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1. Introduction and statements of the results

The last few decades have seen a steadily growing interest in the study
of the geometry of spacelike hypersurfaces immersed in a Lorentzian
space. Apart from physical motivations, from the mathematical point of
view this is mostly due to the fact that such hypersurfaces exhibit nice
Bernstein-type properties, and one can truly say that the first remarkable
results in this branch were the rigidity theorems of Calabi in [10] and
Cheng and Yau in [11], who showed (the former for n ≤ 4, and the latter
for general n) that the only maximal (that is, with zero mean curvature)
complete noncompact spacelike hypersurfaces of the Lorentz–Minkowski
space Ln+1 are the spacelike hyperplanes. However, in the case that
the mean curvature is a positive constant, Treibergs [20] astonishingly
showed that there are many entire solutions of the corresponding con-
stant mean curvature equation in Ln+1, which he was able to classify by
their projective boundary values at infinity.

On the other hand, Xin [21] and Aiyama [1], working independently,
characterized spacelike hyperplanes as the only complete constant mean
curvature spacelike hypersurfaces in Ln+1 whose Gauss mapping image
is contained in a geodesic ball of the n-dimensional hyperbolic space.
Later on, Aledo and Aĺıas [6], among other results, showed that a com-
plete constant mean curvature spacelike hypersurface which lies between
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two parallel spacelike hyperplanes of Ln+1 must be, in fact, a spacelike
hyperplane.

It is also natural to treat these same questions in a wide class of
Lorentzian manifolds. When the ambient space is a Lorentzian product
space, Salavessa [19] considered spacelike graphs in −R×Mn and, under
the assumption that the Cheeger constant of the fiber Mn is zero and
some conditions on the second fundamental form at infinity, she con-
cluded that if the spacelike graph has parallel mean curvature then the
graph must be maximal. When Mn is the hyperbolic space Hn, for any
constant c ∈ R the author described an explicit foliation of −R × Hn

by hypersurfaces with constant mean curvature c. Meanwhile, Albu-
jer [2] obtained new explicit examples of complete and non-complete
entire maximal spacelike graphs in −R×H2.

Afterwards, Albujer and Aĺıas [3] established Calabi–Bernstein re-
sults for maximal spacelike surfaces immersed into a Lorentzian product
space −R ×M2. In particular, when M2 is a Riemannian surface with
nonnegative Gaussian curvature, they proved that any complete max-
imal spacelike surface in −R ×M2 must be totally geodesic. Besides,
assuming that the fiber M2 is non-flat, the authors concluded that it
must be a slice {t} ×M2. In [14], Li and Salavessa generalized such
results of [3] to higher dimension and codimension.

In [5], the first author jointly with Albujer and Camargo established
uniqueness results concerning complete spacelike hypersurfaces with con-
stant mean curvature immersed in −R×Hn. Next, Albujer and Aĺıas [4]
obtained some parabolicity criteria for maximal surfaces immersed into a
Lorentzian product space −R×M2, where M2 is supposed to have non-
negative Gaussian curvature. As an application of their main result, they
deduced that every maximal graph over a starlike domain Ω ⊂M2 is par-
abolic. This allowed them to give an alternative proof of the nonparamet-
ric version of the Calabi–Bernstein theorem for entire maximal graphs
in such ambient space. Later, the first author jointly with Parente [13]
obtained a lower estimate of the index of relative nullity of complete max-
imal spacelike hypersurfaces immersed in a so-called Robertson–Walker
spacetime and, in particular, we also proved a sort of weak extension
of the Calabi–Bernstein theorem in Lorentzian product spaces. More
recently, the authors [12] applied some generalized maximum principles
in order to establish uniqueness results concerning complete spacelike
hypersurfaces with constant mean curvature in −R×Mn, extending the
results of [5].

Motivated by these works described above, in this article we deal with
entire spacelike graphs Σ(u) = {(u(x), x); x ∈Mn} with constant mean
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curvature in a Lorentzian product space −R ×Mn, whose Riemannian
fiber Mn has sectional curvature bounded from below. According to the
current literature, since the mean curvature H of Σ(u) is supposed to be
constant, we call Σ(u) an entire spacelike H-graph. In this setting, we
obtain the following Calabi–Bernstein type result:

Theorem 1. Let M
n+1

= −R×Mn be a Lorentzian product space, such
that the sectional curvature KM of its Riemannian fiber Mn satisfies
KM ≥ −κ, for some positive constant κ. Let Σ(u) be an entire spacelike
H-graph over Mn, with u bounded and H2 bounded from below. If

(1.1) |Du|2M ≤
|A|2

κ(n− 1) + |A|2
,

then u ≡ t0 for some t0 ∈ R.

Here, H2 = 2
n(n−1)S2 is the mean value of the second elementary sym-

metric function S2 on the eigenvalues of the shape operator A of Σ(u),
Du stands the gradient of the smooth function u : Mn → R in Mn and
|Du|M its norm, both with respect to the metric of Mn.

In the context of Lorentzian product spaces, we note that our restric-
tion on the sectional curvature KM of the fiber Mn in Theorem 1 is
a weaker restriction when compared with the so-called null (timelike)
convergence condition, which means that the Ricci curvature of the am-
bient space is nonnegative on null or lightlike (timelike) directions (for
a thorough discussion about such convergence conditions, see for ex-
ample [7, 8, 9, 15]). Furthermore, through the example described in
Remark 3, we see that Theorem 1 is sharp in the sense that it does not
hold when the function u is unbounded.

The proof of Theorem 1 is given in Section 3. From Theorem 1 jointly
with Theorem 3.3 of [3], it is not difficult to see that we also get the
following result, where 1-maximal means that H2 vanishes identically on
the graph:

Corollary 1. Let M
n+1

= −R ×Mn be a Lorentzian product space,
such that the sectional curvature KM of its Riemannian fiber Mn is
nonnegative. If Σ(u) is an entire 1-maximal spacelike H-graph over Mn

with u bounded, then Σ(u) is totally geodesic. In addition, if n = 2 and
KM (p) > 0 at some point p ∈M2, then u ≡ t0 for some t0 ∈ R.

We observe that, when the ambient space is the Lorentz–Minkowski
space Ln+1, Corollary 1 reads as follows:

Corollary 2. The only bounded entire 1-maximal spacelike H-graphs
over a spacelike hyperplane of Ln+1 are the spacelike hyperplanes.



276 H. F. de Lima, E. A. Lima Jr.

2. Preliminaries

In what follows, we deal with a spacelike hypersurface Σn immersed

into an (n+ 1)-dimensional Lorentzian product space M
n+1

of the form
R×Mn, where Mn is an n-dimensional connected Riemannian manifold

and M
n+1

is endowed with the Lorentzian metric

〈 , 〉 = −π∗R(dt2) + π∗M (〈 , 〉M ),

where πR and πM denote the canonical projections from R ×M onto
each factor, and 〈 , 〉M is the Riemannian metric on Mn.

For simplicity, we will just write M
n+1

= −R × Mn and 〈 , 〉 =
−dt2 + 〈 , 〉M . In this setting, for each fixed t0 ∈ R, we say that
Mn

t0 = {t0} ×Mn is a slice, which is a totally geodesic spacelike hyper-

surface of M
n+1

. We recall that a smooth immersion ψ : Σn → −R×Mn

of an n-dimensional connected manifold Σn is said to be a spacelike hy-
persurface if the induced metric via ψ is a Riemannian metric on Σn,
which, as usual, is also denoted for 〈 , 〉.

Since ∂t = (∂/∂t)(t,x), (t, x) ∈ −R ×Mn, is a unitary timelike vec-
tor field globally defined on the ambient spacetime, then there exists a
unique timelike unitary normal vector field N globally defined on the
spacelike hypersurface Σn which is in the same time-orientation as ∂t.
By using Cauchy–Schwarz inequality, we get 〈N, ∂t〉 ≤ −1 on Σn. We
will refer to that normal vector field N as the future-pointing Gauss map
of the spacelike hypersurface Σn.

Let ∇ and ∇ denote the Levi–Civita connections in −R×Mn and Σn,
respectively. Then the Gauss and Weingarten formulas for the spacelike
hypersurface ψ : Σn → −R×Mn are given by

(2.1) ∇XY = ∇XY − 〈AX,Y 〉N
and

(2.2) AX = −∇XN,

for every tangent vector fields X,Y ∈ X(Σ). Here A : X(Σ) → X(Σ)
stands for the shape operator (or Weingarten endomorphism) of Σn with
respect to the future-pointing Gauss map N .

As in [17], the curvature tensor R of the spacelike hypersurface Σn is
given by

R(X,Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z,

where [ ] denotes the Lie bracket and X,Y, Z ∈ X(Σ). Another fact well
known is that the curvature tensor R of the spacelike hypersurface Σn

can be described in terms of the shape operator A and the curvature
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tensor R of the ambient spacetime −R × Mn by the so-called Gauss
equation given by

(2.3) R(X,Y )Z = (R(X,Y )Z)> − 〈AX,Z〉AY + 〈AY,Z〉AX,

for every tangent vector fields X,Y, Z ∈ X(Σ).
Now, we consider two particular functions naturally attached to a

spacelike hypersurface Σn immersed into a Lorentzian product space
−R ×Mn, namely, the (vertical) height function h = (πR)|Σ and the
support function 〈N, ∂t〉, where we recall that N denotes the future-
pointing Gauss map of Σn and ∂t is the coordinate vector field induced
by the universal time on −R×Mn.

Let us denote by ∇ and ∇ the gradients with respect to the metrics
of −R ×Mn and Σn, respectively. Then, a simple computation shows
that the gradient of πR on −R×Mn is given by

∇πR = −〈∇πR, ∂t〉∂t = −∂t,

so that the gradient of h on Σn is

(2.4) ∇h = (∇πR)> = −∂>t = −∂t − 〈N, ∂t〉N,

where ( )>denotes the tangential component of a vector field in X(M
n+1

)
along Σn. Thus, we get

(2.5) |∇h|2 = 〈N, ∂t〉2 − 1,

where | | denotes the norm of a vector field on Σn. Since ∂t is parallel
on −R×Mn, we have that

(2.6) ∇X∂t = 0,

for every tangent vector field X ∈ X(Σ). Writing ∂t = −∇h− 〈N, ∂t〉N
along the hypersurface Σn and using formulas (2.1) and (2.2), from (2.4)
and (2.6) we get that

(2.7) ∇X∇h = 〈N, ∂t〉AX,

for every tangent vector field X ∈ X(Σ). Therefore, from (2.7) we obtain
that the Laplacian on Σn of its height function h is given by

(2.8) ∆h = −nH〈N, ∂t〉,

where H = − 1
n tr(A) denotes the mean curvature of Σn with respect to

its future-pointing Gauss mapping N .
Moreover, from (2.4) and (2.6) we also have that

X(〈N, ∂t〉) = −〈A(X), ∂t〉 = −〈X,A(∂>t )〉 = 〈X,A(∇h)〉,
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for all X ∈ X(Σ). Thus,

(2.9) ∇〈N, ∂t〉 = −A(∂>t ) = A(∇h).

Supposing that Σn is a constant mean curvature spacelike hypersur-
face of −R ×Mn, as a particular case of Corollary 8.2 in [7] we also
obtain that the Laplacian on Σn of its support function 〈N, ∂t〉 is given
by

(2.10) ∆〈N, ∂t〉 = (RicM (N∗, N∗) + |A|2)〈N, ∂t〉,

where RicM is the Ricci curvature of the fiber Mn, N∗ = N + 〈N, ∂t〉∂t
is the projection of N onto Mn and |A| stands for the Hilbert–Schmidt
norm of the shape operator A of Σn.

3. Proof of Theorem 1

Let −R×Mn be a Lorentzian product space. We recall that an entire
graph over the fiber Mn is determined by a smooth function u ∈ C∞(M)
and it is given by

Σ(u) = {(u(x), x);x ∈Mn} ⊂ −R×Mn.

The metric induced on Mn from the Lorentzian metric on the ambient
space via Σ(u) is

(3.1) 〈 , 〉 = −du2 + 〈 , 〉M .

Remark 1. It can be easily seen from (3.1) that an entire graph Σ(u) is
a spacelike hypersurface if, and only if, |Du|2M < 1. Note that, when the
fiber Mn is simply connected, every complete spacelike hypersurface in
−R×Mn is an entire graph in such space (see, for instance, Lemma 3.1
of [3]). However, according to the examples of non-complete entire max-
imal graphs in −R×H2 due to Albujer in Section 3 of [2], we see that an
entire spacelike graph in a Lorentzian product space is not necessarily
complete, in the sense that the induced Riemannian metric (3.1) is not
necessarily complete.

If Σ(u) is an entire graph over the fiber Mn, with a straightforward
computation we verify that the vector field

(3.2) N =
1√

1− |Du|2M
(∂t +Du)

defines the future-pointing Gauss map of Σ(u).
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Let us study the shape operatorA of Σn(u) with respect its orientation
given by (3.2). For any X ∈ X(Σ(u)), since X = X∗−〈Du,X∗〉M∂t, we
have that

(3.3) AX = −∇XN = 〈Du,X∗〉M∇∂t
N −∇X∗N.

Consequently, from (3.2), (3.3), and with aid of Proposition 7.35 of [17],
we verify that

(3.4) AX = − 1√
1− |Du|2M

DX∗Du− 〈DX∗Du,Du〉M
(1− |Du|2M )3/2

Du,

where D denotes the Levi–Civita connection in Mn with respect to the
metric 〈 , 〉M .

From (3.4) we obtain that the mean curvature of Σ(u) is given by

(3.5) nH = Div

(
Du√

1− |Du|2M

)
,

where Div stands for the divergence operator on Mn with respect to the
metric 〈 , 〉M .

In order to prove Theorem 1, we will need two key lemmas. The first
one gives a suitable lower estimate for the Ricci curvature of a spacelike
hypersurface immersed in −R×Mn.

Lemma 1. Let Σn be a spacelike hypersurface immersed in a Lorentzian
product space −R×Mn, whose sectional curvature KM of its fiber Mn

verifies KM ≥ −κ for some positive constant κ. Then, for all X ∈ X(Σ),
the Ricci curvature of Σn satisfies the following inequality

(3.6) Ric(X,X) ≥ −κ(n− 1)(1 + |∇h|2)|X|2 − n2H2

4
|X|2.

Proof: let us consider X ∈ X(Σ) and a local orthonormal frame {E1, . . . ,
En} of X(Σ). Then, it follows from Gauss equation (2.3) that

Ric(X,X) =

n∑
i=1

〈R(X,Ei)X,Ei〉+ nH〈AX,X〉+ 〈AX,AX〉

=

n∑
i=1

〈R(X,Ei)X,Ei〉 −
n2H2

4
|X|2 +

∣∣∣∣AX +
nH

2
X

∣∣∣∣2 .
Moreover, we have that

〈R(X,Ei)X,Ei〉=〈R(X∗, E∗i )X∗, E∗i 〉M
=KM (X∗, E∗i )(〈X∗, X∗〉M 〈E∗i , E∗i 〉M−〈X∗, E∗i 〉2M ).

(3.7)
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On the other hand, since X∗ = X + 〈X, ∂t〉∂t, E∗i = Ei + 〈Ei, ∂t〉∂t, and
∇h = −∂>t , with a straightforward computation we see that

〈X∗, X∗〉M 〈E∗i , E∗i 〉M = (1 + 〈Ei,∇h〉2)(|X|2 + 〈X,∇h〉2)

and

〈X∗, E∗i 〉2M = 〈X,Ei〉2 + 2〈X,∇h〉〈Ei,∇h〉〈X,Ei〉
+ 〈X,∇h〉2〈Ei,∇h〉2.

Therefore, since we are supposing that KM ≥ −κ for some positive
constant κ, we obtain
n∑

i=1

〈R(X,Ei)X,Ei〉 ≥ −κ
(
(n− 1)|X|2 + (n− 2)〈X,∇h〉2 + |X|2|∇h|2

)
≥ −κ(n− 1)(1 + |∇h|2)|X|2,

which jointly with (3.7) yields (3.6).

The second auxiliary lemma is the well known generalized maximum
principle due to Omori [16] and Yau [22], which is quoted below.

Lemma 2. Let Σn be an n-dimensional complete Riemannian manifold
whose Ricci curvature is bounded from below and ϑ be a smooth function
on Σn which is bounded from below. Then, for each ε > 0 there exists a
point pε ∈ Σn such that

inf
Σ
ϑ ≤ ϑ(pε) < inf

Σ
ϑ+ ε, |∇ϑ(pε)| < ε, and ∆ϑ(pε) > −ε.

Now, we are in position to present the proof of Theorem 1.

Proof of Theorem 1: Observe first that, under the assumptions of the
theorem, Σ(u) is indeed a complete spacelike hypersurface. In fact,
from (3.1) and the Cauchy–Schwarz inequality we get

(3.8) 〈X,X〉 = 〈X∗, X∗〉M − 〈Du,X∗〉2M ≥ (1− |Du|2M )〈X∗, X∗〉M ,
for every tangent vector field X on Σ(u).

On the other hand, we have that the Hilbert–Schmidt norm of the
shape operator A of Σ(u) satisfies the following algebraic identity

(3.9) |A|2 = n2H2 − n(n− 1)H2.

Thus, since H is constant and H2 is supposed to be bounded from below,
from (3.9) it holds that supp∈Σ(u) |Ap|2 < +∞. So, from (1.1) we see

that there exists a constant 0 < α < 1 such that |Du|M ≤ α. Hence,
from (3.8) we get

〈X,X〉 ≥ (1− α2)〈X∗, X∗〉M .
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This implies that L ≥
√
cLM , where L and LM denote the length of a

curve on Σ(u) with respect to the Riemannian metrics 〈 , 〉 and 〈 , 〉M ,
respectively, and c = 1− α2. As a consequence, since we are supposing
that Mn is complete, then the induced metric on Σ(u) from the metric
of −R×Mn is also complete.

Now, let us consider on Σ(u) the functions η = 1− e−ku, with k ∈ N,

and W =
√

1− |Du|2M . Since we are supposing that u is bounded,
we have that the function ϑ = ηW is bounded from below. On the
other hand, since H is constant and taking into account hypothesis (1.1)
jointly with (3.12), from Lemma 1 we have that the Ricci curvature
of Σ(u) is also bounded from below. Hence, we can apply Lemma 2 to
the function ϑ, obtaining a sequence of points {pk,ε} in Σ(u) such that,
for each fixed k > 0,

|∇ϑ|(pk,ε) ≤ ε, ϑ(pk,ε) ≤ inf
Σ(u)

ϑ+ ε, and ∆ϑ(pk,ε) ≥ −ε.

Computing ∆ϑ we obtain

(3.10) ∆ϑ = ∆(ηW ) = W∆η + η∆W + 2〈∇W,∇η〉.
Therefore, since W∇η = ∇ϑ− η∇W , from (3.10) we get

(3.11) ∆ϑ = W∆η + η

(
∆W − 2

|∇W |2

W

)
+

2

W
〈∇W,∇ϑ〉.

On the other hand, since N = −〈N, ∂t〉∂t +N∗ where N∗ denotes the
projection of N onto the fiber Mn, from equation (2.4) it is not difficult

to see that N∗> = −〈N, ∂t〉∇u and |∇u|2 = 〈N∗, N∗〉M . Here, we are
taking into account that the height function h of Σ(u) is nothing but the
function u regarded as a function on Σ(u). Thus, from (3.2) we obtain
that

(3.12) |∇u|2 =
|Du|2M

1− |Du|2M
=

1−W 2

W
.

Consequently, from (2.5) and (3.12) we have that

(3.13) 〈N, ∂t〉 = − 1

W
.

Hence, taking into account that

∆

(
1

W

)
= − 1

W 2

(
∆W − 2|∇W |2

W

)
,

we can use formula (2.10) to rewrite (3.11) as

(3.14) ∆ϑ = W∆η − η(RicM (N∗, N∗) + |A|2)W +
2

W
〈∇W,∇ϑ〉.
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Hence, along the minimizing sequence {pk,ε}, from (3.14) we get

(3.15) − ε ≤W∆η − η(RicM (N∗, N∗) + |A|2)W +
2

W
〈∇W,∇ϑ〉.

So, using Cauchy–Schwartz inequality in (3.15), we obtain that

(3.16) − ε ≤W∆η − η(RicM (N∗, N∗) + |A|2)W +
2ε|∇W |
W

.

On the other hand, since we are assuming that KM ≥ −κ for some
positive constant κ, we have

(3.17) RicM (N∗, N∗) ≥ −κ(n− 1)|N∗|2M = −κ(n− 1)|∇u|2.

But, from (1.1) and (3.12) it holds that

|∇u|2 ≤ |A|2

κ(n− 1)
.

Consequently, from (3.17) we obtain

(3.18) RicM (N∗, N∗) + |A|2 ≥ −κ(n− 1)|∇u|2 + |A|2 ≥ 0.

Furthermore, up to translation, we can assume u > 0 and, hence, we
have that η > 0 on Σ(u). Therefore, from (3.16) and (3.18) we get

(3.19) − ε
(
W + 2|∇W |

W 2

)
≤ ∆η.

Using the general formula ∆f(u) = f ′∆u+f ′′|∇u|, we also have that

(3.20) ∆η = e−ku(k∆u− k2|∇u|2).

Thus, from (3.19) and (3.20) we obtain

(3.21) − ε
(
W + 2|∇W |

W 2

)
≤ e−ku(k∆u− k2|∇u|2).

Hence, taking into account (2.8) and (3.5), from (3.21) we must have

(3.22) − εeku(W + 2|∇W |) ≤ (−nHkW − k2|Du|2M ).

We claim that ∇W is also bounded. Indeed, from (3.13) we have that

(3.23) ∇W = − 1

〈N, ∂t〉2
∇〈N, ∂t〉.

Hence, from (2.9) and (3.23) we get

|∇W | ≤W 2|A||∇u| ≤W 2 |A|2√
κ(n− 1)

.
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Thus, letting ε → 0 in (3.22) and taking the lim sup on ε, we obtain
the following estimate

(3.24) 0 ≤ −n|H| lim sup
ε→0

W − k lim sup
ε→0

|Du|2M .

Now, multiplying (3.24) by 1
k and making k → ∞ as we take the

lim sup over k we get the next

(3.25) lim sup
k→∞

lim sup
ε→0

|Du|2M = 0.

Consequently, since W 2 = 1− |Du|2M , we have

(3.26) lim inf
k→∞

lim inf
ε→0

W 2 = 1.

Since these sequences are minimizing, by Lemma 2 on an arbitrary
point we have the ensuing

η2W 2(pk,ε) ≤ η2W 2 + ε,

which implies that

|Du|2M ≤ 1− η2
∗
η2
W 2(pk,ε) +

ε

η2

≤ 1− (1− e−ku∗)2W 2(pk,ε) +
ε

(1− e−ku∗)2
,

where η∗ = infΣ(u) η and u∗ = infΣ(u) u. Without loss of generality,
denoting u∗ = supΣ(u) u, we can suppose that u∗ ≥ u ≥ u∗ > 0. Thus,

(3.27) |Du|2M ≤ 1− (1− e−ku∗)2W 2(pk,ε) +
ε

(1− e−ku∗)2
.

Since ε does not appear in the left hand side of (3.27), we can take
lim supε→0 on both sides of (3.27) obtaining

(3.28) |Du|2M ≤ 1− (1− e−ku∗)2 lim inf
ε→0

W 2(pk,ε).

In an analogous way, taking lim supk→∞ on (3.28), we finally conclude
that |Du|2M = 0 on Σ(u), that is, u ≡ t0 for some t0 ∈ R.

Remark 2. We recall that the Cheeger constant b(M) of a complete
Riemannian manifold Mn is given by

b(M) = inf
D

A(∂D)

V (D)
,

where D ranges over all open submanifolds of Mn with compact closure
in Mn and smooth boundary, and where V (D), A(∂D) are the volume
of D resp. the area of ∂D, relative to the metric of Mn.
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Returning to the context of Theorem 1, assuming that there exists
an entire spacelike H-graph with H > 0 and such that (1.1) holds,
from (3.5) we can apply an argument due to Salavessa [18] to get

nHV (D) ≤
∫
D

nH dV =

∫
D

Div

(
Du√

1− |Du|2M

)
dV

=

∮
∂D

〈
Du√

1− |Du|2M
, ν

〉
dA ≤

√
n

(n− 1)κ
HA(∂D),

where ν is the outward unit normal of ∂D. Yielding the following lower
estimate for the Cheeger constant of the fiber Mn√

n(n− 1)κ ≤ b(M).

Furthermore, recalling the stability operator J = ∆ + Ric(N,N) +
|A|2, a spacelike H-hypersurface Σn is said to be stable if

(3.29)

∫
Σ

J f · f ≥ 0, ∀ f ∈ C2
0 (Σ).

We also note that, under the stated hypothesis of Theorem 1, entire
spacelike H-graph is, in fact, a slice and therefore Ric(∂t, ∂t) = 0 and
|A|2 ≡ 0. Hence, in this case, from (3.29) we see that such graph is
stable.

Remark 3. According to Example 4.4 of [12], taking 0 < |a| < 1, we
have that the entire vertical graph

Σ(u) = {(a ln y, x, y); y > 0} ⊂ −R×H2

is such that

|Du|2H2 = |a|2

and, hence, Σ(u) is a complete spacelike surface in −R×H2. Moreover,
with a straightforward computation we verify that Σ2(u) has constant
mean curvature H = − a

2
√

1−a2
, H2 = 0, and

(3.30) |Du|2H2 =
|A|2

1 + |A|2
.

Hence, we conclude that Theorem 1 does not hold when the function u
is unbounded.

Furthermore, since 〈N, ∂t〉 is constant on Σ(u), from formula (2.10)
and taking into account equations (3.12) and (3.30), we get

(3.31) ∆〈N, ∂t〉 = (|A|2 − |∇h|2)〈N, ∂t〉 = 0.
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Consequently, according to the stability criteria given in (3.29), from
equation (3.31) we also conclude that Σ(u) constitutes a nontrivial ex-
ample of stable surface in −R × H2. Therefore, concerning the context
of Theorem 1, we see that the stability of the entire spacelike H-graph
cannot alone guarantee the uniqueness result.
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