y1)) − A (ρ (Y2))|

2

δ̃0

×

∣

∣

∣

∣

(

(∇Y ρ)
−1

(Y2)
)t

∣

∣

∣

∣

2
∣

∣

∣
(∇Y ρ)

−1
(Y2) det (∇Y ρ) (Y2)

∣

∣

∣

2

.

(4.10)

We will use the following fact:
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Lemma 4.2. For Ω, Φ, σ, µ̃, δ, δ̃ and ρ as above, the functions

r1 (Y ) =
1

δ̃ (Y )

∣

∣

∣

∣

∣

oscQ δ̃(Y )
2
√

n

(Y ) (∇Y ρ)
−1

(Y )

∣

∣

∣

∣

∣

2

and

r2 (Y ) =
1

δ̃ (Y )

∣

∣

∣

∣

∣

oscQ δ̃(Y )
2
√

n

(Y ) (det (∇Y ρ) (Y ))

∣

∣

∣

∣

∣

2

defined in Φ, satisfy [r1 (Y ) + r2 (Y )] dY ∈ C (dσ̃,Φ), where σ̃ is the
Lebesgue measure on ∂Φ.

The lemma above follows from the fact that

(4.11) δ̃ (Y )
∣

∣∇2ρ
∣

∣

2
dY ∈ C (dσ̃,Φ) .

This property is discussed in [10], and it can be obtained as an applica-
tion of the characterization of A∞ in terms of Carleson measures given
in [7].

Then (4.9) follows by applying (4.3), (4.7) and Lemma 4.2 to (4.10).
We recall that Φ=Φα0 where Φα is given by Φα = {y : |y − x0| < α}×

(

0, α
c0

)

. Denote by Φ±
α = {y : |y − x0| < α}×

(

− α
c0
, α

c0

)

and let ν (Y ) ∈

C∞
0

(

Φ±
α0

)

such that 0 ≤ ν ≤ 1, ν ≡ 1 in Φ±
α0
3

and ν ≡ 0 in Φ±
α0
\Φ±

2α0
3

.

For Y ∈ R
n+1
+ , let

Ã∗ (Y ) = ν (Y ) Ã (Y ) + (1 − ν (Y )) I,

where I is the (n+ 1)×(n+ 1) identity matrix. It follows that Ã∗ (Y ) is

an elliptic matrix function, with the same ellipticity constants as Ã.
The measure σ̃ extends trivially from ∂Φ

⋂

∂R
n+1
+ to ∂R

n+1
+ , we dub

this extension (which is just the Euclidean measure) dσ̃∗. With this

definitions, because of (4.9), for Y = (y, t) ∈ R
n+1
+ , Ã∗ satisfies

(4.12)

oscQ t
2
√

n

(Y ) Ã
∗ (Y )

2

t
∈ C

(

dσ̃∗,Rn+1
+

)

,

(i.e.: is a Carleson measure in R
n+1
+ with respect to σ̃∗). Where Qγ (Y ) is

the cube centered at Y with faces parallel to the coordinate axes and
sidelength γt.

Now we will construct a smooth approximation of Ã∗ via an n+1 di-
mensional approximate identity. Let

Ptf (x, t) =

∫∫

t−n−1ϕ

(

x− y

t
,
t− s

t

)

f (y, s) dy ds,
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where ϕ ∈ C∞
0

(

R
n+1

)

is supported in the ball or radius α < 1 at the

origin (α to be chosen later) and
∫∫

ϕ = 1. Since Pt1 ≡ 1 we have

∇x,tPt1 ≡ 0 and therefore Ã∗∗ = PtÃ
∗ satisfies

∇Ã∗∗ =

∫∫

t−n−1∇x,tϕ

(

x− y

t
,
t− s

t

)

Ã∗ (y, s) dy ds

= −

∫∫

t−n−1∇y,sϕ

(

x− y

t
,
t− s

t

)

Ã∗ (y, s) dy ds

= −

∫∫

t−n−1∇y,sϕ

(

x− y

t
,
t− s

t

)

(

Ã∗ (y, s) − C (x, t)
)

dy ds

for any function C (X) at our disposal. Taking C (X) = Ã∗ (X) it follows
that for α small enough

Ẽ∗ (Y ) = sup
Z∈Q0(Y )

∣

∣

∣
∇Ã∗∗ (Z)

∣

∣

∣
≤ C

oscQ t
2
√

n

(Y ) Ã
∗

t

and

Ẽ∗∗ (Y ) = sup
Z∈Q0(Y )

∣

∣

∣
Ã∗∗ (Z) − Ã∗ (Z)

∣

∣

∣
≤ C oscQ t

2
√

n
(Y ) Ã

∗

where Q0 (Y ) = Q δ(Y )

6
√

n

(Y ) and C is a universal constant (this constant

depends on the Lipschitz norm of ϕ, which we can assume only depends
on the dimension n). From (4.12) it follows that

(4.13) tE∗ (Y )2∈C
(

dσ̃∗,Rn+1
+

)

and
Ẽ∗∗ (X)

2

t
dX∈C

(

dσ̃∗,Rn+1
+

)

.

Moreover, from the definitions it is easy to check that Ã∗∗ is elliptic with
the same ellipticity constants as Ã.

Let now L̃∗
D = divY Ã∗∇Y and L̃∗∗

D = divY Ã∗∗∇Y . By the Carleson

measure property of Ẽ∗∗, and Lemma 3.9, L̃∗
D and L̃∗∗

D satisfy the hy-
potheses of Theorem 1.7 in Φ (with respect to the measure σ̃), therefore,

if ω̃∗ and ω̃∗∗ denote the harmonic measures of L̃∗
D and L̃∗∗

D in Φ, respec-
tively, we have that ω̃∗ ∈ A∞ ⇔ ω̃∗∗ ∈ A∞. On the other hand, because
of the Carleson measure property of Ẽ∗, and Lemma 3.9, L̃∗∗

D satisfies
the hypotheses of Theorem 1.8 in Φ; and therefore ω̃∗∗ ∈ A∞. From
what we just proved it follows that ω̃∗ ∈ A∞.
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Let L∗
D denote the pull-back of L̃∗

D from Φ to Ω through the map-
ping ρ. Since the mapping ρ : ∂Φ → ∂Ω is bi-Lipschitz, and if ω∗ denotes
the harmonic measure of L∗

D in Ω, then ω∗ ∈ A∞. This follows directly
from the definitions of the A∞ class, the harmonic measure ω∗ and L∗

D.
On the other hand, the operator L∗

D coincides with LD = divX A∇X

in ρ
(

Φα0
3

)

, hence an application of Theorem 1.7 and the“main lemma”

in [4] (see Lemma 3.10), implies that ω|K ∈ A∞ (dω∗|K), where ω is the
harmonic measure of LD restricted to the compact set K given by (4.5).
This, in turn, implies that ω|K ∈ A∞ (dσ|K) and proves (4.4), hence
Theorem 2.4, for the divergence case.

We now consider the nondivergence case. Let LN = A · ∇2 where
A satisfies (4.3). Let Ω = Ωα0 , Φ = Φα0 , and ρ be as before. Also, for

Y ∈ Φ, let Ã∗∗ (Y ) be as above, and define L∗∗ = A∗∗ · ∇2, where

A∗∗ (X) =
(

(∇Y ρ)
(

ρ−1 (X)
))t

Ã∗∗
(

ρ−1 (X)
)

(∇Y ρ)
(

ρ−1 (X)
)

×
(

det (∇Y ρ)
(

ρ−1 (X)
))−1

.

Let Ω 1
3

= ρ
(

Φα0
3

)

, we claim that A∗∗ (X) satisfies the following

sup
Z∈Q δ(X)

2
√

n

(X)

|A (Z) − A∗∗ (Z)|2

δ (X)
dX ∈ C

(

dσ̂,Ω 1
3

)

, and(4.14)

sup
Z∈Q δ(X)

2
√

n

(X)

δ (X) |∇A∗∗ (Z)|2 dX ∈ C

(

dσ̂,Ω 1
3

)

(4.15)

where σ̂ is the Lebesgue measure on ∂Ω 1
3
. Taking these properties for

granted, by (4.15), (4.3) and Theorem 1.8 applied to the operator L∗∗, we
have that if ω∗∗ is the harmonic measure of L∗∗ on ∂Ω 1

3
, then ω∗∗ ∈ A∞.

On the other hand, by (4.14) and Theorem 2.1 applied to the operators L
and L∗∗, from ω∗∗ ∈ A∞ we conclude that ω ∈ A∞, where ω is the
harmonic measure of L on ∂Ω 1

3
. This finishes the proof of Theorem 2.4

in the nondivergence case.
It only rests to establish properties (4.14) and (4.15). Let Z ∈

Q δ(X)

2
√

n

(X) and let W = ρ−1 (Z), then from the definitions of Ã and A∗∗

we have

|A (Z) − A∗∗ (Z)| =
∣

∣

∣
((∇Y ρ) (W ))

t
[

Ã (W ) − Ã∗∗ (W )
]

× (∇Y ρ) (W ) (det (∇Y ρ) (W ))
−1

∣

∣

∣
.
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From (4.7) and the fact that ρ is bi-Lipschitz, and since ρ−1
(

Ω 1
3

)

=

Φα0
3

,

|A (Z) − A∗∗ (Z)|2

δ (Z)
≈

∣

∣

∣
Ã (W ) − Ã∗∗ (W )

∣

∣

∣

2

δ̃ (W )
=

∣

∣

∣
Ã∗ (W ) − Ã∗∗ (W )

∣

∣

∣

2

δ̃ (W )
.

Applying the proof of Lemma 3.9 to δ̃ (W )
−1

oscαδ̃(W )

(

Ã∗ − Ã∗∗
)

(W ),

from the second property in (4.13) it follows that for some 0 < c < 1

supW∈Qcδ̃(Y )(Y )

∣

∣

∣
Ã∗ (W ) − Ã∗∗ (W )

∣

∣

∣

2

δ̃ (Y )
∈ C

(

dµ,Φα0
3

)

,

where µ is the Lebesgue measure on ∂Φα0
3

; (4.14) then follows from the

fact that ρ is bi-Lipschitz. Now, by the product rule of differentiation

∇A∗∗ = ∇X

{

(∇Y ρ)
t
Ã∗∗ (∇Y ρ) det (∇Y ρ)

−1
}

=
{

∇X (∇Y ρ)
t
}

Ã∗∗ (∇Y ρ) det (∇Y ρ)
−1

+ (∇Y ρ)
t
{

∇XÃ∗∗ (∇Y ρ)
}

det (∇Y ρ)
−1

+ (∇Y ρ)
t Ã∗∗ {∇X (∇Y ρ)} det (∇Y ρ)

−1

+ (∇Y ρ)
t Ã∗∗ (∇Y ρ)

{

∇X det (∇Y ρ)
−1

}

.

Applying the chain rule in each term, we see that ∇A∗∗ satisfies (4.15)
because of the first property in (4.13), (4.11), and the boundedness
of |∇Y ρ|.

5. Proof of Theorem 4.1

In the spirit of [7] (see also [17]) we will obtain Theorem 4.1 as a
consequence of the following perturbation result.

Theorem 5.1. Let L̃N,0 = A · ∇2 and L̃N,1 = A∇2 + b · ∇ where

A = (Aij)
n+1
i,j=1 and b = (bj)

n+1
j=1 are bounded, measurable coefficients and

A satisfy the ellipticity condition (1.2). Suppose that CD holds for L̃N,ℓ,

ℓ = 0, 1. Let G0 (X,Y ) denote the Green’s function for L̃N,0 in Ω and
set G0 (Y ) = G0 (0, Y ). There exists ε0 > 0 which depends only on n, λ,
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Λ and Ω such that if

(5.1) G0 (X) sup
Y ∈Q δ(X)

2
√

n

(X)

|b|2 dX, X ∈ Ω,

is a Carleson measure in Ω with respect to dωL̃N,0
on ∂Ω with Carleson

norm bounded by ε0, i.e.,

G0 (X) sup
Y ∈Q δ(X)

2
√

n

(X)

|b|2 dX ∈ C

(

dωL̃N,0
,Ω

)

,

∥

∥

∥

∥

∥

∥

∥

G0 (X) sup
Y ∈Q δ(X)

2
√

n

(X)

|b|2 dX

∥

∥

∥

∥

∥

∥

∥

C

“

dωL̃N,0
,Ω

”

≤ ε0,

then dωL̃N,1
∈ B2

(

dωL̃N,0

)

. Where B2

(

dωL̃N,0

)

denotes the reverse

Hölder class of dωL̃N,0
with exponent 2.

We defer the proof of Theorem 5.1 to the next subsection, and prove
now Theorem 4.1, we follow the argument in [7]. Let △r (Q) be the
boundary ball △r (Q)={P ∈∂Ω : |Q− P | < r}, and denote by Tr (Q) the
Carleson region in Ω associated to △r (Q), Tr (Q)={X∈Ω : |X−Q|<r}.
By Lemma 3.10 we may assume that b (X) ≡ 0 if δ (X) > r0 for some
fixed (small) r0 > 0. To prove Theorem 4.1 it is enough to show that

if ω̃1 = ωL̃N,1
with L̃N,1 as in the statement of the theorem, then for

all Q ∈ ∂Ω,

(5.2) ω̃1|△r0 (Q) ∈ A∞.

For Q ∈ ∂Ω, r > 0, α > 0, let Γα,r (Q) be a nontangential cone of fixed
aperture α and height r, i.e.

Γα,r (Q) = {X ∈ Ω : |X −Q| < (1 + α) δ (X) < (1 + α) r} .

For a fixed α0 > 0 to be determined later, let Er (Q) be given by

Eb,r (Q) =











∫

Γα0,r(Q)

δ (X)
1−n

sup
Y ∈Q δ(X)

2
√

n

(X)

|b|2 dX











1
2

, Q ∈ ∂Ω.

Fix α0, r0, such that Γα0,r0 (Q) ⊂ T2r0 (Q) for all Q ∈ ∂Ω. Then, letting
σ be the Lebesgue measure on ∂Ω, by Fubini’s theorem, the hypothesis
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δ (X) supY ∈Q δ(X)
2
√

n

(X) |b (Y )|2 dX ∈ C (dσ,Ω) and the doubling property

of dσ, we have

1

σ (△r0 (Q))

∫

△r0(Q)

Eb,r0 (P )2 dσ (P )

≤ C
1

σ (△r0 (Q))

∫

T2r0 (Q)

δ (X) sup
Y ∈Q δ(X)

2
√

n

(X)

|b (Y )|2 dX ≤ C.

That is, the average in △r0 (Q) of E2
b,r0

is bounded. Hence, there exists a

closed set F ⊂ △r0 (Q) such that σ (F ) > 1
2σ (△r0 (Q)) and Eb,r0 (P )≤C

for all P ∈ F . Let ΩF be a “saw-tooth” region above F in Ω as given in
Definition 3.7, and let b∗ (X) be given by

b∗ (X) =

{

b (X) X ∈ ΩF

0 X ∈ Ω\ΩF .

The drift b∗ so defined satisfies Eb∗,r0 (P ) ≤ C0 for all P ∈ △r0 (Q). We

claim that if C0 is small enough then the operatorsL0 = L̃N = A·∇2 and
L1 = A·∇2+b∗·∇ satisfy the hypotheses of Theorem 5.1 in Φ = T3r0 (Q).
Indeed, since b∗ ≡ 0 in T3r0(Q)\T2r0 (Q), we only need to check the
Carleson measure condition (5.1) near △2r0 (Q). More precisely, we will
show that for all s < r0/2 and P ∈ △2r0 (Q),

(5.3)

∫

Ts(P )

G0 (X) sup
Y ∈Q δ(X)

2
√

n

(X)

|b|2 dX ≤ ε0ω0 (△s (P )) ,

where G0 (X,Y ) is the Green’s function for L0 in Φ, G0 (Y ) = G0 (X0, Y )

(where X0 is the center of Φ) and ω0 = ωX0

L0,Φ in ∂Φ. As in [17] (see

Lemmas 2.8 and 2.14 there), we have

(5.4)
1

ω0 (△X)

G0 (X)

δ (X)
2 ≈

G (X)
∫

Q δ(X)
2
√

n

G (Y ) dY
,

where △X = △δ(X) (Q) for some Q ∈ ∂Φ such that |X −Q| = δ (X) ;

and G (X) = G
(

X,X
)

, with G (Z,X) the Green’s function for L0 in

a fixed domain T ⋑ Ω and X ∈ T \Ω is a fixed point away from Ω.

From (5.4), writing G

(

Q δ(X)

2
√

n

)

=
∫

Q δ(X)
2
√

n

G (Y ) dY and proceeding as in
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the proof of (5.1) in [17] we have
∫

Ts(P )

G0 (X) sup
Y ∈Q δ(X)

2
√

n

(X)

|b∗|2 dX

≤

∫

Ts(P )

ω0 (△X)
δ (X)

2 G (X)

G

(

Q δ(X)

2
√

n

) sup
Y ∈Q δ(X)

2
√

n

(X)

|b|2 dX

≤ C

∫

△s(P )

E2
b∗,r (P ) dω0 (P )

≤ CC2
0ω0 (△s (P )) ≤ ε0ω0 (△s (P ))

if C0 is small enough. Thus, L0 and L1 satisfy the hypotheses of Theo-
rem 5.1 in Φ and hence ω1 = ωX0

L1,Φ ∈ B2 (dω0, ∂Φ). By property (2) in

Lemma 3.6 we have that for E ⊂ △2r0 (Q),

ω0 (E) ≈
ωL0,Ω (E)

ωL0,Ω (△)
.

This together with the hypothesis from Theorem 4.1 that ωL0,Ω ∈ A∞,
implies ω0|△3r0 (Q) ∈ A∞. From ω1 ∈ B2 (dω0, ∂Φ) we conclude that

ω1|△2r0 (Q) ∈ A∞. Hence, for some constants 0 < α0, c0, we have

(5.5) (ω1 (F ))
α0 ≈

(

ω1 (F )

ω1 (△r0 (Q))

)α0

≥ c0
σ (F )

σ (△r0 (Q))
≥
c0
2
,

where we applied property (1) of Lemma 3.6 and we used that σ (F ) >
1
2σ (△r0 (Q)).

Now, let ν be the harmonic measure of L1 in ΩF . By Lemma 3.8 we
have that for some 0 < θ < 1,

(5.6)
ω1 (F )

ω1 (△r0 (Q))
< ν (F )θ .

On the other hand, since b∗ coincides with b in ΩF , any solution u
of L̃1u = 0 in Φ is a solution of L̃1u = 0 in ΩF ⊂ Φ. The boundary
maximum principle implies that for all F ⊂ △r0 (Q), ν (F ) ≤ ω∗

1 (F ),
where ω∗

1 = ωL̃1,Φ. From (5.6) and (5.5) then we obtain

ω∗
1 (F ) > c1 > 0.

By property (2) in Lemma 3.6 and the maximum principle, we have

ω̃1 (F )

ω̃1 (△r0 (Q))
≥ ω∗

1 (F ) > c1 > 0.
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Therefore, whenever σ(F )

σ(△r0 (Q))
> 1

2 it follow that ω̃1(F )

ω̃1(△r0(Q))
> c1. This

shows that (5.2) holds.

5.1. Proof of Theorem 5.1. The proof of this results closely follows
the steps in [17]. We will sketch the main steps and refer the reader
to [17] for the technical details omitted here. First, by standard argu-
ments the problem is reduced to treating the case in which Ω is the unit
ballB = B1 (0) (this is justified as far as the methods are preserved under
bi-Lipschitz transformation). For simplicity, we will write ω0 = ωL̃N,0

and ω1 = ωL̃N,1
. To see that dω1 ∈ B2 (dω0) it is equivalent to prove

that if u1 is a solution of the Dirichlet problem
{

L̃N,1u1 = 0 in B

u1 = g on ∂B,

where g is continuous in ∂B, then

(5.7) ‖Nu1‖L2(∂B,dω0)
≤ C ‖g‖L2(∂B,dω0)

,

where Nu is the nontangential maximal function (with some fixed aper-
ture α > 0) of u. We let u0 be the solution to

{

L̃N,0u0 = 0 in B

u0 = g on ∂B.

Then u1 − u0 = 0 on ∂B and we have the representation

(5.8) u1 (X) = u0 (X) −

∫

B

G0 (X,Y ) L̃N,0u1 dY = u0 (X) − F (X) .

Then, (5.7) follows as in [17] from the following two lemmas.

Lemma 5.2. Let G(X,Y ) denote the Green’s function for L̃N,0 in B10(0)
and let G (Y ) = G

(

X̄, Y
)

where X̄ is some fixed point in R
n+1 such that

∣

∣X̄
∣

∣ = 5. For Y ∈ B let B0 (Y ) and B (Y ) denote the Euclidean balls

centered at Y of radii δ(Y )
6 and δ(Y )

2 respectively (in this case δ (Y ) =
dist (Y, ∂B) = 1 − |Y |). Under the hypotheses of Theorem 5.1, we have
that F as in (5.8) satisfies

N0F (Q)= sup
X∈Γ(Q)

{

∫

B0(X)

F 2 (Y )
G (Y )

G (B (Y ))
dY

}
1
2

≤ Cε0Mω0(Su1) (Q) ,

where
Mω0f (Q) = sup

r>0

1

ω0 (△r (Q))

∫

△r(Q)

|f (P )| dω0

is the Hardy-Littlewood maximal function of f with respect to the mea-
sure ω0, and Su1 is the area function of u1.
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Lemma 5.3. Under the hypotheses of Lemma 5.2,

∫

∂B

S2u1 dω0 ≤ C

∫

∂B

(Nu1)
2 dω0.

Indeed, by Lemma 2.21 in [17] it follows that

∫

∂B

(Nu1)
2 dω0 ≤ C

∫

∂B

(

N0u1

)2
dω0

≤ C

∫

∂B

(

N0u0

)2
dω0 + C

∫

∂B

(

N0F
)2
dω0

where N0u1 is as in Lemma 5.2. Given that Lemmas 5.2 and 5.3 hold,
we have

∫

∂B

(Nu1)
2
dω0 ≤ C

∫

∂B

(Nu0)
2
dω0 + Cε0

∫

∂B

Mω0 (Su1)
2
(Q) dω0

≤ C

∫

∂B

g2 dω0 + Cε0

∫

∂B

(Su1)
2
(Q) dω0

≤ C

∫

∂B

g2 dω0 + Cε0

∫

∂B

(Nu1)
2 (Q) dω0

and the last term on the right can be absorbed into the left if ε0 is small
enough. This proves (5.7) and hence Theorem 5.1.

We will only write in some detail the proof of Lemma 5.2. Given the
big overlap with the methods in [17] this will suffice to indicate the proof
of Lemma 5.3, which is very similar to the proof of Lemma 3.3 in [17].

Proof of Lemma 5.2: FixQ0 ∈ ∂B andX0 ∈ Γ (Q0). LetB0 = B δ0
6

(X0)

and KB0 = BKδ0
6

(X0) where δ0 = δ (X0) and K > 0. Let G̃ (X,Y ) be

the Green’s function for L̃N,0 on 3B0, set

F1 (X) =

∫

2B0

G̃ (X,Y ) L̃N,0u1 (Y ) dY,

F2 (X) =

∫

2B0

[

G0 (X,Y ) − G̃ (X,Y )
]

L̃N,0u1 (Y ) dY,

F3 (X) =

∫

B\2B0

G0 (X,Y ) L̃N,0u1 (Y ) dY.
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So that F in (5.8) is given by F (X) = F1 (X)+F2 (X)+F3 (X), and
proving Lemma 5.2 is reduced to proving that

∫

B0

F 2
i (Y )

G (Y )

G (B (Y ))
dY ≤ Cε20M

2
ω0

(Su1) (Q0) , for i = 1, 2, 3.

We will only prove this in some detail for i = 1. Even though i = 1 is
allegedly the simplest case of the three, its proof captures the significant
differences with the proof of Lemma 3.2 in [17] (the analog to Lemma 5.2
here), so the other two cases follow in a similar manner as in [17].

Let β (X) = sup
|Z−X|≤ δ(X)

2

|b (Z)|, then, given Y ∈ B0, we have

|b (Y )| ≤
C

|3B0 (Y )|

∫

3B0(Y )

β (X) dX

≤
C

|3B0 (Y )|

{

∫

3B0(Y )

β (X)2
G (X)

G (B (X))
dX

}
1
2

×

{

∫

3B0(Y )

G (B (X))

G (X)
dX

}
1
2

.

(5.9)

Using (5.4) on the right side of (5.9), applying the Carleson measure

property of G0 (X)β (X)
2

and the doubling property of ω0, we obtain

|b (Y )| ≤
C

|3B0 (Y )|

{

1

ω0 (△Y )

∫

3B0(X)

β (X)
2 G0 (X)

δ (X)
2 dX

}
1
2

×

{

∫

3B0(Y )

G (B (X))

G (X)
dX

}
1
2

≤
C

|3B0 (Y )|

{

1

ω0 (△Y )

∫

3B0(Y )

β (X)
2 G0 (X)

δ (X)
2 dX

}
1
2

×

{

∫

3B0(Y )

G (B (X))

G (X)
dX

}
1
2

≤
Cε0

|3B0 (Y )| δ0

{

∫

3B0(Y )

G (B (X))

G (X)
dX

}
1
2

≤
Cε0
δ0

,

(5.10)
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where the last inequality follows as (3.6) in [17]. Note that F1 satis-

fies L̃N,0F1 = χ (2B0) L̃N,0u1 in 3B0, where χ (2B0) denotes the charac-
teristic function of 2B0. Hence, from the (weighted) a priori estimates
for solutions (Theorem 2.5 in [17]),

(5.11)

{

∫

3B0

|∇F1 (Y )|2
G (Y )

G (B (Y ))
dY

}
1
2

≤ Cδ0

{

∫

3B0

∣

∣

∣
L̃N,0F1 (Y )

∣

∣

∣

2 G (Y )

G (B (Y ))
dY

}
1
2

.

On the other hand, by the weighted Poincaré inequality (Theorem 1.2
in [6]),

{

∫

3B0

F 2
1 (Y )

G (Y )

G (B (Y ))
dY

}
1
2

≤Cδ0

{
∫

3B0

|∇F1 (Y )|2
G (Y )

G (B (Y ))
dY

}
1
2

.

Combining this with (5.11), using

L̃N,0F1 = χ (2B0)
{

L̃N,0 − L̃N,1

}

u1 = χ (2B0)b · ∇u1,

and (5.10), we get

{

∫

B0

F 2
1 (Y )

G (Y )

G (B (Y ))
dY

}
1
2

≤ Cδ20

{

∫

3B0

∣

∣

∣
L̃N,0F1 (Y )

∣

∣

∣

2 G (Y )

G (B (Y ))
dY

}
1
2

≤ C

{

∫

2B0

δ (Y )
4 |b|2 |∇u1|

2 G (Y )

G (B (Y ))
dY

}
1
2

≤ Cε0

{

∫

2B0

δ (Y )2 |∇u1|
2 G (Y )

G (B (Y ))
dY

}
1
2

≤ Cε0Su1 (Q0) .

(5.12)
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The rest of the proof proceeds as in [17], to obtain

{

∫

B0

F 2
2 (Y )

G (Y )

G (B (Y ))
dY

}
1
2

≤ Cε0Su1 (Q0) and(5.13)

{

∫

B0

F 2
3 (Y )

G (Y )

G (B (Y ))
dY

}
1
2

≤ Cε0Mω0 (Su1) (Q0)(5.14)

respectively. Since F (Y ) = F1 (Y ) + F2 (Y ) + F3 (Y ), we have

∫

B0(X0)

F 2 (Y )
G (Y )

G (B (Y ))
dY ≤ C

3
∑

i=1

∫

B0(X0)

F 2
i (Y )

G (Y )

G (B (Y ))
dY.

Lemma 5.2 then follows from (5.12)–(5.14) by taking supremum over
all X0 ∈ Γ (Q0).
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Primera versió rebuda el 10 de novembre de 2005,
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