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THE KATO SQUARE ROOT PROBLEM FOLLOWS

FROM AN EXTRAPOLATION PROPERTY OF THE

LAPLACIAN

Moritz Egert, Robert Haller-Dintelmann, and
Patrick Tolksdorf

Abstract: On a domain Ω ⊆ Rd we consider second-order elliptic systems in
divergence-form with bounded complex coefficients, realized via a sesquilinear form

with domain H1
0(Ω) ⊆ V ⊆ H1(Ω). Under very mild assumptions on Ω and V we

show that the solution to the Kato Square Root Problem for such systems can be
deduced from a regularity result for the fractional powers of the negative Laplacian

in the same geometric setting. This extends earlier results of McIntosh [25] and

Axelsson–Keith–McIntosh [6] to non-smooth coefficients and domains.
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1. Introduction

We consider a second-order m×m elliptic system

Au = −
d∑

α,β=1

∂α(aα,β∂βu)

in divergence-form with bounded Cm×m-valued coefficients aα,β on a
domain Ω ⊆ Rd. As usual, A is interpreted as a maximal accretive
operator on L2(Ω) via a sesquilinear form defined on some closed subset V
of H1(Ω) that contains H1

0(Ω). A fundamental question due to Kato [23]
and refined by Lions [24], having made history as the Kato Square Root

Problem, is whether A has the square root property D(
√
A) = V, i.e.

whether the domain of the maximal accretive square root of A coincides
with the form domain.

The first and the third author were supported by “Studienstiftung des deutschen

Volkes”.
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Whereas for self-adjoint A this is immediate from abstract form the-
ory [22], the full problem remained open for almost 40 years. It were
Auscher, Hofmann, Lacey, McIntosh, and Tchamitchian, who eventu-
ally gave a proof on Ω = Rd exploiting the full strength of harmonic
analysis [2, 3]. Shortly after, Auscher and Tchamitchian used local-
ization techniques to solve the Kato Square Root Problem on strongly
Lipschitz domains Ω complemented by either pure Dirichlet or pure Neu-
mann boundary conditions [5]. These refer to the cases V = H1

0(Ω) and
V = H1(Ω). For a survey we refer to [2, 27] and the references therein.

A milestone toward general form domains has then been set by Axels-
son, Keith, and McIntosh [6, 7], who introduced an operator theoretic
framework that allows to cast the Kato Square Root Problem for almost
arbitrary Ω and V as an abstract first-order problem. By these means
they gave a solution if Ω is a smooth domain, D is a smooth part of the
boundary ∂Ω, and V is the subspace of H1(Ω) containing those functions
that vanish on D – and moreover for global bi-Lipschitz images of these
configurations [6].

Much earlier, in 1985 McIntosh revealed another profound structural
aspect of the Kato Square Root Problem: Assuming some smoothness
on the coefficients and the domain Ω, he proved that on arbitrary form
domains V the affirmative answer to Kato’s problem follows if the square
root property for the easiest elliptic differential operator – the self-adjoint
negative Laplacian – can be extrapolated to fractional powers of expo-
nent slightly above 1

2 , cf. [25]. A similar approach has been pursued
in [6].

Our main result is a reduction theorem in this spirit for second-order
elliptic systems whose coefficients are merely bounded. We do so un-
der significantly weaker geometric assumptions than in [6] and [25] but
in contrast to [25] we have to assume that the form domain is invari-
ant under multiplication by smooth functions. As an application we have
obtained an extension of previous results on the Kato Square Root Prob-
lem for mixed boundary conditions [15]. The key technique is a ΠB-type
theorem in the spirit of [7], which we state as our second main result
and which allows for further applications, e.g. to prove well-posedness of
boundary value problems on cylindrical domains, see [1].

The paper is organized as follows. After introducing some notation
and the geometric setup in Section 2, we state our main results in Sec-
tion 3. The hypotheses underlying our ΠB-theorem are discussed in
Section 5. In Section 6 we deduce our main result from the ΠB-theorem.
For the reader’s convenience, necessary tools from functional calculus are
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recalled beforehand in Section 4. In the remaining sections we develop
the proof of the ΠB-theorem. Our argument builds upon the techniques
being introduced in [7] as did many other square root type results be-
fore [6, 8, 9, 28], but as a novelty allows the presence of a non-smooth
boundary. We suggest to keep a copy of [7] handy as duplicated argu-
ments with this paper are omitted.

2. Notation and general assumptions

Most of our notation is standard. Throughout, the dimension d ≥ 2
of the underlying Euclidean space is fixed. The open ball in Rd with
center x and radius r > 0 is denoted by B(x, r). For abuse of notation
we use the symbol |·| for both the Euclidean norm of vectors in Cn,
n ≥ 1, as well as for the d-dimensional Lebesgue measure. For z ∈ C
we put 〈z〉 := 1 + |z|. The Euclidean distance between subsets E and F
of Rd is d(E,F ). If E = {x}, then the abbreviation d(x,E) is used.
The complex logarithm log is always defined on its principal branch
C \ (−∞, 0]. The indicator function of a set E ⊆ Rd is 1E and for
convenience we abbreviate the maps z 7→ 1 and z 7→ z by 1 and z,
respectively. For average integrals the symbol

ffl
is used.

We allow ourselves the freedom to write a . b if there exists C > 0 not
depending on the parameters at stake such that a ≤ Cb holds. Likewise,
we use the symbol & and we write a ' b if both a . b and b . a hold.

2.1. Function spaces. The Hilbert space of square integrable, Cn-val-
ued functions on a Borel set Ξ ⊆ Rd is L2(Ξ;Cn). If Ξ is open, then
H1(Ξ;Cn) is the associated first-order Sobolev space with its usual Hilber-
tian norm and H1

0(Ω;Cn) denotes the H1-closure of C∞c (Ξ;Cn), the space
of smooth functions with compact support in Ξ. The Bessel potential
spaces with differentiability s > 0 and integrability 2 are Hs,2(Rd;Cn),
see [31, Sec. 2.3.3] and Hs,2(Ξ;Cn) := {u|Ξ : u ∈ Hs,2(Rd;Cn)} is
equipped with the quotient norm

‖u‖Hs,2(Ξ;Cn) := inf{‖v‖Hs,2(Rd;Cn) : v = u a.e. on Ξ}.

2.2. Operators on Hilbert spaces. Any Hilbert space H under con-
sideration is taken over the complex numbers. Concerning linear opera-
tors we follow standard notation. If B1 and B2 are operators in H then
B1 +B2 and B1B2 are defined on their natural domains

D(B1 +B2) := D(B1) ∩ D(B2) and

D(B1B2) := {u ∈ D(B2) : B2u ∈ D(B1)}.

Their commutator is [B1, B2] := B1B2 −B2B1.
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2.3. Geometric setup and the elliptic operator. In this section we

define the elliptic operator Au = −
∑d
α,β=1 ∂α(aα,β∂βu) under consid-

eration properly by means of Kato’s form method [22]. Starting from
now, the codimension m ≥ 1 – the number of “equations” – is fixed.

Throughout this work we assume the following geometric setup.

Assumption 2.1. (Ω) We assume that Ω ⊆ Rd is a d-set in the sense
of Jonsson–Wallin [21], i.e. that it satisfies the d-Ahlfors or measure
density condition

|Ω ∩B(x, r)| ' rd (x ∈ Ω, 0 < r ≤ 1).

(∂Ω) We assume that ∂Ω is a (d − 1)-set in the sense of Jonsson–Wa-
llin [21], i.e. that it satisfies the Ahlfors–David condition

md−1(∂Ω ∩B(x, r)) ' rd−1 (x ∈ ∂Ω, 0 < r ≤ 1),

where here and throughout md−1 denotes the (d− 1)-dimensional
Hausdorff measure.

(V) We assume that V is a closed subspace of H1(Ω;Cm) that contains
H1

0(Ω;Cm) and is stable under multiplication by smooth functions
in the sense

ϕV ⊆ V (ϕ ∈ C∞c (Rd;C)).

Moreover, we assume that V has the H1-extension property, i.e.
there exists a bounded operator E : V → H1(Rd;Cm) such that
Eu = u a.e. on Ω for each u ∈ V.

(α) We assume that for some α ∈ (0, 1) the complex interpolation space
[L2(Ω;Cm),V]α coincides with Hα,2(Ω;Cm) and that their norms
are equivalent.

Let us comment on these assumptions.

Remark 2.2. (i) The stability assumption on V is satisfied e.g. for
the usual choices of V modeling (mixed) Dirichlet and Neumann
boundary conditions [15, 29].

(ii) The H1 extension property for V is trivially satisfied if Ω admits a
bounded Sobolev extension operator E : H1(Ω;Cm)→ H1(Rd;Cm).
In this case also (Ω) holds [20, Thm. 2].

(iii) Assumption (d−1) is common in the treatment of boundary value
problems, being among the weakest geometric conditions that allow
to define boundary traces, cf. [21].

(iv) Assumption (α) should be considered as a geometric one. A com-
mon way to force its validity is to assume that Ω is a Sobolev
extension domain and that

(Mc)
[
L2(Ω;Cm),H1

0(Ω;Cm)
]
α

=
[
L2(Ω;Cm),H1(Ω;Cm)

]
α



Kato Follows from an Extrapolation Property of the Laplacian 455

holds up to equivalent norms. Indeed, (α) then follows from
H1

0(Ω;Cm) ⊆ V ⊆ H1(Ω;Cm) and standard interpolation results
[31, Sec. 1.2.4/2.4.2]. The condition (Mc) has been introduced in
this context by McIntosh [25].

(v) Among the vast variety of Sobolev extension domains satisfying
(∂Ω) and McIntosh’s condition for all α ∈ (0, 1

2 ) are the whole

space Rd [31, Sec. 2.4.1], the upper half space Rd+ [31, Sec. 2.10]
from which the result for special Lipschitz domains can be de-
duced, as well as bounded Lipschitz domains [18, Thm. 3.1], [31,
Sec. 4.3.1]. Assumption 2.1 then reduces to the stability assump-
tion on V. However, configurations in which Ω is not a Sobolev
extension domain though (Ω), (∂Ω), (V), and (α) are satisfied,
naturally occur in the treatment of mixed boundary value prob-
lems, cf. [15] and the references therein.

Concerning the coefficients of A we make the following standard as-
sumption.

Assumption 2.3. We assume aα,β ∈ L∞(Ω;Cm×m) for all 1 ≤ α, β ≤ d
and that the associated sesquilinear form

a : V × V → C, a(u, v) =

d∑
α,β=1

ˆ
Ω

aα,β(x)∂βu(x) · ∂αv(x) dx

is elliptic in the sense that for some λ > 0 it satisfies the G̊arding in-
equality

(2.1) Re(a(u, u)) ≥ λ‖∇u‖2L2(Ω;Cdm) (u ∈ V).

Since V is dense in L2(Ω;Cm) and a is elliptic, classical form theory
[22, Ch. VI] yields that the associated operator A on L2(Ω;Cm) given by

a(u, v) = 〈Au, v〉L2(Ω;Cm) (u ∈ D(A), v ∈ V)

on

D(A) :=
{
u ∈ V : a(u, ·) boundedly extends to L2(Ω;Cm)

}
is maximal accretive. By this we mean that A is closed and for z in
the open left complex halfplane the operator z − A is invertible with
‖(z−A)−1‖L(L2(Ω;Cm))≤|Re(z)|−1. The choice aα,β = δα,β IdCm×m , where
δ is Kronecker’s delta, yields the negative of the (coordinatewise) weak
Laplacian ∆V with form domain V.

Maximal accretivity allows to define fractional powers (ε+A)α for all
α, ε ≥ 0 by means of the functional calculus for sectorial operators, see
Section 4. The so-defined square root

√
A of A is the unique maximal
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accretive operator such that
√
A
√
A = A holds, cf. [22, Thm. V.3.35]

and [19, Cor. 7.1.13].

3. Main results

The main result we want to prove in this paper is the following.

Theorem 3.1. Let Assumptions 2.1 and 2.3 be satisfied and let ∆V
be the weak Laplacian with form domain V. If for the same α as in
Assumption 2.1

(E) D((1−∆V)1/2+α/2) ⊆ H1+α,2(Ω;Cm)

with continuous inclusion, then A has the square root property

D(
√
A)=D(

√
1 +A)=V with ‖(

√
1 +A)u‖L2(Ω;Cm)'‖u‖V (u∈V).

By a classical result on operators on Hilbert spaces [22, Thm. VI. 2.23]
the self-adjoint operator 1−∆V has the square root propertyD(

√
1−∆V)=

V ⊆ H1(Ω;Cm). Hence, our main result may informally be stated as fol-
lows:

If the square root property for the negative Laplacian with
form domain V extrapolates to fractional powers with expo-
nent slightly above 1

2 , then every elliptic differential operator
in divergence form with form domain V has the square root
property.

Remark 3.2. (i) The conditions (Mc) and (E) are those imposed by
McIntosh [25] to solve the Kato Square Root Problem for opera-
tors A with Hölder continuous coefficients.

(ii) In applications it usually suffices that (α) and (E) hold for different
choices of α since then, by interpolation, both conditions can be
met simultaneously for some possibly smaller value of α, cf. [15].

In Section 5 we will deduce Theorem 3.1 from the following ΠB-the-
orem. In fact, Theorem 3.3 is a generalization of the main result in [6]
to non-smooth domains. For the notion of bisectorial operators see Sec-
tion 4. Corollary 3.4 is discussed in more detail at the end of Section 4.

Theorem 3.3. Let k ∈ N and N = km. On the Hilbert space H :=
(L2(Ω;Cm))k consider operators Γ, B1, and B2 satisfying (H1)–(H7),
see Section 5. Then the perturbed Dirac type operator ΠB :=Γ+B1Γ∗B2

is bisectorial of some angle ω ∈ (0, π2 ) and satisfies quadratic estimates

(3.1)

ˆ ∞
0

‖tΠB(1 + t2Π2
B)−1u‖2H

dt

t
' ‖u‖2H (u ∈ R(ΠB)).

Moreover, implicit constants depend on B1 and B2 only through the con-
stants quantified in (H2).
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Corollary 3.4. The part of ΠB in R(ΠB) is an injective bisectorial
operator of angle ω with a bounded H∞(Sψ)-calculus for each ψ ∈ (ω, π2 ).
In particular, it shares the Kato square root type estimate

D(
√

Π2
B) = D(ΠB) with ‖

√
Π2
Bu‖H ' ‖ΠBu‖H (u ∈ D(ΠB)).

4. Functional calculi

We recall the functional calculi for sectorial and bisectorial operators.
For sectorial operators we follow the treatment in [19, Ch. 2]. Good
references for the bisectorial case are [12, 13], see also [14, Ch. 3].

Given ϕ ∈ (0, π), denote by S+
ϕ := {z ∈ C \ {0} : |arg z| < ϕ}

the open sector with vertex 0 and opening angle 2ϕ symmetric around
the positive real axis. If ϕ ∈ (0, π2 ) then Sϕ := S+

ϕ ∪ (−S+
ϕ ) is the

corresponding open bisector. An operator B on a Hilbert space H is

sectorial of angle ϕ ∈ (0, π) if its spectrum is contained in S+
ϕ and

sup
{
‖λ(λ−B)−1‖L(H) : λ ∈ C \ S+

ψ

}
<∞ (ψ ∈ (ϕ, π)).

Likewise, B is bisectorial of angle ϕ ∈ (0, π2 ) if σ(B) ⊆ Sϕ and

sup
{
‖λ(λ−B)−1‖L(H) : λ ∈ C \ Sψ

}
<∞ (ψ ∈ (ϕ, π2 )).

A sectorial or bisectorial operator B on H necessarily is densely defined
and induces a topological decomposition H = N (B) ⊕ R(B), see [19,
Prop. 2.1.1] or [14, Prop. 3.2.2].

4.1. Construction of the functional calculi. For an open set U ⊆ C
denote by H∞(U) the Banach algebra of bounded holomorphic functions
on U equipped with the supremum norm ‖ · ‖∞,U and let

H∞0 (U) :=
{
g ∈ H∞(U) | ∃C, s > 0 ∀ z ∈ U : |g(z)| ≤ C min{|z|s, |z|−s}

}
be the subalgebra of regularly decaying functions.

The holomorphic functional calculus for a sectorial operator B of an-
gle ϕ ∈ (0, π) on a Hilbert space H is defined as follows. For ψ ∈ (ϕ, π)
and f ∈ H∞0 (S+

ψ ) define f(B) ∈ L(H) via the Cauchy integral

f(B) :=
1

2πi

ˆ
∂S+
ν

f(z)(z −B)−1 dz,

where ν ∈ (ϕ,ψ) and the boundary curve ∂S+
ν surrounds σ(B) coun-

terclockwise. This integral converges absolutely and is independent of
the particular choice of ν due to Cauchy’s theorem. Furthermore, define
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g(B) := f(B) + c(1 +B)−1 + d if g is of the form g = f + c(1 + z)−1 + d
for f ∈ H∞0 (S+

ψ ) and c, d ∈ C. This yields an algebra homomorphism

E(S+
ψ ) := H∞0 (S+

ψ )⊕ 〈(1 + z)−1〉 ⊕ 〈1〉 → L(X), g 7→ g(B),

the primary holomorphic functional calculus for the sectorial operator B.
It can be extended to a larger class of holomorphic functions by regu-
larization [19, Sec. 1.2]: If f is a holomorphic function on S+

ψ for which

there exists an e ∈ E(S+
ψ ) such that ef ∈ E(S+

ψ ) and e(B) is injective,

define f(B) := e(B)−1(ef)(B). This yields a closed and (in general)
unbounded operator on H and the definition is independent of the par-
ticular regularizer e. If holomorphic functions f, g : S+

ψ → C can be
regularized, then the composition rules

(4.1) f(B) + g(B) ⊆ (f + g)(B) and f(B)g(B) ⊆ (fg)(B)

hold true and D(f(B)g(B))=D((fg)(B))∩D(g(B)), cf. [19, Prop. 1.2.2].
In particular, for each α > 0 and each ε ≥ 0 the function (ε + z)α

is regularizable by (1 + z)−k for k a natural number larger than α and
yields the fractional power (ε + B)α. The domain of (ε + B)α is inde-
pendent of ε ≥ 0. Many rules for fractional powers of complex numbers
remain valid for these operators, see [19, Sec. 3.1] for details. If B is
injective, then each f ∈ H∞(S+

ψ ) is regularizable by z(1 + z)−2 yielding

the H∞(S+
ψ )-calculus for B.

The holomorphic functional calculus for bisectorial operators can be
set up in exactly the same manner by replacing sectors S+

ψ by the re-

spective bisectors Sψ and resolvents (1 + B)−1 by (i + B)−1. It shares
all properties of the sectorial calculus listed above.

If B is bisectorial of angle ϕ ∈ (0, π2 ), then B2 is sectorial of angle 2ϕ.
We remark that this correspondence is compatible with the respective
functional calculi.

Lemma 4.1. Let B be a bisectorial operator of angle ϕ ∈ (0, π2 ) on a

Hilbert space H, let ψ ∈ (ϕ, π2 ), and let f ∈ H∞0 (S+
2ψ). Then f(z2)(B)

and f(B2) defined via the holomorphic functional calculi for the bisecto-
rial operator B and the sectorial operator B2 respectively, coincide.

Proof: Note that z2 maps the bisector Sψ onto the sector S+
2ψ. Hence,

g := f(z2) ∈ H∞0 (Sψ) and the claim follows by a straightforward trans-
formation of the defining Cauchy integrals.

Corollary 4.2. Suppose the setting of Lemma 4.1 and let β > 0. Then
(z2)β(B) = zβ(B2).
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Proof: Let k ∈ N be larger than β. It suffices to remark that e :=
(1 + z)−k regularizes zβ in the functional calculus for B2 and that
e(z2) regularizes (z2)β in the functional calculus for B.

4.2. Boundedness of the H∞-calculus for bisectorial operators.
Given an injective bisectorial operator B of angle ϕ ∈ (0, π2 ) on a Hilbert
space H and some angle ψ ∈ (ϕ, π2 ), the H∞(Sψ)-calculus for B is said
to be bounded with bound Cψ > 0 if

‖f(B)‖L(H) ≤ Cψ‖f‖∞,Sψ (f ∈ H∞(Sψ)).

It is convenient that boundedness of the H∞(Sψ)-calculus follows from a
uniform bound for the H∞0 (Sψ)-calculus. For a proof see [19, Sec. 5.3.4]
or [14, Cor. 3.3.6].

Proposition 4.3. Let B be an injective bisectorial operator of angle ϕ ∈
(0, π2 ) on a Hilbert space H and let ψ ∈ (ϕ, π2 ). If there exists a con-
stant Cψ > 0 such that

‖f(B)‖L(H) ≤ Cψ‖f‖∞,Sψ (f ∈ H∞0 (Sψ)),

then the H∞(Sψ)-calculus for B is bounded with bound Cψ.

On Hilbert spaces boundedness of the H∞-calculus is equivalent to
certain quadratic estimates, see e.g. [11, 14] and [26].

Proposition 4.4. Let B be an injective bisectorial operator of angle ϕ ∈
(0, π2 ) on a Hilbert space H. If B satisfies quadratic estimates

ˆ ∞
0

‖tB(1 + t2B2)−1u‖2H
dt

t
' ‖u‖2H (u ∈ H),

then the H∞(Sψ)-calculus for B is bounded for each ψ ∈ (ϕ, π2 ).

For later references we include the classical proof drawing upon the
following lemma.

Lemma 4.5 ([7, p. 473]). If B is a bisectorial operator on a Hilbert
space H, then

lim
r→0
R→∞

ˆ R

r

(tB(1 + t2B2)−1)2u
dt

t
=

1

2
u (u ∈ R(B)).
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Proof of Proposition 4.4: We appeal to Proposition 4.3. Fix ψ ∈ (ϕ, π2 )

and f ∈ H∞0 (Sψ). For t > 0 put Ψt := tz(1 + t2z2)−1 ∈ H∞0 (Sψ). The
most direct estimate on the defining Cauchy integral gives

‖Ψt(B)f(B)Ψs(B)‖L(H) . ‖f‖∞,Sψ
ˆ ∞

0

ts−1r

(1 + (ts−1r)2)(1 + r2)
dr

=: ‖f‖∞,Sψζ(ts−1)

(4.2)

for all s, t > 0 and an implicit constant depending only on ψ. Here, ζ ∈
L1(0,∞; dr/r). Recall H = N (B)⊕R(B) = R(B) as B is injective. For
u ∈ H apply the quadratic estimate to f(B)u and then use Lemma 4.5
for u to find

‖f(B)u‖2H.
ˆ ∞

0

‖Ψt(B)f(B)u‖2H
dt

t

.
ˆ ∞

0

(ˆ ∞
0

‖Ψt(B)f(B)Ψs(B)Ψs(B)u‖H
ds

s

)2
dt

t
.

By (4.2) and Hölder’s inequality,

.‖f‖2∞,Sψ

ˆ ∞
0

(ˆ ∞
0

ζ(ts−1)
ds

s

)(ˆ ∞
0

ζ(ts−1)‖Ψs(B)u‖2H
ds

s

)
dt

t
.

The right-hand side is bounded by ‖f‖2∞,Sψ‖ζ‖
2
L1(0,∞;dr/r)‖u‖

2
H.

Remark 4.6. Suppose that B is a self-adjoint (and hence bisectorial)
operator on a Hilbert space H. Then Ψt(B) = tB(1 + t2B2)−1 is self-
adjoint for each t > 0 and Lemma 4.5 yields

ˆ ∞
0

‖Ψt(B)u‖2H
dt

t
= lim

r→0
R→∞

〈ˆ R

r

Ψt(B)2u
dt

t
, u

〉
H

=
1

2
‖u‖2H (u ∈ R(B)).

The proof of Proposition 4.4 reveals the following: If {Tt}t>0 ⊆ L(H)
is a family of operators for which there is ζ ∈ L1(0,∞; dr/r) such that
‖TtΨs(B)‖L(H) . ζ(ts−1) for all s, t > 0, then

ˆ ∞
0

‖Ttu‖2H
dt

t
. ‖u‖2H (u ∈ R(B)).

This is usually called a Schur type estimate. In the proof of Proposi-
tion 4.4, Tt = Ψt(B)f(B).

For completeness we add a short proof of Corollary 3.4.
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Proof of Corollary 3.4: The first part is due to H = N (ΠB) ⊕ R(ΠB)

and Proposition 4.4. Put T := ΠB |R(ΠB)
. As z√

z2
,
√
z2

z ∈ H∞(Sψ), the

composition rules (4.1) yield

D(
√

Π2
B) ∩R(ΠB) = D(ΠB) ∩R(ΠB)

with

‖
√

Π2
Bu‖H ' ‖ΠBu‖H (u ∈ D(ΠB) ∩R(ΠB)).

We used D(T ) = D(ΠB) ∩ R(ΠB) and D(
√
T 2) = D(

√
Π2
B) ∩ R(ΠB).

The Kato square root type estimate follows from N (ΠB) ⊆ N (
√

Π2
B).

Proofs of these three properties of functional calculi are found e.g. in [14,
19].

5. The hypotheses underlying Theorem 3.3

In this section we introduce the hypotheses (H1)–(H7) underlying
Theorem 3.3 and summarize their well-established operator theoretic
consequences. The first four of our hypotheses are:

(H1) The operator Γ is nilpotent, i.e. closed, densely defined, and satisfies
R(Γ) ⊆ N (Γ). In particular Γ2 = 0 on D(Γ).

(H2) The operators B1 and B2 are defined everywhere on H. There
exist κ1, κ2 > 0 such that they satisfy the accretivity conditions

Re〈B1u, u〉H ≥ κ1‖u‖2H (u ∈ R(Γ∗)),

Re〈B2u, u〉H ≥ κ2‖u‖2H (u ∈ R(Γ)),

and there exist K1, K2 such that they satisfy the boundedness
conditions

‖B1u‖H ≤ K1‖u‖H and ‖B2u‖H ≤ K2‖u‖H (u ∈ H).

(H3) The operator B2B1 mapsR(Γ∗) intoN (Γ∗) and the operator B1B2

maps R(Γ) into N (Γ). In particular, Γ∗B2B1Γ∗ = 0 on D(Γ∗) and
ΓB1B2Γ = 0 on D(Γ).

(H4) The operators B1, B2 are multiplication operators induced by
L∞(Ω;L(CN ))-functions.

We define the Dirac type operator Π := Γ + Γ∗ and the perturbed
operators Γ∗B := B1Γ∗B2 and ΠB := Γ + Γ∗B . The first three hypotheses
trace out the classical setup for perturbed Dirac type operators intro-
duced in [6]. They have the following consequences. Firstly, (H1) implies
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that Γ∗ is nilpotent and so is Γ∗B , cf. [7, Lem. 4.1]. The operator ΠB

induces the algebraic and topological Hodge decomposition

(5.1) H = N (ΠB)⊕R(Γ∗B)⊕R(Γ)

and in particular

(5.2) N (ΠB) = N (Γ∗B) ∩N (Γ) and R(ΠB) = R(Γ∗B)⊕R(Γ)

hold [7, Prop. 2.2]. Moreover, ΠB is bisectorial of angle ω ∈ (0, π2 ), cf. [7,

Prop. 2.5]. Consequently, Π2
B is sectorial of angle 2ω. The unperturbed

operator Π is self-adjoint [7, Cor. 4.3] and thus satisfies quadratic esti-

mates, cf. Remark 4.6. In particular, D(
√

Π2) = D(Π) with equivalence
of the homogeneous graph norms as in Corollary 3.4. Finally, if Γ sat-
isfies (H1), then (H2) and (H3) are always satisfied for B1 = B2 = Id
and hence the results above remain true in the unperturbed setting when
Γ∗B = Γ∗ and ΠB = Π.

Remark 5.1. In all results from [7] implicit constants depend on the
perturbations B1 and B2 only through the constants κ1,2, K1,2 quantified
in (H2). This has already been stated in [7, Sec. 2] and has been worked
out in greatest details in the master’s thesis of one of the authors [30].

Similar to [6, 7] the set of hypotheses is completed by localization and
coercivity assumptions on the unperturbed operators. The slight differ-
ence between (H7) and the corresponding hypothesis in [6] stresses that
no further knowledge on the occurring interpolation spaces is necessary.

(H5) For every ϕ ∈ C∞c (Rd;C) the associated multiplication opera-
tor Mϕ maps D(Γ) into itself and [Γ,Mϕ] = ΓMϕ − MϕΓ with
domain D([Γ,Mϕ]) = D(Γ) acts as a multiplication operator in-
duced by some cϕ ∈ L∞(Ω;L(CN )) with entries

|ci,jϕ (x)| . |∇ϕ(x)| (x ∈ Ω, 1 ≤ i, j ≤ N)

for an implicit constant independent of ϕ.
(H6) For every open ball B centered in Ω, and for all u ∈ D(Γ) and

v ∈ D(Γ∗) with compact support in B ∩ Ω it holds∣∣∣∣ˆ
Ω

Γudx

∣∣∣∣ . |B| 12 ‖u‖H and

∣∣∣∣ˆ
Ω

Γ∗v dx

∣∣∣∣ . |B| 12 ‖v‖H.
(H7) There exist β1, β2 ∈ (0, 1] such that the fractional powers of Π2

satisfy

‖u‖[H,Vk]β1
. ‖(Π2)β1/2u‖H and

‖v‖[H,Vk]β2
. ‖(Π2)β2/2v‖H

for all u ∈ R(Γ∗) ∩ D(Π2) and all v ∈ R(Γ) ∩ D(Π2).
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Remark 5.2. It is straightforward to check that if the triple of opera-
tors {Γ, B1, B2} satisfies (H1)–(H7), then so do the triples {Γ∗, B2, B1},
{Γ∗, B∗2 , B∗1}, and {Γ, B∗1 , B∗2}.

6. The proof of Theorem 3.1

In this section we deduce Theorem 3.1 from Theorem 3.3 applied on
H := L2(Ω;Cm) × L2(Ω;Cm) × (L2(Ω;Cm))d. The argument is similar
to [6].

Recall that a : V × V → C is the sesquilinear form corresponding to

Au = −
∑d
α,β=1 ∂α(aα,β∂βu) and let A be the multiplication operator

corresponding to the coefficient tensor (aα,β)1≤α,β≤d ∈ L∞(Ω;L(Cdm)).
Define ∇Vu := ∇u on D(∇V) := V and put

Γ :=

 0 0 0
Id 0 0
∇V 0 0

 , B1 :=

Id 0 0
0 0 0
0 0 0

 , and B2 :=

0 0 0
0 Id 0
0 0 A


on their natural domains. By these choices

ΠB =

 0 Id (∇V)∗A
Id 0 0
∇V 0 0

 and Π2
B =

1 +A 0 0
0 Id (∇V)∗A
0 ∇V ∇V(∇V)∗A

 .
The corresponding unperturbed operators Π and Π2 are obtained by
replacing A by Id and A by −∆V . Upon restricting to the first com-
ponent of H, these representations show that Theorem 3.1 follows from
D(
√

Π2
B) = D(ΠB) with equivalences of the homogeneous graph norms,

cf. Corollary 3.4. So, to complete the proof of Theorem 3.1 it remains
to verify (H1)–(H7) for these particular choices of operators.

6.1. Verification of (H1)–(H7). It is obvious that (H1), (H3), and
(H4) hold. Also (H2) is immediate for B1 and for B2 it follows from
Assumption 2.3. The validity of (H5) is a consequence of (V) in As-
sumption 2.1 and the product rule.

Since the integral over the gradient of a compactly supported function
vanishes, the estimate for u in (H6) follows from Hölder’s inequality. For

v take ϕ ∈ C∞c (Ω;R) with ϕ ≡ 1 on supp(v) and denote by {ej}(d+2)m
j=1

the standard basis of C(d+2)m. Note supp(Γ∗v) ⊆ supp(v) by (H5) for Γ∗

in place of Γ, cf. Remark 5.2. As

ϕej ∈ H1
0(Ω;Cm)d+2 ⊆ Vd+2 ⊆ D(Γ)
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for each j by Assumption 2.1, it follows∣∣∣∣ˆ
Ω

Γ∗v dx

∣∣∣∣ ' (d+2)m∑
j=1

∣∣∣∣ˆ
Ω

〈ϕej ,Γ∗v〉dx
∣∣∣∣ =

(d+2)m∑
j=1

∣∣∣∣ˆ
Ω

〈Γ(ϕej), v〉dx
∣∣∣∣.

Since |Γ(ϕej)| ≤ 1 a.e. on supp(v), the required estimate is obtained by
Hölder’s inequality.

For the first part of (H7) take β1 = 1 and note

‖u‖Vd+2 = ‖u‖H1(Ω;Cm)d+2 = ‖Γu‖H = ‖Πu‖H ' ‖
√

Π2u‖H.

For the second part take β2 = α as in Assumption 2.1. Fix v =
(0, w,∇Vw) ∈ R(Γ) ∩ D(Π2). Then w ∈ D((∇V)∗∇V) = D(1 − ∆V)
so that by Assumption (E) of Theorem 3.1,

‖v‖[H,Vd+2]α ' ‖w‖Hα,2(Ω;Cm) + ‖∇w‖Hα,2(Ω;Cm)d

. ‖w‖H1+α,2(Ω;Cm)

. ‖(1−∆V)1/2+α/2w‖L2(Ω;Cm).

However, (1 − ∆V)1/2+α/2w = (Π2)1/2+α/2ŵ, ŵ = (w, 0, 0) ∈ D(Π).
Thus, Corollary 4.2 and the composition rules (4.1) for the functional
calculus for Π yield

‖(Π2)1/2(Π2)α/2ŵ‖H'‖Π(Π2)α/2ŵ‖H=‖(Π2)α/2Πŵ‖H=‖(Π2)α/2v‖H
as required.

7. The proof of Theorem 3.3: Preliminaries

In this and the following two sections we develop the proof of The-
orem 3.3. Throughout we assume that Γ, B1, and B2 are operators
on H satisfying (H1)–(H7). We shall stick to the notions introduced in
Section 5 but simply write ‖ · ‖ instead of ‖ · ‖H as long as no misun-
derstandings are expected. We shall use the discussed properties of Γ,
Γ∗, Π, Γ∗B , and Π∗B without further referencing. We also introduce the
following bounded operators on H:

RBt := (1 + itΠB)−1, PBt := (1 + t2Π2
B)−1,

QBt = tΠBP
B
t , and ΘB

t := tΓ∗BP
B
t (t ∈ R).

In the unperturbed case, i.e. if B1 = B2 = Id, we simply write Rt, Pt,
Qt, and Θt.

In order to carry out correctly the dependence of the implicit constants
on the perturbations B1 and B2, we make the following
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Agreement 7.1. In the proof of Theorem 3.3 the symbols ., &, and '
are reserved for estimates invoking implicit constants whose dependence
on B1 and B2 is only through the constants quantified in (H2).

Lemma 7.2. For each t ∈ R it holds PBt = 1
2 (RBt +RB−t) = RBt R

B
−t and

QBt = 1
2i (R

B
−t −RBt ). Moreover,

‖RBt ‖L(H) + ‖PBt ‖L(H) + ‖QBt ‖L(H) + ‖ΘB
t ‖L(H) . 1 (t ∈ R).

Proof: Checking the identities is a straightforward calculation. The
boundedness of {RBt }t∈R, {PBt }t∈R, and {QBt }t∈R then follows by bisec-
toriality of ΠB . Finally, ‖ΘB

t ‖L(H) . ‖QBt ‖L(H) holds for all t ∈ R due

to the topological decomposition R(ΠB) = R(Γ∗B)⊕R(Γ), cf. (5.2).

In [7, Prop. 4.8] Axelsson, Keith, and McIntosh reveal that (H1)–(H3)
already imply

(7.1)

ˆ ∞
0

‖ΘB
t (1− Pt)u‖2

dt

t
. ‖u‖2 (u ∈ R(Γ)),

and that a sufficient condition for the quadratic estimate (3.1) for ΠB is

(7.2)

ˆ ∞
0

‖ΘB
t Ptu‖2

dt

t
. ‖u‖2 (u ∈ R(Γ))

and the three analogous estimates obtained by replacing {Γ, B1, B2}
by {Γ∗, B2, B1}, {Γ∗, B∗2 , B∗1}, and {Γ, B∗1 , B∗2}. In fact, owing to Re-
mark 5.2, it suffices to prove (7.2). In this section we shall take care of
the integral over t ≥ 1 and decompose the remaining finite time integral
into three pieces that will be handled later on.

Lemma 7.3 (Reduction to finite time). It holdsˆ ∞
1

‖ΘB
t Ptu‖2

dt

t
. ‖u‖2 (u ∈ R(Γ)).

Proof: Fix u=Γw ∈ R(Γ). By nilpotence of Γ and Γ∗ one readily checks

Ptu = (1 + t2Π2)−1Γ(1 + t2Π2)(1 + t2Π2)−1w

= Γ(1 + t2Π2)−1w = ΓPtw (t ∈ R \ {0}).
(7.3)

Hence, the second part of (H7) applies to v = Ptu. Lemma 7.2 and the
continuous inclusion [H,Vk]β2

⊆ H, yieldˆ ∞
1

‖ΘB
t Ptu‖2

dt

t
.
ˆ ∞

1

‖Ptu‖2[H,Vk]β2

dt

t

.
ˆ ∞

1

‖tβ2(Π2)β2/2Ptu‖2
dt

t1+2β2
.
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Define holomorphic functions ft := (t2z)β2/2(1 + t2z)−1. A direct esti-
mate on the defining Cauchy integral yields a bound for ‖ft(Π2)‖L(H)

uniformly in t ≥ 1. Thus,

=

ˆ ∞
1

‖ft(Π2)u‖2 dt

t1+2β2

.
ˆ ∞

1

‖u‖2 dt

t1+2β2
=

1

2β2
‖u‖2.

To proceed further, we introduce a slightly modified version of Christ’s
dyadic decomposition for doubling metric measure spaces [10, Thm. 11].
In fact, if one aims only at a truncated dyadic cube structure with a com-
mon bound for the diameter of all dyadic cubes, then Christ’s argument
literally applies to locally doubling metric measure spaces. This has
been previously noticed e.g. by Morris [28]. Here, a metric measure
space X with metric ρ and positive Borel measure µ is doubling if there
is a constant C > 0 such that

µ({x∈X : ρ(x, x0)<2r})≤Cµ({x ∈ X : ρ(x, x0)<r}) (x0 ∈ X, r > 0)

and it is locally doubling if the inequality above holds for all x0 ∈ X and
all r ∈ (0, 1]. Note that (Ω) of Assumption 2.1 entails that Ω equipped
with the restricted Euclidean metric and the restricted Lebesgue measure
is locally doubling.

Theorem 7.4 (Christ). Under Assumption 2.1(Ω) there exists a collec-
tion of open subsets {Qkα ⊆ Ω : k ∈ N0, α ∈ Ik}, where Ik are index sets,

and constants δ ∈ (0, 1) and a0, η̂, C1, Ĉ2 > 0 such that:

(i) |Ω \
⋃
α∈Ik Q

k
α| = 0 for each k ∈ N0.

(ii) If l ≥ k, then for each α ∈ Ik and each β ∈ Il either Qlβ ⊆ Qkα or

Qlβ ∩Qkα = ∅ holds.

(iii) If l ≤ k, then for each α ∈ Ik there is a unique β ∈ Il such that
Qkα ⊆ Qlβ.

(iv) It holds diam(Qkα) ≤ C1δ
k for each k ∈ N0 and each α ∈ Ik.

(v) For each Qkα, k ∈ N0, α ∈ Ik, there exists zkα ∈ Ω such that
B(zkα, a0δ

k) ∩ Ω ⊆ Qkα.

(vi) If k ∈ N0, α ∈ Ik, and t > 0, then |{x ∈ Qkα : d(x,Ω \ Qkα) ≤
tδk}| ≤ Ĉ2t

η̂|Qkα|.
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By a slight abuse of notation we refer to the Qkα as dyadic cubes. We
denote the family of all dyadic cubes by ∆ and each family of fixed step
size δk by ∆δk := {Qkα : α ∈ Ik}. Moreover, if k ∈ N0 and t ∈ (δk+1, δk],
then the family of dyadic cubes of step size t is ∆t := ∆δk . The sidelength
of Q ∈ ∆δk is l(Q) := δk.

Remark 7.5. (i) Assumption 2.1(Ω) in combination with (iv) and (v)
of Theorem 7.4 imply |Q| ' l(Q)d for all Q ∈ ∆.

(ii) Since the dyadic cubes are open, for each t ∈ (0, 1] the family ∆t

is countable.
(iii) The first item of Theorem 7.4 implies that there exists a nullset

N ⊆ Ω such that for each t ∈ (0, 1] and each x ∈ Ω \N there exists
a unique cube Q ∈ ∆t that contains x.

A substantial drawback of Theorem 7.4 is that part (vi) gives an es-
timate for the inner boundary strips of dyadic cubes only near their
relative boundary with respect to Ω. This of course is a relict of the very
construction. The Ahlfors–David condition is an appropriate measure-
theoretic assumption on ∂Ω allowing to control the measure of the com-
plete inner boundary strip.

Some variant of the following lemma may be well known but for the
reader’s convenience we include a proof.

Lemma 7.6. If Ξ ⊆ Rd is open and ∂Ξ is a (d − 1)-set, then for each
r0, t0 > 0 there exists C > 0 such that

|{x ∈ Ξ : |x− x0| < r, d(x,Rd \ Ξ) ≤ tr}| ≤ Ctrd

for all x0 ∈ Ξ, r ∈ (0, r0], and t ∈ (0, t0].

Proof: For x0 ∈ Ξ, r ∈ (0, r0], and t ∈ (0, t0] put

E := {x ∈ Ξ : |x− x0| < r, d(x,Rd \ Ξ) ≤ tr}.
Then for each x ∈ E there exists a boundary point bx ∈ ∂Ξ such that
x ∈ B(bx, tr). The Vitali covering lemma [16, Sec. 1.5] yields a countable
subset J ⊆ E such that the balls {B(bx, tr)}x∈J are pairwise disjoint
and such that {B(bx, 6tr)}x∈J is a covering of E. Hence, |E| . #J(tr)d,
where #J denotes the number of elements contained in J .

To get control on #J fix z ∈ J . If y ∈ B(bx, tr) for some x ∈ J
then by the triangle inequality |y − bz| ≤ 3tr + 2r < (3t0 + 2)r. The
Ahlfors–David condition md−1(∂Ξ ∩ B(bx, r)) ' rd−1 remains valid for
all bx ∈ ∂Ξ and all r ∈ (0, (3t0 + 2)r0] with implicit constants depending
only on Ξ, r0, and t0. Hence,

((3t0+2)r)d−1&md−1

(
∂Ξ∩B(bz, (3t0+2)r)

)
≥
∑
x∈J

md−1

(
∂Ξ∩B(bx, tr)

)
.
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Again by the Ahlfors–David condition the right-hand side is comparable
to #J(tr)d−1. Thus, #J . t1−d and the conclusion follows.

As a corollary we record a connection between Ahlfors regular and
plump sets that is of independent interest. Following [32] a bounded
set Ξ ⊆ Rd is κ-plump if there exists κ > 0 such that for each x0 ∈ Ξ
and each r ∈ (0,diam(Ξ)] there exists x ∈ Ξ such that B(x, κr) ⊆
Ξ ∩B(x0, r).

Corollary 7.7. If Ξ ⊆ Rd is a bounded open d-set and ∂Ξ is a (d−1)-set,
then Ξ is κ-plump.

Proof: By the d-set property of Ξ fix c > 0 such that |Ξ∩B(x0, r)| ≥ crd
for all x0 ∈ Ξ and all r ∈ (0,diam(Ξ)]. Choose r0 := 1

2 diam(Ξ) and
t0 = 1 in Lemma 7.6 and apply the estimate with t = min{ c

2C , 1} to
conclude ∣∣∣∣{x ∈ Ξ : |x− x0| <

r

2
, d(x,Rd \ Ξ) >

tr

2

}∣∣∣∣ ≥ crd

2d+1

for all x0 ∈ Ξ and all r ∈ (0,diam(Ξ)]. In particular, these sets are
non-empty so one can choose κ = t.

Corollary 7.8. Under Assumptions 2.1(Ω) and 2.1(∂Ω) there exist con-
stants η, C2 > 0 such that

|{x ∈ Q : d(x,Rd \Q) ≤ tδk}| ≤ C2t
η|Q|

for each k ∈ N0, Q ∈ ∆δk , and t > 0.

Proof: Put η := min{1, η̂} where η̂ is given by Theorem 7.4. If t ≥ 1
then the estimate in question holds with C2 = 1. If t < 1 split

E :=
{
x ∈ Q : d(x,Rd \Q) ≤ tδk

}
⊆
{
x ∈ Q : d(x,Ω \Q) ≤ tδk

}
∪
{
x ∈ Q : d(x,Rd \ Ω) ≤ tδk

}
.

Property (vi) of the dyadic decomposition and Lemma 7.6 applied with
r0 := C1, t0 := 1

C1
, and r and t replaced by C1δ

k and t
C1

yield the

estimate |E| . Ĉ2t
η̂|Q|+ tδkd. The conclusion follows from Remark 7.5

taking into account t < 1.

The boundedness assertions of Lemma 7.2 self-improve to off-diagonal
estimates. These will be a crucial instrument in the following. Recall
that given z ∈ C we write 〈z〉 = 1 + |z|.
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Proposition 7.9 (Off-diagonal estimates). Let Ut be either of the op-
erators RBt , PBt , QBt , or ΘB

t . Then for every M ∈ N0 there exists a
constant AM > 0 such that∥∥1EUt(1Fu)

∥∥ . AM

〈
d(E,F )

t

〉−M
‖1Fu‖

holds for all u ∈ H, all t ∈ R\{0}, and all bounded Borel sets E,F ⊆ Ω.

We skip the proof as it is literally the same as in [7, Prop. 5.2] with one
minor modification: In the case 0 < |t| ≤ d(E,F ) one separates E and F

by some η ∈ C∞c (Ẽ) such that η = 1 on E and ‖∇η‖∞ ≤ c/d(E,F ),

where Ẽ := {x ∈ Rd : d(x,E) < 1
2d(E,F )} and c depending only on d,

rather then the choices for η and Ẽ in [7]. This is due to the slight
difference between our (H5) and (H6) in [7].

The next lemma helps to control the sums that naturally crop up
when combining off-diagonal estimates with the dyadic decomposition.

Lemma 7.10. The following hold true for each M > d+ 1.

(i) There exists cM > 0 depending solely on M and Ω such that∑
R∈∆t

〈
d(x,R)

t

〉−M
≤ cM (x ∈ Rd, t ∈ (0, 1]).

(ii) Let l∈N0, t∈(0, 1], Q ∈ ∆t, and F ⊆ Rd be such that d(Q,F ) ≥ lt.
Then exist cl,1, cl,2 ≥ 0 depending solely on l, M , and Ω such that∑

R∈∆t

〈
d(Q,R ∩ F )

s

〉−M
≤ cl,1 + cl,2

(
s

t

)M
(s > 0).

If l > 0, then one can choose cl,1 = 0.

Proof: To show the first statement fix x ∈ Rd and t ∈ (0, 1]. Fix k ∈ N0

such that δk+1 < t ≤ δk. Put Ωn := B(x, (n + 1)C1δ
k) ∩ Ω for n ∈ N0

and Ω−1 := Ω−2 := ∅. If R ∈ ∆t intersects an annulus Ωn \Ωn−1, n ∈ N,
then due to property (iv) of the dyadic decomposition

(7.4) d(x,R) ≥ d(x,Ωn+1 \ Ωn−2) ≥ (n− 1)C1δ
k ≥ (n− 1)δ−1C1t.

It readily follows from Assumption 2.1 that there exists c > 0 such
that |Ω ∩ B(x, r)| ≥ crd holds for all x ∈ Ω and all r ∈ (0, a0), where
a0 > 0 is given by Theorem 7.4. Properties (iv) and (v) of the dyadic
decomposition yield

(7.5) #
{
R∈∆t : R∩(Ωn\Ωn−1) 6=∅

}
≤ |Ωn+1|
c(a0δk)d

≤ C
d
1 (n+2)d

cad0
(n∈N0).
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Now, rearrange the cubes in ∆t according to the first annulus that they
intersect to find∑
R∈∆t

〈
d(x,R)

t

〉−M
≤
∞∑
n=0

Cd1 (n+ 2)d

cad0
(1 + (n−1)δ−1C1)−M =: cM <∞

thanks to M > d+ 1.
The second claim is very similar. Choose an arbitrary x ∈ Q and

define Ωn, n ≥ −2, as before. By (7.5) there are at most
Cd1 (n+2)d

cad0
cubes R ∈ ∆t intersecting an annulus Ωn \ Ωn−1, n ∈ N0, and if this
happens then by assumption on F , property (iv) of the dyadic decom-
position, and (7.4),

d(Q,R ∩ F ) ≥ max{d(Q,R), d(Q,F )} ≥ max{(n− 2)δ−1C1t, lt}.
Hence, the left-hand side of the estimate in question is bounded by

Cd1
cad0

l+2∑
n=0

(n+ 2)d
(

1 +
lt

s

)−M
+
Cd1
cad0

∞∑
n=l+3

(n+ 2)d
(

(n− 2)δ−1C1t

s

)−M
.

The second sum is controlled by a generic multiple of sM t−M and so is
the first one if l > 0.

A consequence of the preceding lemma is the following. Take w∈CN
and regard it as a constant function on Ω. Also fix s∈(0, 1]. If Q ∈ ∆t for
some t ∈ (0, 1] then Proposition 7.9 and the second part of Lemma 7.10
assure ∑

R∈∆t

‖1QΘB
s (1Rw)‖ .

∑
R∈∆t

〈
d(Q,R)

s

〉−(d+2)

‖1Rw‖ <∞.

As the measure of each cube Q ∈ ∆t is comparable to td, cf. Remark 7.5,
each bounded subset of Ω is covered up to a set of measure zero by finitely
many cubes Q ∈ ∆t. Now, define ΘB

s w ∈ L2
loc(Ω;CN ) by setting it equal

to
∑
R∈∆t

1QΘB
s (1Rw) on each Q ∈ ∆t. This definition is independent

of the particular choice of t. Indeed, if 0 < t1 < t2 ≤ 1 and Q1 ∈ ∆t1 is
a subcube of Q2 ∈ ∆t2 then

1Q1

∑
R2∈∆t2

1Q2
ΘB
s (1R2

w) =
∑

R2∈∆t2

∑
R1∈∆t1
R1⊆R2

1Q1
ΘB
s (1R1

w)

=
∑

R1∈∆t1

1Q1ΘB
s (1R1w)

by properties (i), (ii), and (iii) of the dyadic decomposition. This gives
rise to the following definition.
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Definition 7.11. Let 0 < t ≤ 1. The principal part of ΘB
t is defined as

γt : Ω→ L(CN ), γt(x) : w 7→ (ΘB
t w)(x).

Remark 7.12. If Ω is bounded then H contains the constant CN valued
functions and the direct definition of ΘB

t w for t ∈ (0, 1] and w ∈ CN co-
incides with the one above.

Next, we introduce the dyadic averaging operator.

Proposition 7.13. Let t ∈ (0, 1]. The dyadic averaging operator At,
defined for u ∈ H by

Atu(x) :=

 
Q(x,t)

u(y) dy (x ∈ Ω \N),

where Q(x, t) is uniquely characterized by x ∈ Q(x, t) ∈ ∆t, is a con-
traction on H.

Proof: Split Ω\N into the dyadic cubes ∆t and apply Jensen’s inequality
to find

‖Atu‖2 =
∑
Q∈∆t

ˆ
Q

|Atu|2 dy

=
∑
Q∈∆t

|Q|
∣∣∣∣ 
Q

udy

∣∣∣∣2 ≤ ∑
Q∈∆t

|Q|
 
Q

|u|2 dy = ‖u‖2.

Lemma 7.14. Let t ∈ (0, 1]. The operator γtAt : H → H acting via
(γtAtu)(x) = γt(x)(Atu)(x) is bounded with operator norm uniformly
bounded in t. Moreover, 

Q

‖γt(x)‖2L(CN ) dx . 1 (Q ∈ ∆t)

with an implicit constant independent of t.

Proof: The first claim follows straightforwardly from the second one,
cf. also [28, Cor. 5.4]. To prove the second claim fix Q ∈ ∆t. With
{ej}Nj=1 the standard unit vectors in CN ,(ˆ

Q

‖γt(x)‖2L(CN ) dx

)1/2

.
N∑
j=1

(ˆ
Q

|γt(x)ej |2 dx

)1/2

≤
N∑
j=1

∑
R∈∆t

(ˆ
Q

|(ΘB
t (1Rej))(x)|2 dx

)1/2

.
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Proposition 7.9, item (i) of Remark 7.5, and Lemma 7.10 yield

.
N∑
j=1

∑
R∈∆t

〈
d(R,Q)

t

〉−(d+2)

|Q|1/2 . |Q|1/2

uniformly in t.

For u ∈ R(Γ) integration over t ∈ (0, 1] on the left-hand side of (7.2)
is now split asˆ 1

0

‖ΘB
t Ptu‖2

dt

t
.
ˆ 1

0

‖(ΘB
t − γtAt)Ptu‖2

dt

t

+

ˆ 1

0

‖γtAt(Pt − 1)u‖2 dt

t

+

ˆ 1

0

ˆ
Ω

‖γt(x)‖2L(CN )|Atu(x)|2 dx dt

t
.

(7.6)

The idea behind is to compensate the non-integrable singularity show-
ing up at t = 0 as follows: In the first term ΘB

t Ptu is compared with
its averages over dyadic cubes. Letting t→ 0, the difference is expected
to vanish since the diameter of the cubes used for the averaging shrinks
to zero. In the second term Pt is compared with the identity operator,
which is the strong limit of Pt as t → 0. Finally, the third and most
difficult term cries for a Carleson measure estimate. At the beginning
of this section we have seen that it remains to bound each of the three
terms on the right-hand side by a generic multiple of ‖u‖2. This will be
done in the remaining sections.

8. The proof of Theorem 3.3: Principal part
approximation

This section is concerned with estimating the first two terms on the
right-hand side of (7.6). To start with, recall the classical Poincaré
inequality as it can be deduced from Lemmas 7.12 and 7.16 in [17].
Throughout, uS :=

ffl
S
udx is the mean value of an integrable function

u : S → Cn over a set S ⊆ Rd with Lebesgue measure |S| > 0.

Lemma 8.1 (Poincaré inequality). Let Ξ ⊆ Rd be bounded and convex,
and let S be a Borel subset of Ξ with |S| > 0. Then for all u ∈ H1(Ξ;C),

‖u− uS‖L2(Ξ;C) ≤
(diam Ξ)d|B(0, 1)|1−1/d|Ξ|1/d

|S|
‖∇u‖L2(Ξ;Cd).
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The following weighted Poincaré inequality is the key to handle the
first term in (7.6).

Proposition 8.2 (A weighted Poincaré inequality). For each M > 2d+2
there exists CM > 0 such that
ˆ
Rd
|u(x)−uQ|2

〈
d(x,Q)

t

〉−M
dx ≤ CM

ˆ
Rd
|t∇u(x)|2

〈
d(x,Q)

t

〉2d+2−M

dx

holds for all t ∈ (0, 1], all Q ∈ ∆t, and all u ∈ H1(Rd;C).

Proof: Let t ∈ (0, 1] and Q ∈ ∆t. Fix some arbitrary x0 ∈ Q, let T be
the affine transformation x 7→ x0 − t−1x, and put S := T (Q). Upon
replacing u by u ◦ T−1 it suffices to prove

(8.1)

ˆ
Rd
|u(x)−uS |2〈d(x, S)〉−M dx .

ˆ
Rd
|∇u(x)|2〈d(x, S)〉2d+2−M dx

for arbitrary u ∈ H1(Rd;C) and an implicit constant independent of t,
Q, and u.

Let C1 and δ be given by Theorem 7.4. Due to property (iv) of
the dyadic decomposition, S ⊆ B(0, C1δ

−1) and |S| ' 1. Hence, for
r ≥ C1δ

−1 Lemma 8.1 applies with Ξ = B(0, r) and S as above yieldingˆ
Rd
|u(x)− uS |21B(0,r)(x) dx . r2d+2

ˆ
Rd
|∇u(x)|21B(0,r)(x) dx

with an implicit constant independent of u and r. Integration with
respect to r−M−1dr gives

ˆ
Rd
|u(x)− uS |2

ˆ ∞
C1δ−1

1B(0,r)(x)r−M−1 dr dx

.
ˆ
Rd
|∇u(x)|2

ˆ ∞
C1δ−1

r2d+1−M1B(0,r)(x) dr dx.

For fixed x ∈ Rd the inner integrand becomes unequal to 0 precisely
when r gets larger than max{|x|, C1δ

−1} and it is straightforward to
verify (draw a sketch!) that

C1δ
−1

1 + C1δ−1
(1 + d(x, S)) ≤ max{|x|, C1δ

−1} ≤ (1 + C1δ
−1)(1 + d(x, S)).

Thus, (8.1) follows from the previous estimate by a simple computation
of the inner integrals.

Now, we are in position to estimate the first term in (7.6).
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Proposition 8.3 (First term estimate). It holds

ˆ 1

0

‖(ΘB
t − γtAt)Ptu‖2

dt

t
. ‖u‖2 (u ∈ R(Γ)).

Proof: We first inspect the integrand ‖(ΘB
t − γtAt)v‖2 for arbitrary t ∈

(0, 1] and v ∈ Vk. Split Ω into dyadic cubes Q ∈ ∆t and decompose
v =

∑
R∈∆t

1Rv to find by the definitions of the principal part and the
dyadic averaging operator

‖(ΘB
t − γtAt)v‖2 =

∑
Q∈∆t

∥∥∥∥ ∑
R∈∆t

1QΘB
t (1Rv − 1RvQ)

∥∥∥∥2

.

Off-diagonal estimates as in Proposition 7.9 yield

.
∑
Q∈∆t

{ ∑
R∈∆t

〈d(R,Q)

t

〉−3d−4

‖1R(v − vQ)‖
}2

and by the Cauchy–Schwarz inequality and Lemma 7.10,

.
∑
Q∈∆t

∑
R∈∆t

〈d(R,Q)

t

〉−3d−4

‖1R(v − vQ)‖2.

If Q,R∈∆t and x∈R then d(x,Q)≤d(R,Q)+C1δ
−1t as follows imme-

diately from property (iv) of the dyadic decomposition. Consequently,

.
∑
Q∈∆t

∑
R∈∆t

ˆ
R

|v(x)− vQ|2
〈
d(x,Q)

t

〉−3d−4

dx

=
∑
Q∈∆t

ˆ
Ω

|v(x)− vQ|2
〈
d(x,Q)

t

〉−3d−4

dx.

Now, use (V) of Assumption 2.1 coordinatewise to construct an extension
Ev ∈ H1(Rd;Cm)k of v to which Proposition 8.2 applies coordinatewise.
Switching sum and integral then leads to

≤
ˆ
Rd
|t∇(Ev)(x)|2

∑
Q∈∆t

〈
d(x,Q)

t

〉−d−2

dx . t2‖v‖2Vk ,

the second step being due to Lemma 7.10 and the boundedness of
E : Vk → H1(Rd;Cm)k.
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On the other hand, Lemmas 7.2 and 7.14 bound ‖ΘB
t − γtAt‖L(H)

uniformly in t ∈ (0, 1]. Invoking (H7), complex interpolation with the
previous estimate yields

‖(ΘB
t − γtAt)v‖2 . t2β2‖v‖2[H,Vk]β2

. ‖(t2Π2)β2/2v‖2

for all v ∈ R(Γ) ∩ D(Π2) and all t ∈ (0, 1]. In particular, if u ∈ R(Γ),
then due to (7.3) the previous estimate applies to v = Ptu. Hence,

ˆ 1

0

‖(ΘB
t −γtAt)Ptu‖2

dt

t
.
ˆ 1

0

‖(t2Π2)β2/2Ptu‖2
dt

t
=

ˆ 1

0

‖Φt(Π)u‖2 dt

t

with regularly decaying holomorphic functions Φt:=(t2z2)β2/2(1+t2z2)−1.
Now the conclusion follows by the Schur estimate presented in Re-
mark 4.6: Indeed, as in the proof of Proposition 4.4 a direct estimate
yields some ζ ∈ L1(0,∞; dr/r) such that ‖Φt(Π)Qs‖L(H) ≤ ζ(ts−1) for

all s, t > 0 and moreover R(Γ) ⊆ R(Π) holds by the unperturbed coun-
terpart of (5.2).

Remark 8.4. In contrast to [6] we do not require a weighted Poincaré
inequality on Ω to handle the first term on the right-hand side of (7.6).
This is a key observation in order to dispense with smooth local coordi-
nate charts around ∂Ω.

We head toward the second term in (7.6). The key ingredient is the
following interpolation inequality for the unperturbed operators Γ, Γ∗,
and Π. The proof follows the one of [6, Lem. 6] line by line except that
one invokes Corollary 7.8 to estimate the measure of inner boundary
strips of dyadic cubes. This results in an exponent η as in Corollary 7.8
instead of η = 1 in [6, Lem. 6].

Lemma 8.5. If Υ is either of the operators Γ, Γ∗, or Π then with η > 0
given by Corollary 7.8,∣∣∣∣ 

Q

Υudx

∣∣∣∣2 .
1

tη

( 
Q

|u|2 dx

)η/2( 
Q

|Υu|2 dx

)1−η/2

+

 
Q

|u|2 dx

holds for all t ∈ (0, 1], all Q ∈ ∆t, and all u ∈ D(Υ).

Proposition 8.6 (Second term estimate). It holds

ˆ 1

0

‖γtAt(Pt − 1)u‖2 dt

t
. ‖u‖2 (u ∈ H).
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Proof: Since At is a dyadic averaging operator, A2
t = At. Lemma 7.14

bounds ‖γtAt‖L(H) uniformly in t ∈ (0, 1] so that in fact it suffices to
establish ˆ 1

0

‖At(Pt − 1)u‖2 dt

t
. ‖u‖2 (u ∈ H).

This is certainly true for u ∈ N (Π) since then Ptu = u holds for all t ∈ R.

Since Π is bisectorial, H = N (Π)⊕R(Π). Whence, it remains to consider

u ∈ R(Π). In this case the conclusion follows by the Schur estimate
presented in Remark 4.6 applied to Tt := At(Pt− 1) if t ≤ 1 and Tt := 0
if t > 1, provided that we can find some ζ ∈ L1(0,∞; dr/r) such that

‖At(Pt − 1)Qs‖L(H) . ζ(ts−1) (t ∈ (0, 1], s > 0).

In fact one can choose ζ(r) :=min{r, r−1+r−η}. We skip details, since
the argument relying on Lemma 8.5, Lemma 7.10, and off-diagonal esti-
mates for Ps and Qs is the same as in [6, Prop. 5]. Note that η = 1 in [6]
and that Proposition 7.9 holds for the unperturbed operators Ps and Qs,
since if {Γ, B1, B2} satisfies (H1)–(H7), then so does {Γ, Id, Id}.

9. The proof of Theorem 3.3: Principal part estimate

After all it remains to estimate the last term in (7.6) appropriately,
that is to establish

(9.1)

ˆ 1

0

ˆ
Ω

‖γt(x)‖2L(CN )|Atu(x)|2 dx dt

t
. ‖u‖2 (u ∈ R(Γ)).

The proof follows the usual strategy of reducing the problem to a Carle-
son measure estimate, which in turn is established by a T (b) procedure,
see e.g. [2, 6, 7, 8, 28]. However, since only the last two references
deal with the case Ω 6= Rd but under different underlying hypotheses,
we include a more detailed argument for our setup.

Recall the notion of a (dyadic) Carleson measure.

Definition 9.1. The Carleson box RQ of Q ∈ ∆ is the Borel set given by
RQ := Q× (0, l(Q)]. A positive Borel measure ν on Ω× (0, 1] satisfying
Carleson’s condition

‖ν‖C := sup
Q∈∆

ν(RQ)

|Q|
<∞

is called dyadic Carleson measure on Ω× (0, 1].

The following dyadic version of Carleson’s theorem can be found in
[28, Thm. 4.3].
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Theorem 9.2. If ν is a dyadic Carleson measure on Ω× (0, 1], then¨
Ω×(0,1]

|Atu(x)|2 dν(x, t) . ‖ν‖C‖u‖2 (u ∈ H).

So, (9.1) follows if ‖γt(x)‖2L(CN )
dx dt
t is a Carleson measure on Ω×(0, 1]

and it is this property of the principal part γt we are going to establish
in the following.

We begin by fixing σ > 0; its value to be chosen later. Also, by com-
pactness, we fix a finite set F in the boundary of the unit ball of L(CN )
such that the sets

(9.2) Kν :=

{
ν′ ∈ L(CN )\{0} :

∥∥∥ ν′

‖ν′‖L(CN )

−ν
∥∥∥
L(CN )

≤ σ
}

(ν ∈ F)

cover L(CN ) \ {0}. By a standard argument using the John–Nirenberg
Lemma, the following proposition implies Carleson’s condition for the
measure ‖γt(x)‖2L(CN )

dx dt
t , cf. e.g. [28, p. 906].

Proposition 9.3. There exist β, β′ > 0 such that for each Q ∈ ∆ and
for each ν ∈ L(CN ) with ‖ν‖L(CN ) = 1, there is a collection {Qk}k ⊆
∆ of pairwise disjoint subcubes of Q such that |EQ,ν | > β|Q|, where
EQ,ν := Q \

⋃
{Qk}k, and such that

(9.3)

¨
(x,t)∈E∗Q,ν
γt(x)∈Kν

‖γt(x)‖2L(CN )

dx dt

t
≤ β′|Q|,

where E∗Q,ν := RQ \
⋃
{RQk}k.

Hence, our task is to prove Proposition 9.3. We closely follow [7,
pp. 23–26]. For the proof keep Q∈∆ and ν ∈L(CN ) with ‖ν‖L(CN ) = 1

fixed and put τ := l(Q). Define 2Q :={x∈Rd : d(x,Q)≤ l(Q)}. Since the
adjoint matrix ν∗∈L(CN ) has norm 1 there are ω, ω̂∈CN such that

(9.4) |ω| = |ω̂| = 1 and ω = ν∗ω̂.

We prepare for the usual T (b) argument but similar to [4, Sec. 3.6] we
use 12Qω as a test function rather than some smoothened version of it.
This leads to a simplification of the argument compared to [6, Sec. 4.4].
In the subsequent estimates a constant is called admissible if it neither
depends on the quantities fixed above nor on σ its value still to be chosen.
For ε > 0 we then put

fωQ,ε := (1− ετ iΓRBετ )12Qω

= 12Qω − ετ iΓ(1 + ετ iΠB)−112Qω = (1 + ετ iΓ∗B)RBετ12Qω
(9.5)

and derive the following estimates.
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Lemma 9.4. There exist admissible constants A1, A2, A3 > 0 such that
for all ε > 0 it holds

‖fωQ,ε‖ ≤ A1|Q|1/2,
¨
RQ

|ΘB
t f

ω
Q,ε(x)|2 dxdt

t
≤ A2

ε2
|Q|,

∣∣∣∣ 
Q

fωQ,ε(x) dx− ω
∣∣∣∣2 ≤ A3(εη + ε2).

Proof: Note |2Q| ≤ (1 +C1)dl(Q)d . |Q| by property (iv) of the dyadic
decomposition. Hence, (5.2) and Lemma 7.2 yield

(9.6) ‖ΓRBετ12Qω‖+‖Γ∗BRBετ12Qω‖=(ετ)−1‖(1−RBετ )12Qω‖.(ετ)−1|Q|1/2

with admissible implicit constants. From this, the first estimate follows.
For the second estimate check by nilpotence of Γ and Γ∗B that

ΘB
t f

ω
Q,ε = tΓ∗BP

B
t (1 + ετ iΓ∗B)RBετ12Qω = tPBt Γ∗BR

B
ετ12Qω.

Recalling l(Q) = τ , integration gives¨
RQ

|ΘB
t f

ω
Q,ε(x)|2 dxdt

t
≤
ˆ τ

0

t‖PBt Γ∗BR
B
ετ12Qω‖2 dt

.
ˆ τ

0

t‖Γ∗BRBετ12Qω‖2 dt

and (9.6) yields the claim. For the third estimate apply Lemma 8.5 with
Υ = Γ to find∣∣∣∣ 
Q

fωQ,ε dx−ω
∣∣∣∣2= ∣∣∣∣ 

Q

(fωQ,ε − 12Qω) dx

∣∣∣∣2 = (ετ)2

∣∣∣∣ 
Q

ΓRBετ12Qω dx

∣∣∣∣2

.
(ετ)2

τη

( 
Q

|RBετ12Qω|2 dx

)η/2( 
Q

|ΓRBετ12Qω|2 dx

)1−η/2

+(ετ)2

 
Q

|RBετ12Qω|2 dx.

By Lemma 7.2 and (9.6), keeping in mind τ ≤ 1, it follows

.
(ετ)2

τη
(ετ)η−2 + (ετ)2 ≤ εη + ε2.
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From now on keep ε > 0 fixed as the solution of A3(εη + ε2) = 1
2

with A3 as in the preceding lemma. We shall simply write fωQ instead

of fωQ,ε. Owing to Lemma 9.4 and |ω| = 1 we find

(9.7) 2 Re

〈
ω,

 
Q

fωQ dx

〉
=

∣∣∣∣ 
Q

fωQ dx

∣∣∣∣2 + |ω|2 −
∣∣∣∣ 
Q

fωQ dx− ω
∣∣∣∣2 ≥ 1

2
.

The following lemma now follows literally as in [7, Lem. 5.11].

Lemma 9.5. There exist admissible constants β, ρ > 0 and a collection
{Qk}k ⊆ ∆ of dyadic subcubes of Q such that |EQ,ν | > β|Q| where
EQ,ν := Q \

⋃
{Qk}k, and such that

(9.8) Re

〈
ω,

 
Q′
fωQ(x) dx

〉
≥ ρ and

 
Q′
|fωQ(x)|dx ≤ 1

ρ

for all dyadic subcubes Q′ ∈ ∆ of Q which satisfy RQ′ ∩E∗Q,ν 6= ∅, where

E∗Q,ν := RQ \
⋃
{RQk}k.

Let ρ, {Qk}k, EQ,ν , and E∗Q,ν be as provided by Lemma 9.5. We shall
prove the estimates in Proposition 9.3 for these choices. Eventually, we
fix the value of σ > 0 determining the size of the ‘pizza slices’ Kν in (9.2)

as σ := ρ2

2 . For the next lemma recall that N is the exceptional set
defined in Remark 7.5.

Lemma 9.6. Suppose (x, t) ∈ E∗Q,ν is such that x /∈ N and γt(x) ∈ Kν .
Then ∣∣γt(x)(Atf

ω
Q(x))

∣∣ ≥ ρ

2
‖γt(x)‖L(CN ).

Proof: Due to x /∈ N there exists a unique Q′ ∈ ∆t that contains x.
Hence RQ′ ∩ E∗Q,ν 6= ∅. Since by definition Atf

ω
Q(x) =

ffl
Q′
fωQ(y) dy, the

previous lemma and the relations between ν, ω, and ω̂, cf. (9.4), yield∣∣ν(Atf
ω
Q(x))

∣∣ ≥ Re
〈
ω̂, ν(Atf

ω
Q(x))

〉
= Re

〈
ω,Atf

ω
Q(x)

〉
≥ ρ

and furthermore – due to γt(x) ∈ Kν – also∣∣∣∣ γt(x)

‖γt(x)‖L(CN )

(Atf
ω
Q(x))

∣∣∣∣ ≥ |ν(Atf
ω
Q(x))|

− |AtfωQ(x)|
∥∥∥∥ γt(x)

‖γt(x)‖L(CN )

− ν
∥∥∥∥
L(CN )

≥ ρ

2
.

Finally we complete the proof of Proposition 9.3.
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Proof of Proposition 9.3: It remains to establish (9.3). The crucial ob-
servation is that Lemma 9.6 allows to reintroduce the dyadic averaging
operator:¨

(x,t)∈E∗Q,ν
γt(x)∈Kν

‖γt(x)‖2L(CN )

dxdt

t
.
¨
RQ

|γt(x)(Atf
ω
Q(x))|2 dxdt

t

≤ 2

¨
RQ

|ΘB
t f

ω
Q|2

dxdt

t

+ 2

¨
RQ

|(ΘB
t − γtAt)fωQ|2

dxdt

t
.

Lemma 9.4 bounds the first term on the right-hand side by 2A2ε
−2|Q|.

To handle the second one put u := ετ iΓRBετ12Qω ∈ R(Γ). Then due to
fωQ = 12Qω − u, see (9.5), it remains to show

(9.9)

ˆ τ

0

‖1Q(ΘB
t −γtAt)12Qω‖2

dt

t
+

ˆ τ

0

‖1Q(ΘB
t −γtAt)u‖2

dt

t
. |Q|.

For the first term on the left-hand side note At12Qω(x) = ω for all
x ∈ Q and t ∈ (0, τ) so that by definition of the principal part

‖1Q(ΘB
t 12Qω − γtAt12Qω)‖ ≤

∑
R∈∆τ

‖1QΘB
t (1R∩(Rd\2Q)ω)‖.

Proposition 7.9 gives a bound by

.
∑
R∈∆τ

〈
d(Q,R ∩ (Rd \ 2Q))

t

〉−(d+2)

‖1R∩(Rd\2Q)ω‖.

Since dyadic cubes of the same step size are comparable in measure, we
get for each R ∈ ∆τ that ‖1(Rd\2Q)∩Rω‖ ≤ |R|1/2 ' |Q|1/2. Now, the
latter sum is under control by the second part of Lemma 7.10 with l = 1.
Altogether,

‖1Q(ΘB
t 12Qω − γtAt12Qω)‖ . |Q|1/2 t

d+2

τd+2
.

Going back to (9.9), this gives the required bound for the first term. The
second one is bounded byˆ 1

0

‖ΘB
t (1− Pt)u‖2 + ‖(ΘB

t − γtAt)Ptu‖2 + ‖γtAt(Pt − 1)u‖2 dt

t

and these three terms have already been taken care of in (7.1) and Propo-
sitions 8.3 and 8.6 bounding them by a multiple of ‖u‖2. However, in
view of (9.6) we find ‖u‖2 . |Q|. This completes the proof of Proposi-
tion 9.3.
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Supér. (4) 48(4) (2015), 951–1000.

[5] P. Auscher and Ph. Tchamitchian, Square roots of ellip-
tic second order divergence operators on strongly Lipschitz do-
mains: L2 theory, J. Anal. Math. 90(1) (2003), 1–12. DOI:

10.1007/BF02786549.
[6] A. Axelsson, S. Keith, and A. McIntosh, The Kato square

root problem for mixed boundary value problems, J. London Math.
Soc. (2) 74(1) (2006), 113–130. DOI: 10.1112/S0024610706022873.

[7] A. Axelsson, S. Keith, and A. McIntosh, Quadratic estimates
and functional calculi of perturbed Dirac operators, Invent. Math.
163(3) (2006), 455–497. DOI: 10.1007/s00222-005-0464-x.

[8] L. Bandara, Quadratic estimates for perturbed Dirac type oper-
ators on doubling measure metric spaces, in: “AMSI International
Conference on Harmonic Analysis and Applications”, Proc. Centre
Math. Appl. Austral. Nat. Univ. 45, Austral. Nat. Univ., Canberra,
2013, pp. 1–21.

[9] L. Bandara and A. McIntosh, The Kato square root problem
on vector bundles with generalised bounded geometry, J. Geom.
Anal. 26(1) (2016), 428–462. DOI: 10.1007/s12220-015-9557-y.

[10] M. Christ, A T (b) theorem with remarks on analytic capacity and
the Cauchy integral, Colloq. Math. 60/61(2) (1990), 601–628.

[11] M. Cowling, I. Doust, A. McIntosh, and A. Yagi, Ba-
nach space operators with a bounded H∞ functional calculus, J.

http://dx.doi.org/10.2307/3597201
http://dx.doi.org/10.1007/PL00001377
http://dx.doi.org/10.1007/BF02786549
http://dx.doi.org/10.1007/BF02786549
http://dx.doi.org/10.1112/S0024610706022873
http://dx.doi.org/10.1007/s00222-005-0464-x
http://dx.doi.org/10.1007/s12220-015-9557-y


482 M. Egert, R. Haller-Dintelmann, P. Tolksdorf

Austral. Math. Soc. Ser. A 60(1) (1996), 51–89. DOI: 10.1017/

S1446788700037393.
[12] M. Duelli, “Functional Calculus for Bisectorial Operators and Ap-

plications to Linear and Non-Linear Evolution Equations”, Logos
Verlag, Berlin, 2005.

[13] M. Duelli and L. Weis, Spectral projections, Riesz trans-
forms and H∞-calculus for bisectorial operators, in: “Nonlin-
ear Elliptic and Parabolic Problems”, Progr. Nonlinear Differen-
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