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Abstract: We inspect the BNSR-invariants Σm(Pn) of the pure braid groups Pn, us-

ing Morse theory. The BNS-invariants Σ1(Pn) were previously computed by Koban,

McCammond, and Meier. We prove that for any 3≤m≤n, the inclusion Σm−2(Pn) ⊆
Σm−3(Pn) is proper, but Σ∞(Pn) = Σn−2(Pn). We write down explicit character

classes in each relevant Σm−3(Pn)\Σm−2(Pn). In particular we get examples of nor-

mal subgroups N ≤ Pn with Pn/N ∼= Z such that N is of type Fm−3 but not Fm−2,
for all 3 ≤ m ≤ n.
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Introduction

The Σ-invariants of a group G are a sequence of geometric objects
Σm(G) (m ∈ N), defined whenever G is of type Fm, that encode a great
deal of information about G and its subgroups. The first invariant, Σ1,
was introduced by Bieri, Neumann, and Strebel [BNS] and is also called
the BNS-invariant. The higher invariants, Σ2, Σ3, and so forth, culmi-
nating in Σ∞, were subsequently introduced by Bieri and Renz [BR],
and are also known as BNSR-invariants. Once one knows the BNSR-
invariants of a group, one gets a complete classification of which of its
coabelian subgroups have which finiteness properties. (A coabelian sub-
group is a normal subgroup with abelian quotient.)

Once the finiteness properties of a group are known (e.g., whether
it is finitely generated, finitely presented, type Fm, etc.), the group’s
BNSR-invariants are a very natural next question. However, in gen-
eral the BNSR-invariants of a group are notoriously difficult to com-
pute. A complete computation has been done only for very few families
of “interesting” groups. The main example where the problem is in-
teresting, difficult, and totally solved is the case of right-angled Artin
groups, whose BNSR-invariants were computed by Meier, Meinert, and
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VanWyk [MMV1] and, independently, by Bux and Gonzalez [BG].
There are also some results for general Artin groups [MMV2]. The
Morse-theoretic approach we take here is related to the methods used
in [WZ, Zar] to compute BNSR-invariants of generalizations of Thomp-
son’s groups.

The braid groups Bn and pure braid groups Pn are extremely well
studied families of groups. They arise in a variety of contexts, for exam-
ple in the study of Artin groups, mapping class groups and knot theory.
The braid group Bn is of type F, meaning it admits a compact classifying
space, so from the point of view of finiteness properties Bn is as “good”
as it can possibly be. Since Pn has finite index in Bn, it also has this
property. From the point of view of BNSR-invariants though, the pure
braid groups are vastly more complicated than the braid groups. The
abelianization of Bn, for any n ≥ 2, is just Z, so the Σm(Bn) all live in a
0-sphere, and it is easy to show that the whole 0-sphere equals Σ∞(Bn)
(Corollary 3.4). In particular, every coabelian subgroup of Bn is of

type F∞. The abelianization of Pn, however, is Z(n
2), so the Σm(Pn) all

lie in an (
(
n
2

)
− 1)-sphere. With such a huge sphere, figuring out which

parts of it do or do not lie in which BNSR-invariants is massively more
complicated. Correspondingly, it is much more difficult to figure out the
finiteness properties of coabelian subgroups of Pn.

The first Σ-invariant, that is the BNS-invariant Σ1(Pn), was com-
puted by Koban, McCammond, and Meier [KMM]. In particular for
n ≥ 3 there are parts of the character sphere that do not lie in Σ1(Pn),
and hence there are coabelian subgroups of Pn (for example the commu-
tator subgroup itself) that are not finitely generated, in contrast to the
Bn case. Since P3

∼= F2×Z, every finitely generated coabelian subgroup
is already finitely presented and even of type F∞. For n > 3 though,
it was unclear whether there exist coabelian subgroups that are finitely
generated but not finitely presentable.

In this paper we use Morse theory to find regions of the character
sphere of Pn that lie in Σm(Pn) for various m, and regions that do not.
Our main results are:

Theorem 5.7. For any 3≤m≤n, the inclusion Σm−2(Pn) ⊆ Σm−3(Pn)
is proper.

Theorem 3.9. For any n ∈ N, Σ∞(Pn) = Σn−2(Pn).

Consequences of this include that there exist coabelian subgroups
of Pn, for any n ≥ 4, that are finitely generated but not finitely pre-
sentable. More generally there exist coabelian subgroups of Pn that are
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of type Fm−3 but not Fm−2, for any 3 ≤ m ≤ n. We give explicit exam-
ples of these; see Corollary 5.8. However, a coabelian subgroup of Pn of
type Fn−2 is automatically of type F∞.

Our approach reduces the problem of proving a character class is or is
not in a given BNSR-invariant of Pn to a sufficient condition on a finite
complex PWn. Hence it seems likely that our approach could reveal still
more about the Σm(Pn) in the future. We mention that even the problem
of fully computing Σ2(P4) (which equals Σ∞(P4)) remains open.

This paper is organized as follows. In Section 1 we recall the BNSR-
invariants and discuss some general results, and in Section 2 we set up
our Morse-theoretic approach. In Section 3 we discuss the (pure) braid
groups and their characters, and in Section 4 a complex on which they
act. Finally in Section 5 we use Morse theory on this complex to derive
our results about the BNSR-invariants of the pure braid groups.

Acknowledgments. I am grateful to Robert Bieri for many helpful
discussions and comments, and in particular for pointing out some ref-
erences that simplified many things in Section 1.

1. BNSR-invariants

To define the BNSR-invariants Σm(G) of a group G, we first need
some background. A connected CW-complex Z is called a classifying
space for G, or a K(G, 1), if π1(Z) ∼= G and πk(Z) = 0 for k ≥ 2.
We say G is of type Fn if it admits a K(G, 1) with compact n-skeleton.
If G is of type Fn for all n we say it is of type F∞. If there exists a
compact K(G, 1) we say G is of type F.

Now suppose G is a group of type Fn and let Z be a K(G, 1) with

compact n-skeleton. The universal cover Z̃(n) of the n-skeleton is (n−1)-
connected, and G acts freely and cocompactly on it. In fact, there is a
converse to this: if G acts freely (or just properly) and cocompactly on
an (n− 1)-connected CW-complex, then G is of type Fn. This brings us
to the definition of the BNSR-invariants.

Definition 1.1 (BNSR-invariants). Let G act properly cocompactly on
an (n−1)-connected CW-complex Y (so G is of type Fn). Let χ : G→ R
be a character ofG, i.e. a homomorphism to R. There exists a continuous
map hχ : Y → R such that hχ(g ·y) = χ(g) + hχ(y) for all g ∈ G and
y ∈ Y . For t ∈ R let Yχ≥t be the full subcomplex of Y supported on those
vertices y with hχ(y) ≥ t. For non-trivial χ, let [χ] be the equivalence
class of χ under scaling by positive real numbers. For m ≤ n, the mth
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BNSR-invariant Σm(G) is defined to be

Σm(G) := {[χ] | (Yχ≥t)t∈R is essentially (m− 1)-connected}.

The definition of Σm is admittedly quite dense. Let us unpack it a bit.
The characters χ are elements of Hom(G,R), which is a vector space Rd
for some d. The equivalence classes [χ] lie in the so called sphere at
infinity Sd−1 of Rd, or character sphere S(G). A character χ induces
a character height function hχ : Y → R. The height function hχ can
be used to divide Y into regions, for example the region whose vertices
have height greater than or equal to t. By varying t, we get a nested
family of these “half spaces”. Now if, for example, each half space were
itself (m−1)-connected, then the definition says [χ] would lie in Σm(G).
Heuristically, Σm(G) is a catalog of which half spaces are how highly
connected. However, this is not quite right, as the presence of the word
“essentially” indicates. Instead, we do not require each half space to be
(m− 1)-connected itself, but only that for all t there exists −∞ < s ≤ t
such that the inclusion Yχ≥t → Yχ≥s induces the trivial map in πk for
k ≤ m− 1. (If the domain is already (m− 1)-connected, then of course
this will be the case.) For example, maybe Yχ≥t is not connected, but
if all its components get connected up in Yχ≥t−1 then that is enough to
say [χ] is in Σ1(G).

It is not obvious from the definition, but Σm(G) is well defined up
to the various non-canonical aspects, e.g., the space Y and the height
function hχ. See for example [Bux, Definition 8.1]. As a remark, the
definition there used the filtration by sets h−1χ ([t,∞))t∈R, but thanks to
cocompactness this filtration is essentially (m−1) connected if and only
if our filtration (Yχ≥t)t∈R is.

One important application of BNSR-invariants is the following:

Citation 1.2 ([BGK, Theorem 1.1]). Let G be a group of type Fm. Let
H be any coabelian subgroup of G. Then H is of type Fm if and only
if for every non-trivial character χ of G such that χ(H) = 0, we have
[χ] ∈ Σm(G).

For example, if H = ker(χ) for χ a discrete character of G, i.e. one
with image Z, then H is of type Fm if and only if [±χ] ∈ Σm(G).

Other important properties of the Σm(G) are that they are all open
subsets of S(G), and that they are invariant under the natural action of
Aut(G) on S(G). We collect here some additional general results about
BNSR-invariants that will be useful in the following sections.
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Citation 1.3 ([Mei, Corollary 2.8]). Let G
π→ Q be a split epimorphism

of groups. Let χ : Q→ R be a character. Let χ̃ : G→ R be χ̃ = χ ◦ π. If
[χ̃] ∈ Σm(G) then [χ] ∈ Σm(Q).

Lemma 1.4. Let G
π→ Q be an epimorphism of groups. Suppose that

ker(π) is of type Fm. Let χ : Q → R be a character. Let χ̃ : G → R be
χ̃ = χ◦π. If [ψ] ∈ Σm(Q) for all non-trivial characters ψ of Q such that
ψ(ker(χ)) = 0, then [χ̃] ∈ Σm(G).

Proof: Consider the restriction π′ of π to ker(χ̃), so π′ : ker(χ̃)→ ker(χ).
Note that π′ is surjective and ker(π′) = ker(π), so we have a short exact
sequence

1→ ker(π)→ ker(χ̃)→ ker(χ)→ 1.

We are assuming [ψ] ∈ Σm(Q) for all non-trivial characters ψ of Q such
that ψ(ker(χ)) = 0, so Citation 1.2 says that ker(χ) is of type Fm. We
are also assuming ker(π) is of type Fm, so in fact ker(χ̃) is of type Fm.
Again by Citation 1.2, we conclude that [χ̃] ∈ Σm(G).

This next result was called the Σm-criterion in [MMV2]; the homo-
logical version is Theorem 4.1 in [BR], and a proof of this homotopical
version follows by mimicking that proof.

Citation 1.5. With the notation from Definition 1.1, [χ] ∈ Σm(G)
if and only if there exists a continuous, cellular G-equivariant map
ϕ : Y (m) → Y (m) satisfying hχ(ϕ(y)) > hχ(y) for all y ∈ Y (m).

Corollary 1.6 (Center survives). Let G be a group of type Fm. For a
character χ : G→ R, if χ(Z(G)) 6= 0 then [χ] ∈ Σm(G).

This is proved in [MMV2, Lemma 2.1], but the proof is so short we
may as well recreate it here.

Proof: Let Y be an (m−1)-connected complex on which G acts properly
cocompactly. Choose z ∈ Z(G) such that χ(z) > 0. Let ϕ : Y (m) →
Y (m) be the map y 7→ z.y. Since z is central, this is G-equivariant, so
by Citation 1.5, [χ] ∈ Σm(G).

2. Morse theory

When trying to compute the BNSR-invariants of a group, Bestvina–
Brady Morse theory [BB] can be a useful tool. Provided one sets things
up correctly, Morse theory can reduce a global statement, like “this
filtration is essentially (m−1)-connected”, to local statements, like “the
‘ascending’ part of any vertex link is (m−1)-connected”. In practice, the
links may be finite simplicial complexes, which makes the latter question
easier, in theory.



342 M. C. B. Zaremsky

We will focus now on affine cell complexes. An affine cell complex is
the quotient of a disjoint union of euclidean polytopes by an equivalence
relation mapping each polytope injectively into the complex, such that
the images of the polytopes, called cells, meet in faces (see [BH, Def-
inition I.7.37]). Each cell of an affine cell complex Y carries an affine
structure. The star stY v of a vertex v in Y is the subcomplex of Y
consisting of cells that are faces of cells containing v. The link lkY v
of v is the set of directions out of v into stY v. The link is a simplicial
complex, whose simplices consist of such directions into a given cell.

In [BB], Bestvina and Brady defined a Morse function on an affine
cell complex Y to be a map Y → R that is affine on cells, takes discretely
many values on the vertices, and is non-constant on edges. When using
Morse theory to compute BNSR-invariants, one often needs some more
subtlety, for example if one is dealing with non-discrete character height
functions. Our definition of Morse function here is similar to the one
in [WZ, Zar]:

Definition 2.1 (Morse function). Let Y be an affine cell complex and
let (h, f) : Y → R×R be a map such that the restrictions of h and f to
any cell are affine functions. Suppose that there exists ε > 0 such that
for any pair of adjacent vertices v and w, either |h(v)−h(w)| ≥ ε, or else
h(v) = h(w) and f(v) 6= f(w). If the set f(Y (0)), considered under the
usual total ordering of R, has the property that any subset has a max-
imal element (that is, if the total ordering on f(Y (0)) is an inverse well
ordering), then we call (h, f) an ascending-type Morse function. If the
set f(Y (0)) with the usual total ordering induced by R has the property
that any subset has a minimal element (so it is a well ordering), then we
call (h, f) a descending-type Morse function. By a Morse function we
mean either an ascending-type or descending type Morse function.

This requirement that the total ordering on f(Y (0)) be an (inverse)
well ordering is different from the definition of Morse function in [WZ,
Zar]. There we just required f(Y (0)) to be finite, which of course implies
the present definition. Here we need this more robust definition, since
our f (the function ω̇ in Section 5) will take infinitely many values.

Remark 2.2 (Classical Morse function). We will occasionally also deal
with functions that are Morse functions in the sense of Bestvina–Brady,
which in our language is a Morse function (h, f) where f is constant,
say 0, and h(Y (0)) is a discrete subset of R.

Given a Morse function (h, f) on an affine cell complex Y , one can
define the important notion of ascending link. First note that, on any



Separation in the BNSR-Invariants of the Pure Braid Groups 343

cell c, (h, f) achieves its maximum and minimum values on unique ver-
tices of c. This is because h and f are affine on c, and are non-constant on
all faces with positive dimension. Here we always use the lexicographic
ordering on R × R to compare (h, f)-values. Define the ascending star
st↑v of a vertex v in Y to be the subcomplex of stY v consisting of those
cells on which (h, f) achieves its minimum at v. Similarly the descending
star st↓v is the subcomplex of cells whose (h, f)-maximum is at v. Now
define the ascending link lk↑v to be the subcomplex of lkY v consisting
of those directions out of v into st↑v. The descending link lk↓v is defined
analogously. When all the cells are simplices, lkY v can be identified with
the subcomplex of stY v consisting of those simplices not containing v,
with lk↑v and lk↓v similarly viewed as subcomplexes.

Lemma 2.3 (Morse Lemma). Let Y be an affine cell complex and
(h, f) : Y → R × R an ascending-type Morse function. For t ∈ R let
Yh≥t be the subcomplex of Y supported on vertices v with h(v) ≥ t. Let
s < t (allow the case s = −∞). If for all vertices v with s ≤ h(v) < t
the ascending link lk↑v with respect to (h, f) is (m− 1)-connected, then
the inclusion Yh≥t → Yh≥s induces an isomorphism in πk for k ≤ m− 1
and a surjection in πm.

Now suppose instead that (h, f) is a descending-type Morse function.
Let Yh≤t be the subcomplex supported on vertices v with h(v) ≤ t. Let
s > t (allow s = ∞). If for all vertices v with t < h(v) ≤ s the
descending link lk↓v with respect to (h, f) is (m− 1)-connected, then the
inclusion Yh≤t → Yh≤s induces an isomorphism in πk for k ≤ m−1 and
a surjection in πm.

Proof: The “descending” version can be converted into the “ascending”
version by replacing (h, f) with (−h,−f), so we just need to prove the
ascending version. The proof should be compared to the proofs in [BB]
of Lemma 2.5 and Corollary 2.6.

If we can prove the result assuming t − s ≤ ε, then we will be done,
thanks to induction (and compactness of spheres, for the s = −∞ case).
Let Ys≤h<t be the subcomplex supported on vertices v with s ≤ h(v) < t.
In particular, Yh≥s is obtained from Yh≥t by attaching, in some order,
the vertices of Ys≤h<t along their relative links. The order needs to be
an inverse well order, so that the set of vertices not yet attached has a
unique maximum, i.e. a well defined “next” vertex to attach. Let ≺ be
any inverse well order on the vertex set of Ys≤h<t satisfying the property
that if f(v) < f(w) then v ≺ w. Since (h, f) is an ascending-type Morse
function, the set of f -values on vertices is itself inversely well ordered, so
such a ≺ does indeed exist. When we write v ≺ w, we mean that w gets
attached before v, so v can “see” w but not vice versa.
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The goal is now to show that when we attach a vertex, we do so along
an (m− 1)-connected relative link, so this induces an isomorphism in πk
for k ≤ m−1 and a surjection in πm, by the Mayer–Vietoris and Seifert–
van Kampen Theorems. Then by transfinite induction, which we can use
since ≺ is an inverse well order, we will get that the inclusion Yh≥t →
Yh≥s also induces these types of maps, and we will be done.

When we attach the vertex v, we do so along a relative link lkrel v
equal to the full subcomplex of lkY v supported on those vertices w with
either h(w) ≥ t, or else s ≤ h(w) < t and v ≺ w. We now claim that
this is exactly the ascending lk↑v. First note that for any w adjacent
to v, Definition 2.1 says either |h(v)−h(w)| ≥ ε, or else h(v) = h(w) and
f(v) 6= f(w). For w of the first form, since t−s ≤ ε we know w cannot lie
in Ys≤h<t. Hence h(w) > h(v) if and only if h(w) ≥ t, so such a w lies in
lk↑v if and only if it lies in lkrel v. Now suppose w is of the second form,
so h(v) = h(w) and f(v) 6= f(w). In particular s ≤ h(w) < t. Now w is
in lk↑v if and only if f(v) < f(w), and w ∈ lkrel v if and only if v ≺ w,
so we need to show that for such w, f(v) < f(w) if and only if v ≺ w.
This follows from our construction of ≺, since we know f(v) 6= f(w).

Having shown lkrel v = lk↑v, we now know that Yh≥s is obtained
from Yh≥t by coning off the ascending links of vertices in Ys≤h<t. By
assumption, these are all (m− 1)-connected, and so we are done.

As a corollary to the proof, we have:

Corollary 2.4. With the same setup as the (ascending version of the)
Morse Lemma, if additionally for all vertices v with s ≤ h(v) < t we have

H̃m+1(lk↑v) = 0, then the inclusion Yh≥t → Yh≥s induces an injection

in H̃m+1.
With the setup of the descending version, a similar result holds with

all the signs reversed and “ascending” changed to “descending”.

Proof: In the proof of the Morse Lemma we saw that Yh≥s is obtained
from Yh≥t by coning off the ascending links of vertices in Ys≤h<t, so
this is immediate from the Mayer–Vietoris sequence. (The descending
version follows similarly.)

One main use of the Morse Lemma is the case s = −∞:

Corollary 2.5. Let Y be an (m− 1)-connected affine cell complex with
an ascending-type Morse function (h, f). Suppose there exists N such
that, for every vertex v of Y with h(v) < N , lk↑v is (m− 1)-connected.
Then the filtration (Yh≥t)t∈R is essentially (m− 1)-connected.

The descending version holds as well, with all the signs reversed.
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Proof: By the Morse Lemma, for any r ≤ N the inclusion Yh≥r →
Y = Yh≥−∞ induces an isomorphism in πk for k ≤ m − 1. Since Y is
(m − 1)-connected, so is Yh≥r. Now for any t we just need to choose
s = min{N, t} and we get that the inclusion Yh≥t → Yh≥s induces the
trivial map in πk for k ≤ m−1, simply because Yh≥s is (m−1)-connected.
(The descending version follows similarly.)

It is less straightforward to use Morse theory to prove that a filtration
is not essentially m-connected. However, given some additional assump-
tions we can say something.

Proposition 2.6. Let Y be an affine cell complex and let (h, f) : Y →
R×R be an ascending-type Morse function. Suppose there exists N ∈ R
such that for every vertex v with h(v) < N the ascending link lk↑v is

(m − 1)-connected and satisfies H̃m+1(lk↑v) = 0. Assume moreover
that for all M ∈ R there exists a vertex v with h(v) < M such that

H̃m(lk↑v) 6= 0. If H̃m+1(Y ) = 0, then the filtration (Yh≥t)t∈R is not
essentially m-connected.

If (h, f) is instead descending-type, then a similar result holds with all
the signs reversed and “ascending” changed to “descending”.

Proof: Suppose to the contrary that (Yh≥t)t∈R is essentiallym-connected.
Say t < N , and choose −∞ < s ≤ t such that the inclusion Yh≥t → Yh≥s
induces the trivial map in πk for k ≤ m. Also, since t < N , this inclusion
induces a surjection in these πk by the Morse Lemma, so in fact Yh≥s
itself is m-connected, as are all Yh≥r for r ≤ s (for the same reason).

Now choose v such that h(v)<s and H̃m(lk↑v) 6=0. Since H̃m(Yh≥r)=0

for all r≤s, Mayer–Vietoris and Corollary 2.4 say that H̃m+1(Yh≥q) 6=0

for any q≤h(v). But this includes q = −∞, and H̃m+1(Y ) 6= 0 contra-
dicts our assumptions. (As usual, the descending version follows simi-
larly.)

For example, if all the lk↑v are homotopy equivalent to (possibly
trivial) wedges of m-spheres, and for h(v) arbitrarily small are non-trivial
wedges of m-spheres, then these hypotheses are satisfied.

3. (Pure) braid groups

Let Bn denote the n-strand braid group. The standard presentation
for Bn is

Bn = 〈s1, . . . , sn−1 | sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 2

and sisj = sjsi for |i− j| > 1〉.



346 M. C. B. Zaremsky

Pictorially, si is the braid in which the ith strand crosses in front of
the (i + 1)st strand. This is called a positive crossing, and the reverse
is a negative crossing. By imposing the additional relations s2i = 1 for
all i, one obtains the standard presentation for the symmetric group Sn.
Hence there is an epimorphism π : Bn → Sn and its kernel is the n-strand
pure braid group Pn. We take the action of Sn on {1, . . . , n} to be a right
action, so the notation (i)σ will be common. We will always label the
strands of a braid at their tops, by the numbers 1 through n, from left
to right. If we then labeled the strands at the bottom, 1 through n left
to right, then each strand would be labeled i at the top and (i)π(x) at
the bottom for some i.

An element of Bn that will be important in all that follows is

∆ := s1 · · · sn−1s1 · · · sn−2 · · · s1s2s1.
This is the element in which each strand crosses in front of every strand
to its right, exactly once. See Figure 1. Note that every crossing in ∆ is
positive.

Figure 1. The element ∆ in B6.

We collect here some well known facts about ∆. These can be found
for example in [KT, Section 1.3.3 and Chapter 6].

Citation 3.1 (∆ facts). The permutation π(∆) ∈ Sn is the so called
longest word w0, which interchanges i and n−i+1, for all 1 ≤ i ≤ bn/2c.
Using the defining relations, one can see that there exists, for any 1 ≤
i ≤ n − 1, a minimal word representing ∆ and beginning with si. Also,
it is clear that si∆ = ∆sn−i for all 1 ≤ i ≤ n− 1. For n ≥ 3, the center
of Bn is infinite cyclic, generated by ∆2. Since w2

0 = id, the center lies
in Pn, and in fact the center of Pn also equals 〈∆2〉 (for all n).
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Definition 3.2 (Automorphisms). There are some useful automor-
phisms of Pn that we discuss now. First we have the conjugation ac-
tion of Bn on Pn. Later we will consider characters ωi,j of Pn, indexed
by the labeling of the strands, and the conjugation action of Bn will
permute the indices i, j. The other important automorphism is the in-
version automorphism. This takes a braid diagram and changes all the
right-over-left crossings to left-over-right, and vice versa. In particular
if the automorphism is denoted µ, we have µ(si) = s−1i for all i, and
µ(∆) = ∆−1. Note that µ does not change the labeling of the strands.

Definition 3.3 (Natural projections). Following [KMM], we define for
any A ⊆ {1, . . . , n} an epimorphism φA : Pn → P|A| given by erasing
all the strands labeled by numbers not in A. Here as before we always
label strands 1 through n from left to right. We call the φA natural
projections. They are in fact split epimorphisms, with the splitting given
by embedding P|A| into Pn by adding the missing strands in the back.
See also [KT, Section 1.3.2] for more details.

3.1. Characters. It is easy to abelianize Bn using the standard pre-
sentation, and find that Babn

∼= Z. Hence we have Hom(Bn,R) ∼= R,
and it is noteworthy that this is independent of n. In contrast, one
can find presentations for Pn (see for example [MM]) that reveal that

P abn
∼= Z(n

2). Hence Hom(Pn,R) ∼= R(n
2), the dimension of which grows

quickly with n.
There are bases of these vector spaces that correspond to natural

measurements on braids. For Bn, a nice basis character, which we will
call κ, is the one that reads off the total number of positive crossings of
the strands, minus the total number of negative crossings. The charac-
ter κ is induced by sending every standard generator of Bn to 1.

Corollary 3.4. Σ∞(Bn) = S(Bn).

Proof: The points of S(Bn) are [κ] and [−κ]. Since κ(∆2) 6= 0, the result
follows from Corollary 1.6.

In particular Citation 1.2 implies that every coabelian subgroup of Bn
(for example [Bn, Bn]) is of type F∞.

What we actually care about is the pure braid groups; the character
sphere S(Pn) has dimension

(
n
2

)
− 1, so here the situation is much more

complicated. A standard basis for the vector space Hom(Pn,R) is given
by, for each 1 ≤ i < j ≤ n, the winding number characters ωi,j . The
character ωi,j : Pn → Z is defined to be

ωi,j := θ ◦ φ{i,j},



348 M. C. B. Zaremsky

where φ{i,j} is the natural projection Pn → P2 and θ : P2 → Z is the

isomorphism sending ∆2 to 1. Pictorially, ωi,j : Pn → Z reads off the
number of times the ith and jth strands wind completely around each
other. The character ωi,j can also be denoted ωj,i.

The function ωi,j makes sense on Bn too, it just is not a homomor-
phism. Let ζ : B2 → 1

2Z be the isomorphism sending ∆ to 1
2 , so ζ

restricted to P2 is θ. For A ⊆ {1, . . . , n} let ψA : Bn → B|A| be the
function (not homomorphism) that takes a braid in Bn, with strands
labeled 1 through n at the top, and erases all the strands except those
labeled by elements of A. Now define

ωi,j := ζ ◦ ψ{i,j}.

We will use the notation ωi,j for both the function Bn → 1
2Z and the

homomorphism Pn → Z since they coincide on Pn. We emphasize that
when computing ωi,j of a braid in Bn, we label the strands at the top,
not the bottom. Note that for any x ∈ Bn we have∑

1≤i<j≤n

2ωi,j(x) = κ(x).

See Figure 2 for some examples of ωi,j-values on a non-pure braid.

1 2 3

2 3 1

Figure 2. We label the strands at the top to compute
the ωi,j . The different colors for the strands and the
labeling at the bottom is just to make it easier to see
how the strands interact. We compute that ω1,2 = 1

2 ,

ω1,3 = − 1
2 , and ω2,3 = 1.

Despite ωi,j : Bn → 1
2Z not being a homomorphism, we do have the

following:
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Observation 3.5. Let x, y ∈ Bn and 1 ≤ i < j ≤ n. Then

ωi,j(xy) = ωi,j(x) + ω(i)π(x),(j)π(x)(y).

Proof: This is just a matter of keeping track of the labeling of the
strands. The strand labeled i at the top of xy is labeled (i)π(x) at
the top of y, and similarly for j. Hence the total winding number of
strands i and j is their winding number through x, plus their winding
number through y, and we get the desired equation. See Figure 3 for an
example.

1 2 3

x ω1,3 = 1/2

1 2 3

y ω3,2 = 1/2

Figure 3. Here ω1,3(xy) = 1, ω1,3(x) = 1/2, and
ω(1)π(x),(3)π(x)(y) = ω3,2(y) = 1/2, so the equation in
Observation 3.5 is satisfied.

Taking linear combinations of the ωi,j , we can view any character χ
of Pn as a function Bn → R. If χ =

∑
ai,jωi,j , denote by χx the

character

χx :=
∑

1≤i<j≤n

ai,jω(i)π(x),(j)π(x),

so χ(xy) = χ(x) + χx(y) for all x, y ∈ Bn.
Before this subsection we discussed automorphisms of Pn. We now

know how conjugation by elements of Bn affects characters, namely con-
jugation by x takes χ to χx (this is the reason for the notation). The
other important automorphism was µ, which is induced by inverting
each generator. This takes any character χ to −χ. In particular since
the BNSR-invariants are invariant under automorphisms, we now know
that they are closed under taking antipodes:

Observation 3.6 (Antipodes). If [χ] ∈ Σm(Pn) then [−χ] ∈ Σm(Pn).
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We now see more evidence that the element ∆ is important.

Lemma 3.7. Let χ : Pn → R be any character, and view χ as a function
from Bn to R as above. Then for any x ∈ Bn, we have χ(x∆) = χ(x) +
χ(∆).

Proof: It suffices to check this for χ = ωi,j . By Observation 3.5, we
just need to prove that ω(i)π(x),(j)π(x)(∆) = ωi,j(∆) for all x ∈ Bn and
all i, j. Indeed, ωi,j(∆) = 1/2 for all i and j, so we are done.

Corollary 3.8 (∆ survives). Let χ : Pn → R be any character, and view
χ as a function from Bn to R as above. If χ(∆) 6= 0 then [χ] ∈ Σ∞(Pn).

Proof: By Lemma 3.7, χ(∆2) = 2χ(∆), so if this is non-zero then
χ(Z(Pn)) 6= 0, and we are done by Corollary 1.6.

Since Pn has an (n − 1)-dimensional compact classifying space, for
example the Brady complex [Bra], Citation 1.5 tells us that Σn−1(Pn) =
Σ∞(Pn). We can do one better than this though:

Theorem 3.9. For any n ∈ N, Σn−2(Pn) = Σ∞(Pn).

Proof: First note that the character ω1,2 : Pn→Z splits, via the map Z→
Pn sending 1 to ∆2, and ∆2 is central, so Pn ∼= (Pn/Z(Pn)) × Z. (Of
course we could have used any ωi,j .) Now, H := Pn/Z(Pn) is isomorphic
to the mapping class group of the (n+ 1)-punctured sphere (see for ex-
ample [FM, Chapter 9]), which has cohomological dimension n−2 [Har]
and acts freely cocompactly on a contractible (n− 2)-dimensional com-
plex (see for example [AM, Corollary 1.3] for an even stronger result).
By Citation 1.5 then, Σn−2(H) = Σ∞(H).

We now return to Pn ∼= H ×Z itself. Let χ : Pn → R be a non-trivial
character, and suppose [χ] ∈ Σn−2(Pn). If χ(Z(Pn)) 6= 0 then [χ] ∈
Σ∞(Pn) by Corollary 1.6, so assume χ(Z(Pn)) = 0. Then χ is induced
via Pn → H by a character χ′ of H. By Citation 1.3, [χ′] ∈ Σn−2(H). As
we have just seen, this means [χ′] ∈ Σ∞(H). Now since H is of type F∞
and Pn is a trivial HNN-extension of H, we conclude, for example from
[BGK, Theorem 2.3], that [χ] ∈ Σ∞(Pn).

4. The complex

In this section we define a locally compact simplicial complex X on
which the braid group Bn acts freely and vertex transitively. Since Pn
has finite index in Bn, its action on X is cocompact, and hence can
be used to “reveal” the BNSR-invariants of Pn. This complex arises
from a Garside structure on the symmetric group Sn, and has appeared
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before, see for example [CMW]. For our purposes it will be useful to
view X in a particular, slightly unconventional way, so we will start at
the beginning and stay mostly self-contained.

Recall the standard group presentation for the braid group Bn:

〈s1, . . . , sn−1 | sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 2

and sisj = sjsi for |i− j| > 1〉.

Viewing this as a monoid presentation, we get the monoid B+
n of positive

braids, that is, the subset of Bn consisting of elements representable by
words in the si (and not the s−1i ). Pictorially, a positive braid is one
representable in such a way that every crossing is positive. Note that
κ : B+

n → N0 is a monoid homomorphism, and κ(p) = 0 for p ∈ B+
n if

and only if p = 1, so B+
n has no non-trivial units.

Define a relation ≤ on Bn by saying x ≤ y whenever xp=y for p ∈ B+
n .

Note that left multiplication by Bn preserves this relation. Since B+
n is

a monoid with no non-trivial units, ≤ is a partial order. Since si ≤ ∆ for
all i and ∆2 is central (Citation 3.1), every x ∈ Bn satisfies x ≤ ∆k for
some k > 0. Thus, any two elements of Bn have a common upper bound,
i.e. the poset is directed. In particular, the geometric realization |Bn| is
a contractible space on which Bn acts freely (the action is free on vertices
by construction, and it is easy to see that the stabilizer of a vertex equals
the intersection of its vertex stabilizers). It is not, however, cocompact;
indeed it is not even finite dimensional. Our next goal is to retract |Bn|
down to a Bn-invariant subcomplex that is cocompact.

Definition 4.1. For x ≤ y, write x � y if moreover y ≤ x∆.

These next two results follow quickly from the definition.

Lemma 4.2. If x � y then y � x∆ and y∆−1 � x.

Proof: We are told that x ≤ y ≤ x∆. Say y = xp for p ∈ B+
n . Then since

si∆ = ∆sn−i for all 1 ≤ i ≤ n−1 (see Citation 3.1), we see that ∆−1p∆ ∈
B+
n . In particular y∆ = x∆(∆−1p∆) tells us that x∆ ≤ y∆, and so

indeed y � x∆. Now say x∆ = yq for q ∈ B+
n . Then since ∆q∆−1 ∈ B+

n ,
similar to the previous case, the equation y∆−1(∆q∆−1) = x tells us that
y∆−1 ≤ x, and so y∆−1 � x.

Observation 4.3. If x ≤ y ≤ z and x � z then x � y � z.

Proof: We are told that z ≤ x∆. Since y ≤ z we immediately see that
y ≤ x∆, so x � y. Now we claim that x∆ ≤ y∆, after which we will get
z ≤ y∆ and hence y � z. Choose p ∈ B+

n such that xp = y. As in the
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previous proof, ∆−1p∆ ∈ B+
n . Hence x∆(∆−1p∆) = y∆ tells us that

indeed x∆ ≤ y∆.

We now let X be the subcomplex of |Bn| consisting of those simplices,
i.e. chains x0 < · · · < xk, such that x0 � xk. By Observation 4.3, for
such a simplex we have xi � xj for all i and j, so this property is closed
under passing to faces and X is indeed a subcomplex. Using interval
notation in the poset (Bn,≤), every simplex of X lies in the realization
of an interval of the form [x, x∆], and any such interval is finite, so X is
locally compact. Also note that X(0) = |Bn|(0), so Bn acts transitively
on X(0), which means that Bn\X is compact.

Proposition 4.4. X is contractible.

Proof: Any simplex of |Bn| lies in the realization of an interval of the
form |[x, xp]| for x ∈ Bn and p ∈ B+

n . If this realization is not contained
in X, then Observation 4.3 says x 6� xp. Hence we can build up from X
to |Bn| by gluing in realizations of such intervals along their relative
links, and we claim we can do this in such a way that said relative links
are always contractible. This will then imply that the homotopy type
never changes, and indeed X ' |Bn| is contractible.

We glue in the intervals |[x, xp]| for x 6� xp in order of increasing
κ(p) value. Hence, when we attach |[x, xp]|, we do so along a relative
link equal to |[x, xp)| ∪ |(x, xp]|. This is just the suspension of |(x, xp)|,
so it suffices to prove that for x 6� xp, |(x, xp)| is contractible. To clean
up notation, without loss of generality x = 1, so our assumption that
x 6� xp becomes 1 6� p, which just means that p 6≤ ∆.

Any q ∈ B+
n has a unique greatest lower bound with ∆, denoted q∧∆

(see for example [KT, Theorems 6.19 and 6.20] ). Let f : (1, p)→ (1, p)
be the map q 7→ q ∧∆. It is clear that f(q) ∈ [1, p) for q ∈ (1, p), and it
is less clear but still true that it is in (1, p). This is because q ∈ B+

n \{1},
and any such q satisfies 1 < q∧∆ since ∆ admits minimal representations
beginning with any positive generator (see Citation 3.1). Since f(q) ≤ q
and any element f(q) in the image of f satisfies f(q) ≤ p ∧∆, if we can
show that p∧∆ ∈ (1, p) then we will have a conical contraction of (1, p)
to a point, by [Qui, Section 1.5]. Here is where we use the fact that
p 6≤ ∆; this implies that p ∧∆ 6= p, so indeed p ∧∆ ∈ (1, p) and we are
done.

Remark 4.5. There are various other useful models for classifying spaces
of braid groups, e.g., the Brady complex [Bra]. The Brady complex
is similar to X, but with smaller lattices than our [1,∆], namely non-
crossing partition lattices. The Brady complex has many advantages,
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for example it has the smallest dimension possible, but for our purposes
X is the most germane model, since once characters enter the picture,
∆ becomes very useful.

4.1. Character height functions. Recall from Subsection 3.1 that
we can view characters χ of Pn as functions on Bn, which might just
not be homomorphisms. Now, Bn = X(0), so extending χ affinely to the
simplices of X, we get a function hχ : X → R. To make the notation
cleaner, from now on we will just write χ for both the character on Pn
and the function on X. Indeed, hχ of a vertex was already also called χ,
so calling the entire thing χ is not even really an abuse of notation.

Observation 4.6. Let χ be a character of Pn. Viewing χ as a function
on X, it is a character height function.

Proof: For a vertex x ∈ X and a group element g ∈ Pn, since π(g) = id,
Observation 3.5 says χ(gx) = χ(g) + χ(x).

More generally, Observation 3.5 says χ(xy) = χ(x) + χx(y) for x, y ∈
Bn (with notation explained after the proof of Observation 3.5). In
particular, if x is a vertex of X (so really an element of Bn) and p ∈
[∆−1, 1) ∪ (1,∆], so xp is an adjacent vertex to x, then χ(xp) = χ(x) +
χx(p). We see that χ(xp) > χ(x) if and only if χx(p) > 0. Since
χx(1) = 0, this can be phrased as saying that xp is χ-ascending relative x
if and only if p is χx-ascending relative 1.

4.2. The weak Bruhat lattice. The vertex links in X are important
to understand, and they are related to the weak Bruhat lattice Wn of
the symmetric group Sn. This section is devoted to Wn.

We will write elements σ of Sn as brackets σ = [k1, . . . , kn], where this
denotes that, for each 1 ≤ i ≤ n, σ sends i to j such that kj = i. In a
braid x, where we label the strands from 1 to n at the top, if we propagate
each label to the bottom of its strand, and call the new order k1, . . . , kn
from left to right, then we get π(x) = [k1, . . . , kn]. For example, going
back to the braid x from Figure 2, we have π(x) = [2, 3, 1], which is the
permutation taking 2 to 1, 3 to 2, and 1 to 3.

Definition 4.7 (Weak Bruhat order). Let σ, τ ∈ Sn. Define a relation ≤
by saying that σ ≤ τ whenever, for all 1 ≤ i < j ≤ n, if (i)σ > (j)σ
then (i)τ > (j)τ (recall we use right actions). This is clearly reflexive,
antisymmetric and transitive, so (Sn,≤) is a poset. We call ≤ the weak
Bruhat order. The poset (Sn,≤) is in fact a lattice [BEZ] with minimum
[1, . . . , n] and maximum [n, . . . , 1].
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We denote the geometric realization |(Sn,≤)| by Wn, and call it the
weak Bruhat lattice. The proper part of Wn, denoted PWn, is the sub-
complex supported on those vertices other than [1, . . . , n] and [n, . . . , 1].
The reason we are so interested in the weak Bruhat order is the following:

Lemma 4.8. The interval [1,∆] in the poset (Bn,≤) is isomorphic as
a poset to (Sn,≤), the symmetric group with the weak Bruhat order.

Proof: Let π : [1,∆] → Sn be the restriction of the usual projection
Bn → Sn. This restriction is bijective, by [KT, Lemma 6.24], so we just
need to show it is a poset map. Suppose x ≤ y in Bn. We need to show
that π(x) ≤ π(y). Say xp = y, so for any 1 ≤ i < j ≤ n we have ωi,j(y) =
ωi,j(x) +ω(i)π(x),(j)π(y)(p) by Observation 3.5. If (i)π(x) > (j)π(x) then
since 1 ≤ x ≤ ∆, we know ωi,j(x) = 1/2. Also, since 1 ≤ y ≤ ∆ we
know ωi,j(y) is either 0 or 1/2, so since ω(i)π(x),(j)π(y)(p) ≥ 0 this implies
ωi,j(y) = 1/2. Hence (i)π(y) > (j)π(y) and indeed π(x) ≤ π(y).

In the future we may suppress this isomorphism, and use the language
of the weak Bruhat order when talking about the interval [1,∆]. Since
we are using ≤ to denote the order in both places anyway, this may even
pass unnoticed.

There is a family of subcomplexes of Wn that will be important later.
For 1 ≤ i < j ≤ n, the proper (i, j)-reversing subcomplex Revn(i, j) is
the subcomplex of PWn supported on those vertices σ with (i)σ > (j)σ.
In bracket notation, if σ = [k1, . . . , kn] then σ ∈ Revn(i, j) if and only
if j comes before i in the list k1, . . . , kn. If we allowed [n, . . . , 1], this
would be a cone point for Revn(i, j), but since Revn(i, j) lies in PWn,
computing its homotopy type requires some work.

Lemma 4.9. For 1 ≤ i < j ≤ n with 1 < i or j < n, Revn(i, j) is
contractible.

Proof: We will cover Revn(i, j) by contractible subcomplexes, namely
stars of certain vertices, and then use the Nerve Lemma [BLVŽ, Lem-
ma 1.2]. Call a vertex of Revn(i, j) minimal if it is minimal under the or-
dering of PWn restricted to Revn(i, j). Clearly any simplex of Revn(i, j)
lies in the star of some minimal vertex. Note that if x ∈ Revn(i, j) and
x ≤ y for y ∈ PWn, then also y ∈ Revn(i, j). In particular, Revn(i, j)
is closed under taking upper bounds not equal to [n, . . . , 1]. Thanks to
this, if a collection of stars of minimal vertices has a non-empty intersec-
tion, then their intersection is itself a star, namely the star of the join
of these vertices. In particular, the Nerve Lemma says that Revn(i, j)
is homotopy equivalent to the nerve of the covering by stars of minimal
vertices.
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Note that σ is minimal if and only if σ = [k1, . . . , kr, j, i, kr+3, . . . , kn]
for some k1 < · · · < kr < j and i < kr+3 < · · · < kn. Hence, the
join in Wn of all the minimal vertices of Revn(i, j) is [1, . . . , i− 1, j, j −
1, . . . , i + 1, i, j + 1, . . . , n]. Since 1 < i or j < n, this lies in PWn and
hence in Revn(i, j). In particular, the nerve of the covering is a simplex,
implying Revn(i, j) is contractible.

Lemma 4.10. For n ≥ 3, Revn(1, n) is homotopy equivalent to an
(n− 3)-sphere.

Proof: As in the previous proof, we will cover Revn(1, n) by stars of
certain vertices and use the Nerve Lemma. This time we want to use
maximal vertices. The maximal vertices of PWn are those of the form
[n, . . . , i + 2, i, i + 1, i − 1, . . . , 1]. That is, for each 1 ≤ i < n we have
a maximal vertex vi in which every pair of entries is reversed except
for (i, i + 1). Since n ≥ 3, the pair (1, n) is not of this form, so all
these maximal vertices of PWn lie in Revn(1, n). Clearly any simplex
of Revn(1, n) lies in the star of some maximal vertex, so Revn(1, n) is
covered by the stars of its maximal vertices, of which there are n− 1. If
a collection of such stars has non-empty intersection in Revn(1, n), then
it equals the star of the meet of the relevant maximal vertices. Hence
by the Nerve Lemma, Revn(1, n) is homotopy equivalent to the nerve of
this covering.

Now, given any n − 2 maximal vertices, say all of them except vi,
the meet of these is [i + 1, . . . , n, 1, . . . , i]. Since this lies in Revn(1, n),
every proper subset of vertices of the nerve spans a simplex. However,
the collection of all the vertices does not span a simplex, since the meet
in Wn of all the maximal vertices is [1, . . . , n], and this does not lie
in Revn(1, n), in fact it does not even lie in PWn. Hence the nerve is
the boundary of an (n− 2)-simplex, which is homotopy equivalent to an
(n− 3)-sphere.

5. Main results

Since the action of Pn on X is free and cocompact, and X is con-
tractible, for any [χ] ∈ S(Pn) we know that [χ] ∈ Σm(Pn) if and only
if the filtration (Xχ≥t)t∈R is essentially (m− 1)-connected. We now en-
code χ into a Morse function as follows. Consider the following total
ordering l on the integers:

· · ·l 3 l 2 l 1 l · · ·l−3 l−2 l−1 l 0.

In words, the non-positive numbers are ordered like normal, but the
positive numbers are in the reverse order, and are all less than every
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non-positive number. Recall the “number of crossings” homomorphism
κ : Bn → Z. We will write κ̇ for the function κ with its outputs ordered
according to l. As functions of sets, κ and κ̇ are identical, the dot is just
to emphasize the unusual ordering of the outputs. We will also write Ż
for the set Z with the ordering l.

Extend κ̇ to a map X → R by affinely extending it to the simplices.
Here we have fixed some order-preserving embedding of Ż into R, but
it will not matter what it is precisely. Consider the lexicographically
ordered function

(χ, κ̇) : X → R× R
on X.

Lemma 5.1. (χ, κ̇) is an ascending-type Morse function.

Proof: By construction, χ and κ̇ are affine on cells. Since Pn acts cocom-
pactly, χ(v)− χ(w) takes only finitely many values on pairs of adjacent
vertices (v, w), so we can choose ε to be less than all of the non-zero such
values. Then since κ̇ always takes different values on adjacent vertices,
and since the outputs of κ̇ are inversely well ordered by construction,
indeed (χ, κ̇) is an ascending-type Morse function.

For a vertex x and a neighboring vertex y, y is in the ascending
link of x if and only if either χ(y) > χ(x), or else χ(y) = χ(x) and
κ̇(y) m κ̇(x). If κ(x) is positive (that is, κ(x) > 0 in the usual ordering),
then κ̇(y) m κ̇(x) is equivalent to κ(y) < κ(x). If κ(x) is non-positive,
then κ̇(y) m κ̇(x) is equivalent to 0 ≥ κ(y) > κ(x).

Recall from Corollary 3.8 that if χ(∆) 6= 0 then [χ] ∈ Σ∞(Pn), so
this case is finished. For the rest of the section, we will assume that
χ(∆) = 0. In particular, in this case Lemma 3.7 tells us that

(5.1) χ(x∆) = χ(x)

for all x ∈ Bn.

Lemma 5.2. If κ(x) is positive then lk↑x is homotopy equivalent to
lk↑x ∩ [x∆−1, x), which is contractible.

Proof: Since κ(x) is positive and κ(x∆−1) < κ(x), we get that κ̇(x∆−1)m
κ̇(x). Also, χ(x∆−1) = χ(x) by Equation (5.1), so x∆−1 ∈ lk↑x. Hence
the intersection lk↑x ∩ [x∆−1, x) is a contractible cone on x∆−1.

Now we need to show the homotopy equivalence. Let L := lk↑x and
N := lk↑x ∩ [x∆−1, x). Since L is finite and κ takes distinct values
on adjacent vertices, κ is a (classical) Morse function on L (here we
use the usual ordering, i.e. we are using κ and not κ̇). By definition,
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N is the sublevel set Lκ<κ(x). Hence by Corollary 2.5, it suffices to
show that for any vertex y of L with κ(y) > κ(x), the κ-descending link

lkκ↓L y of y in L is contractible. For such a y, we claim that lkκ↓L y is a
contractible cone on y∆−1. First we need to check that y∆−1 actually

lies in lkκ↓L y. Since y ∈ L and κ(y) > κ(x), we have x ≺ y, so y∆−1 ≺ x
by Lemma 4.2. This shows y∆−1 ∈ lkX x, but we also need it to be
(χ, κ̇)-ascending. For this note that, since κ(y) > κ(x) > 0, we know
κ̇(x)m κ̇(y), and so for y to be in L we must have χ(y) > χ(x), and hence
χ(y∆−1) > χ(x). We conclude that y∆−1 ∈ L. Since κ(y∆−1) < κ(y),

we have y∆−1 ∈ lkκ↓L y. Now we claim any z ∈ lkκ↓L y satisfies y∆−1 � z.
Indeed, such a z satisfies z ≺ y, so this follows from Lemma 4.2. We

conclude that lkκ↓L y is a contractible cone on y∆−1.

Lemma 5.3. If κ(x) is non-positive then lk↑x is homotopy equivalent
to lk↑x ∩ (x, x∆].

Proof: This follows by a somewhat parallel argument to the previous
proof. Let L := lk↑x and let P := lk↑x ∩ (x, x∆]. Consider κ as a
classical Morse function on L, so P is the superlevel set Lκ>κ(x). We
need to show that for any vertex y of L with κ(y) < κ(x), the κ-ascending

link lkκ↑L y of y in L is contractible. We claim it is a cone on y∆. First,
y ≺ x so x � y∆ and y∆ ∈ lkX x. Moreover, since κ(y) < κ(x) ≤ 0,
we have κ̇(y) l κ̇(x), so for y to lie in L we must have χ(y) > χ(x).

Hence also χ(y∆) > χ(x) and so y∆ ∈ lkκ↑L y. Lastly, for any z ∈ lkκ↑L y

we have y ≺ z, so z � y∆, and indeed lkκ↑L y is a cone ony∆, hence
contractible.

There is a conspicuous difference between these two lemmas, which is
worth pointing out explicitly, namely, when κ(x) is non-positive, lk↑x ∩
(x, x∆] could fail to be contractible. The asymmetry comes from the
conditions to be ascending: when κ(x) is positive, a vertex y ∈ lkX x is
ascending if either χ(y) > χ(x), or κ(y) < κ(x), whereas when κ(x) is
non-positive, y is ascending if either χ(y) > χ(x), or 0 ≥ κ(y) > κ(x).
Hence, where x∆−1 served as a cone point for lk↑x ∩ [x∆−1, x), now in
lk↑x∩ (x, x∆] we might not even have x∆ to use as a cone point, e.g., if
κ(x∆) > 0.

Let us give the complex P from the last proof a more official name.

Definition 5.4 (Positive ascending link). Define the positive ascending
link plk↑x of x to be plk↑x := lk↑x ∩ (x, x∆].

Corollary 5.5. If κ(x∆) ≤ 0 then lk↑x is contractible.
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Proof: Since κ(x) ≤ κ(x∆), we know κ(x) ≤ 0. In this case, Lemma 5.3
says lk↑x ' plk↑x, so our goal is to prove that plk↑x is contractible. Since
κ(x∆) ≤ 0, and since χ(x∆) = χ(x) by Equation (5.1), κ(x∆) ∈ plk↑x.
But this means plk↑x is a cone on x∆, and so is contractible.

Thanks to Lemma 5.2 and Corollary 5.5, the only time lk↑x might fail
to be contractible is when κ(x) ≤ 0 < κ(x∆). In this case Lemma 5.3
says that lk↑x ' plk↑x, which equals the “χ-ascending part” of (x, x∆)
together with some amount of its “χ-flat part” added.

Here is our main application of all this setup:

Proposition 5.6. Let χ =
∑
ai,jωi,j be a character of Pn. Suppose that∑

ai,j = 0, so χ(∆) = 0, and that either exactly one ai,j is positive, or
exactly one ai,j is negative. Then [χ] 6∈ Σn−2(Pn). If moreover none of
the ai,j are zero, then [χ] ∈ Σn−3(Pn).

Proof: Any such χ is the limit of a sequence of characters of the same
form, and such that no ai,j is zero. Since S(Pn)\Σn−2(Pn) is closed, we
may assume without loss of generality that no ai,j is zero, and then both
statements in the theorem will follow if we show that [χ] ∈ Σn−3(Pn) \
Σn−2(Pn). By Observation 3.6, we may assume without loss of generality
that exactly one ai,j is positive (and the others are negative). Say the
positive one is ak,`.

We inspect ascending links lk↑x with respect to (χ, κ̇). Thanks to our
assumptions, no proper non-empty subset of {ai,j | 1 ≤ i < j ≤ n} sums
to zero, so the only vertices of lkX x with the same χ-value as x are x∆
and x∆−1. By Lemma 5.2 and Corollary 5.5, lk↑x will be contractible
unless κ(x) ≤ 0 < κ(x∆), so we can assume these bounds hold. In this
case, Lemma 5.3 says lk↑x ' plk↑x, but we also have κ̇(x∆) l κ̇(x), so
plk↑x is just the subcomplex of (x, x∆) supported on those vertices y
with χ(y) > χ(x). Call this the χ-ascending part of (x, x∆). (There is
no “χ-flat part” thanks to our assumptions.)

For y ∈ (x, x∆), say with y = xp for p ∈ B+
n , we have that χ(y) >

χ(x) if and only if χx(p) > 0, as discussed in Subsection 4.1. Hence
the χ-ascending part of (x, x∆) is isomorphic to the χx-ascending part
of (1,∆). Since χx=

∑
ai,jω(i)π(x),(j)π(x), the lone positive coefficient ak,`

in χx is on ω(k)π(x),(`)π(x). Let p and q denote (k)π(x) and (`)π(x), in
whichever order gives us p < q. Thus a vertex of (1,∆) is χx-ascend-
ing if and only if it is ωp,q-ascending. If we view (1,∆) as the proper
part PWn of the weak Bruhat lattice Wn, then this is precisely the
subcomplex Revn(p, q) of PWn. By Lemma 4.9, this is contractible un-
less p = 1 and q = n, and then it is homotopy equivalent to Sn−3.
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In particular, lk↑x is always (n − 4)-connected, so Corollary 2.5 says
[χ] ∈ Σn−3(Pn).

Now, the case when lk↑x ' Sn−3 happens precisely for those x for
which {(k)π(x), (`)π(x)} = {1, n}, and it is clear that for any M ∈ R
there exists x with χ(x) < M such that {(k)π(x), (`)π(x)} = {1, n}.
Also, H̃n−2(lk↑x) = 0 for all x, so Proposition 2.6 tells us that [χ] 6∈
Σn−2(Pn).

For 3 ≤ m ≤ n, consider the character

χmn :=

 ∑
1≤i<j≤m
(i,j)6=(1,2)

ωi,j

− ((m2
)
− 1

)
ω1,2.

Note that sum of the coefficients in χmn is zero, exactly one coefficient is
negative, and if m = n then none of the coefficients is zero. In particular
Proposition 5.6 tells us that [χmm] ∈ Σm−3(Pm) \ Σm−2(Pm) and [χmn ] 6∈
Σn−2(Pn). We can do better than this though. To prove our main
theorem, that Σm−2(Pn) ⊆ Σm−3(Pn) is a proper inclusion for all 3 ≤
m ≤ n, we will prove that [χmn ] ∈ Σm−3(Pn) \ Σm−2(Pn).

Theorem 5.7 (Separation). For any 3≤m≤n, the inclusion Σm−2(Pn)⊆
Σm−3(Pn) is proper. Explicitly, [χmn ] ∈ Σm−3(Pn) \ Σm−2(Pn).

Proof: For the negative statement, note that χmn = χmm ◦ φ{1,...,m}, so

Citation 1.3 and Proposition 5.6 tell us that [χmn ] 6∈ Σm−2(Pn). For the
positive statement, it is known that the kernel of φ{1,...,n−1} : Pn → Pn−1
is isomorphic to the free group Fn−1 [KT, Theorem 1.16], which is of
type F∞, so Lemma 1.4 and Observation 3.6 say that when a discrete
character on Pn is induced from one on Pn−1, it inherits the latter’s
positive BNSR-invariant properties. By induction, when a discrete char-
acter on Pn is induced from one on Pm for any m < n, it inherits the
latter’s positive BNSR-invariant properties. Since [χmm] ∈ Σm−3(Pm) by
Proposition 5.6, we conclude that [χmn ] ∈ Σm−3(Pn) \ Σm−2(Pn).

Corollary 5.8. For any 3 ≤ m ≤ n, ker(χmn ) is of type Fm−3 but
not Fm−2.

Proof: This is immediate from Citation 1.2, Observation 3.6, and The-
orem 5.7.
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We have thus found examples of coabelian (even “cocyclic”) subgroups
of Pn with every possible finiteness length, namely 0 through n− 2.

Here is a nice, easy-to-state result in a related vein, which follows by
combining our results with the full computation of Σ1(Pn) in [KMM].

Corollary 5.9. For any n ≥ 4, ker(ω1,2−ω3,4) ≤ Pn is finitely generated
but not finitely presentable.

Proof: It suffices by Citation 1.2 and Observation 3.6 to prove that
[ω1,2 − ω3,4] ∈ Σ1(Pn) \ Σ2(Pn). That it lies in Σ1 follows from the
complete computation of Σ1(Pn) done in [KMM]. Now we claim that
[ω1,2−ω3,4] 6∈ Σ2(Pn). Using the natural projection φ{1,2,3,4} : Pn → P4,
it suffices by Citation 1.3 to prove this in the n = 4 case, but this is
immediate from Proposition 5.6.

Remark 5.10. Ideally one would like a complete computation of Σm(Pn)
for all m and n. Using our setup, if one can show that, for any x ∈ Bn
and any 0 ≤ k < κ(∆), the subcomplex of PWn supported on those
vertices p with either χx(p) > 0, or χx(p) = 0 and κ(p) ≤ k, is homo-
topy equivalent to a wedge of m-spheres, then we could conclude that
[χ] ∈ Σm−1(Pn) \ Σm(Pn). However, for characters χ other than those
of the type considered here, it is unclear at present how to analyze the
homotopy types of these subcomplexes. Also we have found that this
method will not always work, for example the Morse function (χ, κ̇) can-
not fully recover the results of [KMM] on Σ1(Pn). Namely, for χ in a
“P4-circle”, so [χ] 6∈ Σ1(Pn), we have computed that there exist ascend-
ing links homotopy equivalent to S0 and others homotopy equivalent
to S1, so Proposition 2.6 does not apply.
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