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A NOTE ON COVERS OF FIBRED

HYPERBOLIC MANIFOLDS

Jérôme Los∗, Luisa Paoluzzi∗, and António Salgueiro†

Abstract: For each surface S of genus g > 2 we construct pairs of conjugate pseu-
do-Anosov maps, ϕ1 and ϕ2, and two non-equivalent covers pi : S̃ −→ S, i = 1, 2, so

that the lift of ϕ1 to S̃ with respect to p1 coincides with one of ϕ2 with respect to p2.

The mapping tori of the ϕi and their lift provide examples of pairs of hyperbolic
3-manifolds so that the first is covered by the second in two different ways.
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1. Introduction

Given a finite group G acting freely on a closed orientable surface S̃
of genus larger than 2 one considers the space X of the orbits for the G-
action on S̃. The projection S̃ −→ X is a regular cover and X is again a
surface, of genus g ≥ 2, whose topology is totally determined by the order
of G. Assume now that G contains two normal subgroups, H1 and H2,
non isomorphic but with the same indices in G. In this situation one
can construct the following commutative diagram of regular coverings:

S̃

S1 = S̃/H1 S2 = S̃/H2

X = S̃/G
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We are interested in the following:

Question. Is there a pseudo-Anosov diffeomorphism ϕ of X which lifts
to pseudo-Anosov diffeomorphisms ϕ1, ϕ2, and ϕ̃ of S1, S2, and S̃ re-
spectively such that there is a diffeomorphism g : S1 −→ S2 conjugat-
ing ϕ1 to ϕ2, i.e. ϕ2 = g ◦ ϕ1 ◦ g−1?

The aim of the present note is to provide explicit constructions of sur-
face coverings and pseudo-Anosov diffeomorphisms satisfying the above
properties. This will be carried out in the next sections. More explicitly,
we prove:

Theorem 1. For each closed oriented surface S of genus greater than 2,
there exists an infinite family of pairs (ϕ1, ϕ2 : S −→ S) of conjugate

pseudo-Anosov maps and two non-equivalent coverings pi : S̃ −→ S such
that a lift of ϕ1 with respect to p1 and a lift of ϕ2 with respect to p2 are
the same map ϕ̃ : S̃ −→ S̃.

Here, the expression infinitely many pairs of diffeomorphisms means
that there is an infinite family of pairs so that if ϕi and ϕ′j belong to
different pairs then no power of ϕi is a power of ϕ′j , for i, j = 1, 2,
up to conjugacy. The maps in Theorem 1 come from lifting Anosov
diffeomorphisms on a torus to its branched covers.

A positive answer to our initial question implies the existence of hyper-
bolic 3-manifolds with interesting properties. By considering the map-
ping tori of the four diffeomorphisms ϕ, ϕ1, ϕ2, and ϕ̃, one gets four
hyperbolic 3-manifolds N , M1, M2, and M̃ respectively. The covers of
the surfaces S̃, S̃1, S̃2, and X induce covers of these manifolds:

M̃

M1 M2

N

Since ϕ1 and ϕ2 are conjugate, we see thatM1 andM2 are homeomorphic
(and hence isometric by Mostow’s rigidity theorem [Mo]). It follows that

M̃ is a regular cover of a manifold M ∼= M1
∼= M2 in two different ways.
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Corollary 2. There exists an infinite family of pairs of hyperbolic 3-
manifolds (M̃,M), such that there exist two non-equivalent regular cov-

ers p1, p2 : M̃ −→ M with non isomorphic covering groups. Moreover,
for each k ∈ N, there is a 3-manifold M̃ , which belongs to at least k
distinct such pairs (M̃,M`), 1 ≤ ` ≤ k.

The existence of hyperbolic 3-manifolds with this type of behaviour
was already remarked in [RS] but our examples show that one can more-
over ask for the manifolds to fibre over the circle and for the two group
actions to preserve a fixed fibration (see also Section 3 for other com-
ments on the two types of examples).

2. Main construction

In this section we answer in the positive a weaker version of our origi-
nal question, where the diffeomorphisms involved are not required to be
pseudo-Anosov.

2.1. Symmetric surfaces. For every pair of integers n,m ≥ 1 we will
construct a closed connected orientable surface of genus nm+1 admitting
a symmetry of type G = Z/n× Z/m.

Let n and m be fixed. Consider the torus T = R2/Z2 and the following
G-action: the generator of Z/n is (x, y) 7→ (x+ 1/n, y) and that of Z/m
is (x, y) 7→ (x, y + 1/m), where all coordinates are thought mod 1.

The union of the sets of lines Lx = {(i/n, y) ∈ R2 | i ∈ Z, y ∈ R}
and Ly = {(x, j/m) ∈ R2 | j ∈ Z, x ∈ R} maps to a G-equivariant
family L of simple closed curves of T : n meridians and m longitudes, as
in Figure 1.

Consider a standard embedding of T in the 3-sphere S3 ⊂ C2 so
that the G action on the torus is realised by the (Z/n × Z/m)-action
on S3 defined as (z1, z2) 7→ (e2iπ/nz1, z2) and (z1, z2) 7→ (z1, e

2iπ/mz2).

A small G-invariant regular neighbourhood of L in S3 is a handlebody H̃
of genus nm+ 1. Its boundary is the desired surface S̃.

2.2. The normal subgroups H1 and H2.

Notation 1. Let n ∈ N.

• We denote by Π(n) the set of all prime numbers that divide n.

• For any P ⊂ Π(n) we denote by nP ∈ N the divisor of n such that
Π(nP ) = P and Π(n/nP ) = Π(n) \ P .
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Definition 1. Let A and B be two finite sets of prime numbers such
that

• A ∩B = ∅;
• A ∪B 6= ∅.

Let n,m ∈ N, n,m ≥ 2. We say that (n,m) is admissible with respect
to (A,B) if the following conditions are verified:

• A ∪B ⊂ Π(n) ∩Π(m);

• nAmB

mAnB
is an integer strictly greater than 1, that is mA divides nA,

nB divides mB , and at least one of the divisors is proper.

In this case we let C = Π(n) \ (A ∪B) and D = Π(m) \ (A ∪B).

We note that, since
nAmB

mAnB
is an integer greater than one, then

mAmB = mA∪B 6= nA∪B = nAnB . This definition of admissibility
will be used to guarantee, in the proof of Lemma 3, that there is a
prime p ∈ A∪B such that the Sylow p-subgroup of H1 is cyclic but not
that of H2.

Remark 1. If gcd(n,m) = d > 1 and at least one between gcd(d, n/d)
and gcd(d,m/d) is not 1, then there is a choice of sets A, B such that
(n,m) is admissible with respect to (A,B). Note that this choice may
not be unique. In fact, for each k ∈ N∗ there is a pair (n,m) such that
one has at least k choices of sets (A,B) for which (n,m) is admissible.
Let p1, . . . , pk be k distinct prime numbers and consider n = p21 . . . p

2
k

and m = p1 . . . pk so that n = m2. For each 1 ≤ ` ≤ k let A` = {p`}
and B` = ∅, then for each ` the pair (n,m) is admissible with respect
to (A`, B`).

We consider the G = Z/n × Z/m-actions on the torus, where (n,m)
is admissible with respect to some choice of (A,B) as in Definition 1.
Of course we have Z/n ∼= Z/nA × Z/nB × Z/nC and Z/m ∼= Z/mA ×
Z/mB × Z/mD.

The two subgroups of G we shall consider are:

H1 = (Z/nA × Z/nC)× (Z/mB × Z/mD)

and

H2 = (Z/(nA/mA)× Z/nB × Z/nC)× (Z/mA × Z/(mB/nB)× Z/mD)

which are obviously normal (since G is abelian) and of the same order:

nm/(nBmA) = nAmBnCmD ≥ nAmB > 1,

since the pair (n,m) is admissible with respect to (A,B). Clearly the
two subgroups H1 and H2 depend on the choice of (A,B).
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Z/6× Z/4

Z/3× Z/4 Z/6× Z/2

Z/2Z/2

Figure 1. The set L of simple closed curves of T , with
6 meridians and 4 longitudes, and the action of two
subgroups H1 = Z/3 × Z/4 and H2 = Z/6 × Z/2 of
G = Z/6× Z/4. In this case, A = ∅, B = {2}.

Lemma 3. The two subgroups H1 and H2 are not isomorphic but their
quotients G/H1 and G/H2 are.

Proof: Since, according to Definition 1, nA/mA and mB/nB cannot
be both equal to 1, there is a prime p ∈ A ∪ B such that the Sylow
p-subgroup of H1 is cyclic but not that of H2. Finally, we observe that
G/H1

∼= Z/nB×Z/mA
∼= Z/mA×Z/nB ∼= G/H2, that is, both quotients

are cyclic of order nBmA, since A ∩B = ∅.

2.3. Lifting diffeomorphisms on the different covers. An easy
Euler characteristic check shows that X = S̃/G is a surface of genus 2

bounding a handlebody HX = H̃/G. Similarly, one can verify that

Hi = H̃/Hi is a handlebody of genus nBmA + 1.
We analyse now how the regular coverings Si −→ X are built. Con-

sider the following composition of group morphisms

π1(X) −→ π1(HX) −→ H1(HX) ∼= Z2,

where the first map is induced by the inclusion of X as the boundary
of HX . Note that π1(HX) is a free group of rank 2 generated by the
images µ and λ of a meridian and a longitude of the original torus T . Of
course, these two curves can be pushed onto the boundary X of HX . We
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can also assume that they have the same basepoint x0∈X. Let us denote
by [µ] and [λ] the classes of µ and λ respectively in H1(HX). There are
two natural morphisms from H1(HX)∼=Z2 to Z/nBmA

∼=Z/mA×Z/nB :
the first one maps [µ] to a generator of Z/mA and [λ] to a generator
of Z/nB while the second one exchanges the roles of the two elements
and maps [µ] to a generator of Z/nB and [λ] to a generator of Z/mA.

The two coverings Si −→ X are determined by the composition of
these two group morphisms:

π1(X) −→ π1(HX) −→ H1(HX) ∼= Z2 −→ Z/nBmA
∼= Z/mA × Z/nB

that is, the fundamental groups π1(Si) correspond to the kernels of the
two morphisms just constructed.

Lemma 4. The two coverings Si −→ X, i = 1, 2 are conjugate. More
precisely there is a diffeomorphism τ of order 2 of X, inducing a well-
defined element τ∗ ∈ Aut(π1(X,x0)) such that τ∗ exchanges π1(S1) and
π1(S2).

Proof: The diffeomorphism τ is the involution with two fixed points,
x0 and y0 pictured in Figure 2. Note that τ exchanges µ and λ. The fact
that τ∗ defines an element of Aut(π1(X,x0))(and not just Out(π1(X,x0))
follows from the fact that τ(x0) = x0.

x0

y0

τ

x̄0 ȳ0

µλ

Figure 2. The action of τ on X and the quotient X/τ .
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We are interested in diffeomorphisms f of X which commute with τ
and fix both x0 and y0. We have the following easy fact.

Lemma 5. A diffeomorphism f of X commutes with τ and fixes both x0
and y0 if and only if it is the lift of a diffeomorphism of the torus fixing
two points x̄0 and ȳ0.

Proof: Observe that the orbifold quotient X/τ is a torus with two cone
points of order 2. Clearly, any diffeomorphism f that commutes with τ
and fixes x0 and y0 induces a map of X/τ which fixes the two cone
points. Vice-versa, given a diffeomorphism of the torus which fixes two
points x̄0 and ȳ0 we can lift it to X once we choose an identification of
the torus with X/τ such that x̄0 and ȳ0 are mapped to the two cone
points.

We are interested in diffeomorphisms of X which commute with τ and
lift to the covers Si −→ X, i = 1, 2, and S̃ −→ X.

Lemma 6. Let f be a diffeomorphism of X which commutes with τ and
fixes x0 and y0. One can choose k ∈ N such that fk lifts to diffeomor-
phisms of S1, S2, and S̃ which fix pointwise the fibres of x0.

Proof: The diffeomorphism f fixes x0 and so induces an automorphism f∗
of π1(X,x0). Choose x1, x2, and x̃ points of S1, S2, and S̃ respectively
which map to x0. Since π1(X,x0) is finitely generated, there is a fi-
nite number of subgroups of π1(X,x0) with a given finite index. Since

π1(S1, x1), π1(S2, x2), and π1(S̃, x̃) have finite index in π1(X,x0) then

there is a power of f∗ which leaves π1(S1, x1), π1(S2, x2), and π1(S̃, x̃)
invariant. As a consequence, the corresponding power of f lifts to S1,
S2, and S̃. Since each lift acts by leaving the fibre of x0 invariant, up
to possibly passing to a different power, we can assume that the lifts fix
pointwise the fibre of x0. Note moreover that for this to happen it suffices
that the fibre of x0 in the covering S̃ −→ X is pointwise fixed.

Remark 2. The argument of the above lemma shows that one can choose
a power of f which lifts, as in the statement of the lemma, to any
covering of X corresponding to a subgroup K such that π1(S̃, x̃) ⊂
K ⊂ π1(X,x0). Recall that each such K is normal in π1(X,x0), since

G ∼= π1(X,x0)/π1(S̃, x̃) is abelian.

Let f be a diffeomorphism of X commuting with τ and fixing x0
and y0, and let ϕ be a power of f satisfying the conclusions of Lemma 6.
Denote by ϕ̃ the lift of ϕ to S̃ and by ϕ1 and ϕ2 its projections to S1

and S2 respectively. Note that in principle the lift ϕ̃ of ϕ is not unique:
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two possible lifts differ by composition with a deck transformation. In
this case, however, since we require that ϕ̃ fixes pointwise the fibre of x0
while the group G of deck transformations acts freely on it, we can
conclude that our choice of ϕ̃ is unique.

Proposition 7. Let f be a diffeomorphism of X commuting with τ and
fixing x0 and y0, and let ϕ be a power of f satisfying the conclusions of
Lemma 6. Denote by ϕ1 and ϕ2 the lifts of ϕ to S1 and S2 respectively,
as described above. The maps ϕ1 and ϕ2 are conjugate.

Proof: By construction, the involution τ of X lifts to a map g between S1

and S2 conjugating a lift of ϕ on S1 to a lift of ϕ on S2. Since two different
lifts differ by composition with a deck transformation, reasoning as in
the remark above we see that g conjugates ϕ1 to ϕ2 since both ϕ1 and ϕ2

are the only lifts of ϕ that fix every point in the fibre of x0.

3. Proofs of Theorem 1 and Corollary 2, and
some remarks on commensurability

In this section we use the construction detailed in Section 2 to prove
our main result. We will then discuss some consequences for 3-dimen-
sional manifolds.

3.1. Proof of Theorem 1. By Proposition 7, it is sufficient to show
that a pseudo-Anosov f : X −→ X that fixes x0 and y0, and commutes
with τ , does exist. According to Lemma 5, any such f is the lift of a
diffeomorphism f̄ of the torus that fixes two points x̄0 and ȳ0. Let A
be an Anosov diffeomorphism of the torus. Since A has infinitely many
periodic orbits (see [Si] for instance), we can choose a power f̄ of A
which fixes two points on the torus. Let f denote the lift of f̄ to X. We
need to show that f is pseudo-Anosov, that is we need to exclude the
possibilities that f is finite order or reducible. The following argument is
standard (see [FLP, exposé 13]). Clearly f cannot be periodic since its
quotient f̄ has infinite order. Since, by assumption, f̄ is an Anosov map,
it admits a pair of invariant foliations (F+,F−). These lift to invariant

foliations (F̃+, F̃−) for f . Note also that x0 and y0, which are lifts of the

two fixed points of f̄ , are singular points for the foliations (F̃+, F̃−). If

f were reducible then at least one leaf γ̃ of F̃+ or of F̃− would be fixed
by f and connect one singularity between x0 or y0 either to itself or to
the other one. Such a leaf would project to a leaf of either F+ or F−
satisfying the analogous property. This however cannot happen for an
Anosov map.
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This shows that any f which is the lift of an Anosov map is a pseudo-
Anosov map. Any nonzero power ϕ of a pseudo-Anosov map f is again
pseudo-Anosov, and, reasoning as above, so are its lifts ϕ1, ϕ2, and ϕ̃.

It remains to prove that infinitely many choices of ϕi’s do not share
common powers. This follows readily from the fact that there exist
infinitely many primitive Anosov maps on the torus.

3.2. Hyperbolic fibred 3-manifolds. The aim of this part is to prove
Corollary 2 and compare the examples constructed here to those given
in [RS].

For each choice of conjugate pseudo-Anosov maps ϕ1 and ϕ2 and
common lift ϕ̃ as in Theorem 1, we can consider the associated mapping
tori M1, M2, and M̃ respectively. The 3-manifolds thus obtained are
hyperbolic according to Thurston’s hyperbolization theorem for mani-
folds that fibre over the circle (see [O]). By construction, the mapping
tori M1 of ϕ1 and M2 of ϕ2 are homeomorphic, i.e. M1 = M2 = M since
ϕ1 and ϕ2 are conjugate. Moreover, again by construction, the mapping
torus M̃ of ϕ̃ covers M in two non-equivalent ways.

According to Remarks 1 and 2, for each k one can find pseudo-Anosov
maps ϕ̃ which cover at least k pairs of conjugate pseudo-Anosov maps
in the fashion described in Theorem 1. This proves the last part of the
corollary.

Remark 3. It follows from the construction, that the group G acts on M̃
by isometries which are, moreover, fibration-preserving. In general, one
may expect that the isometry group of M̃ is larger than G. Note that if
this is the case and if one could find an element h ∈ Isom(M̃) which does

not normalise G, then the image of the fibration of M̃ by h is another
fibration of M̃ . This new fibration is not isotopic to the initial one a
priori. On the other hand, the conjugate of G by h preserves the new
fibration and induces a system of coverings equivalent to the original
one.

It remains to show that there are infinitely many pairs of hyperbolic
manifolds (M̃,M) such that the first covers the second in two non-equiv-
alent ways. Note that the fact that Theorem 1 provides infinitely many
choices is not sufficient to conclude, since a hyperbolic manifold can
admit infinitely many non-equivalent fibrations (see [Th]).

The existence of infinitely manifolds follows from the following ob-
servation. Up to isomorphism, there are infinitely many groups G to
which our construction applies. Each of these groups acts by hyperbolic
isometries on some closed M̃ . Since the group of isometries of a closed
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hyperbolic 3-manifold is finite, we can conclude that there are infinitely
many pairs of manifolds (M̃,M) up to hyperbolic isometry and hence,
because of Mostow’s rigidity theorem [Mo], up to homeomorphism.

Another way to reason is the following. Given ϕ1, ϕ2, and ϕ̃ as above

we can consider the mapping toriM
(k)
1 , M

(k)
2 , and M̃ (k) of ϕk1 , ϕk2 , and ϕ̃k

respectively, for k ≥ 1. All the manifolds thus obtained are commen-
surable, and volume considerations show that the manifolds M̃ (k) are
pairwise non homeomorphic. Indeed, given a pseudo-Anosov f of X, for
any choice of G and of ϕ1, ϕ2, and ϕ̃, all the mapping tori obtained are
commensurable to the mapping torus of f . More precisely all these man-
ifolds are fibred commensurable according to the definition of [CSW],
that is they admit common fibred covers such that the coverings maps
preserve the fixed fibrations.

This latter observation shows that we can construct infinitely many
distinct pairs (M̃,M) such that the first covers the second in two non
equivalent ways which are all (fibred) commensurable. Unfortunately we
do not know whether the manifolds we construct in Corollary 2 belong
to infinitely many distinct commensurability classes as well. A different
construction is based on the fact that hyperbolic arithmetic manifolds
have a large commensurator [RS]. This construction can be made for
infinitely many isomorphism classes of quaternion algebras, which shows
that it is possible to find infinitely many pairs of manifolds (M̃,M)
such that the first covers the second in two non-equivalent ways and the
manifolds M̃ are pairwise non commensurable.
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