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ASYMPTOTIC EXPANSIONS AND SUMMABILITY

WITH RESPECT TO AN ANALYTIC GERM

Jorge Mozo Fernández and Reinhard Schäfke

Abstract: In a previous article [CMS], monomial asymptotic expansions, Gevrey

asymptotic expansions, and monomial summability were introduced and applied to

certain systems of singularly perturbed differential equations. In the present work, we
extend this concept, introducing (Gevrey) asymptotic expansions and summability

with respect to a germ of an analytic function in several variables – this includes

polynomials. The reduction theory of singularities of curves and monomialization of
germs of analytic functions are crucial to establish properties of the new notions, for

example a generalization of the Ramis–Sibuya theorem for the existence of Gevrey

asymptotic expansions. Two examples of singular differential equations are presented
for which the formal solutions are shown to be summable with respect to a polynomial:

one ordinary and one partial differential equation.
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1. Introduction

The concept of asymptotic expansion for complex functions in one
variable is well established and widely used since Poincaré, in order to
give a meaning to divergent formal power series that appear as solutions
of different functional equations, and to understand the behavior near
singular points of analytic solutions and other special functions. We
mention only the books of W. Wasow [Was1] and F. W. J. Olver [Olv].

The closely related notion of summability was introduced to provide in
a unique way analytic functions having certain asymptotic expansions.
In one complex variable, it has been extensively used in such differ-
ent fields as ordinary differential equations, the analytic classification
of formal objects, and some classes of singularly perturbed differential
equations and partial differential equations.
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For asymptotic expansions in several variables, different approaches
exist in the literature. Let us mention the approaches of R. Gérard
and Y. Sibuya [GS], who treated some class of Pfaffian systems, and a
more powerful one by H. Majima [Maj]. This last author introduced
the concept of strong asymptotic expansion in polysectors in order to
study several classes of singularly perturbed differential equations and
integrable connections.

Several problems suggested asymptotic expansions in several variables
in which monomials xpyq are crucial: W. Wasow [Was2] studied equa-
tions of the form

εhx−k
dy

dx
= A(x, ε)y,

where h, k ∈ N and A(x, ε) is a matrix holomorphic near ε = 0 and
x =∞. They are singular both in the variable x and in the parameter ε.
J. Martinet and J.-P. Ramis [MR] studied the analytic classification of
resonant singularities of holomorphic foliations in two variables. The
formal normal form involved the monomial u = xpyq. The normalizing
transformations are (k, p, q)-summable in the following sense: they are
locally defined as

(x, y) 7→ (x exp{q h(x, y)}, y exp{−p h(x, y)}),

where h(x, y) = f(xpyq)(x, y) and u 7→ f(u) ∈ C{x, y} is obtained as the

k-sum of an element f̃ ∈ C{x, y}JuK, k-summable in the variable u with
coefficients in C{x, y}. L. Stolovitch [Sto] used a similar construction in
n ≥ 2 variables.

These examples lead M. Canalis-Durand and the authors [CMS] to
a detailed investigation of the concept of monomial asymptotic expan-
sion in two variables. One possible definition is the above one given
by [MR]; [CMS] gives a more algorithmical definition. In the case
of p = q = 1, a power series f(x, y) is (k, 1, 1)-summable if, rewritten
f(x, y) =

∑∞
n=0(an(x) + bn(y))(xy)n, all series an(x), bn(y) have a com-

mon radius of convergence R > 0, and for sufficiently small r > 0,
the series Tf(u) =

∑
n cnu

n ∈ Ob(D(0, r)2)JuK is k-summable, where
cn(x, y) = an(x) + bn(y), |x| < r, |y| < r are elements of the Ba-
nach space Ob(D(0, r)2) of bounded holomorphic functions on D(0, r)2.
[CMS] applied this definition to doubly singular ordinary differential
equations of the form

εσxr+1 dy

dx
= f(x, ε,y),

where f(0, 0,0) = 0 and ∂f
∂y (0, 0,0) is invertible.

Returning to the problem of classification of holomorphic foliations,
observe that resonant ones are some of the models that appear as a
final step in the reduction of singularities of holomorphic foliations in
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dimension two, in a situation in which the set of separatrices and the
divisor have normal crossings. Some examples of vector fields with nilpo-
tent linear part leading to foliations without normal crossings have been
previously studied. For instance, F. Loray [Lor] considered generic per-
turbations of the system ẋ = 2y, ẏ = 3x2 with hamiltonian h = y2 − x3.
He obtained a formal normal form involving formal power series in h.
In [CS], it was shown that the normal form always contains summable
series in h. In this context an extension of monomial summability to
summability with respect to a polynomial will be useful. It is conjec-
tured that there is a normalizing transformation that is summable with
respect to y2 − x3.

We choose to study asymptotic expansions with respect to a germ of
an analytic function as it is no more difficult than asymptotic expansions
with respect to a polynomial. Such a concept needs to behave properly
with respect to blow-ups in both directions: properties of the asymptotic
expansions must be preserved when you blow-up, and properties of the
blow-up must give properties of the original asymptotic expansion. Let
us remark here that in [Car, CM], the authors study the behaviour
of monomial asymptotics under blow-ups in order to establish certain
Tauberian theorems useful to study properties of Pfaffian systems.

The purpose of the present work is to introduce such concepts of
asymptotic expansions and summability with respect to a germ of an
analytic function in an arbitrary number of variables. We use blow-ups
of centers of codimension two and ramifications, in the style of Rolin,
Speissegger, and Wilkie [RSW], who, on their turn, follow the ideas of
Bierstone and Milman [BM]. The reader should note that we haven’t
used the full power of desingularization techniques – this undoubtedly
deserves a further study. Throughout this work, different techniques are
used, among them, induction on the number of steps needed to mono-
mialize the analytic germ, a Generalized Weierstrass Division theorem,
and Ramis–Sibuya theorems.

The structure of this work is as follows: In Section 2, we present some
tools needed in the present work. Among them are a normalization result
adapted from [RSW] and a Generalized Weierstrass Division theorem
from [AHV]. Both are proved here in a simplified version adapted to
our needs. They are used to deal with bounded quotients of germs of an-
alytic functions (i.e., for the elimination of indeterminacies, Lemma 2.2),
and to rewrite a formal power series in terms of powers of a germ of an
analytic function (Corollary 2.7). In Section 3, we recall some proper-
ties of classical and monomial asymptotic expansions and present the
latter in a more general setting than in [CMS]. In particular, monomial
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asymptotic expansions are given for an arbitrary number of variables.
Certain operators are defined, that transform, both in the formal and
in the analytic setting, monomial asymptotic expansions into asymp-
totic expansion in one variable with coefficients in a Banach space – the
inverse transformations are given by simple substitution operators.

Asymptotic expansions with respect to an arbitrary germ of an an-
alytic function, which are the main object of this work, are defined in
Section 4, and their main properties are established. In order to study
them, we construct new operators analogous to the previous section that
transform asymptotic expansions with respect to a germ into asymptotic
expansions with respect to one variable with coefficients in some Banach
space (see Theorem 4.9). In the analytic setting, these operators are
constructed in Theorem 4.7; this is one of the main results of this sec-
tion. Its rather technical proof is given in Section 5. It uses induction
with respect to the number of steps needed to monomialize the analytic
germ.

In Section 6, the behaviour with respect to blow-ups with centers of
codimension two is established for the new concept of asymptotic expan-
sion with respect to a germ of an analytic function. While a function f
having an asymptotic expansion with respect to a germ P clearly also
has a corresponding asymptotic expansion after blow-up, the converse
is more interesting and it is proved in Theorem 6.8. For P -asymptotic
series, i.e. series appearing as asymptotic expansions with respect to
a germ P for certain functions, we prove an analogous result (Theo-
rem 6.10).

In Section 7, Gevrey asymptotic expansions with respect to an ana-
lytic germ are defined and investigated, and subsequently, summability
with respect to such a germ. We also study the behavior of these con-
cepts with respect to blow-ups.

Finally, in Section 8, we present two examples of singular differential
equations for which the formal solutions are summable with respect to
a polynomial: one ordinary and one partial differential equation. The
examples suggest that asymptotic expansions with respect to an analytic
germ will play an important role in these theories and in the theory of
foliations. They also illustrate the application of our results, in particular
concerning blow-ups, in proving summability.

Acknowledgments. The first author wishes to thank the University
of Strasbourg and the second author wishes to thank the University
of Valladolid for the hospitality during their visits while preparing this
article.
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2. Preliminaries

2.1. Notation. The following notation will be used throughout this
work. We fix an integer d ≥ 2.

D(0; (r1, r2, . . . , rd)) :={x = (x1, x2, . . . , xd) ∈ Cd; |xj | < rj , for j = 1, . . . , d}

is a polydisk around the origin. As an abbreviation, D(0; ρ) :=D(0;(ρ, . . . ,
ρ)). If U is an open set, in C or in Cd, O(U) = O(U ;C) is the set of
complex valued functions holomorphic on U , and Ob(U) the subset of
bounded holomorphic functions. Analogously, if E is a Banach space,
O(U ;E) will denote the set of E-valued holomorphic functions on U ,
and Ob(U ;E) the set of bounded E-valued holomorphic functions. O=
C{x}=C{x1, x2, . . . , xd} is the ring of germs of analytic functions at the

origin (convergent power series), and Ô = CJxK the ring of formal power
series. We denote by m the maximal ideal of both (local) rings. There
are natural inclusions

Ob(D(0; ρ)) ⊆ O(D(0; ρ)) ⊆ C{x} ⊆ CJxK,

as well as the relation O = ∪ρ>0Ob(D(0; ρ)) that we will not detail. For
an element f of one of those rings, J(f) will be its power series at the
origin, and Jm(f) its m-jet, i.e., the polynomial of degree at most m
obtained from J(f) deleting the terms of degree greater than m.

We use P1
C =C∪{∞} with the usual topology. For x=(x1, x2, . . . , xd)∈

Cd put x′ = (x2, . . . , xd) and x′′ = (x3, . . . , xd).

2.2. A normalization result. Our approach uses blow-ups at several
essential points and we would like to recall the well known result we use.
Our presentation follows that of [RSW] (who base their work on [BM]);
the results themselves are classical.

Following [RSW], we will only use blow-ups of codimension two
smooth varieties and so we only recall this case. Assume that the center
of the blow-up is x1 = x2 = 0 and define

M = {([u1, u2], t) ∈ P1
C × Cd;u1t2 = u2t1}

the blow-up variety and

b : M −→ Cd
([u1, u2], t) 7−→ t

the blow-up map (shortly blow-up). M is covered by affine charts, each
one analytically equivalent to Cd. In fact, identifying P1

C
∼= C̄ = C∪{∞}

as [1, ξ] ≡ ξ ∈ C, [0, 1] ≡ ∞, we use the charts centered in ξ ∈ C,

φξ : Mξ −→ Cd

([u1, u2], t) 7−→
(
u2
u1
− ξ, t1, t′′

)
,
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where Mξ = M0 = {([u1, u2], t) ∈M ; u1 6= 0} and the chart at ∞
φ∞ : M∞ −→ Cd

([u1, u2], t) 7−→
(
u1
u2
, t2, t

′′
)
,

where M∞={([u1, u2], t)∈M ; u2 6= 0}. Then the map b is described by

bξ = b ◦ φ−1
ξ : Cd −→ Cd

v 7−→ (v2, (ξ + v1)v2,v
′′)

in the chart at ξ and by

b∞ = b ◦ φ−1
∞ : Cd −→ Cd

v 7−→ (v1v2, v2,v
′′),

in the chart at∞. The reason for our somewhat unusual choice of φξ and
hence bξ will become clear in Section 6; otherwise the choice of charts is
not important. For k ∈ N, k ≥ 2, we introduce the ramification

rk : Cd −→ Cd

t 7−→ (tk1 , t
′).

We say that f ∈ O has normal crossings (at the origin) if there is a
diffeomorphism D ∈ Diff(Cd,0) (i.e. its Jacobian at the origin is an
invertible matrix) such that

(f ◦D)(x) = x`11 · · ·x
`d
d U(x)

with non-negative integers `j and a unit U ∈ O, i.e. a germ satisfying
U(0) 6= 0.

It has been shown in [RSW]:

Lemma 2.1. There exists a function h : O\{0} → N with the following
properties:

(1) If h(f) = 0 then f has normal crossings.
(2) If h(f) > 0 then there exists a diffeomorphism D ∈ Diff(Cd,0)

such that either for all ξ ∈ P1
C

h(f ◦D ◦ bξ) < h(f)

or there exists k ∈ N, k ≥ 2 such that h(f ◦D ◦ rk) < h(f).

Observe that this lemma can be applied simultaneously to a finite
number of germs f1, f2, . . . , fr. It suffices to consider their product f =
f1f2 · · · fr. Moreover, it is elementary (see [RSW]) that f1f2 · · · fr has
normal crossings if and only if every fi has normal crossings (with respect
to a common diffeomorphism D).

In a more general setting (quasi-analytic classes), this result is proved
in [RSW], following some general ideas adapted from [BM]. In the
analytic situation, the result is much easier. We sketch a proof for com-
pleteness, omitting most technical details.
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Proof: Use induction on d. Every f ∈ C{x} has normal crossings, so
h(f) = 0 and the result is trivial if d = 1. Assume now that d > 1,
and let n denote the order of f . By a linear change of variables, f can
be made xd-regular of order n, that is f(0, . . . , 0, xd) has valuation n.
Indeed, as fn(α1, . . . , αd) 6= 0 (where fn is the homogeneous component
of degree n of f) for some sufficiently small vector α with αd 6= 0, the

function f̃(t1, . . . , td) = f(t1 + α1td, . . . , td−1 + αd−1td, αdtd) is regular.
If f is xd-regular, the Weierstrass Preparation theorem allows us to

write f(x) = (xnd + c1(x′)xn−1
d + · · · + cn(x′))U(x) where U ∈ C{x},

U(0) 6= 0, and c1, . . . , cn vanish at the origin. Hence it is sufficient
to continue with the polynomial factor. Another change of variable
(td = xd + c1(x′)/n, t′ = x′) eliminates c1(x′), so we consider only
the case c1(x′) ≡ 0. Let M denote the set of j ∈ {2, . . . , n} such that
cj 6= 0 which we assume to be non-empty.

Now apply the induction hypothesis to the product∏
k∈M

ck(x′)
∏

i,j∈M, i<j

(ci(x
′)n!/i − cj(x′)n!/j).

By a sequence of right compositions with diffeomorphisms, blow-ups,
and ramifications, we arrive at a situation where the product has normal
crossings. Thus every cj(x

′) and every ck(x′)d!/i − cj(x
′)d!/j in the

product has normal crossings. It is easy to deduce (see Lemma 4.7
in [BM]) that if cj(x

′) = x′γjUj(x
′) with Uj(0) 6= 0, then the set {n!

j γj |
j ∈M} is totally ordered with respect to the relation � defined by α � β
if αi ≤ βi for all i. A ramification in the first d − 1 variables allows us
to suppose that, moreover, γj is divisible by j for all j ∈ M and thus
the subset { 1

j γj | j ∈M} of Nd−1 is totally ordered. Let l ∈M be such
1
l γl ≤

1
j γj for every j ∈M.

Denote γj = (γj1, . . . , γj,d−1), j ∈ M. For the above l, let k be the
largest index such that γlk 6= 0 (and consequently, γjk/j ≥ γlk/l ≥ 1 for
every j ∈M).

Now, blow-up with center xk = xd = 0. For ξ =∞, this means re-
placing xk by xkxd. Then for j ∈ M, the term x′γjxn−jd is trans-

formed into x′γjx
γjk+n−j
d which can be divided by xnd , because γjk ≥ j.

Hence f is transformed into f̃(x) = xnd
(
1+
∑
j∈M x′γjqj(x)x

γjk−j
d

)
with

some qj analytic at the origin. Clearly, f̃ has normal crossings.
For ξ ∈ C, this blow-up means to replace xd by xk(xd + ξ). Then for

j ∈M, the term x′γjxn−jd is transformed into( ∏
i 6=k,d

x
γji
i

)
x
γjk+n−j
k (xd + ξ)n−j ,
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which can be divided by xnk , because γjk ≥ j. Thus f(x) is transformed
into

f̃(x) = xnk ((ξ + xd)
n + c̃2(x′)(ξ + xd)

n−2 + · · ·+ c̃n(x′)),

where c̃j(x
′) = x−jk cj(x

′) is analytic at the origin. We continue then

with the second factor f̄(x) = x−nk f̃(x).
If all c̃j(0) vanish, we have normal crossings for ξ 6= 0, but have to

blow-up another time if ξ = 0 (we do not use ramifications as γj is
already divisible by j for j ∈ M). After a finite number of such blow-

ups, at least one of the c̃j(0) 6= 0. The second factor f̄(x) = x−nk f̃(x)
is then of lower order than f for all ξ and also xd-regular. Indeed,
f̄(0, . . . , 0, xd) = (ξ+xd)

n + c̃2(0)(ξ+xd)
n−2 + · · ·+ c̃n(0) might vanish

at xd = 0, but because it has no term with (ξ+xd)
n−1, it cannot be equal

to xnd and hence cannot vanish of order n. As f̄(0, . . . , 0, xd) contains
some term xmd , m < n, this term is also in f̄ and hence it is at most of
order m.

A first application of this monomialization lemma is the following
statement. It may be well-known to specialists, but lacking precise ref-
erences we include a proof for the sake of completeness.

Lemma 2.2. Let f, g ∈ O, f(0) = g(0) = 0, g 6= 0 be germs of holo-
morphic functions. Assume that both are defined on D(0; r) and that∣∣ f(x)
g(x)

∣∣ is bounded on the set Aθ,r of all x ∈ D(0; r) such that g(x) 6= 0

and arg g(x) = θ. Then g divides f , i.e. there exists q ∈ O such that
f = q g.

Proof: Note first that this result is much easier in dimension one. Indeed,
consider functions f , g holomorphic in some neighbourhood of 0 ∈ C
such that f(0) = g(0) = 0, g 6= 0. Then the quotient f/g has at most
a pole at 0, if we restrict ourselves to a small enough neighbourhood of
the origin. If there exist a sequence {tn}∞n=1 such that limn→∞ tn = 0
for which |f(tn)/g(tn)| is bounded, the origin cannot be a pole, so it is
a removable singularity: there exists a germ q ∈ O such that f = g q.

In arbitrary dimension, we proceed by induction on h(f g). At some
points it might be necessary to reduce r but we do not always mention
this. If h(f g) = 0, f and g have normal crossings and we can assume
that

f(x) = xm1
1 · · ·xmdd U1(x); g(x) = x`11 · · ·x

`d
d U2(x)

with germs U1 and U2, U1(0)U2(0) 6= 0. If all `j vanish, there is nothing
to show. Otherwise, we can assume that `1 > 0.



Asymptotic Expansions with Respect to an Analytic Germ 11

For fixed x2, . . . , xd 6= 0 and if r is sufficiently small, we can apply
the one-dimensional result with respect to the variable x1 and appropri-
ate θ1. This implies that m1 ≥ `1. Similarly, we obtain that mj ≥ `j for
all j and the statement follows.

Assume now that the statement is true for all couples (f, g) with
h(f g) ≤ m for some m ∈ N. Consider some couple (f, g) satisfying
the assumptions of the lemma and h(f g) = m + 1. As the statement
is stable with respect to right composition by diffeomorphisms, we can
assume that h((f ◦ bξ)(g ◦ bξ)) ≤ m for all ξ ∈ P1

C or that there is
a k ∈ N with h((f ◦ rk)(g ◦ rk)) ≤ m. In the latter case, the assumption
of the lemma implies that f(rk(t))/g(rk(t)) is bounded on the set of all
sufficiently small t ∈ Cd such that g(rk(t)) 6= 0 and arg(g(rk(t))) = θ.
Hence there exists q ∈ O such that

(2.1) f ◦ rk = (g ◦ rk)q.

As f ◦ rk and g ◦ rk are invariant under the rotation t 7→ (e2πi/kt1, t
′), so

is q and hence there is a germ Q ∈ O such that q = Q ◦ rk. We obtain
that f = g Q and the statement follows.

Consider now the first case that h((f ◦ bξ)(g ◦ bξ)) ≤ m for all ξ ∈ P1
C.

The assumption of the lemma implies that f(bξ(t))/g(bξ(t)) is bounded
on the set of all sufficiently small t ∈ Cd such that g(bξ(t)) 6= 0 and
arg(g(bξ(t))) = θ. Hence for every ξ ∈ P1

C there exists qξ ∈ O such that

(2.2) f ◦ bξ = (g ◦ bξ)qξ.

Thus for every ξ ∈ P1
C, there is an open neighborhood Wξ of 0, where

f ◦ bξ, g ◦ bξ, and qξ are defined. With these we consider the open

neighborhoods Uξ = φ−1
ξ (Wξ) of (ξ,0) ∈ M (see Subsection 2.2 for

notation) and the holomorphic Qξ : Uξ → C defined by Qξ = qξ ◦φξ. By
definition, for ξ, ζ ∈ P1

C, we have Qξ(p) = Qζ(p) for p ∈ Uξ ∩ Uζ with
g(b(p)) 6= 0. As g is not identically zero, this means that Qξ and Qζ
coincide on an open and dense subset of Uξ ∩Uζ . Therefore Qξ = Qζ on
this intersection and thus all Qξ, ξ ∈ P1

C define a holomorphic function
Q : U → C, where U is some neighbourhood of P1

C×{0} ⊆M . P1
C being

compact, Q is constant over it, so there exists a holomorphic q : V → C,
V a neighbourhood of 0 ∈ Cd, such that q ◦ b = Q (apply Hartogs’
theorem). By construction, we have f ◦ bξ = (g ◦ bξ)(q ◦ bξ) for all ξ ∈ P1

C
and thus we obtain that f = g q, as desired.

Lemma 2.2 is basic for our article, but especially for the study of
Gevrey asymptotics with respect to an analytic function, we need more
quantitative information about division.
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Lemma 2.3. Let D′, D denote two open connected subsets of Cd such
that the closure of D′ is contained in D and compact. Suppose that
P is holomorphic in D and not identically vanishing. Let θ ∈ R and
Aθ,D = {x ∈ D | P (x) 6= 0, arg(P (x)) = θ}. For n ∈ N let Mn denote
the set of all functions f ∈ Ob(D) such that f/Pn is bounded on Aθ,D.

Then f/Pn can be analytically continued to D′ if f ∈ Mn. Further-
more, there is a constant K > 0 such that the mappings qn : Mn →
Ob(D′) associating to f ∈ Mn the analytic continuation of f/Pn to D′

have norms ≤ Kn (provided Mn and Ob(D′) are equipped with the max-
imum norm).

Proof: The first statement is proved by applying Lemma 2.2 in the neigh-
borhood of each point of D′.

For the second statement, it is sufficient to prove the existence of such
a constant in some neighborhood of every point of the closure of D′ and
then use the compactness of the latter.

In order to show it in some neighborhood of some point x0 of the
closure of D′, one uses induction on h(P ◦Tx0

), Tx0
the translation x 7→

x+x0, similarly to the proof of Lemma 2.2. If P (x0) 6= 0, the statement
is trivial, if P ◦Tx0

has normal crossings, the existence of such a constant
follows by Schwarz’s lemma. Indeed, assume that D(x0, r) ⊂ D′ and
that (P ◦ Tx0)(x) = xαU(x), U a unit, i.e. U(0) 6= 0, and without loss
of generality (reduce r otherwise) there is a constant µ > 0 such that
|U(x)| ≥ µ for x ∈ D(x0, r). Given f ∈ Mn, we can apply Schwarz’s
lemma repeatedly to f/Un and obtain that

sup
x∈D(x0,r)

|qn(f)(x)| ≤ sup
x∈D(x0,r)

|f(x)|r−nαµ−n.

Hence K = r−αµ−1 satisfies the wanted estimates in D(x0, r).
If h(P ◦Tx0) = m > 0, we can assume that either h(P ◦Tx0 ◦ bξ) < m

for all ξ ∈ P1
C or there is a k ∈ N such that h(P ◦ Tx0

◦ rk) < m. In
the former case there exists such a constant Kξ and a neighborhood Vξ
of the origin for P ◦ Tx0

◦ bξ; ξ ∈ P1
C arbitrary. Using the compactness

of P1
C as in the previous proof, the existence of such a constant K for P

and some neighborhood of 0 follows.
In the latter case (h(P ◦Tx0

◦ rk) < m), we can use the same constant
before and after ramification and only adjust the neighborhood.

2.3. Generalized Weierstrass Division. We will present here a ver-
sion adapted and simplified by Stevens [Ste] of a generalized Weierstrass
Division theorem, who attributes it to Galligo [Gal], but whose original
version is due to Aroca, Hironaka, and Vicente [AHV]. The version (see
Lemma 2.6) for functions bounded and holomorphic on certain special
neighborhoods of the origin is particularly useful in the sequel.
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Let S be either the ring O= C{x}= C{x1, x2, . . . , xd} or Ô=RJxK
whereR is an integral domain; in most cases we will useR=C. Each f ∈
S can be written as a (formal) power series

(2.3) f =
∑
α∈Nd

fαx
α,

where the monomials xα = xα1
1 · · ·x

αd
d are defined as usual. Let ` : Nd →

R+ be an injective linear form, `(α) = `1α1 + · · · + `dαd. As in [Ste],
we define a total ordering on the monomials by

xα <` x
β if and only if `(α) < `(β).

For f ∈ S \ {0} written according to (2.3), we will say that α is the
minimal exponent of f , and we will denote v`(f) = α if

xα = min{xβ | β ∈ Nd; fβ 6= 0},

where the minimum is taken according to the ordering <`. Observe
that v` is compatible with the multiplication: v`(fg) = v`(f) + v`(g)
if f, g 6= 0. Therefore the multiples of some nonzero f ∈ S (i.e. the
elements of f S) have minimal exponents in v`(f) +Nd. The converse is
false in general, of course.

Given a nonzero P ∈ S with v`(P ) >` 0, we introduce the set

(2.4) ∆`(P ) =
{
g =

∑
gαx

α; gα = 0 if α ∈ v`(P ) + Nd
}
.

In the case of two variables and v`(P ) = (a1, a2), a1, a2 > 0, this set can
be written as

a1−1⊕
j=0

xj1CJx2K⊕ xa11

a2−1⊕
k=0

xk2CJx1K.

In the general case it is possible to express ∆`(P ) in a similar way, but we
do not write down this cumbersome formula. In the rest of Subsection 2.3
we omit the index ` for the sake of simplicity.

Lemma 2.4. Let P ∈ S, P 6= 0 with `(v(P )) > 0 and let ∆(P ) be defined
by (2.4). In the case S = RJxK, we assume that the coefficient Pv(P )

of xv(P ) in P is a unit in R. Then for every g ∈ S, there exist unique
q ∈ S and r ∈ ∆(P ) such that

(2.5) g = q P + r.

Proof in the case S = C{x}: We even prove it in the case of the Banach
space Sµ = Ob(Dµ), with norm ‖ · ‖∞, where Dµ = D(0; (µ`1 , . . . , µ`d)),
if µ > 0 is sufficiently small. The set Dµ has been chosen so that

|xα| ≤ µ`(α) for x ∈ Dµ.
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If we define

Tjg(x) =

{
(g(x)− g(x1, . . . , xj−1, 0, xj+1, . . . , xd))/xj if xj 6= 0,
∂g
∂xj

(x) if xj = 0,

then with g ∈ Sµ, also Tjg ∈ Sµ and ‖Tjg‖∞ ≤ 2µ−`j‖g‖∞.
We put a = v(P ). Clearly, every g ∈ Sµ can be written uniquely

(2.6) g = Q0(g)xa +R0(g) where Q0(g) ∈ O, R0(g) ∈ ∆(P ) ∩ O.

Rewriting Q0(g) = T a11 · · ·T
ad
d g we find that Q0 is a linear operator

from Sµ to itself and satisfies ‖Q0(g)‖∞ ≤ 2|a|µ−`(a)‖g‖∞ for all g ∈ Sµ.

We can suppose Pa = 1 without loss of generality. Then P = xa + P̃
with some P̃ ∈ Sµ, v(P̃ ) >` a. We can rewrite equation (2.5) as qxa +

r = g − P̃ q which is equivalent to the fixed point equation

(2.7) q = Q0(g − P̃ q)

together with r = R0(g − P̃ q). We can find a constant K > 0 such that

‖P̃‖∞ ≤ Kµ`(v(P̃ )) if µ is sufficiently small. This finally yields

‖Q0(P̃ h)‖∞ ≤ K2|a|µ`(v(P̃ ))−`(a)‖h‖∞
for all h ∈ Sµ, µ sufficiently small. Therefore the right hand side of (2.7)
defines a contraction on Sµ and hence it has a unique solution if µ > 0

is sufficiently small. As (2.7) together with r = R0(g− P̃ q) is equivalent
to (2.5), this implies the statement of the lemma in the case of S = Sµ
and also in the case of S = O = C{x}.

Concerning the proof in the case of S = Ô = CJxK, we define w(f) =
`(v(f)) for f ∈ S. Then w is a discrete valuation on S: w(f + g) ≥
min(w(f), w(g)) and w(f g) = w(f) + w(g), and δ(g, h) = 2−w(g−h)

makes S into a complete metric space. In the same way as above, equa-
tion (2.5) of the lemma is equivalent to the fixed point equation (2.7)
and it can be shown that it has exactly one solution.

An immediate consequence of the above lemma is

Corollary 2.5. Under the assumptions of Lemma 2.4, every f ∈ RJxK
can be written uniquely in the form

(2.8) f̂ =

∞∑
n=0

gnP
n,

where gn ∈ ∆(P ) for all n ∈ N.

Proof: Using Lemma 2.4 repeatedly, we can write (uniquely)

f̂ = g0 + g1P + g2P
2 + · · ·+ gN−1P

N−1 + qNP
N ,

where N ∈ N, all gn ∈ ∆(P ), and qN ∈ RJxK. As N →∞, the statement
follows by m-adic convergence.
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For later use, we note the statement proved in the first part of the
proof of Lemma 2.4 and prove the analogue of Corollary 2.5 for C{x}.

Lemma 2.6. Let `, P be as above Lemma 2.4 and let ∆(P ) be defined
by (2.4). For s > 0 let Ds = D(0; (s`1 , . . . , s`d)). If s is sufficiently
small, then for every g ∈ Ob(Ds) there exist unique r ∈ Ob(Ds) with
J(r) ∈ ∆(P ) and q ∈ Ob(Ds) such that g = q P + r.

The corresponding operators Q,R : Ob(Ds)→ Ob(Ds) defined by g 7→
q (respectively g 7→ r) are linear and continuous.

Corollary 2.7. Under the assumptions of Lemma 2.4, for every f ∈
C{x} there exist ρ > 0 and a sequence {gn}n∈N in Ob(D(0; ρ)) with
J(gn) ∈ ∆(P ) for all n such that f can be written in the form

(2.9) f(x) =

∞∑
n=0

gn(x)P (x)n for |x| ≤ ρ.

The functions gn are uniquely determined by Corollary 2.5.

Proof: For s > 0 sufficiently small, f ∈ Ob(Ds) and the operators Q, R
of the preceding lemma are defined on O(Ds). For N ∈ N, we obtain

f(x) =

N−1∑
n=0

((RQn)f)(x)P (x)n + (QNf)(x)P (x)N

by repeated application of Lemma 2.6.
If ρ ∈ ]0, s] is so small that M := sup{|P (x)| | x ∈ D(0, ρ)} < 1

‖Q‖
then we can estimate

sup
|x|<ρ

∣∣∣∣∣f(x)−
N−1∑
n=0

[((RQn)f)Pn](x)

∣∣∣∣∣ ≤ (M‖Q‖)N sup
y∈Ds

|f(y)|.

This proves the statement.

2.4. A Cousin problem. In the sequel we use the following lemma
solving a certain Cousin problem for P1

C. Let I denote some finite set,
∞ ∈ I, U = (Ui)i∈I a finite cover of P1

C by open sets. Assume ∞ ∈
U∞ for simplicity of notation. Let (Uij)i,j∈I denote the collection of
intersections Uij = Ui ∩ Uj .

Lemma 2.8. Let C0(U) denote the Banach space of collections f =
(fi)i∈I of bounded holomorphic fi : Ui → C such that f∞(∞) = 0,
equipped with the maximum norm. Let Z1(U) denote the Banach space of
collections d = (dij)i,j∈I of bounded holomorphic dij : Uij → C satisfying
the cocycle condition

dij(z) + djk(z) = dik(z), if z ∈ Ui ∩ Uj ∩ Uk,

equipped with the maximum norm.
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Then the boundary mapping δ : C0(U)→ Z1(U) defined by

δ((fi)i∈I) = (fi − fj)i,j∈I

is bijective, linear, and continuous and its inverse, denoted by Σ, is also
continuous.

Proof: δ is surjective. Since H1(U ,O) = 0 as is well known, there exist,
for every (dij)i,j∈I ∈ Z1(U), a family (fi)i∈I , fi : Ui → C holomorphic,
such that dij = fi− fj for i, j ∈ I. The additional condition f∞(∞) = 0
is achieved by adding the same suitable constant to each fi. It remains
to show that each fi is bounded.

As U is a cover of P1
C, each point c ∈ P1

C is contained in some Ui(c);
hence there exists a neighborhood Vc of c the closure of which is contained
in Ui(c). Therefore fi(c) is bounded on Vc. For j ∈ I, j 6= i(c), the
function fj can be written fj = fi(c) +dji(c) on Vc∩Uj ⊂ Ui(c)j , provided
that Ui(c)j 6= ∅, and therefore fj is also bounded on Vc ∩Uj as di(c)j and

fi(c) are. We have shown that every c ∈ P1
C has a neighborhood Vc

such that for all j ∈ I, the function fj is bounded on Vc ∩ Uj . By the
compactness of P1

C, a finite number of such neighborhoods Vc covers P1
C

and the boundedness of all fj , j ∈ I, follows. This completes the proof
that δ is surjective.
δ is injective, because its kernel is {0}. Indeed, if δ((fi)i∈I) = (0)i,j∈I ,

then fi(z) = fj(z) whenever z ∈ Ui∩Uj . Hence (fi)i∈I is actually the col-
lection of restrictions of some analytic function f : P1

C → C to the (Ui)i∈I .
By Liouville’s theorem, f is then a constant. The condition f∞(∞) = 0
now implies that f = 0; hence (fi)i∈I = 0.

Obviously δ is linear and continuous. Therefore, by the theorem of
the bounded inverse, its inverse is also continuous.

In the sequel, we need an extension of the above lemma to functions
depending holomorphically upon parameters.

Lemma 2.9. Consider a collection (dij)i,j∈I of functions holomorphic
on B × Uij, where B is some open subset of Cm, m ≥ 1, satisfying
the cocycle condition with respect to the second variable. There exists a
collection (fi)i∈I of holomorphic functions on B × Ui, i ∈ I, such that
fi(b, t)− fj(b, t) = dij(b, t) for all b ∈ B and t ∈ Uij.

If there exists a function K : B → R+ such that for every b ∈ B, the
collection of functions (z 7→ dij(b, z))i,j∈I is bounded by K(b), then the
collection of functions (z 7→ fi(b, z))i∈I is bounded by ‖Σ‖K(b) for every
b ∈ B.
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Proof: We define the collection (fi)i∈I by fi(b, z) = φbi (z), where

(φbi )i∈I = Σ((z 7→ dij(b, z))i,j∈I) for b ∈ B,

where Σ is the operator of Lemma 2.8. Then the second statement of
our lemma follows from Lemma 2.8. It is not clear, however, that the
functions fi are holomorphic with repect to both variables.

In order to prove this, we first choose an open cover Vi, i ∈ I, of P1
C

such that for every i, the closure cl(Vi) is a subset of Ui. The set V∞
can be chosen such that, additionally, it contains ∞. Let Σ̃ denote the
operator of Lemma 2.8 applied to the cover V = (Vi)i∈I .

Now fix any b0 ∈ B and choose ρ > 0 such that cl(D(b0, ρ)) ⊂
B. Then the collection (d̃ij)i,j∈I , d̃ij = dij |D(b0,ρ)×(Vi∩Vj), consists of
bounded holomorphic functions. Then we use that for all open sub-
sets D ⊂ Cm the Banach space Ob(D×V,C) is canonically isometrically
isomorphic to Ob(D,Ob(V,C)) and that Cauchy’s formula with respect

to the first variable commutes with the continuous linear operator Σ̃,
applied with respect to the second variable. We obtain that the collec-
tion (f̃i)i∈I defined by f̃i(b, z) = ψbi (z),

(ψbi )i∈I = Σ̃((z 7→ d̃ij(b, z))i,j∈I) for b ∈ D(b0, ρ),

consists of bounded holomorphic functions on D(b0, ρ)× Vi, i ∈ I.
We define now a collection of holomorphic functions (Fi)i∈I on

D(b0, ρ) × Ui by Fi(b, z) = f̃k(b, z) + dik(b, z) for b ∈ D(b0, ρ), z ∈ Ui
if z ∈ Vk for some k ∈ I. Observe that here k = i is allowed in which
case dii(b, z) = 0 and hence Fi(b, z) = f̃i(b, z). Since Vk, k ∈ I, form
a cover of P1

C, we can always find some k such that z ∈ Vk. In that
case z ∈ Ui ∩ Vk ⊂ Uik and Fi(b, z) is defined. The cocycle condition

and the definition of f̃k, k ∈ I, imply that the definition is indepen-
dent of the choice of k with z ∈ Vk. In a similar way, we obtain that
Fi(b, z)− Fj(b, z) = dij(b, z) for all b ∈ D(b0, ρ) and z ∈ Uij .

As F∞(b,∞) = f̃∞(b,∞) = f∞(b,∞) = 0 for all b ∈ D(b0,∞), we ob-
tain that (z 7→ Fi(b, z))i∈I = Σ((z 7→ dij(b, z))i,j∈I) = (z 7→ fi(b, z))i∈I
for all b ∈ D(b0, ρ). Therefore all functions fi are holomorphic with
respect to (b, z).

We will use a consequence of this lemma for covers of the exceptional
divisor in subsequent sections. See Subsection 2.2 for notation.

Lemma 2.10. Consider an open cover Uj, j = 0, . . . , N of the excep-
tional divisor E = P1

C × {0} in the blow-up variety M . Then there exist

a positive constant C and an open cover Ũ , j = 0, . . . , N , of E with
Ũj ⊂ Uj, j = 0, . . . , N , and the following property.
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Given a collection of holomorphic functions Dij : Ui ∩ Uj → C, i, j =
0, . . . , N satisfying the cocycle condition Dij(p) + Djk(p) = Dik(p) for
all i, j, k and p ∈ Ui ∩ Uj ∩ Uk there exists a collection of holomorphic

functions Fi : Ũi → C such that Dij(p) = Fi(p) − Fj(p) for all i, j ∈
{0, . . . , N}, p ∈ Ũi ∩ Ũj, and

max
j∈{0,...,N}

sup
p∈Ũj

|Fj(p)| ≤ C max
i,j∈{0,...,N}

sup
p∈Ui∩Uj

|Dij(p)| ≤ ∞.

Proof: Without loss of generality, we can assume that (∞,0) ∈ U0. Then
it is sufficient to prove the lemma under the additional assumption that
(∞,0) is not an element of the other Uk.

Consider the projection R : M → P1
C × Cd−1 defined by R((ξ, t)) =

(ξ, (t1, t
′′)). Its restriction to the chart M0 is an analytic diffeomorphism

onto its image. We will use the geodesic distance d on P1
C ' S2 and

denote for ξ ∈ P1
C, µ > 0 by B(ξ, µ) the set of all ζ ∈ P1

C with d(ξ, ζ) < µ.
Also let Vi ⊂ P1

C denote the open (in P1
C) set such that Vi×{0} = Ui∩E.

As in the proof of Lemma 2.9 we choose an open cover Ṽk, k = 0, . . . , N ,
of P1

C such that for every k, the closure cl(Ṽk) is a subset of Vk.
Fix now some k ∈ {1, . . . , N}. By assumption, for all ξ ∈ Vk, there

exists ρξ > 0 such that B(ξ, ρξ) × D′(0, ρξ) ⊂ R(Uk) (here it is used

that (∞,0) 6∈ Uk and hence ∞ 6∈ Vk). By the compactness of cl(Ṽk), a

finite number of B(ξ, ρξ), ξ ∈ cl(Ṽk), is sufficient to cover cl(Ṽk). Taking

the minimum of these ρξ implies that there exists ρ(k) > 0 such that

Ṽk ×D′(0, ρ(k)) ⊂ R(Uk).

In a similar manner, we obtain ρ
(k)
0 , k = 1, . . . , N such that (Ṽk ∩

Ṽ0)×D′(0, ρ(k)
0 ) ⊂ R(Uk ∩ U0). Then let ρ > 0 denote the minimum of

the 2N numbers ρ(k), ρ
(k)
0 , k = 1, . . . , N . It has the property that for

k = 1, . . . , N we have Ṽk ×D′(0, ρ) ⊂ R(Uk) and (Ṽ0 ∩ Ṽk)×D′(0, ρ) ⊂
R(U0 ∩ Uk).

Therefore we can define bounded holomorphic functions D̃jk := Djk ◦
R−1 on (Ṽj ∩ Ṽk) × D′(0, ρ) for j, k ∈ {0, . . . , N} not both equal to 0.

For completeness put D̃00 = 0 on Ṽ0 × D′(0, ρ). Now we can ap-
ply Lemma 2.9 and obtain a family of bounded holomorphic functions
F̃j : Ṽj × D′(0, ρ) → C, j = 0, . . . , N , such that D̃jk = F̃j − F̃k for
j, k = 0, . . . , N . We have, moreover, for all j ∈ {0, . . . , N}

‖F̃j‖∞ ≤ C max{‖D̃`k‖∞ | `, k ∈ {0, . . . , N}},

where C denotes the constant associated to the cover {Ṽj}j=0,...,N in
Lemma 2.8.
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Now put Ũj = R−1(Ṽj ×D′(0, ρ)) for j ∈ {1, . . . , N}, Ũ0 = R−1(Ṽ0×
D′(0, ρ)) ∩ U0 and Fj(p) = F̃j(R(p)) for j ∈ {0, . . . , N}, p ∈ Ũj . Then

Ũj ∩ E = Ṽj × {0} for j = 0, . . . , N and hence Ũj , j = 0, . . . , N , form

an open cover of E. By construction, we have Ũj ⊂ Uj for j = 0, . . . , N

and Fj(p)− Fk(p) = Djk(p) for p ∈ Ũj ∩ Ũj .

Remark 2.11. Lemma 2.10 can be extended to collections (Dij)i,j=0,...,N

depending holomorphically upon parameters, that is Dij are holomor-
phic on T × Uij , T an open subset of Ck. We obtain collections (Fi)i of

holomorphic functions on T × Ũi and for t ∈ T the estimates

max
j∈{0,...,N}

sup
p∈Ũj

|Fj(t, p)| ≤ C max
i,j∈{0,...,N}

sup
p∈Ui∩Uj

|Dij(t, p)| ≤ ∞.

The proof remains essentially the same, one just has to apply Lemma 2.9
to Ṽj ×D′(0, ρ) × T instead of Ṽj ×D′(0, ρ), j = 0, . . . , N . Details are
left to the reader.

3. Classical and monomial asymptotics and summability

Here we recall the notions and main properties of classical Poincaré
and Gevrey asymptotics and summability in one variable (see, for in-
stance, [Ram2, Sib1, Bal, Can]) and then the corresponding theory
for monomial asymptotics of [CMS]. Our presentation follows essen-
tially [CMS]; the theory of monomial asymptotic expansions is pre-
sented for d ≥ 2 variables instead of 2 and is rearranged and abbreviated.

3.1. Asymptotics in one variable. Let E be a complex Banach

space, with norm ‖ · ‖E and f̂(x) =
∑
anx

n ∈ EJxK. A (open) sec-
tor in C is a set V (a, b; r) = {x ∈ C | a < arg x < b, 0 < |x| < r}.
We will omit frequently a, b, r, and speak of a sector V . If f : V → E

is holomorphic, f is said to have f̂ as an asymptotic expansion at the
origin if for each N ∈ N, there exists C(N) > 0 such that

(3.1)

∥∥∥∥∥f(x)−
N−1∑
n=0

anx
n

∥∥∥∥∥
E

≤ C(N)|x|N in V.

The asymptotic expansion is s-Gevrey if, moreover, C(N) can be chosen

as C(N) = KANN !s, with constants K, A. We will write f ∼ f̂ and

f ∼s f̂ in the s-Gevrey case, respectively. Observe that f ∼s f̂ implies

that the formal series f̂ is s-Gevrey, i.e. there exist C,A > 0 such that
|an| ≤ CAnn!s for all n ∈ N. The set of all such formal series will be
denoted by EJxKs.

Asymptotic expansions are unique, and respect algebraic operations
and differentiation. The so called Borel–Ritt–Gevrey theorem and Wat-
son’s lemma are of great importance. The following result collects them.
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Theorem 3.1. Let V = V (a, b; r), f̂ ∈ EJxKs, and s > 0. Then:

(1) If b− a < sπ, there exists f ∈ O(V,E) such that f ∼s f̂ .
(2) If f ∈ O(V,E) is such that f ∼s 0, then there are positive constants

such that
‖f(x)‖E ≤ C exp(−A/|x|1/s).

(3) If b − a ≥ sπ and f1, f2 ∈ O(V,E) have f̂ as their s-Gevrey as-
ymptotic expansion, then f1 = f2.

Because of the above theorem, a function f ∈ O(V ;E) is uniquely

determined by its s-Gevrey asymptotic expansion f̂ , provided that the
opening of V is larger than sπ. If such a function exists for a formal

series f̂ , then it is said to be k-summable in V with k = 1/s and f is

called the k-sum of f̂ on V . More precisely:

Definition 3.2. Let s > 0, k = 1/s, and f̂ ∈ EJxKs.
(1) The formal series f̂ is called k-summable on V =V (a, b; r), if b−a>

sπ and there exists a function f ∈ O(V ;E) such that f ∼s f̂ . The

uniquely determined function f is called the k-sum of f̂ in the
direction θ.

(2) The formal series f̂ is called k-summable in the direction θ ∈ R,

if there exist δ, r > 0 such that f̂ is k-summable on the sector
V
(
θ − sπ2 − δ, θ + sπ2 + δ; r

)
.

(3) The formal series f̂ is simply called k-summable, if it is k-summable
in every direction θ ∈ R with finitely many exceptions mod 2π.

The above notion of k-summability in a direction θ does not indicate
how to obtain a sum from a given series; here the following characteri-
zation of k-summability helps.

Proposition 3.3. Given f̂(x) =
∑
anx

n ∈ EJxKs, it is k-summability
in a direction θ if and only if the following statements hold.

(1) Its formal Borel transform g(t) =
∑
ant

n/Γ(1 + n/k) is analytic
in a neighborhood of the origin.

(2) The function g can be continued analytically in some infinite sector
S = V (θ − δ, θ + δ;∞) containing the ray arg t = θ.

(3) It has exponential growth there, i.e. there are there are positive
constants such that

‖g(t)‖E ≤ C exp(A/|t|k)

and hence the Laplace integral f(x)=k x−k
∫

arg t=θ̃
e−t

k/xkg(t)tk−1 dt

defining the sum of f̂ converges for x in a certain sector V =

V
(
θ− π

2k −
δ̃
k , θ+ π

2k + δ̃
k ; r
)
, 0 < δ̃ < δ, and suitably chosen θ̃ close

to θ. It satisfies f ∼s f̂ on V , s = 1/k.
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We recall also the very useful characterization of functions having
an s-Gevrey asymptotic expansion due to J.-P. Ramis and Y. Sibu-
ya [Ram2, Sib2, Ram1].

Theorem 3.4. Suppose that the sectors Vj = V (aj , bj ; r), 1 ≤ j ≤ m,
form a cover of the punctured disk D(0; r). Given fj : Vj → E bounded
and analytic, assume that there is a constant γ > 0 such that

(3.2) ‖fj1(x)− fj2(x)‖E = O(exp(−γ/|x|1/s))

for x ∈ Vj1 ∩ Vj2 , whenever this intersection is non-empty.
Then the functions fj have common s-Gevrey asymptotic expansions.
Conversely, if a function f : V → E having an s-Gevrey asymptotic

expansion is given, then a cover Vj, 1 ≤ j ≤ m and functions fj : Vj → E
can be found that satisfy estimates like (3.2) and f = f1.

Such a family f1, . . . , fm is sometimes called a k-precise quasi-func-
tion.

In [Sib2] the following complement of the above theorem can be found:

Theorem 3.5. Suppose that the sectors Vj = V (aj , bj ; r), 1 ≤ j ≤ m,
form a cover of the punctured disk D(0; r). For couples (j1, j2) with
Vj1 ∩ Vj2 6= ∅, let holomorphic dj1,j2 : Vj1 ∩ Vj2 → E be given that satisfy
the cocycle condition dj1,j2 + dj2,j3 = dj1,j3 whenever Vj1 ∩ Vj2 ∩ Vj3 6= ∅
and estimates

(3.3) ‖dj1,j2(x)‖E = O(exp(−γ/|x|1/s))

for j1, j2 ∈ {1, . . . ,m} and x ∈ Vj1 ∩ Vj2 with some constants s, γ > 0.
Then there exist bounded holomorphic functions fj : Vj → E such that

dj1,j2 = fj1 −fj2 whenever Vj1 ∩Vj2 6= ∅; moreover the functions fj have
common s-Gevrey asymptotic expansions.

3.2. Monomial asymptotics. In [CMS] the notion of monomial
asymptotics in two variables was introduced in order to study doubly
singular differential equations. We want to extend this notion to an
arbitrary number of variables.

In the sequel, let xα = xα1
1 · · ·x

αd
d denote a monomial in the d vari-

ables x1, . . . , xd. We begin by restating Corollary 2.5 in a slightly differ-
ent way: C is replaced by an arbitrary C-vector space E and P = xα.
Accordingly, we shall denote ∆(xα, E) = {g =

∑
gβx

β ∈ EJxK; gβ =
0 if β ∈ α+ Nd}, as in (2.4).

Lemma 3.6. For any vector space E, there exists a canonical isomor-
phism

T : EJxK→ ∆(xα, E)JtK
with the property (Tf)(xα) = f for all series f ∈ EJxK. Here the
symbol (Tf)(xα) means that t is replaced by xα in the series Tf .
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In this statement, the name canonical emphasizes the independence
of the linear form `. By abuse of notation, we use the same symbol T for
the analogous isomorphism T : E{x} → ∆(xα, E){t} if E is a normed
vector space (and consequently, there is a notion of convergence).

For r>0 let Er denote the Banach space of all functions f ∈Ob(D(0; r))
the series expansion of which J(f) ∈ ∆(xα). If r′ < r there is a natural
restriction map Er → Er′ , linear and continuous. The image of f ∈ Er
will be denoted f |Er′ . Similarly, if f(t) =

∑∞
n=0 fnt

n ∈ ErJtK is a formal
series, f(t)|Er′ will represent

∑∞
n=0 fn|Er′ t

n.
In the subsequent lemma, we establish an analogue of the operator T

for functions defined on sectors in a monomial. This lemma generalizes
the construction below Lemma 3.5 of [CMS] to an arbitrary number of
variables.

We call “sector in xα”, or xα-sector, a set Π = Π(a, b;R) ⊆ (C\{0})d,
R = (R1, . . . , Rd) ∈ ]0,∞]d,

Π = {x ∈ Cd | a < arg(xα) < b, 0 < |xj | < Rj , j = 1, . . . , d}.

Remark 3.7. Here and throughout this work, we will only consider sec-
tors in C, i.e. of opening not greater than 2π. So, in the definition of a
xα-sector, and in subsequent definitions, we will assume implicitly that
b− a ≤ 2π.

Lemma 3.8. Let Π = Π(a, b;R) a sector in xα and f : Π → C a
holomorphic function. Then there is a uniquely determined holomor-
phic function Tf : V (a, b;Rα)×D(0;R) → C such that J((Tf)(t, .)) ∈
∆(xα) for any t and (Tf)(xα,x) = f(x). Moreover, if there is a func-
tion K : ]0,Rα]→ R+ such that |f(x)| ≤ K(|xα|) for x ∈ Π, then

|(Tf)(t,x)| ≤ R
α

|t| K(|t|)
d∏
j=1

(
1− |xj |

Rj

)−1

for t ∈ V (a, b;Rα), x ∈ D(0;R).

Remark 3.9. (1) Thus for t∈V (a, b;Rα), the mapping x 7→ (Tf)(t,x)
defines an element of any Er, 0 < r < minj Rj . This element will be
denoted by Tf(t)|Er . Clearly Tf |Er : V (a, b;Rα)→ Er is holomorphic.

(2) The estimate could be improved by multiplying with
(
1 − |x

α|
Rα

)
on

the right. We omit this factor, as it has no advantages in applications of
the lemma.

Proof of Lemma 3.8: If f : Π(a, b;R)→ C is a holomorphic function and
Π(a′, b′;R′) is some proper xα-subsector of Π(a, b;R), that is a < a′ <
b′ < b and 0 < R′j < Rj for j = 1, . . . , d, then we can establish a function

K : ]0,R′α] → R+ such that |f(x)| ≤ K(|xα|) for x ∈ Π(a′, b′;R′). We
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can simply put
K(s) = max{|f(x)| | x ∈M(s)},

where M(s) = {x ∈ cl(Π(a′, b′;R′)) | |xα| = s}, because M(s) is a
compact subset of Π(a, b;R). To see this observe that for j = 1, . . . , d

and x ∈ M(s), |xj |αj ≥ s
∏
k 6=j R

′−αk
k and hence none of the xj can be

too close to 0.
It is therefore sufficient to prove the lemma under the additional

assumption that there exists a function K : ]0,Rα] → R+ such that
|f(x)| ≤ K(|xα|) for x ∈ Π. The uniqueness implies that we can
define Tf for a holomorphic function on Π(a, b;R) by combining all

the functions T f̃ obtained for the restrictions of f to proper subsectors
of Π(a, b;R).

The lemma had been proved in the case of a product of two variables
in [CMS]. We give a proof for the general statement. Suppose first that
α = (1, 1, . . . , 1), i.e. the monomial is the product xα = x1 · · ·xd. Then
we show the statement with the improved estimate

(3.4) |(Tf)(t,x)|≤K(|t|)
d∏
j=1

(
1− |xj |

Rj

)−1

for t∈V (a, b;Rα), x∈D(0;R).

Observe that we can assume without loss of generality that the radii
coincide: Rj = R for j = 1, . . . , d. Otherwise put R = R1 and con-

sider the function f̃(x1, . . . , xd) = f
(
x1, x2

R2

R , . . . , xd
Rd
R

)
and K̃(t) =

K(tR2 · · ·Rd/Rd−1); the radii are all reduced to R now.
We now proceed similarly to [CMS], but have to treat Laurent se-

ries in several variables. Put g(t, z2, . . . , zd) := f
(

t
z2···zd , z2, . . . , zd

)
.

Then for fixed t ∈ V := V (a, b;Rd), g(z′; t) (with notation as in 2.1)
is defined on the set of all z′ = (z2, . . . , zd) ∈ Cd−1 such that |z′| =

max(|z2|, . . . , |zd|) < R and |z2 · · · zd| > |t|
R . Applying several times

the theorem on Laurent series expansions, we obtain that g(z′; t) =∑
m∈Zd−1 gm(t)z′

m
with coefficients gm(t) holomorphic on V and that

(3.5) |gm(t)| ≤ K(|t|)r−m2
2 · · · r−mdd

whenever 0 < r2, . . . , rd < R are such that their product r2 · · · rd > |t|
R .

In order to get good estimates for these coefficients, we have to choose
the rj in an optimal way.

In the case that one of the mj is negative, we choose ` such that the
minimum of m2, . . . ,md is m` < 0 and rewrite (3.5) as

|gm(t)| ≤ K(|t|)(r2 · · · rd)−m`rm`−m2
2 · · · rm`−mdd .

As the differences m` − mj ≤ 0 and one of them equals 0 in case
j = `, we can choose rj = R if j 6= ` and r` arbitrary such that
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r2 · · · rd > |t|
R . Going over to the limit, we can as well assume that

r` is chosen such that r2 · · · rd = |t|
R . Introducing the notation µ(m) =

m` = min(m2, . . . ,md, 0) and |m|1 = m2 + · · · + md, we thus obtain in
this case

(3.6) |gm(t)| ≤ K(|t|)|t|−µ(m)Rdµ(m)−|m|1 .

In the case where all mj are nonnegative, we choose rj = R for all j

and obtain |gm(t)| ≤ K(|t|)R−|m|1 . So, (3.6) is valid for all m ∈ Zd−1.
Now we put hm(t) := tµ(m)gm(t) and obtain that hm are holomorphic

on V and |hm(t)| ≤ K(|t|)Rdµ(m)−|m| for t ∈ V and m ∈ Zd−1. It
is convenient to introduce φ : Zd−1 → Nd by φ(m) = (−µ(m),m2 −
µ(m), . . . ,md− µ(m)). Observe that φ is a bijection between Zd−1 and
the set Md of all n = (n1, . . . , nd) ∈ Nd such that at least one of the nj
vanishes; moreover |φ(m)|1 = |m|1 − dµ(m). Now we define for t ∈ V

(3.7) (Tf)(t,x) =
∑

m∈Zd−1

hm(t)xφ(m).

As all φ(m) are in Md, we obtain J((Tf)(t, .)) ∈ ∆(xα). Next, we
have to show the convergence of the series if |xj | < R for all j. Using
φ(Zd−1) =Md, we estimate

∑
m∈Zd−1

|hm(t)||xφ(m)| ≤ K(|t|)
∑
n∈Md

(
|x|
R

)|n|1
≤ K(|t|)

d∏
j=1

(
1− |xj |

R

)−1

and thus the convergence of the series and the estimate of the theorem.
This also implies that Tf is analytic for t ∈ V , x ∈ D(0;R). The fact
that (Tf)(xα,x) = f(x) follows easily from the construction∑

m∈Zd−1

hm(xα)xφ(m) =
∑

m∈Zd−1

gm(xα)xµ(m)α+φ(m)

=
∑

m∈Zd−1

gm(xα)x′m = f(x).

We now reduce the general case to the one treated above. Sup-
pose that α1 > 1 and let ξ = e2πi/α1 . Observe that x ∈ Π im-
plies x(k) := (ξkx1,x

′) ∈ Π for k = 0, . . . , α1 − 1 and therefore there
are uniquely determined functions F0, . . . , Fα1−1 defined on the sector
a < arg(zxα2

2 · · ·x
αd
d ) < b, 0 < |z| < Rα1

1 , 0 < |xj | < Rj , for j = 2, . . . , d
in the monomial zxα2

2 · · ·x
αd
d such that

f(x) =

α1−1∑
j=0

xj1Fj(x
α1
1 ,x′).
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The functions Fj can be determined by the Vandermonde system

f(x(k)) =

α1−1∑
j=0

ξjkxj1Fj(x
α1
1 ,x′), k = 0, . . . , α1 − 1.

Hence,

xj1Fj(x
α1
1 ,x′) =

1

α1

α1−1∑
k=0

ξ−jkf(x(k)), j = 0, . . . , α1 − 1,

and therefore |xα1
1 Fj(x

α1
1 , x2, . . . , xd)|≤Rα1−j

1 K(|xα|) for j=0, . . . , α1−
1, x ∈ Π. Continuing in this way we prove that

(3.8) f(x) =
∑

0≤β<α

xβFβ(xα1
1 , . . . , x

αd
d ),

where summation is over all integer vectors β ∈ Zd, 0 ≤ βj < αj for
all j, and where the functions Fβ satisfy

|xαFβ(xα1
1 , . . . , x

αd
d )| ≤ Rα−βK(|xα|).

Now the situation is reduced to functions Fβ, satisfying

|Fβ(u1, . . . , ud)| ≤ Rα−β
K(|u1 · · ·ud|)
|u1 · · ·ud|

on a (u1 · · ·ud)-sector Π̃. Using the first part of the proof, especially (3.4)
for each Fβ, and then combining them using (3.8) implies the statement.
We just have to use the formula∑

0≤β<α

xβR−β
d∏
j=1

(
1−
|xαjj |
R
αj
j

)−1

=

d∏
j=1

(
1− |xj |

Rj

)−1

.

The proof of the uniqueness can be given following the same steps as
in the construction of Tf . Details are left to the reader. An alternative
proof is given, in the context of asymptotic expansions with respect to a
germ, at the end of the proof of Theorem 4.7, at the end of Section 5.

Example 3.10. The following example due to S. Kamimoto shows that
if one of the αi > 1, then the estimate for Tf cannot be as good as
in (3.4) in the case of a “simple” product x1 · · ·xd.

Consider the monomial xα = x2
1x2 and a small xα-sector Π =

Π(−δ, δ;R), δ,R > 0. Define f : Π → C by the principal value x
1/2
2

if arg x1 and arg x2 are both small and extend this function to all of Π
by analytical continuation. This is possible as for any path γ : [0, 1]→ Π,
γ(s) = (γ1(s), γ2(s)), we must have |2 arg γ1(s) + arg γ2(s)| < δ. Hence
if we start with arg γj(s) ≈ 0 and γ2 has made one tour of x2 = 0 and
thus reached arg γ2(s) ≈ 2π, then we have arg γ1(s) ≈ −π and are far
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away from the starting point of the path. After two tours of γ2 around
x2 = 0, we have arg γ1(s) ≈ 2π and arg γ2(s) ≈ 4π and are again (with
respect to the arguments) close to the starting points of the path. The

values of f obtained by analytic continuation of x
1/2
2 are also close to

the original ones as arg x2 has been changed by about 4π.
Thus we have an analytic function f : Π → C that is bounded and

satisfies f(−x1, x2) = −f(x1, x2) for (x1, x2) ∈ Π. The unique func-
tion Tf of Lemma 3.8 is apparently Tf(t, (x1, x2)) = t−1/2x1x2 (with
the principal value of t−1/2) and this function is not bounded as t→ 0.

In the above example, the P -sector is connected. A simpler example
where Π has several connected components is given in the one variable
case by the monomial x2. Consider the x2-sector Π(−δ, δ, R) which has
the two components |arg x| < δ/2 respectively |arg x − π| < δ/2. A
bounded holomorphic function can be defined by having the value 1
on one component and the value −1 on the other. The corresponding
function Tf is apparently Tf(t, x)= t−1/2x and also unbounded as t→ 0.

Now we are in a position to define monomial asymptotics.

Definition/Proposition 3.11. Let f be a bounded holomorphic func-

tion on Π = Π(a, b;R) and f̂ ∈ Ô. We will say that f has f̂ as as-

ymptotic expansion at the origin in xα if there exists 0 < R̃ ≤ R such

that T f̂(t) =
∑∞
n=0 gnt

n ∈ ER̃JtK and one of the following equivalent
conditions is satisfied:

(1) For every r ∈ ]0, R̃[ one has Tf(t)|Er ∼ T f̂(t)|Er as V (a, b; rn) 3
t→ 0 in the sense of (3.1).

(2) For every 0 < r < R̃ and every N , there exists C(N, r) such that
for all x ∈ Π(a, b; r)∣∣∣∣∣f(x)−

N−1∑
n=0

gn(x)xnα

∣∣∣∣∣ ≤ C(N, r)|xNα|.

Analogously, we define the notion of s-Gevrey asymptotic expansion if T f̂

is an s-Gevrey formal series (with coefficients in ER̃) and Tf ∼s T f̂ or,
equivalently, C(N, r) can be chosen as L(r)A(r)NN !s.

Proof: It suffices to prove that the second condition implies the first,
the converse is trivial. For that purpose, consider the function δ(x) =

f(x) −
∑N
n=0 gn(x)xnα. We can apply Lemma 3.8 with K(u) = uN+1

and obtain for 0 < r′ < r < R̃∣∣∣∣∣(Tf)(t,x)−
N∑
n=0

gn(x)tn

∣∣∣∣∣ ≤ C(N + 1, r)|t|N
(

1− r′

r

)−d
.
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So, we have∣∣∣∣∣(Tf)(t,x)−
N−1∑
n=0

gn(x)tn

∣∣∣∣∣ ≤
∣∣∣∣∣(Tf)(t,x)−

N∑
n=0

gn(x)tn

∣∣∣∣∣+ |gN (x)tN |

≤ C(N+1, r)|t|N
(

1− r′

r

)−d
+ ‖gN (x)‖|t|N.

Remark 3.12. Let us note that, in the Gevrey case, the series T f̂(t)
automatically turns out to be s-Gevrey. In fact, from the inequalities∣∣∣∣∣(Tf)(t,x)−

N∑
n=0

gn(x)tn

∣∣∣∣∣ ≤ L(r)A(r)N+1(N + 1)!s|t|N
(

1− r′

r

)−d
we obtain that

|gN (x)| ≤ L(r)A(r)N+1(N + 1)!s
(

1− r′

r

)−d
+ L(r)A(r)NN !s

(
1− r′

r

)−d
1

|t|

= L(r)

(
1− r′

r

)−d
A(r)NN !s

[
A(r)(N + 1)s +

1

|t|

]
.

Fixing t with |t| = r
2 yields Gevrey bounds for gN (x).

In the rest of this subsection, we recall the properties of Gevrey as-
ymptotic expansions in a monomial from [CMS], but state and prove
them in the general setting – whereas [CMS] only consider the mono-
mial x1x2. Since we have the main Lemma 3.8 in the general setting,
the generalization is straightforward.

As in the single variable case, functions Gevrey asymptotic to 0 in a
monomial are exponentially small.

Lemma 3.13. If f ∈ O(Π;E) has an s-Gevrey asymptotic expansion

in xα where f̂ = 0, then, for all sufficiently small R′ > 0 there exist
C,B > 0 such that on Π̃

|f(x)| ≤ C exp

(
− B

|xα|1/s

)
for x ∈ Π, |x| < R′.

Proof: As in the classical case, we choose N close to the optimal value
(A|xα|)−1/s in the definition of an s-Gevrey asymptotic expansion in xα.
Stirling’s formula yields the statement.

Using the first condition in the definition of an s-Gevrey asymptotic
expansion in xα and using Lemma 3.8 with K(u) = exp(−γ/u1/s), the
theorem of Ramis–Sibuya (Theorem 3.4) (together with Theorem 3.1 (1))
immediately implies:
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Theorem 3.14. Suppose that the sectors Πj = Π(aj , bj ; r), 1 ≤ j ≤ m
in xα, form a cover of D(0; r) \ {x; xα = 0}. Given fj : Πj → E
bounded and analytic, assume that for every subsector Π′ of Πj1 ∩ Πj2

(provided that Πj1 ∩Πj2 6= ∅) there is a constant γ(Π′) > 0 such that

(3.9) |fj1(x)− fj2(x)| = O(exp(−γ(Π′)/|xα|1/s))

for x ∈ Π′. Then the functions fj have asymptotic expansions in xα

with a common right hand side and the expansions are s-Gevrey.
Conversely, if a function f : Π → E having an s-Gevrey asymptotic

expansion in xα is given, then a cover Πj, 1 ≤ j ≤ m and functions
fj : Πj → E can be found that satisfy estimates like (3.9) and f = f1.

As a consequence, Gevrey asymptotics in a monomial are compatible
with the elementary operations (sum, product,. . . ). This is not obvious
from the definition, except for addition.

Also, a Watson’s lemma for Gevrey asymptotics in a monomial follows
from Lemma 3.8 and the one-variable version in Theorem 3.1 (2).

Theorem 3.15. Let Π = Π(a, b;R) be a sector in xα with b − a > sπ

and suppose that f ∈ O(Π;E) has f̂ = 0 as its s-Gevrey asymptotic
expansion. Then f ≡ 0.

Definition 3.16. Let s > 0, k = 1/s and a formal series f̂(x) =∑
m∈Nd amx

m be given.

(1) We say that f̂ is k-summable in xα on Π = Π(a, b;R) if b−a > sπ
and there exists a holomorphic bounded function f : Π → E such

that f has f̂ as its s-Gevrey asymptotic expansion in xα on Π
in the sense of Definition/Proposition 3.11. Then f is called the

k-sum of f̂ in xα on Π. If it exists, it is unique, by Theorem 3.15.

(2) The formal series f̂ is called k-summable in xα in the direction θ ∈
R, if there exist δ, r > 0 such that f̂ is k-summable in xα on the
sector Π

(
θ − sπ2 − δ, θ + sπ2 + δ; r

)
in xα.

(3) The formal series f̂ is simply called k-summable, if it is k-summable
in every direction θ ∈ R with finitely many exceptions mod 2π
(called singular directions).

The first condition in Definition/Proposition 3.11 shows that f̂ is

k-summable in xα on Π(a, b;R) if and only if the formal series T f̂ =∑∞
n=0 gnt

n has coefficients in Er and if it is k-summable on V (a, b; rd)
for r > 0 sufficiently small as series in one variable with coefficients
in a Banach space. This allows us to carry over classical theorems to
k-summability in a monomial.
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It would be tempting to define summability in a monomial (and also
Gevrey asymptotics in a monomial) using only a fixed radius r > 0, but
an example in [CMS] shows that r might have to be chosen smaller and
smaller if the direction θ approaches a singular direction.

4. Asymptotics with respect to an analytic germ

Consider a germ of analytic function P (x) ∈ O = C{x1, . . . , xd}, not
a unit (i.e. P (0) = 0) and not identically vanishing, defined in some
neighbourhood of 0 ∈ Cd, say in D(0; ρ).

Definition 4.1. A sequence {fn}∞n=0 in Ob(D(0; ρ)) is an asymptotic

sequence (for f̂) if J(fn) converges in the m-adic topology of Ô = CJxK
towards an element f̂ ∈ Ô.

If, moreover, J(fn) ≡ f̂ mod PnÔ for all n, then we will say that

{fn}n is a P -asymptotic sequence (for f̂).

If f̂ ∈ Ô is the limit of some P -asymptotic sequence, then we say that

f̂ is a P -asymptotic series.

Definition 4.2. Given a < b, 0 < Rj ≤ +∞, j = 1, . . . , d, R =
(R1, . . . , Rd), the P -sector ΠP (a, b;R) is the set

ΠP (a, b;R) = {x ∈ Cd; a < argP (x) < b, 0 < |xj | < Rj for j = 1, . . . , d}.

By abuse of notation, we sometimes write ΠP (a, b;R) for ΠP (a, b;
(R,R, . . . , R)).

Definition 4.3. Given a P -sector Π, f ∈ O(Π), and f̂ ∈ CJxK, we will

say that f̂ is the P -asymptotic expansion of f on Π if there exist ρ > 0

and a P -asymptotic sequence {fn}∞n=1 in Ob(D(0; ρ)) for f̂ , such that,
for every n ∈ N, there exists Kn > 0 such that

(4.1) |f(x)− fn(x)| ≤ Kn|P (x)|n

on D(0; ρ) ∩ Π. We will denote this by f ∼PΠ f̂ . Observe that f̂ is a
P -asymptotic series in this case.

Remark 4.4. (1) In Theorem 4.9, we will show that the above definition
is equivalent to statements that reduce to Definition/Proposition 3.11 in
the case of a monomial.

(2) If U is a unit and Q = UP then it is immediate to verify that f has a

series f̂ as a P -asymptotic expansion if and only if f has the same series
as Q-asymptotic expansion.

(3) Specialization. Consider a disk D(0; ρ′) ∈ Cm, and Q : D(0; ρ′)→ Cd
such that Q(0) ∈ D(0; ρ) ⊆ Cd, and P ◦ Q(0) = 0 but P ◦ Q 6≡ 0. Let
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f ∈ O(ΠP (a, b;R)) and consider a P -asymptotic sequence {fn}∞n=1 for
f . There exists R′ > 0 such that, if y ∈ Cm verifies 0 < |yi| < R′ for
every i, 1 ≤ i ≤ m, then Q(y) ∈ D(0;R) ⊆ Cd. Under these conditions,

f ◦ Q is well defined on a P ◦ Q-sector Π̃ = ΠP◦Q(a, b;R′) and has the
sequence {fn ◦Q}n as P ◦Q-asymptotic sequence.

This applies in particular when Q(0) = 0. Another interesting spe-
cial case of this property can be given in the context of monomial
asymptotic expansions, i.e. P = xα, and Q : C → Cd is defined by
Q(x) = (x, t2, . . . , td), with (t2, . . . , td) ∈ Cd−1, 0 < |ti| < R. We ob-
tain that monomial asymptotic expansions can be specialized, fixing the
values of some of the variables.

(4) The notion of P -asymptotic expansion agrees with the usual notion of
asymptotic expansion in one variable if P = x. Indeed, suppose that f is
a holomorphic function defined on a sector V , and that there is a family
of holomorphic functions {fn}n, defined on a common neighbourhood of
the origin D(0′; ρ), and such that there exists Cn with

|f(x)− fn(x)| ≤ Cn|x|n

on V ∩ D(0; ρ). The sequence {fn}n turns out to be an asymptotic
sequence. Indeed, observe that

|fn(x)− fn+1(x)| ≤ |fn(x)− f(x)|+ |f(x)− fn+1(x)| ≤ (Cn + Cn+1|x|)|x|n,

and therefore the meromorphic functions (fn(x)− fn+1(x))/xn are
bounded on V ∩D(0; ρ), thus holomorphic at the origin. Therefore we
have Jn−1(fn) = Jn−1(fn+1) for all n and J(fn) converges in the m-adic

topology of CJxK towards some series f̂ , such that Jn−1(fm) = Jn−1(f̂)
whenever m ≥ n.

As we have |fn(x) − Jn−1(fn)(x)| ≤ Kn|x|n for every n ∈ N with
some Kn, we finally obtain

|f(x)−Jn−1(f̂)(x)| ≤ |f(x)−fn(x)|+ |fn(x)−Jn−1(fn)(x)| ≤ (Cn+Kn)|x|n,

on V ∩D(0; ρ′).
The converse is trivial.

Lemma 4.5. (1) If a sequence {fn}n of functions on some poly-
disk D(0; ρ) and a function f on some P -sector satisfy the in-
equalities (4.1), then {fn}n is a P -asymptotic sequence.

(2) The P -asymptotic expansion of a function f on a P -sector, if it
exists, is unique.

Proof: For (1): Such a sequence satisfies for all n ∈ N
|fn(x)− fn+1(x)| ≤ |fn(x)− f(x)|+ |f(x)− fn+1(x)|

≤ (Kn +Kn+1|P (x)|)|P (x)|n ≤ K′n|P (x)|n
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on the P -sector Π mentioned in the statement. By Lemma 2.2, P (x)n

divides fn(x)− fn+1(x) for all n. As P (0) = 0, {fn}n∈N is a Cauchy se-

quence for the m-adic topology and converges to some f̂ ∈ Ô. Moreover,

fn ≡ f̂ mod PnÔ for all n and the statement follows.

For (2): Let {fn}n, {f̃n}n be two asymptotic sequences on a P -sector Π,
such that a family of constants Cn > 0 exists satisfying

|f(x)− fn(x)| ≤ Cn|P (x)|n,

|f(x)− f̃n(x)| ≤ Cn|P (x)|n.

Then,
|fn(x)− f̃n(x)| ≤ 2Cn|P (x)|n

on Π, and by Lemma 2.2, P (x)n divides fn(x) − f̃n(x). So, the fami-

lies {fn}n, {f̃n} have the same limit in the m-topology.

Let us see now that Definition 4.3 is independent of the chosen P -as-

ymptotic sequence with limit f̂ . Assume that {fn}n in Ob(D(0; ρ)) is a
P -asymptotic sequence, f ∈ O(Π), Π a P -sector, such that for all n ∈ N

|f(x)− fn(x)| ≤ Kn|P (x)|n,

for x ∈ Π ∩D(0; ρ), where Kn > 0 are certain constants.

Let {f̃n}n be another P -asymptotic sequence with f̃n ∈ Ob(D(0; ρ̃))

and such that {fn}n and {f̃n}n have the same limit in the m-adic topol-
ogy. Without loss of generality we may assume that ρ̃ = ρ.

For any given n ∈ N, we have J(fn) ≡ J(f̃n) mod PnÔ. Applying
Lemma 2.4 for formal and convergent power series, it follows that actu-
ally J(fn) ≡ J(f̃n) mod PnO for all n. Applying Lemma 2.6, it follows
that there exists some positive ρ′ < ρ such that for every n ∈ N we can
write fn − f̃n = hnP

n with some hn ∈ Ob(D(0; ρ′)).
On D(0; ρ′) ∩Π we have

|f(x)− f̃n(x)| ≤ |f(x)− fn(x)|+ |hn(x)| |P (x)|n

≤ (Kn + Cn)|P (x)|n,

where Cn denotes some bound of hn on D(0; ρ′). This proves that {f̃n}n
also satisfies the inequalities (4.1) and thus can be used to define f ∼PΠ f̂
on Π.

Contrary to monomial asymptotics, there is no canonical expansion
(like in Definition/Proposition 3.11). Using Generalized Weierstrass Di-
vision in the form of Lemma 2.6, we are going to present standard ex-
pansions in an expression, but they cannot be called canonical, as they
depend on the choice of the linear form ` or equivalently on the choice
of the leading monomial of the analytic germ.
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The only case where this expansion is canonical is precisely when this
leading monomial does not depend upon the linear form `, or, in geo-
metric terms, when the Newton polyhedron of P (x) has only one vertex.
In this case, P (x) = xαU(x) with some unit U(x), and Remark 4.4 (2)
reduces the situation to the monomial case.

It is convenient to construct operators T` (for injective linear forms
` : Nd → R+) analogous to the operator T used in monomial asymptotics.
First we restate Corollaries 2.5 and 2.7 in a slightly different way: C is
replaced by an arbitrary C-vector space E. For an injective linear form
` : Nd → R+, P ∈ O \ {0}, P (0) = 0, and a vector space E, let ∆`(P,E)
denote the subset of EJxK defined analogously to (2.4). We abbreviate
∆`(P ) = ∆`(P,C).

Lemma 4.6. Let ` : Nd → R+ an injective linear form, P ∈ O \ {0},
P (0) = 0. For any vector space E, there exists an isomorphism

T` : EJxK→ ∆`(P,E)JtK

with the property (T`f)(P ) = f for all series f ∈ EJxK. Here the
symbol (T`f)(P ) means that t is replaced by J(P ) in the series T`f .
If E is a normed vector space and f ∈ E{x} then T`f ∈ E`{t}, where
E` = ∆`(P,E) ∩ E{x}.

For r > 0 let E`,r denote the Banach space of all functions f ∈
Ob(D(0; r)) the series expansion of which J(f) ∈ ∆`(P ). If r′ < r there
is a natural restriction map E`,r → E`,r′ , linear and continuous. The im-
age of f ∈ E`,r will be denoted f |E`,r′ . Similarly, if f(t) =

∑∞
n=0 fnt

n ∈
E`,rJtK is a formal series, f(t)|E`,r′ will represent

∑∞
n=0 fn|E`,r′ t

n.
In the subsequent theorem, we establish an analogue of the operator T`

for functions defined on sectors in a germ. This theorem generalizes
Lemma 3.8 to arbitrary germs.

Theorem 4.7. Let ` : Nd → R+ an injective linear form, P ∈ O \ {0},
P (0) = 0. Let Π=ΠP (a, b;R) a sector in P . Then there exists ρ, σ, L>0
with P (D(0, ρ)) ⊂ D(0, σ) and the following properties:

(1) If f : Π → C is a holomorphic function on Π, then there ex-
ists a uniquely determined holomorphic function T`f : V (a, b;σ)×
D(0; ρ) → C such that J((T`f)(t, .)) ∈ ∆`(P ) for any t and
(T`f)(P (x),x) = f(x) for all x ∈ Π, |x| < ρ.

(2) Moreover, given a function K : ]0, S] → R+, S ≥ supx∈Π |P (x)|,
such that |f(x)| ≤ K(|P (x)|) for x ∈ Π we have

|(T`f)(t,x)| ≤ L

|t|K(|t|) for t ∈ V (a, b, σ), x ∈ D(0; ρ).

Theorem 4.7 will be proved in the next section.
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Remark 4.8. (1) It is important in some applications, that the numbers σ,
ρ, L are independent of the function f to which T` is to be applied.

(2) Unfortunately, T`f is in general defined on a small set only unlike Tf
in Lemma 3.8 for monomial asymptotics. As in our theory of asymp-
totics in a germ, the radius of the sectors or polydisks has to be reduced
frequently, this is not crucial. The authors were surprised that such an
operator T` for asymptotics in a germ exists.

(3) The unicity of T`f in statement (1) implies that the operator T` is in-
dependent of the given P -sector in the following sense: If a ≤ a′ < b′ ≤ b,
f ∈ Ob(ΠP (a, b;R)), F1 = T a,b` f : V (a, b, σ) × D(0; ρ) is the function

of statement (1) and F2 = T a
′,b′

` f |ΠP (a′,b′;R) : V (a′, b′, σ′) × D(0; ρ′)
is the function of statement (1) for f restricted to the P -subsector
ΠP (a′, b′;R), then the restrictions of F1 and F2 to V (a′, b′, σ̃)×D(0; ρ̃),
σ̃ = min(σ, σ′), ρ̃ = min(ρ, ρ′) coincide. This justifies our notation and
will become important later.

The first crucial application of the above theorem generalizes Defini-
tion/Proposition 3.11 to asymptotics with respect to an analytic germ.

Theorem 4.9. Let ` : Nd → R+ be an injective linear form, P ∈ O\{0},
P (0) = 0 and let ∆(P ) be defined by (2.4). Let Π be a P -sector, f ∈
O(Π) and f̂ ∈ Ô. Then f has f̂ as P -asymptotic expansion on Π if and

only if there exists ρ > 0 such that T`f̂ ∈ Ob(D(0; ρ))JtK and one of the
following two equivalent conditions holds:

(1) T`f̂=
∑∞
n=0 gn(x)tn and for every N there exists LN >0 such that∣∣∣∣∣f(x)−
N−1∑
n=0

gn(x)P (x)n

∣∣∣∣∣ ≤ LN |P (x)|N for x ∈ Π ∩D(0; ρ).

(2) The function T`f from Theorem 4.7 is defined on V (a, b;σ) ×
D(0; ρ)→ C for some positive σ and satisfies

T`f ∼ T`f̂ as V (a, b;σ) 3 t→ 0.

It is worth noting separately that series that are P -asymptotic expan-
sions, i.e. P -asymptotic series, cannot be arbitrary. The theorem will be
proved after the subsequent corollary and several remarks.

Corollary 4.10. If f̂ is a P -asymptotic series then there exists ρ > 0

such that T`f̂ ∈ Ob(Dρ)JtK, i.e. if f̂ is written according to Corollary 2.5

f̂ =

∞∑
n=0

gnP
n, gn ∈ ∆`(P ),

then there exists ρ > 0 such that for all n ∈ N, gn defines an element
of Ob(D(0; ρ)).
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Remark 4.11. (1) The converse is also true. Indeed, fn =
∑n
k=0 gkP

k

defines a P -asymptotic sequence converging to f̂ .

(2) The set of the above series is a subset of the completion of C{x} with
respect to the valuation defined by the powers of the ideal (P ). Observe
that their union over all ρ > 0 does not exhaust the completion: the
latter also contains series

∑∞
n=0 gnP

n, where the radii of convergence of
the gn tend to 0.

(3) In the case of a monomial P = xα, Theorem 4.9 and Corollary 4.10
confirm that the “new” Definition 4.3 of xα-asymptotic expansions is
equivalent to the “classical” Definition 3.11 from [CMS].

(4) If f ∈ Ob(D(0; ρ)), and f̂ is the Taylor expansion of f at the origin,

f has f̂ as P -asymptotic expansion, as f can be written in powers of P
by Corollary 2.7 of the Division theorem (Lemma 2.4).

(5) With E = ∆`(P ) ∩ C{x}, the set EJtK is not an algebra, as it is
not closed under multiplication. Nevertheless, from Definition 4.3 it can
be seen that the product of functions having a P -asymptotic expansion
also has a P -asymptotic expansion. Indeed, consider functions f , g on
some P -asymptotic sector and P -asymptotic sequences {fn}n, {gn}n
satisfying (4.1) corresponding to P -asymptotic expansions of f , g. Then
we can write

f(x)g(x)− fn(x)gn(x) = f(x)(g(x)− gn(x)) + (f(x)− fn(x))gn(x).

So {fn(x)gn(x)}n is a P -asymptotic sequence converging to f̂(x)ĝ(x).

In fact, if (T`f̂)(t,x) =
∑∞
n=0 an(x)tn, (T`ĝ)(t,x) =

∑∞
n=0 bn(x)tn, and

decompose
n∑
k=0

ak(x)bn−k(x) =

∞∑
m=0

hnm(x)P (x)m,

with hnm ∈ E , we have

T`(f̂ ĝ)(t,x) =

∞∑
n=0

(
n∑

m=0

hn−m,m(x)

)
tn.

(6) It is not evident from Definition 4.3 and the characterization given in
Theorem 4.9 that the set of functions having a P -asymptotic expansion is

stable by partial derivatives. Let Π be a P -sector, f ∈ O(Π) having f̂ ∈
Ô as a P -asymptotic expansion. Using the notation of Theorem 4.9 (2),

T`f ∼ T`f̂ . From the equality f(x) = T`f(P (x),x), we deduce that

∂f

∂xi
(x) =

∂P

∂xi
(x)

∂(T`f)

∂t
(P (x),x) +

∂(T`f)

∂xi
(P (x),x).



Asymptotic Expansions with Respect to an Analytic Germ 35

As ∂(T`f)
∂t (t,x) and ∂(T`f)

∂xi
(t,x) have asymptotic expansion with respect

to t, by Cauchy’s formula, considerations about products made in (3)

and (4) imply that ∂f
∂xi

(x) has a P -asymptotic expansion. Moreover, if
we write

(T`f̂)(t,x) =

∞∑
n=0

fn(x)tn,

and expand

∂P

∂xi
(x)fn(x) =

∞∑
m=0

gnm(x)P (x)m,

with gnm(x) ∈ ∆`(P ), then a straightforward computation shows that

T`

(
∂f

∂xi

)
(t,x) =

∞∑
n=0

(
∂fn
∂xi

(x) +

n+1∑
k=1

kgk,n−k+1(x)

)
tn.

Observe that ∂fn
∂xi

(x) ∈ ∆`(P ).

Proof of Theorem 4.9: Assume that {fn}n∈N is a P -asymptotic sequence
defined on D(0;R) for some positive R satisfying the inequalities (4.1)
of Definition 4.3 with the constants Kn:

|f(x)− fn(x)| ≤ Kn|P (x)|n

for x∈D(0;R)∩Π, Π some P -sector, and such that J(fn)≡ f̂ mod PnÔ.
According to Lemma 2.6, we can choose µ>0 such that Dµ ⊂ D(0;R)

for the set Dµ of Lemma 2.6; let Q, R denote the operators on Ob(Dµ)
introduced there. Then we can write for all m ∈ N

fn(x) =

m−1∑
ν=0

RQν(fn)P (x)ν +Qm(fn)P (x)m.

As in the proof of Lemma 4.5, we find that fn ≡ fn+1 mod PnOb(Dµ)
and hence RQν(fn) = RQν(fm), if ν < n ≤ m. So, define gn :=
RQn(fn+1) ∈ Ob(Dµ). We have J(gn) ∈ ∆`(P ) and gn = RQn(fm) for
all m > n.

Then for all n,∣∣∣∣∣fn(x)−
n−1∑
ν=0

gν(x)P ν(x)

∣∣∣∣∣ =

∣∣∣∣∣fn(x)−
n−1∑
ν=0

RQν(fν+1)P ν(x)

∣∣∣∣∣
=

∣∣∣∣∣fn(x)−
n−1∑
ν=0

RQν(fn)P ν(x)

∣∣∣∣∣ = |Qn(fn)Pn(x)| ≤Mn|P (x)|n,

for x ∈ Dµ with some constant Mn. This first implies that f̂(x) =∑∞
n=0 gn(x)P (x)n and hence T`f̂ ∈ Ob(Dµ)JtK. Together with (4.1),
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this yields

(4.2)

∣∣∣∣∣f(x)−
n−1∑
ν=0

gν(x)P ν(x)

∣∣∣∣∣ ≤ (Kn +Mn)|P (x)|n

for n ∈ N and x ∈ Π. Thus we have proved (1). Application of Theo-
rem 4.7 to (4.2) with K(s) = (Kn +Mn)sn yields the existence of some
positive σ, ρ̃ ≤ ρ and L such that∣∣∣∣∣(T`f)(t,x)−

n−1∑
ν=0

gν(x)tν

∣∣∣∣∣ ≤ L(Kn +Mn)|t|n−1

for (t,x) ∈ V (a, b;σ)×D(0; ρ̃). This proves (2).
The proof of the converses is trivial.

Corollary 4.10 raises the question, whether all formal series
∑
gnP

n,
the coefficients gn ∈ Ob(D(0; ρ)) of which satisfy J(gn) ∈ ∆`(P ) can be
attained as P -asymptotic expansions of some function f on an arbitrary
P -sector. Using the classical Borel–Ritt Theorem 3.1 (1), it follows easily
that this “Borel–Ritt theorem for asymptotics in a germ” is valid. Details
are left to the reader.

5. Proof of Theorem 4.7

The main problem is to find any function F analytic on V (a, b;σ)×
D(0; ρ) satisfying F (P (x),x) = f(x) for small x in ΠP (a, b;R) because
subsequently Corollary 2.7 can be applied to F (t, .). In the construc-
tion of such a function F using induction on h(P ), we need to study
functions F satisfying F (P (x),x) = 0. This will be done in the two
subsequent lemmas.

In this section, we fix a linear form ` and a germ P as in the hypothesis
of the theorem and suppose that P ∈ O(D(0;R)) for some R > 0. We
begin with a simple observation.

Lemma 5.1. Let a, b, r > 0 and D ⊂ D(0;R) be some domain. For
every analytic F : V (a, b; r) × D → C satisfying F (P (x),x) = 0 for
x ∈ D with P (x) ∈ V (a, b; r), there exists a unique analytic function
H : V (a, b; r)×D → C such that

(5.1) F (t,x) = (t− P (x))H(t,x) for all t ∈ V (a, b; r), x ∈ D.

Proof: H is determined by H(t,x) = F (t,x)/(t − P (x)) on the set
of (t,x) with t 6= P (x). If there is no x ∈ D with P (x) ∈ V (a, b; r)
then H is obviously analytic on V (a, b; r)×D.

If there exists x ∈ D such that P (x) ∈ V (a, b; r), then the hypothesis
implies that limt→P (x)H(t,x) = ∂F

∂t (P (x),x) exists. Using Riemann’s
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theorem on removable singularities, this shows that, for any fixed x,
the function t 7→ H(t,x) can be analytically continued to a function
holomorphic on V (a, b; r).

The simplest way to establish analyticity of this continuation with
respect to (t,x) in the neighborhood of some “critical ” point of the
form (P (x0),x0) ∈ V (a, b; r)×D is to write

H(t,x) =

∫ 1

0

∂F

∂t
(τt+ (1− τ)P (x),x) dτ

for all (t,x) in its neighborhood.

Lemma 5.2. Let a, b, r > 0 and D,D′ ⊂ Cd be two domains such that
the closure of D′ is compact and contained in D. Then there exists
L > 0 with the following property: For every analytic F : V (a, b; r) ×
D → C satisfying F (P (x),x) = 0 for x ∈ D with P (x) ∈ V (a, b; r)
and supx∈D |F (t,x)| ≤ K(t) with some K : V (a, b; r) → R+, the unique
analytic function H : V (a, b; r)×D → C of Lemma 5.1 with (5.1) satisfies

sup
x∈D′

|H(t,x)| ≤ LK(t) for t ∈ V (a, b; r).

Remark 5.3. Lemma 5.1 implies that t−P (x) divides F (t,x). Therefore
Lemma 2.3 could be applied to these functions of (t,x). Unfortunately
this does not yield the desired result as we would have estimates for H
only on (t,x)-subsets compactly contained in V (a, b, r)×D which cannot
have points with t = 0 on their boundary.

Proof: It is close to that of Lemma 2.3, but use of Lemma 2.6 in this
special situation improves the domains of validity of the estimates.

By a classical argument of compactness, it is sufficient to prove that
for every t0 in the closure of V (a, b, r) and every x0 ∈ D, there exist
δ, L > 0 and a neighborhood U ⊂ D of x0 such that for every function
F : V (a, b; r)×D → C fulfilling the hypothesis of the theorem with some
majorant K, the quotient H from the previous lemma satisfies

sup
x∈U
|H(t,x)| ≤ LK(t) for t ∈ V (a, b; r) ∩D(t0, δ).

For the proof of this statement, we have to distinguish two cases.
If P (x0) 6= t0, then |t − P (x)| is bounded below by some positive

constant if t is sufficiently close to t0 and x sufficiently close to x0. In
this case, the existence of δ, L, U is immediate.

If P (x0) = t0, then we apply the results of Subsection 2.3 to P̃ (x) =

P (x0 + x) − t0. We choose some injective linear form ˜̀ and define

∆˜̀(P̃ ) accordingly (see (2.4)). We choose some neighborhood Ũ of 0 such
that Lemma 2.6 can be applied. This yields bounded linear operators
Q̃, R̃ : Ob(U)→ Ob(U), U := x0 + Ũ , such that for all functions g, q, r ∈
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Ob(U), we have g = (P −t0)q+r, Jx0
(r) ∈ ∆˜̀(P̃ ) if and only if q = Q̃(g)

and r = R̃(g). Here Jx0(r) denotes the Taylor expansion of the function
x→ r(x0 + x).

Equation (5.1) is equivalent to

(t− t0)H(t,x)− F (t,x) = (P (x)− t0)H(t,x) + 0

for all (t,x). Thus for t ∈ V (a, b, r), the functions h, f : U → C defined
by h(x) = H(t,x), f(x) = F (t,x) for x ∈ U satisfy

(5.2) h = (t− t0)Q̃(h)− Q̃(f),

with the above operator Q̃ on Ob(U). If δ > 0 is sufficiently small, the
fixed point principle can be applied to (5.2) if |t− t0| < δ and yields that

‖h‖ ≤ ‖Q̃‖
1−δ‖Q̃‖‖f‖, where ‖ · ‖ denotes the maximum norm. This yields

sup
x∈U
|H(t,x)| ≤ ‖Q̃‖

1− δ‖Q̃‖
sup
x∈U
|F (t,x)|

if t ∈ V (a, b, r), |t−t0| < δ. Hence we can choose the above δ, L = ‖Q̃‖
1−δ‖Q̃‖

and the above neighborhood U of x0 to obtain the wanted statement.
This completes the proof.

The main step is:

Lemma 5.4. Let P ∈ O \ {0}, P (0) = 0 and let Π = ΠP (a, b;R) a
sector in P . Then there exist ρ, σ, L > 0 with P (D(0; ρ)) ⊂ D(0;σ) and
the following properties:

(1) If f : Π→C is a holomorphic function, then there exists a holomor-
phic function F : V (a, b;σ)×D(0; ρ)→ C such that F (P (x),x)=
f(x) for all x ∈ Π, |x| < ρ.

(2) Moreover, given a function K : ]0, S] → R+, S ≥ supx∈Π |P (x)|,
such that |f(x)| ≤ K(|P (x)|) for x ∈ Π, the function F of state-
ment (1) satisfies

|F (t,x)| ≤ L

|t|K(|t|) for t ∈ V (a, b;σ), x ∈ D(0; ρ).

Proof: The statements can be formally combined if we allow a func-
tion K with K(s) ≡ ∞. Thus we prove both statements together by
induction on h(P ) using Lemma 2.1.

If h(P ) = 0 then P has normal crossings and the statement can be
reduced to the monomial version, where Lemma 3.8 even gives a better
result. Assume now that the statement is true whenever h(Q) ≤ m and
prove it if h(P ) = m + 1. As the statement does not change by right
composition of P with a diffeomorphism, we can assume that h(P ◦bξ) ≤
m for all ξ ∈ P1

C or h(P ◦ rk) ≤ m for some k ∈ N. See Subsection 2.2
for notation.
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We first assume that the statement is true for all P ◦ bξ, ξ ∈ P1
C.

Then for every ξ ∈ P1
C and every sector Πξ := ΠP◦bξ(a, b; R̃), there

exist ρξ, σξ, Lξ > 0 such that for every holomorphic f̃ : Πξ → C and

K : ]0, σξ]→ R+ ∪ {∞} with |f̃(z)| ≤ K(|(P ◦ bξ)(z)|) for z ∈ Πξ there

exists a holomorphic F̃ : V (a, b;σξ)×D(0; ρξ)→ C with

f̃(z) = F̃ ((P ◦ bξ)(z),z) for z ∈ Πξ ∩D(0, ρξ)

and |F̃ (t, z)| ≤ Lξ
|t|K(|t|) for (t, z) ∈ V (a, b;σξ)×D(0; ρξ).

Given some analytic f : Π → C and K : ]0, S] → R+ ∪ {∞} with
|f(x)| ≤ K(|P (x)|) for x ∈ Π, let Fξ denote the holomorphic function

on V (a, b;σξ) × D(0; ρξ) corresponding to f̃ = f ◦ bξ. As before we
use φξ to carry over these statements to neighborhoods of points of the

exceptional divisor. So define Gξ on V (a, b;σξ)×Uξ, Uξ = φ−1
ξ (D(0, ρξ))

such that Gξ(t, p) = Fξ(t, φξ(p)). By construction, we have

Gξ((P ◦ b)(p), p) = (f ◦ b)(p) for p ∈ Uξ, φξ(p) ∈ Πξ

and |Gξ(t, p)| ≤ Lξ
|t|K(|t|) for (t, p) ∈ V (a, b, σξ) × Uξ. The differences

Dξη(t, p) := Gξ(t, p) − Gη(t, p) are then defined and holomorphic for
t ∈ V (a, b;σξη), σξη := min(σξ, ση), and p ∈ Uξ ∩ Uη. They satisfy

Dξη((P ◦ b)(p), p) = 0 for small p ∈ Uξ ∩ Uη, arg(P (b(p))) ∈ ]a, b[

and |Dξη(t, p)| ≤ Lξ+Lη
|t| K(|t|) for t ∈ V (a, b;σξη)), p ∈ Uξ ∩ Uη.

In order to apply Lemma 5.2 (resp. Lemma 5.1 in the case K(s) ≡ ∞),

we also consider Ûξ = φ−1
ξ (D(0; r̂ξ)) with some positive r̂ξ < rξ. Then

this lemma, applied to Dξη – more precisely to their right composition

with φξ – yields holomorphic functions Qξη : V (a, b;σξη)×(Ûξ∩Ûη)→ C
satisfying

Dξη(t, p) = (t− (P ◦ b)(p))Qξη(t, p)

and |Qξη(t, p)| ≤ Cξη(Lξ + Lη) 1
|t|K(|t|) on the domain of Qξη with some

constant Cξη depending only upon a, b, σξη, Uξ ∩ Uη, and Ûξ ∩ Ûη.

As the Ûξ, ξ ∈ P1
C cover the exceptional divisor in the blow-up va-

riety M , there exists a finite subcover, say corresponding to ξj , j =
0, . . . , N . We now apply Lemma 2.10 and Remark 2.11 to the collec-
tion (Qξjξk)j,k=0,...,N of holomorphic functions Qξjξk : V (a, b; σ̃)× (Ûξj ∩
Ûξk) → C, j, k = 0, . . . , N , σ̃ the minimum of σξj , j = 0, . . . , N . We

obtain a collection of holomorphic functions Rξj : V (a, b; σ̃)× Ũξj → C,
satisfying

Qξi,ξj (t, p) = Rξi(t, p)−Rξj (t, p) for (t, p) ∈ V (a, b; σ̃)× (Ũξi ∩ Ũξj )
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and supp∈Ũξj
|Rξj (t, p)| ≤ C̃

|t|K(|t|) for t ∈ V (a, b, σ̃). Here Ũξj ⊂
M are the open subsets of Uξj in Lemma 2.10 covering E and with

the constant C from Lemma 2.10, the constant C̃ is the maximum of
CCξjξk(Lξj + Lξk), j, k = 0, . . . , N .

Now we can define holomorphic functions G̃ξj : V (a, b; σ̃)× Ũξj → C,
j = 0, . . . , N by

G̃ξj (t, p) = Gξj (t, p)− (t− (P ◦ b)(p))Rξj (t, p).

By the construction of Rξj , the family G̃ξj glues together, i.e. G̃ξi(t, p) =

G̃ξj (t, p) whenever p ∈ Ũξi∩Ũξj . As at the end of the proof of Lemma 2.2,
this implies that there exists a positive ρ̄ and a holomorphic function
F : V (a, b; σ̃) × D(0, ρ̄) → C such that F (t, b(p)) = G̃ξj (t, p) for t ∈
V (a, b; σ̃) and p ∈ Ũξj with b(p) ∈ D(0, ρ̄). We can assume without loss
of generality that P (D(0; ρ̄)) ⊂ D(0; σ̃). An easy calculation shows that
F (P (x),x) = f(x) for x ∈ ΠP (a, b; ρ̄).

By their definition, we have supp∈Ũξj
|G̃ξj (t, p)| ≤ (Lξj+2σ̃C̃) 1

|t|K(|t|)
for j = 0, . . . , N and hence

sup
x∈D(0;ρ̄)

|F (t,x)| ≤
(

max
j=0,...,N

Lξj + 2σ̃C̃
) 1

|t|K(|t|)

for t ∈ V (a, b; σ̃). This completes the proof of the lemma in the case of
blow-ups.

The case of a ramification is much simpler and left to the reader.

Now we are in a position to prove Theorem 4.7, combining the two
statements as in the above proof of Lemma 5.4. This lemma pro-
vides positive ρ̃, σ̃, L̃ and, for given holomorphic f : Π → C with an
estimate |f(x)| ≤ K(|P (x)|) on Π, it yields a holomorphic function
F : V (a, b; σ̃)×D(0; ρ̃)→ C satisfying F (P (x),x) = f(x) for x ∈ D(0; ρ̃)

and |F (t,x)| ≤ L̃
|t|K(|t|) on V (a, b; σ̃) × D(0; ρ̃). In order to apply

Lemma 2.6, we restrict F to V (a, b; σ̃) × Ds, where Ds ⊂ D(0; ρ̃) is
chosen such that the operators Q, R of Lemma 2.6 are defined.

As in the proof of Corollary 2.7, we can write

F (t,x) =

N−1∑
n=0

((RQn)(F (t, .)))(x)P (x)n + (QNF (t, .))(x)P (x)N

for t∈V (a, b; σ̃), N ∈N and x∈Ds by repeated application of Lemma 2.6.
If ρ>0 is so small that D(0; ρ)⊂Ds and B=sup{|P (x)|; x ∈ D(0; ρ)} <

1
‖Q‖ then |(QNF (t, .))(x)P (x)N | ≤ (B‖Q‖)N‖F (t, .)‖ → 0 as N → ∞
for x ∈ D(0, ρ) and we obtain F (t,x) =

∑∞
n=0((RQn)(F (t, .)))(x)P (x)n
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for these x. Now we define the desired function T`f by

(T`f)(t,x) =

∞∑
n=0

((RQn)(F (t, .)))(x)tn

for t ∈ V (a, b;σ), x ∈ D(0; ρ); here σ = min(σ̃, B) and we reduce ρ if
necessary so that P (D(0; ρ)) ⊂ D(0;σ). The function T`f is independent
of the choice of F in Lemma 5.4. This follows from the uniqueness
established at the end of this proof. Note also that the choice of F
does not depend on the linear form `. By construction, we then have
(T`f)(P (x),x) = F (P (x),x) = f(x) for x ∈ ΠP (a, b, ρ). As

sup
x∈D(0,ρ)

|((RQn)(F (t, .)))(x)| ≤ ‖R‖‖Q‖n sup
x∈D(0,ρ̃)

|F (t,x)|,

we obtain that

sup
x∈D(0,ρ)

|(T`f)|(t,x) ≤ ‖R‖
1−B‖Q‖ sup

x∈D(0,ρ̃)

|F (t,x)| ≤ L

|t|K(|t|)

for t ∈ V (a, b, σ), where L = L̃‖R‖
1−B‖Q‖ . By the definition of R, the expan-

sion J((RQn)(F (t, .)) is in ∆`(P ) for any t, n. Hence also J((T`f)(t, .)) ∈
∆`(P ) for t ∈ V (a, b, σ) as desired. Hence the function T`f satisfies the
properties wanted in the theorem. It is defined and holomorphic on
V (a, b, σ)×D(0, ρ) and the above construction of σ, ρ, L is independent
of f .

Thus it remains to show the uniqueness of T`f . If G : V (a, b, σ) ×
D(0, ρ) → C is another holomorphic function satisfying G(P (x),x) =
f(x) for sufficiently small x ∈ ΠP (a, b, R) and J(G(t, .)) ∈ ∆`(P ) for
t ∈ V (a, b, σ), then δ = T`f −G : V (a, b, σ)×D(0, ρ)→ C satisfies

J(δ(t, .)) ∈ ∆`(P ) for t ∈ V (a, b, σ), and

δ(P (x),x) = 0 for small x ∈ ΠP (a, b, µ), if µ > 0 is small enough.

We will show that this implies δ = 0.
Indeed, let H : V (a, b, σ) ×D(0, ρ) → C denote the function of Lem-

ma 5.1 with

(5.3) δ(t,x) = (t− P (x))H(t,x)

for all t, x. For sufficiently small positive s, the operators Q, R of
Lemma 2.6 are defined on Ob(Ds) and the restriction ht of H(t, .) to Ds

is bounded, i.e. in Ob(Ds). For each fixed t, we can apply Q to equa-
tion (5.3) and obtain

ht = tQ(ht)

because J(δ(t, .)) ∈ ∆`(P ) implies Q(δ(t, .)|Ds) = 0. As Q is a bounded
linear operator on Ob(Ds), this is only possible if ht = 0, provided t is
sufficiently small. This means that H(t,x) = 0 for all sufficiently small t
and all x∈Ds. By the identity theorem, H must vanish and hence also δ.
This proves that G = T`f and thus the last assertion of the theorem.
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6. Behaviour under blow-ups and ramification

In this section, we study how the notion of asymptotics with respect
to an analytic germ behaves under blow-ups and ramification. This will
be useful to reduce the notion to monomial asymptotics when necessary.
The statements and proofs of this section also prepare analogous ones in
Section 7.

Consider a nonzero germ P ∈ O = C{x1, . . . , xd}, not a unit, and
suppose it is defined on D(0;R). All radii of polydisks in this section
are assumed to be smaller than R, but we will not mention this below.
Consider some P -sector Π = ΠP (α, β; ρ) and a function f holomorphic
on Π.

If we suppose that some f̂ is the P -asymptotic expansion of f on Π,

then it is straightforward that f̂ ◦bξ is the (P ◦bξ)-asymptotic expansion
of f ◦bξ on any (P ◦bξ)-sector ΠP◦bξ(α, β; r) with sufficiently small r > 0.
The converse is much more interesting, also for applications.

Proposition 6.1. Consider P on D(0; ρ), Π = ΠP (α, β; ρ), and f : Π→
C holomorphic as above. Suppose that for every ξ ∈ P1

C, the function f ◦
bξ, restricted to Πξ = ΠP◦bξ(α, β; rξ) with some sufficiently small rξ,

has some formal series ĝξ ∈ Ô as (P ◦ bξ)-asymptotic expansion on its
domain.

Then there exists a formal series f̂ ∈ Ô that is the P -asymptotic

expansion of f on Π and it satisfies f̂ ◦ bξ = ĝξ for all ξ ∈ P1
C.

Proof: Using Definition 4.3, we can assume that, for every ξ ∈ P1
C, there

are sequences {g(ξ)
n }n of bounded holomorphic functions g

(ξ)
n : D(0; rξ)→

C with J(g
(ξ)
n )→ ĝξ as n→∞ and positive constants C

(ξ)
n such that

(6.1) |(f ◦ bξ)(v)− g(ξ)
n (v)| ≤ C(ξ)

n |(P ◦ bξ)(v)|n

for n ∈ N and v ∈ Πξ.

As in the proof of Lemma 2.2, we consider the neighborhoods Uξ =

φ−1
ξ (D(0; rξ)) of (ξ,0) in M and the functions G

(ξ)
n = g

(ξ)
n ◦ φξ holomor-

phic on Uξ. In order to apply Lemma 2.3 at some point, we also consider

Ũξ = φ−1
ξ (D(0; r̃ξ)) with some positive r̃ξ < rξ.

By (6.1), we have

|G(ξ)
n −G(ζ)

n |(p) ≤ (C(ξ)
n + C(ζ)

n )|P (b(p))|n

for ξ, ζ ∈ P1
C, p ∈ Uξ ∩ Uζ with α < arg(P (b(p))) < β. Now we apply

Lemma 2.3 – more precisely after right composition with φξ – and obtain
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that there are bounded holomorphic functions H
(ξ,ζ)
n : Ũξ ∩ Ũζ → C such

that

(6.2) G(ξ)
n −G(ζ)

n = H(ξ,ζ)
n (P ◦ b)n.

More precisely, we have ‖H(ξ,ζ)
n ‖ ≤ L(ξ,ζ)(C

(ξ)
n + C

(ζ)
n ), where L(ξ,ζ)

denotes the constant of Lemma 2.3 for the domains Uξ ∩Uζ and Ũξ ∩ Ũζ ,
and, as usual, ‖ · ‖ denotes the maximum norm.

Now the neighborhoods Ũξ, ξ ∈ P1
C of (ξ,0) cover the compact set

E = P1
C×{0} and therefore there is a finite subcover, say corresponding

to ξ0, . . . , ξK .
At this point, Lemma 2.10 can be applied. It yields open sets Ūξj ⊂

Ũξj forming an open cover of E and a constant C used later in the

estimates. For n ∈ N, we now apply it to the family H
(ξi,ξj)
n , i, j =

0, . . . ,K, and obtain bounded holomorphic functions L
(ξj)
n : Ūξj → C,

j = 0, . . . ,K satisfying

‖L(ξj)
n ‖∞ ≤ C max{‖H(ξ`,ξk)

n ‖∞ | `, k ∈ {0, . . . ,K}}

and H
(ξj ,ξk)
n = L

(ξj)
n − L(ξk)

n for j, k = 0, . . . ,K.

With these functions L
(ξj)
n we now define

(6.3) F
(ξj)
n = G

(ξj)
n − L(ξj)

n (P ◦ b)n

for j = 0, . . . ,K, n ∈ N. Then F
(ξj)
n are defined on Ūξj for j = 0, . . . ,K.

The domains of the functions F
(ξj)
n , j = 0, . . . ,K again cover a neigh-

borhood Ṽ of the exceptional divisor E in M . By construction, the
functions satisfy

(6.4) |f(b(p))− F (ξj)
n (p)| ≤ (C

(ξj)
n + ‖L(ξj)

n ‖∞)|P (b(p))|n

for n ∈ N, j = 1, . . . ,K and p in the domain of F
(ξj)
n , α < arg(P (b(p))) <

β. Again by construction, the functions F
(ξj)
n , j = 0, . . . ,K coincide on

the intersections of their domains, i.e. they glue together to functions
Fn : Ṽ → C. As in the proof of Lemma 2.2, this implies that there
are holomorphic bounded functions fn : V → C, n ∈ N, defined on the
neighborhood V = b(Ṽ ) of 0 in Cd such that Fn = fn ◦ b on Ṽ . The
inequalities (6.4) yield that

|f(x)− fn(x)| ≤ Bn|P (x)|n for x ∈ V, α < arg(P (x)) < β

i.e. on V ∩Π, where Bn is the maximum of the above constants C
(ξj)
n +

‖L(ξj)
n ‖∞, j = 0, . . . ,K. Taking the above estimates into account, we

find altogether

(6.5) Bn ≤ (1 + 2LC) max{C(ξj)
n | j = 0, . . . ,K},
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where L denotes the maximum of the constants L(ξk,ξ`), k, ` ∈ {0, . . . ,K}
associated in Lemma 2.3 to the domains Uξk∩Uξ` and Ũξk∩Ũξ` and C de-

notes the constant associated to the cover {Ũξj}j=0,...,K in Lemma 2.10.
By Lemma 4.5 (1), the sequence {fn}n is a P -asymptotic sequence,

i.e. there exists f̂ ∈ O satisfying J(fn) ≡ f̂ for n ∈ N that is the
P -asymptotic expansion of f on V ∩Π. As we have seen this implies for

every ξ ∈ P1
C that f̂ ◦ bξ is the (P ◦ bξ)-asymptotic expansion of f ◦ bξ on

any (P ◦bξ)-sector ΠP◦bξ(α, β;µ) if µ is sufficiently small. The uniqueness
of the (P ◦ bξ)-asymptotic expansion (see Lemma 4.5 (2)) now implies

that f̂ ◦ bξ = ĝξ and the last assertion of the theorem is proved.

In the sequel, we want to improve Proposition 6.1 and also give a
variant for P -asymptotic series. For this purpose, we need some addi-
tional notation and exploit the crucial observation that for any formal

series f̂ ∈ Ô, the compositions f̂ ◦bξ(v), ξ ∈ P1
C, are not arbitrary formal

series. Indeed, by the formulas of Subsection 2.2, we see that for each
term in the series expansion of such a composition, the exponent of v1

is smaller or equal to the one of v2. Our charts were chosen so that
we have this property for ξ ∈ C and for ξ = ∞. As a consequence, if

we write f̂ ◦ bξ(v) as a series in powers of v2, . . . , vd, the coefficients are
polynomials of v1, i.e.

(6.6) f̂ ◦ bξ(v) ∈ C[v1]Jv2, . . . , vdK for f̂ ∈ Ô, ξ ∈ P1
C.

We will work in a larger set than C[v1]Jv2, . . . , vdK. We consider for
positive ρ the algebra Aρ = Ob(D(0, ρ))Jv2, . . . , vdK and regard it as

a subset of Ô. It is endowed with the m′-adic topology, where m′ =
(v2, . . . , vd). Aρ is complete for this topology. It is finer than the one

inherited from Ô: Any sequence converging for the m′-adic topology
also converges for the m-adic topology. As P ◦ bξ ∈ m′ for any ξ, the
P ◦ bξ-adic topology generated by the powers of the ideal (P ◦ bξ(v))Aρ
is even finer than the m′-adic topology. It is readily shown that Aρ is
also complete for the P ◦ bξ-adic topology.

Lemma 6.2. Consider ĝ ∈ Aρ for some positive ρ and ξ ∈ P1
C. Then

there exists a ρ′ ∈ ]0, ρ[ such that for all ζ ∈ C sufficiently close to ξ, the
composition ĝ ◦ (φξ ◦ φ−1

ζ )(v) is well defined and an element of Aρ′ .

Proof: In the case ξ ∈ C this follows immediately from the formula
φξ ◦ φ−1

ζ (v) = (v1 + ζ − ξ,v′).
In the case ξ =∞, we have φξ ◦φ−1

ζ (v) = ((ζ + v1)−1, (ζ + v1)v2,v
′′).

If fβ(v1), β ∈ Nd−1, denotes the coefficient of f̂(v) in front of (v′)β

then the corresponding coefficient of f̂ ◦ (φξ ◦φ−1
ζ )(v) is of the form (ζ+
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v1)β2fβ((ζ+v1)−1) which defines elements of Ob(D(0, ρ′)) for sufficiently
small ρ′ if ζ ∈ C is sufficiently large.

Another consequence of (6.6) is used in Generalized Weierstrass Divi-
sion (see Subsection 2.3). For a given injective linear form ` : Nd → R+,
the minimal exponent of a series g is important in this context and de-
termines the set ∆`(g) used in the statements. It will be important
for us to have an injective linear form such that the minimal exponent
of P ◦ bξ(v) is the same for all but finitely many ξ ∈ P1

C.
In the case d = 2, we simply consider the leading terms of P (x1, x2)

with respect to the homogeneous valuation. Let H(x1, x2) be their sum
and h > 0 their valuation. As H ◦ bξ(v1, v2) = H(1, ξ + v1)vh2 for ξ ∈ C
and H ◦ bξ(v1, v2) = H(v1, 1)vh2 for ξ = ∞, the leading term is vh2
whatever the choice of ` provided H(ξ) 6= 0. (As we have identified
ξ ≡ [1, ξ] in the case ξ ∈ C, resp. ∞ ≡ [0, 1], we use here and in the
sequel H(ξ) = H(1, ξ), resp. H(∞) = H(0, 1).) Observe that ξ with
H(ξ) = 0 correspond to the tangent directions of the curve P (x1, x2) = 0
in the origin. Geometrically, we have shown above that the germ P is
monomialized by blow-ups for all but some of these tangent directions.
The tangent directions are also the intersection points of the exceptional
divisor with the strict transform of P (x1, x2) = 0 under blow up.

In the case d > 2, consider any injective linear form L : Nd−2 → R+.
Let M be the set of exponents m = (m3, . . . ,md) ∈ Nd−2 such that
there exists a nonvanishing term αxm1

1 xm2
2 (x′′)m in the series of P (x)

and denote by a the minimum of M with respect to the ordering <L
induced by L. Now consider the sum PL(x1, x2) of all terms in the
series of P (x) contain (x′′)a and let h ≥ 0 denote the homogenous
valuation of PL(x1, x2). Denote by HL(x1, x2) the terms of PL(x1, x2) of
valuation h. In order to extend L to an injective linear form ` : Nd → R+,
choose a convenient `2 such that

`2h < min
β∈M\{a}

L(β)− L(a)

and with a convenient `1 the linear form

(6.7) `(β) = `1β1 + `2β2 + L(β′′).

Evaluating HL◦bξ(v1, v2) as above, it follows that vh2 (v′′)a is the minimal
term of P ◦ bξ(v) for the ordering induced by ` provided HL(ξ) 6= 0.
Observe that HL can be a nonzero constant in the case d > 3. In order
to combine the cases d = 2 and d > 2, we put L = ∅ in the former case
and choose an arbitrary injective linear form `.

We summarize the discussion in the following lemma.
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Lemma 6.3. Consider an injective linear form L : Nd−2 → R+ in the
case d > 2 and L = ∅ in the case d = 2. There exist an injective linear
form ` : Nd → R+ extending L as in (6.7), a nonnegative integer h and
a homogeneous polynomial HL(x1, x2) of degree h such that for ξ ∈ P1

C
the dominant term of P ◦ bξ(v) is HL(ξ)vh2 (v′′)a provided HL(ξ) 6= 0.

Our next goal is to establish a statement analogous to Proposition 6.1
for P -asymptotic series. The first step is some kind of continuity for the
notion of P ◦ bξ-asymptotic sequences with respect to ξ ∈ P1

C.

Lemma 6.4. Suppose that ξ ∈ P1
C and {gn}n∈N is a P ◦ bξ-asymptotic

sequence in Ob(D(0, ρ)) for some formal series ĝ ∈ Ô. Then there exists
a ρ′ ∈ ]0, ρ[ such that ĝ ∈ Aρ′ and hence there exists a neighborhood V
of ξ in P1

C such that for ζ ∈ V, ĝζ(v) = ĝ(φξ ◦ φ−1
ζ (v)) defines a series

in Aρζ with some ρζ > 0 and such that g̃
(ζ)
n (v) = gn(φξ ◦φ−1

ζ (v)) defines

a P ◦ bζ-asymptotic sequence for ĝζ in Ob(D(0; ρζ)).

Proof: By definition, we have J(gn) ≡ ĝ mod (P ◦bξ)nÔ and thus J(gn−
gn+1) ≡ 0 mod (P ◦ bξ)nÔ for all n. It is well known that this implies
that J(gn − gn+1) ≡ 0 mod (P ◦ bξ)nO for all n. This is a very special
case of Artin’s approximation theorem. In the context of our work, it
also follows using Lemma 2.4 for some arbitrary injective linear form `
in the cases S = CJvK and S = C{v}.

Here we apply Corollary 2.7 with the same ` for P ◦bξ and obtain some
Ds, s small, such that the linear operators Q,R : Ob(Ds)→ Ob(Ds) are
continuous. Applying them several times, we obtain the existence of
qn ∈ Ob(Ds) such that gn − gn+1 = qn(P ◦ bξ)n for all n ∈ N. If ρ′ ∈
]0, ρ[ is sufficiently small, this relation remains valid for the restrictions
to D(0, ρ′).

This means that {gn}n∈N is a Cauchy sequence in the P ◦ bξ-adic

topology of Aρ′ and thus has a limit ĥ ∈ Aρ′ in that topology, i.e.

(6.8) gn ≡ ĥ mod (P ◦ bξ)nAρ′ for n ∈ N.

Therefore also J(gn) ≡ ĥ mod mn for all n. By the uniqueness of the

limit we obtain that ĝ = ĥ and hence the first statement.
If ζ ∈ P1

C is sufficiently close to ξ then right composition of every

term in equations (6.8) with φξ ◦φ−1
ζ is well defined by Lemma 6.2. This

implies that g̃
(ζ)
n tends to ĝζ in the P ◦ bζ-adic topology of Aρζ for some

small ρζ and hence the second statement.

Now we can prove the announced statement for P -asymptotic series
analogous to Proposition 6.1.
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Proposition 6.5. Let f̂ ∈ Ô be such that for all ξ ∈ P1
C, the compo-

sition f̂ ◦ bξ is a P ◦ bξ-asymptotic series. Then f̂ is a P -asymptotic
series.

Proof: By definition, for every ξ ∈ P1
C there exist ρξ > 0 and a se-

quence {g(ξ)
n }n in Ob(D(0; ρξ)) such that g

(ξ)
n ≡ f̂ ◦ bξ mod (P ◦ bξ)nÔ.

By the above lemma, g
(ξ)
nζ := g

(ξ)
n ◦ (φξ ◦ φ−1

ζ ) are well defined for ζ in

some neighborhood Vξ of ξ in P1
C and they satisfy

(6.9) g
(ξ)
nζ ≡ f̂ ◦ bζ mod (P ◦ bζ)nÔ for ζ ∈ Vξ.

Consider now the neighborhoods Uξ = φ−1
ξ (D(0; ρξ)) of (ξ,0) in the

blow-up variety M . By reducing Vξ or ρξ, if necessary, we can assume
that Vξ×{0} = Uξ∩E (recall that E ∼= P1

C ⊆M is the exceptional divisor
of the blow-up). Since the family Uξ, ξ ∈ P1

C, covers the exceptional
divisor, a compact set, we can choose a finite subcover, say Ui, i =
0, . . . ,K, where Ui corresponds to a certain ξi ∈ P1

C. For the sake of

brevity of notation, we put gin=g
(ξi)
n , φi=φξi , Vi=Vξi , and Gin=gin ◦φi.

Then (6.9) can be written

(6.10) Gin ◦ φ−1
ζ ≡ f̂ ◦ bζ mod (P ◦ bζ)nÔ for ζ ∈ Vi, i = 0, . . . ,K.

This implies that

(6.11) (Gin −Gjn) ◦ φ−1
ζ ≡ 0 mod (P ◦ bζ)nÔ

for all n and ζ ∈ Vi ∩ Vj , i, j ∈ {0, . . . ,K}. Unfortunately this does
not allow us to conclude that Gin − Gjn can be divided by (P ◦ b)n on
the intersections Ui ∩ Uj of their domains. These domains have to be
reduced.

For every ξ ∈ P1
C, we can choose an open neighborhood D(ξ) of (ξ,0)

in M with the following properties:

(1) For every i ∈ {0, . . . ,K}, if ξ ∈ Vi then cl(D(ξ)) ⊂ Ui.
(2) The image φξ(Dξ) = Ds(ξ) is a neighborhood of 0 such that Lem-

ma 2.6 is valid for P ◦bξ and some arbitrarily chosen injective linear
form `.

We obtain from (6.11) that for i, j = 0, . . . ,K and ξ ∈ Vi ∩ Vj there

exists holomorphic functions Hi,j
n,ξ ∈ Ob(D(ξ)), n ∈ N, such that

(6.12) (Gin −Gjn)(p) = Hi,j
n,ξ(p)(P ◦ b(p))

n for p ∈ D(ξ).

We just apply the operator Q of Lemma 2.6 several times to (Gin−Gjn)◦
φ−1
ξ and use (6.11).

On nonempty intersections D(ξ) ∩D(ζ), equations (6.12) imply that

Hi,j
n,ξ(p)=Hi,j

n,ζ(p) for p in the dense subset of all p such that (P ◦ b)(p) 6=
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0. By continuity, we obtain that Hi,j
n,ξ and Hi,j

n,ζ coincide on such an

intersection D(ξ) ∩D(ζ). This allows us to define U ′i = ∪ξ∈ViD(ξ) and
holomorphic functions Hi,j

n : U ′i ∩ U ′j → C by

Hi,j
n (p) = Hi,j

n,ξ(p) if p ∈ U ′i ∩ U ′j , p ∈ D(ξ).

By construction, the sets U ′i , i = 0, . . . ,K are open, satisfy U ′i ∩ E =
Vi×{0} and U ′i ⊂ Ui, and the restrictions of Gin, n ∈ N, which we denote
by the same name, satisfy

Gin −Gjn = Hi,j
n (P ◦ b)n for all n ∈ N, i, j ∈ {0, . . . ,K}.

Now we can proceed as in the proof of Proposition 6.1.
For i = 0, . . . ,K, we choose open sets Ũi such that cl(Ũi) ⊂ U ′i and

the Ũi still form a cover of E. This is possible by the compactness of E.
Then the functions Hj,k

n are bounded on Ũj ∩ Ũk for all n ∈ N and
all j, k. By Lemma 2.10 we find bounded holomorphic functions Ljn,

j = 0, . . . ,K, on some open sets Ūj ⊂ Ũj forming an open cover of E
satisfying Hj,k

n = Ljn − Lkn for all n and all j, k. Then we define F jn =
Gjn − Ljn(P ◦ b)n on Ūj , j = 0, . . . ,K.

By construction, it follows that the functions F jn, j=0, . . . ,K, glue to-

gether and are hence restrictions of some holomorphic functions Fn : Ṽ →
C, where Ṽ is some neighborhood of E. Hence they come from some
holomorphic functions fn : V → C, V = b(Ṽ ), i.e. Fn = fn ◦ b. Observe

that Ṽ and V (as the neighborhoods used before) are independent of n.
By their construction and (6.10), it is easily verified that for all ξ ∈ P1

C
and n ∈ N, we have

(6.13) fn ◦ bξ ≡ f̂ ◦ bξ mod (P ◦ bξ)nÔ.

Unfortunately it is not clear how to deduce directly that fn≡ f̂ mod PnÔ
for all n.

It is more convenient to consider the sequence {fn− fn+1}n∈N. From

(6.13) and Lemma 2.4 applied for S = Ô and S = O, we find that

(fn − fn+1) ◦ bξ ∈ (P ◦ bξ)nO

for all n, ξ. As in the proof of Lemma 2.2 this implies that fn − fn+1 ∈
PnO for n. Hence {fn}n is a Cauchy sequence for the P -adic topology

and hence has a limit ĝ ∈ Ô in it, i.e. fn ≡ ĝ mod PnÔ for all n.

By (6.13) and the uniqueness of the limit we obtain that ĝ ◦ bξ = f̂ ◦ bξ
for all ξ ∈ P1

C. This implies that ĝ = f̂ and completes the proof.
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Observe that if |g(ξ)
n | ≤ K(ξ)

n on D(0; ρξ), then |Hj,k
n | ≤M j,k(K

(ξj)
n +

K
(ξk)
n ), where M j,k denotes the constant of Lemma 2.3 for U ′j ∩ U ′k

and Ũj ∩ Ũk. This implies with

|Ljn| ≤ C max{|Hj,k
n | | j, k = 0, . . . ,K},

where C is the constant of Lemma 2.10 for the cover Ũj , j = 0, . . . ,K,
that

(6.14) |F jn|≤K
(ξj)
n +(sup

Ūj

|P ◦ b|)nC max{Mk,l(K(ξk)
n +K(ξl)

n ) | k, l=0, . . . ,K}.

This will be used later.

In order to improve Proposition 6.1, we first note a consequence of
Lemma 6.4.

Lemma 6.6. Suppose that g is holomorphic on ΠP◦bξ(a, b, R) and has

some P ◦ bξ-asymptotic expansion ĝξ on it. Then for ζ ∈ P1
C close the ξ,

the composition ĝξ(φξ ◦ φ−1
ζ (v)) is well defined and it is the P ◦ bζ-as-

ymptotic expansion of g ◦ (φξ ◦ φ−1
ζ ) on ΠP◦bζ (a, b, ρζ) for sufficiently

small positive ρζ .
In particular, if f holomorphic on ΠP (a, b, R) and ξ ∈ P1

C such that
f ◦ bξ = g satisfies the assumption, then the statement holds for g ◦ (φξ ◦
φ−1
ζ ) = f ◦ bζ and ζ close to ξ.

Proof: By definition, there exists ρ > 0 and a P ◦ bξ-asymptotic se-
quence {gn}n for ĝξ on Ob(D(0; ρ)) such that

(6.15) |f ◦ bξ(v)− gn(v)| ≤ Kn|P ◦ bξ(v)|n

for v ∈ ΠP◦bξ(a, b, ρ). By the above lemma, g̃
(ζ)
n (v) = gn(φξ ◦ φ−1

ζ (v))

defines a P ◦ bζ-asymptotic sequence for ĝξ(φξ ◦ φ−1
ζ (v)). Substitution

of φξ ◦ φ−1
ζ (v) for v in (6.15) yields that

|f ◦ bζ(v)− g̃(ζ)
n (v)| ≤ Kn|P ◦ bζ(v)|n

and the corollary is proved. Observe that for ζ close to ξ and small v
with arg(P ◦bζ(v)) ∈ ]a, b[, we have φξ◦φ−1

ζ (v) ∈ ΠP◦bξ(a, b, ρ). (Indeed,

using the formulas for φξ ◦ φ−1
ζ (v), we find that φξ ◦ φ−1

ζ (0) is small if

ζ is close to ξ. Hence by continuity, there is a ρ′ ∈ ]0, ρ[ such that
|φξ ◦φ−1

ζ (v)| < ρ if |v| < ρ′. The rest follows from (P ◦ bξ)◦ (φξ ◦φ−1
ζ ) =

P ◦ bζ .)

Next, we need a statement concerning the ξ-dependence of T`(f ◦ bξ).
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Lemma 6.7. Consider L, `, h, HL as in Lemma 6.3 and let ZL denote
the set of zeros of HL in P1

C. Let a bounded function f ∈ ΠP (a, b, R)
be given. Then for any D with cl(D) compact and contained in C \ ZL,
there exist σ, ρ > 0 and a function GL : V (a, b, σ) × Ω → C, Ω = D ×
D(0; ρ)d−1, such that for ξ ∈ D, the function Fξ(t,v) = T`(f ◦ bξ)(t,v)
of Theorem 4.7 defined for P ◦ bξ satisfies Fξ(t,v) = GL(t, (v1 + ξ,v′))
for t ∈ V (a, b, σ) and small v.

This means essentially that the functions T`(f ◦ bξ), ξ ∈ C \ ZL glue
together to a single function except for shifts in the variable v1.

Proof: Applying Theorem 4.7 for ξ ∈ C\ZL and with P replaced by P ◦bξ
yields positive σξ, ρξ and functions Fξ : V (a, b, σξ)×D(0; ρξ)→ C such
that for any t, we have J(Fξ(t, .)) ∈ ∆`(P ◦ bξ) and Fξ(P ◦ bξ(v),v) =
f(bξ(v)) for v ∈ ΠP◦bξ(a, b, ρξ). Observe that Fξ are uniquely deter-
mined by this property except for restrictions.

Putting F̃ζ(t,v) = F (t, φξ ◦φ−1
ζ (v)) = Fξ(t, (v1 +ζ−ξ,v′)) for ζ close

to ξ and sufficiently small v, this function has the defining properties
of Fζ . By the essential uniqueness of the latter, we obtain

(6.16) Fζ(t,v) = Fξ(t, v1 + ζ − ξ,v′)

for ζ close to ξ and sufficiently small v. This means that Fξ and Fζ are
analytic continuations of each other, except for a shift in the v1 compo-
nent.

Consider now D compactly contained in C \ ZL and choose a finite
subset A of the closure of D such that the disks ξ + D(0, ρξ) cover D.
This allows us to define

G(t,v) = Fξ(t, v1 − ξ,v′) for t ∈ V (a, b, σ) and v ∈ Ω,

if v1 ∈ ξ + D(0, ρξ) where σ = min{σξ | ξ ∈ A}, ρ = min{ρξ | ξ ∈ A}.
Property (6.16) implies that the value of G(t,v) is independent of the
choice of ξ with v1 ∈ ξ + D(0, ρξ). G has the wanted properties by
construction.

Now we are in a position to prove that the assumption on f ◦ bξ in
Proposition 6.1 is only needed for finitely many ξ ∈ P1

C.

Theorem 6.8. Consider L, `, h, HL, ZL as in Lemma 6.7 and put Z =
ZL if HL is not a constant, Z = {ξ} with arbitrary ξ ∈ P1

C otherwise.
If f is holomorphic and bounded on Π = ΠP (a, b, R) such that for ξ ∈
Z, the composition f ◦ bξ has some P ◦ bξ-asymptotic expansion ĝξ on

ΠP◦bξ(a, b, R) then f has a P -asymptotic expansion f̂ on Π such that

f̂ ◦ bξ = ĝξ for ξ ∈ Z.
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Proof: As we can always achieve this by a linear transformation in the
(x1, x2)-space, we assume that ∞ ∈ ZL if HL is not constant. Indeed,
if we replace (x1, x2) by (x1, x2)A with some invertible 2× 2 matrix A,
then ZL changes to ZLA−1, the set of all [α, β] such that [α, β]A ∈ ZL.
The same transformation allows us to assume that Z = {∞} in the case
that HL is constant.

This means that we have now ∞ ∈ Z in all the cases. Put Z ′ =
Z \ {∞}. This set may be empty, in which case the proof is a little
simplified. We only give the proof when Z ′ 6= ∅.

By Lemma 6.6, f ◦bξ has a P ◦bξ-asymptotic expansion for large ξ ∈ C
and for ξ close to Z ′. To fix notation assume this is the case for |ξ| > R/2
resp. dist(ξ,Z ′) < 2r.

Then we apply Lemma 6.7 with D = D(0, R)\∪χ∈Z′ cl(D(χ, r)) to f .
We obtain σ, ρ > 0 and a holomorphic function GL : V (a, b, σ)×Ω→ C,
Ω = D×D(0; ρ)d−1, such that for ξ ∈ D, the function T`(f ◦ bξ)(t,v) of
Theorem 4.7 satisfies

(6.17) T`(f ◦ bξ)(t,v) = GL(t, (v1 + ξ,v′)) for t ∈ V (a, b, σ) and small v.

By Theorem 4.9, T`(f ◦ bξ)(t,v) has a uniform asymptotic expansion
as V (a, b, σξ) 3 t → 0 if ξ is in some neighborhood of ∂D, the bound-
ary of D. Using (6.17) and the compactness of ∂D, this implies that
there exist some positive σ, ρ such that G(t,v) has a uniform limit as
V (a, b, σ) 3 t → 0 for v with |v′| < ρ, dist(v1, ∂D) < ρ. By the Cauchy
criterion, this is equivalent to

(6.18) ∀ε > 0 ∃δ > 0 ∀t1, t2 ∈ V (a, b, σ)(
|t1|, |t2|<δ, |v′|<ρ, dist(v1, ∂D)<ρ =⇒ |G(t1,v)−G(t2,v)|<ε

)
.

Here we can apply the maximum modulus principle to G(t,v) in the
variable v1 on the domain D. This implies that

(6.19) ∀ε > 0 ∃δ > 0 ∀t1, t2 ∈ V (a, b, σ)(
|t1|, |t2|<δ, |v′|<ρ, v1 ∈ D =⇒ |G(t1,v)−G(t2,v)| < ε

)
.

This means that G(t,v) has some uniform limit as V (a, b, σ) 3 t → 0,
say g0(v), for v ∈ Ω.

In the same manner, we show that 1
t (G(t,v) − g0(v)) has a uniform

limit as V (a, b, σ) 3 t → 0 for v ∈ Ω etc. and obtain that G(t,v) has
an asymptotic expansion as V (a, b, σ) 3 t → 0, uniformly for v ∈ Ω.
By (6.17) and Theorem 4.9, this means that f ◦bξ has a P ◦bξ-asymptotic
expansion for every ξ ∈ D. Now this is also the case for the remaining ξ
as discussed in the beginning of the proof. Proposition 6.1 implies the
statement of the theorem.
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In the last part of this section, we want to improve Proposition 6.5 in

a way similar to Theorem 6.8. We first show for any formal series f̂ ∈ Ô
that the coefficients series of all but finitely many of the series T`(f̂ ◦bξ),
ξ ∈ P1

C, can be combined into one formal series.

Lemma 6.9. Consider L, `, h, HL as in Lemma 6.3 and let ZL denote
the set of zeros of HL in P1

C. Let R = C[v1, 1/HL(1, v1)] and B =

RJv2, . . . , vdK. Finally consider f̂ ∈ Ô. Then there exists a formal series

Ĝ(t,v) =
∑∞
n=0 ĝn(v)tn ∈ BJtK with the following property. For all

ξ ∈ C \ ZL, the series

T`(f̂ ◦ bξ)(t,v) =

∞∑
n=0

f̂nξ(v)tn ∈ ∆`(P ◦ bξ)JtK

of Lemma 4.6 applied with P ◦ bξ in place of P satisfies

(6.20) f̂nξ(v) = Jξ(ĝn)(v) for n ∈ N.

Here Jξ(h)(v) =
∑∞
k=0

1
k!

∂kh
∂(v1)k

(ξ,v′)vk1 is obtained from some ele-

ment h ∈ B by replacing each of its coefficients by its Taylor series in
the point ξ. Since the coefficients are elements of R and hence ratio-
nal functions of v1 the denominator of which is a power of HL(1, v1),
this is possible for ξ ∈ C \ ZL. Observe that Jξ is compatible with
multiplication.

Proof: We consider the linear operator B0 : CJxK → C[v1]Jv′K deter-

mined by B0(xα) = vα2
1 vα1+α2

2 (v′′)α
′′

and continuity with respect to
m-adic topology of CJxK and the m′-adic topology of C[v1]Jv′K.

Observe that Jξ(B0(ĝ)) = ĝ ◦ bξ ∈ CJvK for ĝ ∈ CJxK. The difference
of B0(ĝ) and ĝ ◦ b0 is essentially that the former is in C[v1]Jv′K whereas
the latter is in CJvK. Expansion of the polynomial coefficients in their
Taylor series at the origin maps B0(ĝ) to ĝ ◦ b0. The introduction of B0

becomes more useful if C[v1]Jv′K is considered as a subset of B; B cannot
always be identified with a subset of CJvK.

We consider B0(f̂) and B0(P ) as elements of B = RJv2, . . . , vdK and
use the injective linear form `′(a2, . . . , ad) = `2a2 + · · ·+ `dad on Nd−1.
By Lemma 6.3, the dominant term of B0(P ) is HL(1, v1)vh2 (v′′)a with
a = (a3, . . . , ad) and certain nonnegative aj .

Now we apply Corollary 2.5; this is possible because HL(1, v1) is a
unit of R by construction. Therefore we can write uniquely

(6.21) B0(f̂) =

∞∑
n=0

ĝnB0(P )n
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with certain ĝn ∈ B ∩∆`′(B0(P )). These can be written

ĝn(v) =
∑

β∈Nd−1

gn,β(v1)(v′)β

with certain gn,β ∈ R; by definition of ∆`′(B0(P )) we have gn,β = 0 if
β ∈ (h,a) + Nd−1. We define

Ĝ(t,v) =

∞∑
n=0

ĝn(v)tn ∈ BJtK

and it remains to show that Ĝ has the wanted properties.
We can apply Jξ, ξ ∈ C \ ZL, to equality (6.21) and obtain

(6.22) f̂ ◦ bξ(v) =

∞∑
n=0

Jξ(ĝn)(v)(P ◦ bξ(v))na.

Observe that ĝn ∈ ∆`′(B0(P )) implies that for ξ ∈ C \ ZL, we have
Jξ(ĝn) ∈ ∆`(P ◦ bξ) because the leading terms used to define these
vector spaces are vh2 v

a3
3 · · · v

ad
d respectively v0

1v
h
2 v

a3
3 · · · v

ad
d . This implies

that (6.22) is actually the unique way to write f̂ ◦ bξ as a series f̂ ◦ bξ =∑∞
n=0 f̂nξ(P ◦ bξ)n with f̂nξ ∈ ∆`(P ◦ bξ) if ξ ∈ C \ZL. This means that

T`(f̂ ◦ bξ)(t,v) =
∑∞
n=0 Jξ(ĝn)(v)tn thus proving the lemma.

Now we can also improve Proposition 6.5.

Theorem 6.10. Consider L, `, h, HL, ZL, and Z as in Theorem 6.8.

Let f̂ ∈ O be given such that f̂ ◦bξ is a P ◦bξ-asymptotic series for ξ ∈ Z.

Then f̂ is a P -asymptotic series.

Hence as in Theorem 6.8, consideration of f̂ ◦ bξ for finitely many ξ ∈
P1
C is already sufficient.

Proof: We can again assume that∞ ∈ Z; otherwise we proceed as in the
beginning of the proof of Theorem 6.8. By assumption and Lemma 6.2,

f̂ ◦ bξ is a P ◦ bξ-asymptotic series for large ξ and for ξ close to Z ′ =
Z \ {∞}. Therefore in the series expansions

T`(f̂ ◦ bξ) =

∞∑
n=0

f̂nξ(v)tn

of Corollary 4.10, the coefficients f̂nξ(v) are convergent series with a
common radius of convergence, say ρξ > 0, for these ξ.

We can also apply the above Lemma 6.9 and obtain a series Ĝ(t,v) =∑∞
n=0 ĝn(v)tn ∈ BJtK such that for ξ ∈ C \ Z ′ we have

(6.23) T`(f̂ ◦ bξ) =

∞∑
n=0

Jξ(ĝn)(v)tn.
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Here Jξ(ĝn) = f̂nξ are convergent series for all n and ξ large or ξ close
to Z ′. Therefore if we write

Jξ(ĝn)(v) =
∑

β∈Nd−1

hξn,β(v1)(v′)β

then there exist for these ξ constants Kn,ξ and ρξ > 0 such that

|hξn,β(v1)| ≤ Kn,ξρ
−|β|
ξ for β ∈ Nd−1, |v1| < ρξ.

For the coefficients Hn,β(v1) in the expansion

ĝn(v) =
∑

β∈Nd−1

Hn,β(v1)v′β,

which are elements of R = C[v1, 1/HL(1, v1)] and hence can be consid-
ered as holomorphic functions on C \ Z ′, this means that for ξ large
or ξ close to Z ′ there exist positive ρξ such that

(6.24) |Hn,β(ξ + v1)| ≤ Kn,ξρ
−|β|
ξ if |v1| < ρξ.

Consider now the domain D = D(0, R)\∪χ∈Z′ cl(D(χ, r)) where r, R
were chosen such that (6.24) holds for |ξ| > R/2 or 0 < dist(ξ,Z ′) < 2r.
Then Hn,β is holomorphic on a neighborhood of the closure of D and,
by compactness, there are Kn, ρ > 0 such that for v1 on the boundary
of D we have |Hn,β(v1)| ≤ Knρ

−|β|. The maximum modulus principle
implies here that

|Hn,β(v1)| ≤ Knρ
−|β| for all v1 ∈ D.

Using that ĝn(v) =
∑
β∈Nd−1 Hnβ(v1)(v′)β, we obtain that the coeffi-

cients of tn in (6.23) are convergent series on some common polydisk for

all ξ ∈ D. By Remark 4.11 (1) this proves that f̂◦bξ is a P ◦bξ-asymptotic
series for every ξ ∈ D. As we already know this for the remaining ξ ∈ P1

C,
we can apply Proposition 6.5 and finally obtain the statement.

We end this section with a discussion of the compatibility of asymp-
totics with respect to an analytic germ and ramification. The proofs are
much simpler here.

Proposition 6.11. Consider P on D(0; ρ), Π=ΠP (α, β; ρ), and f : Π→
C holomorphic as above. Suppose that for some integer k ≥ 2, the
function f ◦ rk, restricted to Πk = ΠP◦rk(α, β; ρ̃) with some sufficiently

small ρ̃, has some formal series ĝ ∈ Ô as (P ◦ rk)-asymptotic expansion
on its domain.

Then there exists a formal series f̂ ∈ Ô that is the P -asymptotic

expansion of f on Π and it satisfies f̂ ◦ rk = ĝ.
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Proof: Using Definition 4.3, we can assume that there exists a se-
quence {gn}n of bounded holomorphic functions gn : D(0; ρ̃) → C with
J(gn)→ ĝ as n→∞ and constants Cn such that

(6.25) |f ◦ rk(v)− gn(v)| ≤ Cn|P ◦ rk(v)|n

for n ∈ N and v ∈ Πk.
By construction, f◦rk and P ◦rk are invariant under right composition

with the rotation R : v 7→ (e2πi/kv1,v
′) and as a consequence also Πk.

This implies using (6.25) that

|f ◦ rk(v)− gn ◦Rj(v)| ≤ Cn|P ◦ rk(v)|n

for n ∈ N, j = 0, . . . , k − 1, and v ∈ Πk.

Consider now the sequence {hn} inOb(Πk) defined by hn= 1
k

∑k−1
j=0 gn◦

Rj . Clearly, we have

|f ◦ rk(v)− hn(v)| ≤ Cn|P ◦ rk(v)n| for n ∈ N, v ∈ Πk

and J(hn) → ĥ as n → ∞ with ĥ = 1
k

∑k−1
j=0 ĝ ◦ Rj . Furthermore, hn

and ĥ are invariant under right composition with the rotation R. Hence
there exist bounded holomorphic fn : Π̃→ C, Π̃ = ΠP (α, β; r) with some

small positive r and f̂ ∈ Ô such that fn ◦ rk = hn and f̂ ◦ rk = ĥ.
We obtain the wanted properties

|f(x)− fn(x)| ≤ Cn|P (x)n| for n ∈ N, x ∈ Π̃

and J(fn) → f̂ as n → ∞. This proves that f has f̂ as P -asymptotic
expansion. The last assertion of the proposition follows from the fact

that f ◦ rk has f̂ ◦ rk and ĝ as P ◦ rk-asymptotic expansions.

We can also prove a statement for P -asymptotic series analogous to
Proposition 6.11.

Proposition 6.12. Let f̂ ∈ Ô and k ∈ N, k ≥ 2 be such that the

composition f̂◦rk is a P ◦rk-asymptotic series. Then f̂ is a P -asymptotic
series.

Proof: Is it analogous to the previous one. If {gn}n is a P ◦rk-asymptotic

sequence in ΠP◦rk(α, β; ρ̃) for some α, β, ρ̃ with limit f̂ ◦ rk then so

is {hn}n where hn= 1
k

∑k−1
j=0 gn◦Rj , R the rotationR : v 7→ (e2πi/kv1,v

′).

Again the sequence {fn}n in ΠP (α, β; r), r > 0 sufficiently small, where

fn ◦ rk is a restriction of gn, is a P -asymptotic sequence for f̂ .
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7. Gevrey asymptotic expansions and summability with
respect to a germ

7.1. Gevrey asymptotic expansions with respect to an analytic
germ. We first give a definition analogous to Definition 4.3 and then a
characterization analogous to Theorem 4.9. Theorem 4.7 is again crucial
in order to establish a relation between asymptotics involving powers of
the germ and single variable asymptotics with coefficients in a certain
Banach space.

We consider again a nonzero germ of analytic function P (x) ∈ O =
C{x1, . . . , xd}, not a unit (i.e. P (0) = 0), defined in D(0; ρ), ρ > 0.

Definition 7.1. Given a P -sector Π = ΠP (a, b; r), and f ∈ O(Π), we

will say that f̂ ∈ Ô is the P -Gevrey asymptotic expansion of order s
of f , or more briefly its “P -s-(Gevrey) asymptotic expansion”, if there

exist ρ > 0, a family {fn ∈ Ob(D(0; ρ))}n, converging to f̂ in the m-adic
topology, and constants K, A > 0 such that:

(1) ∀n ∈ N, ∀x ∈ D(0; ρ), |fn(x)| ≤ KAnΓ(sn+ 1).
(2) ∀n ∈ N, ∀x ∈ Π∩D(0; ρ), |f(x)−fn(x)| ≤ KAnΓ(sn+1)|P (x)|n.

A sequence {fn}n∈N satisfying (1) and J(fn) ≡ f̂ mod PnÔ will be

called a P -s-asymptotic sequence for f̂ .

Remark 7.2. (1) As for Definition 4.3, this definition is compatible with
changes of variables and with multiplication of P by a unit U ∈ O. This
is verified in the same way as in Remark 4.4.

(2) Again as for Definition 4.3, the definition is independent of the choice

of the P -s-asymptotic sequence for f̂ . Indeed, if {fn}n∈N is as in the

definition and if {gn}n∈N is another P -s-asymptotic sequence for f̂ , then

J(fn) ≡ J(gn) mod PnÔ for all n. Here Lemma 2.6 can be applied in
Ob(Ds), Ds = D(0; (s`1 , . . . , s`d)), for sufficiently small positive s as it
was done below Lemma 4.5. It shows that we can write fn−gn = hnP

n,
hn = Qn(fn − gn) ∈ Ob(Ds).

Hence, there exist some positive ρ′ < ρ and positive constants L, M
such that

|fn(x)− gn(x)| ≤ LMnΓ(sn+ 1)|P (x)|n

for all x ∈ D(0; ρ′) and all n. This implies that property (2) also holds
for {gn}n with certain K,A.

(3) This definition agrees with the well-known definition of Gevrey
asymptotics in one variable, i.e., if P = x. In fact, suppose that |f(x)−
fn(x)| ≤ KAnΓ(ns+ 1)|x|n on a sector V , with fn ∈ Ob(D(0; ρ)) satis-

fying |fn(x)| ≤ KAnΓ(ns+ 1). Write fn(x) = Jn−1(fn) + f̃n(x). Let S
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again denote the operator defined by S(f) = f(x)−f(0)
x on Ob(D(0; ρ)).

The maximum modulus principle implies that ‖S(f)‖∞ ≤ 2
ρ‖f‖∞. More-

over, f̃n(x) = xnSn(fn). Hence

|f(x)− Jn−1(f)| ≤ |f(x)− fn(x)|+ |f̃n(x)|

≤ KAnΓ(ns+ 1)|x|n + |x|n
(

2

ρ

)n
KAnΓ(ns+ 1),

as wanted. The converse follows from the Gevrey property of the formal

series f̂ and is left to the reader.

As for general asymptotic expansions in a germ (see Theorem 4.9), we
want to write Gevrey expansions in an expression in a standard form.
Recall that this standard form depends on the choice of ` in the subse-
quent theorem.

Theorem 7.3. Let ` : Nd → R+ be an injective linear form, P ∈ O \
{0}, P (0) = 0 and let T` be defined by Lemma 4.6 resp. Theorem 4.7.

Let Π be a P -sector, f ∈ O(Π), f̂ ∈ Ô, and s > 0. Then f has f̂ as
P -s-asymptotic expansion on Π if and only if there exist ρ > 0 such that

T`f̂ =
∑∞
n=0 gnt

n ∈ Ob(D(0; ρ))JtK is a formal s-Gevrey series and one
of the following two equivalent conditions holds:

(1) There exist constants K and A such that∣∣∣∣∣f(x)−
N−1∑
n=0

gn(x)P (x)n

∣∣∣∣∣ ≤ KANΓ(sN + 1)|P (x)|N

for x ∈ Π ∩D(0; ρ), N ∈ N.
(2) The function T`f from Theorem 4.7 is defined on V (a, b;σ) ×

D(0, ρ)→ C for some positive σ and satisfies

T`f ∼s T`f̂ as V (a, b, σ) 3 t→ 0.

Remark 7.4. (1) In the case of P (x) = xα, statement (1) agrees with
the second definition of monomial asymptotics of Gevrey type (see Def-
inition/Proposition 3.11).

(2) As stated for general asymptotic expansions in a germ in Remark 4.11,
products of functions having P -s-Gevrey asymptotic expansions also
have P -s-asymptotic expansions. For a proof, consider P -s-asymptotic
sequences {fn}n∈N, {gn}n∈N satisfying the inequalities in Definition 7.1
for f , g, respectively. Define

hn =

n∑
k=0

k∑
j=0

(fj − fj−1)(gk−j − gk−j−1),
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(where f−1 =g−1 =0). A straightforward computation shows that

f(x)g(x)−hn(x)=(f(x)−fn(x))g(x)+

n∑
k=0

(fk(x)−fk−1(x))(g(x)−gn−k(x)).

Then it is first shown that fn(x)− fn−1(x) and gn(x)− gn−1(x) satisfy
s-Gevrey estimates and then using the inequality

(7.1)

n∑
ν=0

Γ((n− ν)s+ 1)Γ(νs+ 1) ≤ KsΓ(n s+ 1)

with some constant Ks independent of n, s-Gevrey bounds for the mod-
ulus of this expression are obtained.

For a proof of (7.1), first use that the Γ-function is logarithmically
convex and hence Γ(x′)Γ(y′) ≤ Γ(x)Γ(y) if 0 < x < x′ ≤ y′ < y with
x′+y′ = x+y. Therefore, if N is the smallest integerN ≥ 1

s and n > 2N
then the left hand side of (7.1) is smaller than 2NΓ(ns+ 1) + (n− 2N +
1)Γ(ns−Ns+ 1)Γ(Ns+ 1). Since 1 < ns−Ns+ 1 ≤ ns and ns > 2, we
obtain the bound 2NΓ(ns+ 1) + nΓ(ns)Γ(Ns+ 1) ≤ KsΓ(ns+ 1) with
Ks = 2N + 1

sΓ(Ns + 1) provided n > 2N . For the remaining finitely
many cases it is sufficient to increase Ks if necessary.

The compatibility of P -s-asymptotic expansions with partial deriva-
tives could also be shown using Definition 7.1, but we prefer to prove it
using our generalization Theorem 7.18 of the Ramis–Sibuya theorem.

(3) As is Remark 3.12, the series T f̂ turns out to be s-Gevrey if we only
suppose that it is the s-Gevrey asymptotic expansion of Tf in the sense
of statement (2) of the theorem.

Proof of Theorem 7.3: Suppose {fn}n is a P -s-asymptotic sequence for

f̂ satisfying the conditions of Definition 7.1 on a certain P -sector Π and
a certain polydisk D(0, ρ). As in the proof of Theorem 4.9, we choose
a positive µ such that Dµ ⊂ D(0, ρ) for the set Dµ of Lemma 2.6 and
write (the restrictions to Dµ)

fn =

n−1∑
m=0

gmP
m +Qn(fn)Pn,

where gm = RQm(fm+1) = RQm(fν) for all ν > m. Then∣∣∣∣∣fn(x)−
n−1∑
ν=0

gν(x)P ν(x)

∣∣∣∣∣ = |Qn(fn)(x)P (x)n|

≤ K‖Q‖nAnΓ(sn+ 1)|P (x)|n

for n ∈ N and x ∈ Π∩Dµ. Together with condition (2) of Definition 7.1,
this proves (1).
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Application of Theorem 4.7 with K(t) = KANΓ(sN + 1)tN to the
inequalities in (1) yields (2).

The proof of the converses is again trivial.

The same proof shows the following characterization of P -s-asymp-
totic sequences.

Definition/Proposition 7.5. Let ` : Nd → R+ be an injective linear
form and let ∆`(P ) be defined by (2.4). Let P ∈ O \{0}, P (0) = 0, and

f̂ ∈ Ô be a formal series. Then the following statements are equivalent:

(1) There exists a P -s-asymptotic sequence for f̂ in the sense of Defi-
nition 7.1.

(2) There exist ρ > 0 and a sequence {gn}n in Ob(D(0; ρ))N with

J(gn) ∈ ∆(P ) for all n such that f̂ =
∑∞
n=0 J(gn)J(P )n and

T`f̂ =
∑∞
n=0 gnt

n ∈ Ob(D(0; ρ))JtK is a formal s-Gevrey series.

If one and hence both statements are true, then f̂ is called P -s-Gevrey.

As for general P -asymptotic expansions, P -s-asymptotic expansions
are compatible with blow-ups.

Proposition 7.6. Consider P ∈ O(D(0; ρ)) \ {0}, P (0) = 0, ΠP =
ΠP (a, b; r), and f ∈ O(ΠP ). Then, f has a P -s-Gevrey asymptotic
expansion on ΠP if and only if for every ξ ∈ P1

C, there exists a posi-
tive rξ such that f ◦ bξ has a P ◦ bξ-s-Gevrey asymptotic expansion on
ΠP◦bξ(a, b; rξ).

Proof: We follow the proof of Theorem 6.1, taking C
(ξ)
n = CξA

n
ξΓ(ns+1).

By the compactness of P1
C, it suffices to consider only a finite number

of points in P1
C, say ξ0, ξ1, . . . , ξK , so we can omit the dependence on ξ

of the above constants, taking the maximum of their values. Using the
notation of Theorem 6.1, there exists a constant L such that

‖H(ξi,ξj)
n ‖ ≤ L 2CAnΓ(ns+ 1),

and C̃ such that
‖L(ξj)

n ‖ ≤ C̃L 2CAnΓ(ns+ 1).

Similarly, the constants in (6.4) and (6.5) are of s-Gevrey type, i.e. the
construction in the proof of Theorem 6.1 yields a P -s-Gevrey asymptotic
expansion if the given expansions of f ◦bξ are P ◦bξ-s-Gevrey asymptotic
expansions for every ξ in P1

C.

As for ordinary P -asymptotic expansions, the above proposition can
be improved. Its assumption is in fact only necessary for a finite number
of ξ in P1

C.
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Theorem 7.7. Consider L, `, h, HL, ZL as in Lemma 6.7 and put Z =
ZL if HL is not a constant, Z = {ξ} with arbitrary ξ ∈ P1

C otherwise.
Let s > 0. If f is holomorphic and bounded on Π = ΠP (a, b, R) such
that for ξ ∈ Z, the composition f ◦ bξ has some P ◦ bξ-s-asymptotic

expansion ĝξ on ΠP◦bξ(a, b, R) then f has a P -s-asymptotic expansion f̂

on Π such that f̂ ◦ bξ = ĝξ for ξ ∈ Z.

Proof: We follow the proof of Theorem 6.8 and essentially add Gevrey
estimates. We again can assume that ∞ ∈ Z. We first carry Lemma 6.6
over to P -s-Gevrey asymptotics. It suffices to use Kn = CAn Γ(sn+ 1)
in its proof. As we will need this statement again, we write it down as
a lemma.

Lemma 7.8. Suppose that g is holomorphic on ΠP◦bξ(a, b, R) and has

some P ◦ bξ-s-Gevrey asymptotic expansion ĝξ on it. Then for ζ ∈ P1
C

close the ξ, the composition ĝξ(φξ ◦ φ−1
ζ (v)) is well defined and it is the

P ◦ bζ-s-Gevrey asymptotic expansion of g ◦ (φξ ◦φ−1
ζ ) on ΠP◦bζ (a, b, ρζ)

for sufficiently small positive ρζ .
In particular, if f holomorphic on ΠP (a, b, R) and ξ ∈ P1

C such that
f ◦ bξ = g satisfies the assumption, then the statement holds for g ◦ (φξ ◦
φ−1
ζ ) = f ◦ bζ and ζ close to ξ.

We obtain that f ◦ bξ has a P -s-Gevrey asymptotic expansion for ξ
large or ξ close to Z ′ = Z \ {∞}.

In a second step, we use again Lemma 6.7 on some domain D =
D(0, R)\∪χ∈Z′ cl(D(χ, r)). It yields σ, ρ > 0 and a holomorphic function
GL : V (a, b, σ) × Ω → C, Ω = D ×D(0; ρ)d−1, such that for ξ ∈ D, the
function T`(f ◦ bξ)(t,v) of Theorem 4.7. satisfies

(7.2) T`(f ◦ bξ)(t,v) = GL(t, (v1 + ξ,v′)) for t ∈ V (a, b, σ) and small v.

It had been shown in the proof of Theorem 4.7 that GL(t,v) has a
uniform asymptotic expansion on Ω as V (a, b, ρ) 3 t → 0. Denote it by
GL(t,v) ∼

∑∞
n=0 gn(v)tn. As T`(f ◦ bξ)(t,v) has a Gevrey asymptotic

expansion by assumption and Theorem 7.3, provided ξ is close to the
boundary of D, we obtain using (7.2) and the compactness of ∂D again
that there are positive constants K, A such that

(7.3)

∣∣∣∣∣GL(t,v)−
N−1∑
n=0

gn(v)tn

∣∣∣∣∣ ≤ KANΓ(sN + 1)|t|N

for all n ∈ N, all t ∈ V (a, b, ρ), and all v such that |v′| < ρ and
dist(v1, ∂D) < ρ. Here we use again the maximum modulus principle
in the variable v1 on the domain D and obtain that (7.3) is valid for all
the above n, t and all v ∈ Ω. This shows using (7.2) and Theorem 7.3
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again that f ◦bξ has a P ◦bξ-s-Gevrey asymptotic expansion for all ξ ∈ D.
As this is known for the remaining ξ already, we have it for all ξ ∈ P1

C.
Proposition 7.6 allows us to conclude.

We can also carry over the statements of Section 6 concerning P -as-
ymptotic series to P -s-Gevrey asymptotic series. We first do so for
Proposition 6.5.

Proposition 7.9. Let f̂ ∈ Ô be such that for all ξ ∈ P1
C, the composi-

tion f̂ ◦bξ is a P ◦bξ-s-Gevrey asymptotic series. Then f̂ is a P -s-Gevrey
asymptotic series.

Proof: The proof of Proposition 6.5 carries over unchanged. Just ob-

serve that we have here special constants K
(ξ)
n = CξA

n
ξΓ(sn + 1) with

Cξ, Aξ independent of n and that by (6.14), we obtain such Gevrey
estimates also for the F jn and hence for the functions fn.

As for Proposition 6.5, the above proposition can be improved insofar

as it is sufficient to assume the Gevrey character of f̂ ◦ bξ for finitely
many ξ only.

Theorem 7.10. Consider L, `, h, HL, ZL, and Z as in Theorem 7.7.

Let f̂ ∈ O be given such that f̂ ◦bξ is a P ◦bξ-s-Gevrey asymptotic series

for ξ ∈ Z. Then f̂ is a P -s-Gevrey asymptotic series.

Proof: In the proof of Theorem 6.10, only the constants have to be mod-
ified: We have Kn,ξ = CξA

n
ξΓ(sn + 1) with some positive Cξ, Aξ inde-

pendent of n and as a consequence later Kn = CAnΓ(sn+1) with certain
positive C, A. Details are left to the readers.

Remark 7.11. Consider the formal series f̂(x1, x2)=
∑∞
n=0 n!x2n

2 (x1x2)n

and the monomial P (x1, x2) = x1x2 as a special germ of an analytic

function. Whatever `, we have (T`f̂)(t)(x1, x2) =
∑∞
n=0 n!x2n

2 tn and

therefore f̂ is a P -1-Gevrey asymptotic series.
Whatever `, we have Z` = {0,∞}. We calculate

f̂ ◦ b0(v1, v2) = f̂(v2, v1v2) =

∞∑
n=0

n! v3n
1 v4n

2 =

∞∑
n=0

n! vn1 (v1v
2
2)2n

and P ◦ b0(v1, v2) = v1v
2
2 . Hence f̂ ◦ b0 is a P ◦ b0- 1

2 -Gevrey series. We
also calculate

f̂ ◦ b∞(v1, v2) = f̂(v1v2, v2) =
∞∑
n=0

n! vn1 v
4n
2 =

∞∑
n=0

n! v2n
2 (v1v

2
2)n

and again P ◦ b∞(v1, v2) = v1v
2
2 . Hence f̂ ◦ b∞ is P ◦ b∞-1-Gevrey.
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Using Theorem 7.10, this confirms that f̂ is a P -1-Gevrey asymp-

totic series. It also shows that we need to consider the blow-ups f̂ ◦ bξ
for all ξ ∈ Z` in order to conclude: Theorem 7.10 seems to be sharp
with respect to the number of points to be considered in the exceptional
divisor.

P -s-Gevrey asymptotic expansions and series are also compatible with
ramification.

Proposition 7.12. Consider P on D(0; ρ), Π=ΠP (α, β; ρ), and f : Π→
C holomorphic. Suppose that for some integer k ≥ 2 and positive s, the
function f ◦ rk, restricted to Πk = ΠP◦rk(α, β; ρ̃) with some sufficiently

small ρ̃, has some formal series ĝ ∈ Ô as (P ◦ rk)-s-Gevrey asymptotic
expansion on its domain.

Then there exists a formal series f̂ ∈ Ô that is the P -s-Gevrey as-

ymptotic expansion of f on Π and it satisfies f̂ ◦ rk = ĝ.

Proposition 7.13. Let f̂ ∈ Ô, k ∈ N, k ≥ 2, and s > 0 be such that

the composition f̂ ◦ rk is a P ◦ rk-s-Gevrey asymptotic series. Then f̂ is
a P -s-Gevrey asymptotic series.

The proofs are analogous to the ones of Propositions 6.11 and 6.12.
One just has to add Gevrey estimates.

As for monomial Gevrey asymptotics, functions having a P -s-asymp-
totic expansion with vanishing series are exponentially small.

Lemma 7.14. If Π is a P -sector for a certain P and if f ∈ O(Π) has a

P -s-Gevrey asymptotic expansion where f̂ = 0, then for all sufficiently
small R′ > 0 there exist C,B > 0 such that on Π̃

|f(x)| ≤ C exp

(
− B

|P (x)|1/s

)
for x ∈ Π, |x| < R′.

Proof: As f̂ = 0 implies that all gn of Theorem 7.3 vanish, we have that
|f(x)| ≤ KANΓ(sN + 1)|P (x)|N for all sufficiently small x ∈ Π and for
all N ∈ N. Again we choose N close to the optimal value (A|P (x)|)−1/s

and Stirling’s formula yields the statement.

As a consequence of Definition/Proposition 7.5 we can also construct a
function that have a prescribed P -s-Gevrey series as its P -s-asymptotic
expansion.

Proposition 7.15 (Borel–Ritt–Gevrey). Let P ∈ O \ {0}, P (0) = 0 as

before, f̂ a P -s-Gevrey series, and Π = ΠP (a, b; r) a P -sector of opening
b− a < sπ. Then there exist ρ > 0 and f ∈ O(Π ∩D(0; ρ)) such that f

has f̂ as P -s-Gevrey asymptotic expansion on Π ∩D(0; ρ).
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Proof: Statement (2) of Definition/Proposition 7.5 yields the existence
of ρ > 0 and of a sequence {gn}n ∈ Ob(D(0; ρ))N with J(gn) ∈ ∆(P ) for

all n such that f̂ =
∑∞
n=0 J(gn)J(P )n and

∑∞
n=0 gnT

n ∈ Ob(D(0; ρ))JT K
is a formal s-Gevrey series. Now let V = V (a, b;µ), where µ > |P (x)| for
all x ∈ D(0; ρ). By the Borel–Ritt–Gevrey theorem in Banach spaces
(see Theorem 3.1), there exists F ∈ O(D(0; r) × V ) having

∑
m gmT

m

as s-Gevrey asymptotic expansion at T = 0. The function f defined by
f(x) = F (x, P (x)) gives the result.

As in the classical and monomial asymptotics, functions having
Gevrey asymptotic expansions in a germ can be characterized by com-
pleting them to a family almost covering a neighborhood of 0 such that
the differences of any two of them is exponentially small if the intersec-
tion of their domain is nonempty. In this context, covers of polydisks
D(0;R) outside the zero set of P will be important.

Definition 7.16. A P -cover denotes a family {Πi}i∈I , I some finite
set, of P -sectors that covers the open set D(0;R) \ {P (x) = 0} for some
R > 0. Given such a P -cover P = {Πi}i∈I , a P -k-quasifunction on P
is a family (fi)i∈I of bounded holomorphic functions fi ∈ Ob(Πi), such
that whenever Πi ∩Πj 6= ∅ there exist constants C and B satisfying

|fi(x)− fj(x)| ≤ C exp

(
− B

|P (x)|k

)
for all x ∈ Πi ∩Πj .

Proposition 7.15 and Lemma 7.14 imply that a function having an s-
Gevrey asymptotic expansion in a germ can be completed to a P -k-quasi-
function, k = 1/s.

Proposition 7.17. Consider a holomorphic function f ∈ O(Π) having
a P -s-Gevrey asymptotic expansion on Π. Then there exist ρ > 0, a
P -cover Π1,Π2, . . . ,Πr of D(0, ρ) \ {P = 0} with Π1 = D(0, ρ) ∩ Π,
and a P -k-quasifunction (f1, f2, . . . , fr) on it such that k = 1/s and
f1 = f |Π1

.

Proof: We need to assume that the opening of each Πi, i > 1, is not
greater than sπ. Then there exist fi ∈ O(Πi) (i > 1) having the
same P -s-asymptotic expansion as f ; this is possible thanks to Propo-
sition 7.15 provided Πi are contained in a sufficiently small polydisk. If
Πi ∩ Πj 6= ∅ then fi − fj have a P -s-asymptotic expansion on it and
(fi − fj)(x) ∼ 0. Lemma 7.14 now implies that the fi can be combined
to a P -k-quasifunction, k = 1/s.

As for classical and monomial asymptotics, the converse is also true.
This result, which generalizes the classical Ramis–Sibuya theorem (The-
orem 3.4) and the version for monomial asymptotics (Theorem 3.14),
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are the most important means to establish the existence of P -s-Gevrey
asymptotic expansions.

Theorem 7.18. Suppose that the P -sectors Πj = ΠP (aj , bj ; r), 1 ≤
j ≤ m, form a cover of D(0; r) \ {x; P (x) = 0}. Given fj : Πj → C,
j = 1, . . . ,m, bounded and analytic, assume that there exists γ > 0 such
that for every couple (j1, j2)

(7.4) |fj1(x)− fj2(x)| = O(exp(−γ/|P (x)|1/s))

for x ∈ Πj1 ∩ Πj2 , provided Πj1 ∩ Πj2 6= ∅. Then the functions fj have
P -s-Gevrey asymptotic expansions with a common right hand side.

Proof: Consider some injective linear functional ` : Nd → R+ and the op-
erators T` corresponding to it for the P -sectors Πj and their nonempty
intersections according to Theorem 4.7. Here the fact that the operators
are independent of the P -sector in the sense of Remark 4.8 (3) is impor-
tant. Without loss of generality, we can assume that the constants ρ, σ, L
of that theorem are the same for all these finitely many sectors. For con-
venience, we identify the Banach spaces Ob(V (a, b;σ)×D(0; ρ),C) with
Ob(V (a, b;σ),Ob(D(0; ρ),C)) in the usual way. The inequalities (7.4)
imply that

‖(T`fj1)(t)− (T`fj2)(t)‖Ob(D(0;ρ),C) = O( 1
|t| exp(−γ|t|−1/s))

for t∈V (aj1 , bj1 ;σ)∩V (aj2 , bj2 ; r) provided this intersection is nonempty.
Here the classical Ramis–Sibuya Theorem 3.4 applies and yields that
the functions T`fj have common s-Gevrey asymptotic expansions. We
conclude using Theorem 7.3.

In the same way, the complement to the classical Ramis–Sibuya the-
orem (Theorem 3.5) will now be carried over to Gevrey asymptotics in
a germ.

Theorem 7.19. Suppose that the P -sectors Πj = ΠP (aj , bj ; r), 1 ≤
j ≤ m, form a P -cover. For couples (j1, j2) with Πj1 ∩ Πj2 6= ∅, let
holomorphic dj1,j2 : Πj1 ∩ Πj2 : → E be given that satisfy the cocycle
condition dj1,j2 + dj2,j3 = dj1,j3 whenever Πj1 ∩ Πj2 ∩ Πj3 6= ∅ and
estimates

(7.5) |dj1,j2(x)| = O(exp(−γ/|P (x)|1/s))

for j1, j2 ∈ {1, . . . ,m} and x ∈ Πj1 ∩Πj2 with some constants s, γ > 0.
Then there exist ρ > 0 and bounded holomorphic functions fj : Πj ∩

D(0; ρ) → E such that dj1,j2 |Πj1∩Πj2∩D(0;ρ) = fj1 − fj2 whenever Πj1 ∩
Πj2 6= ∅; moreover the functions fj have P -s-Gevrey asymptotic expan-
sions with a common right hand side.



Asymptotic Expansions with Respect to an Analytic Germ 65

Proof: With the same notation as before, take an injective linear func-
tional ` : Nd → R+, and the operators T`. If Πj1∩Πj2 =ΠP (aj1j2 , bj1j2 ; r),
consider T`dj1j2(t,x) ∈ O(V (aj1j2 , bj1j2 ;σ)×D(0; ρ)), for some σ, ρ. If
Πj1 ∩Πj2 ∩Πj3 6= ∅ then we have that (T`dj1j2)(t,x) + (T`dj2j3)(t,x) =
(T`dj1j3)(t,x) because the operators T` are independent of the P -sector
(Remark 4.8). The hypotheses of Theorem 3.5 are verified, and hence,
there exist holomorphic bounded functions Fj : V (aj , bj ;σ)×D(0; ρ)→
C such that Fj1−Fj2 = T`dj1j2 whenever V (aj1 , bj1 ;σ)∩V (aj2 , bj2 ;σ) 6=
∅. The functions fj(x) = Fj(P (x),x) satisfy the statement of the theo-
rem.

7.2. Summability with respect to a germ. In the sequel we still
consider some analytic germ P and suppose that P ∈ Ob(D(0, R))\{0},
P (0) = 0. The existence of a summability result in a germ is based
on the following Watson’s lemma. It generalizes the theorem for mono-
mial expansions (Theorem 3.15), and as before it is easily established by
carrying over the classical version Theorem 3.1 (3) using Theorem 4.7.

Lemma 7.20. Let Π=ΠP (a, b;R) a sector in P with b−a>sπ and sup-

pose that f ∈ O(Π) has f̂ = 0 as its P -s-Gevrey asymptotic expansion.
Then f ≡ 0.

Now the following definition makes sense.

Definition 7.21. Let Π = ΠP (a, b; r) be a P -sector with b − a > sπ,

k = 1
s , and f̂ ∈ Ô. We will say that f̂ is P -k-summable in Π if there

exists f ∈ O(Π) having f̂ as P -s-Gevrey asymptotic expansion. In this

situation, f is called the P -k-sum of f̂ in Π (and it is uniquely determined
by Lemma 7.20).

f̂ is called P -k-summable in direction θ ∈ R if there exists a P -sec-

tor Π as before, bisected by θ, with b − a > sπ, and such that f̂ is

P -k-summable in Π. f̂ is called P -k-summable if it is summable in
every direction θ ∈ R but a finite number mod 2π.

The above notion of P -k-summability in a direction θ does not indi-
cate how to obtain a sum from a given series. Theorem 7.3 allows us
to carry over the classical characterization using Laplace integrals (see
Proposition 3.3) to the new concept.

Proposition 7.22. Let s=1/k. Given a P -s-Gevrey series f̂(x) ∈ Ô, it
is P -k-summable in a direction θ with P -k-sum f if and only if there exist
ρ > 0 and a formal Gevrey series F̂ (t) =

∑∞
n=0 gnt

n ∈ Ob(D(0; ρ))JtKs
with F̂ (P (x))(x) :=

∑∞
n=0 J(gn)(x)J(P )(x)n = f̂(x) and the following

properties:
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(1) The formal Borel transform G(x, τ)=
∑
gn(x)τn/Γ(1+n/k) of F̂ (t)

is analytic in a neighborhood of the origin.

(2) The function G can be continued analytically with to some domain
D(0; ρ)× V (θ − δ, θ + δ;∞).

(3) It has exponential growth there, i.e. there are positive constants
such that

|G(x, τ)| ≤ C exp(A|τ |k) for (x, τ) ∈ S;

so the Laplace integral F (x, t)=k t−k
∫
arg τ=θ̃

e−τ
k/tkG(x, τ)τk−1 dτ

converges for x ∈ D(0; ρ) and t in a certain sector V = V
(
θ− π

2k −
δ̃
k , θ + π

2k + δ̃
k ; r
)
, 0 < δ̃ < δ, and suitably chosen θ̃ close to θ.

(4) Finally f(x) = F (x, P (x)) which has f̂(x) as its P -s-Gevrey as-

ymptotic expansion on some Π-sector ΠP

(
θ− π

2k−
δ̃
k , θ+ π

2k + δ̃
k ; ρ̃
)
,

ρ̃ > 0.

As the concepts of asymptotic expansion in a germ and Gevrey as-
ymptotic expansions in a germ, the notion of summability with respect
to a germ behaves well under blow-ups. We first show:

Proposition 7.23. Consider a P -sector Π = ΠP (a, b; r) with b−a > sπ,

and f̂ ∈ Ô, such that for every ξ ∈ P1
C, the series ĝξ = f̂ ◦ bξ is P ◦ bξ-

k-summable in Πξ := ΠP◦bξ(a, b; rξ). Then, f̂ is P -k-summable in Π.

A formal series f̂ ∈ Ô is P -k-summable in a direction d if and only

if for every ξ ∈ P1
C, f̂ ◦ bξ is P ◦ bξ-k-summable in direction d.

Proof: We only prove the second statement; the proof of the first is
analogous. Also, we only prove the nontrivial implication.

Suppose that for every ξ ∈ P1
C, the series f̂ ◦ bξ is P ◦ bξ-k-summable

on some P ◦ bξ-sector Πξ = ΠP◦bξ(d − ϕξ, d + ϕξ; rξ) with ϕξ > π/k.

This means that for every ξ ∈ P1
C, there exist uniquely determined func-

tions gξ : Πξ → C that have f̂ ◦ bξ as their P ◦ bξ-s-Gevrey asymptotic
expansion, s = 1/k.

With the notation of Subsection 2.2, let Uξ = φ−1
ξ (D(0, ρξ)) ⊂ M , a

neighborhood of (ξ,0) ∈M . Then Gξ = gξ ◦ φξ are defined on Uξ ∩ {p |
|arg (P (b(p)))− d| < ϕξ}.

Observe that by Lemma 7.8, the composition gξ ◦ (φξ ◦ φ−1
χ ) has the

P ◦ bχ-s-Gevrey asymptotic expansion f̂ ◦ bχ on ΠP◦bχ(d−ϕξ, d+ϕξ, µ)

and hence it is the P ◦ bχ-k-sum of f̂ ◦ bχ on this sector for some small µ
if χ is sufficiently close to ξ. Without loss of generality we can assume
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that this is already the case for χ ∈ Uξ. By Watson’s Lemma 7.20, we
then have

(7.6) gξ ◦ (φξ ◦ φ−1
χ )(v) = gχ(v)

for χ ∈ Uξ and small v with |arg (P ◦ bχ)(v)− d| < min(ϕξ, ϕχ).
Using this property with some χ ∈ Uξ ∩ Uζ and extending it because

of the analyticity of the functions, we obtain

(7.7) Gξ(p) = Gζ(p)

for ξ, ζ ∈ P1
C, p ∈ Uξ ∩ Uζ with |arg (P (b(p)))− d| < min(ϕξ, ϕζ).

Using the compactness of P1
C as before, a finite number of members of

the family Uξ, ξ ∈ P1
C, covers the exceptional divisor E = P1

C×{0} in M ,
say E ⊂ U = ∪i=1,...,nUξi . Then property (7.7) allows us to define G
for p ∈ U with |arg (P (b(p))) − d| < ϕ = mini ϕξi by G(p) = Gξ(p) if
p ∈ Uξ, |arg (P (b(p)))− d| < ϕ. In turn, we obtain a function g defined
for small x ∈ Cd with |arg (P (x))− d| < ϕ by setting g(b(p)) = G(p).

Then g has f̂ as P -s-Gevrey asymptotic expansion on ΠP (d− ϕ, d+
ϕ; ρ) for sufficiently small positive ρ. Indeed, using property (7.7), we
find that for every ξ ∈ P1

C, the function g◦bξ = Gξ ◦φ−1
ξ is the restriction

of gξ to ΠP◦bξ(d − ϕ, d + ϕ; ρ) and it has f̂ ◦ bξ as its P ◦ bξ-s-Gevrey
asymptotic expansion. By Theorem 7.6, g has some P -s-Gevrey asymp-

totic expansion ĝ on ΠP (d−ϕ, d+ϕ; ρ). Obviously, we have ĝ◦bξ = f̂ ◦bξ
for every ξ ∈ P1

C and thus ĝ = f̂ . This means that g is the P -k-sum of f̂
in direction d.

As for Propositions 7.6 and 7.9, the above proposition can be im-

proved; again, it is sufficient to assume summability of f̂ ◦ bξ for a finite
number of well chosen ξ.

Theorem 7.24. Consider L, `, h, HL, ZL, and Z as in Theorem 7.7.

Let f̂ ∈ Ô be given such that f̂ ◦bξ is P ◦bξ-k-summable in the direction d

for ξ ∈ Z. Then f̂ is also P -k-summable in direction d.

Corollary 7.25. Consider L, `, h, HL, ZL, and Z as above and f̂ ∈ Ô.

If f̂ ◦ bξ is P ◦ bξ-k-summable for ξ ∈ Z then f̂ is P -k-summable.

Proof: By the theorem, the singular directions of f̂ , i.e. the directions d
for which it is not P -k-summable, are contained in the finite union of

the sets of exceptional directions for f̂ ◦ bξ, ξ ∈ Z.
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Proof of the theorem: We can again assume that ∞ ∈ Z; otherwise we
proceed as in the beginning of the proof of Theorem 6.8.

As summable series are also Gevrey, application of Theorem 7.10

yields that f̂ is a P -s-Gevrey series, s = 1/k. As a consequence f̂ ◦ bξ
are P ◦ bξ-s-Gevrey series for every ξ ∈ P1

C.

By Lemma 6.9 there exists a formal series Ĝ(t,v) =
∑∞
n=0 ĝn(v)tn ∈

BJtK, B = C[v1, 1/HL(1, v1)]Jv′K with the following property. For all ξ ∈
C \ ZL, the series

T`(f̂ ◦ bξ)(t,v) =

∞∑
n=0

f̂nξ(v)tn ∈ ∆`(P ◦ bξ)JtK

of Lemma 4.6 applied with P ◦ bξ in place of P satisfies

(7.8) f̂nξ(v) = Jξ(ĝn)(v) for n ∈ N.

Since all f̂ ◦ bξ are P ◦ bξ-s-Gevrey series, we obtain from Definition/

Proposition 7.5 that the series f̂n,ξ(v) are convergent for all n and ξ ∈
C \ ZL, that for every ξ ∈ C \ ZL there exists ρξ > 0 such that f̂n,ξ(v)
defines an element of Ob(D(0, ρξ)) that we denote fn,ξ and there exist
Kξ, Aξ > 0 such that for all n

(7.9) |fn,ξ(v)| ≤ KξA
n
ξΓ(sn+ 1) for |v| < ρξ.

We can now define gn by gn(v) = fnξ(v1 − ξ,v′) if |v1 − ξ| and |v′|
are sufficiently small. The value of gn(v) does not depend on ξ be-
cause of (7.8). This defines functions gn on some common neighbor-
hood Ω of (C \ ZL) × {0} ⊂ Cd. By (7.9), the formal Borel transform

G̃(τ,v) =
∑∞
n=0 gn(v)τn/Γ(sn+ 1) defines a holomorphic function G̃ on

some neighborhood of Ω× {0} in Cd+1.

By assumption and Lemma 7.8, f̂ ◦ bξ is P ◦ bξ-summable for all ξ
large and ξ close to Z ′ = Z \ {∞}. Consider again the domain D =
D(0, R)\∪χ∈Z′ cl(D(χ, r)) where r, R were chosen such that summability
holds for |ξ| > R/2 or dist(ξ,Z ′) < 2r. By Proposition 7.22, (7.8),

and compactness, we can find positive ρ, δ such that G̃(τ,v) can be
continued analytically to the set W ×A where W is the set of all τ with
τ ∈ D(0, ρ) ∪ V (d − δ, d + δ,∞), A the union of “tori” of all v with

dist(v1, ∂D) < ρ, |v′| < ρ. Also by Proposition 7.22, G̃ has at most

exponential growth as τ → ∞: There exist K, L such that |G̃(τ,v)| ≤
K exp(L|τ |k) for v ∈ A, τ ∈W , |τ | ≥ 1.

We can assume that also the set Ω′ of all v with dist(v1,D) < ρ and

|v′| < ρ is contained in Ω and that G̃ is holomorphic on D(0, ρ) × Ω′.

Now G̃ is holomorphic on the union of W ×A and of D(0, ρ)×Ω′. This
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is a “U-shaped” domain and hence Hartogs’ lemma can be applied. It
yields that G̃ can be continued analytically to W × Ω′.

For the convenience of the reader we give a short proof using Cauchy’s
formula. For τ ∈ D(0, ρ) and v ∈ Ω′, we have

(7.10) 2πi G̃(τ,v) =

∮
|z|=R+ρ̃

−
∑
χ∈Z′

∮
|z−χ|=r−ρ̃

 G̃(τ, (z,v′))

z − v1
dz

for ρ̃ ∈ ]0, ρ[ sufficiently close to ρ (more precisely, we must have ρ > ρ̃ >

dist(v1,D)). As the right hand side of (7.10) only uses values G̃(τ, (z,v′))
where (z,v′) ∈ A, it is defined for any τ ∈W , hence the right hand side
can be continued to an analytic function on W × Ω′. As they coincide
except for a constant factor on some open subset of W ×Ω′, the same is
true for G̃.

Now the maximum modulus principle applied in the variable v1 per-
mits to carry over the exponential estimate of G̃ to W × Ω′: we have
|G̃(τ,v)| ≤ K exp(L|τ |k) for v ∈ Ω′ and τ ∈W , |τ | ≥ 1.

As before, this implies that f̂ ◦ bξ is P ◦ bξ-k-summable in direction d
for all ξ ∈ D. As this is already known for the remaining ξ ∈ P1

C, we
have it for all ξ ∈ P1

C. We conclude with Proposition 7.23.

As for P - and P -s-Gevrey asymptotic expansion, we complete the
theory of P -k-summability with statements concerning the compatibility
with ramification.

Proposition 7.26. Consider a P -sector Π = ΠP (a, b; r) with b−a > sπ,

k = 1/s, f̂ ∈ Ô, and a positive integer m.

If the series ĝm = f̂◦rm is P ◦rm-k-summable in Πm := ΠP◦rm(a, b; r̃)

then f̂ is P -k-summable in Π.

f̂ is P -k-summable in some direction d if and only if f̂ ◦rm is P ◦rm-
k-summable in direction d.
f̂ is P -k-summable if and only if f̂ ◦ rm is P ◦ rm-k-summable.

Proof: The first statement follows immediately from the definition of
summability in a sector and Proposition 7.13. The remaining two then
follow from the definitions of summability in a direction respectively
summability.

7.3. Consequences and further properties. Theorem 7.18 may be
used, as in classical asymptotics, to show properties about the composi-
tion of functions having P -s-Gevrey asymptotic expansion, and analytic
functions. More precisely:
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Theorem 7.27. Consider P (x) as before, with P (0) = 0, and Π =
ΠP (a, b; r) a P -sector. Let f1(x), . . . , fn(x) ∈ O(Π) be functions having

series f̂1(x), . . . , f̂n(x), respectively, as P -si-asymptotic expansions, i=

1, . . . , n, with f̂i(0)=0. Let D be a disk around the origin in Cd+n, and
F (x,y)=F (x1, . . . , xd, y1, . . . , yn)∈O(D). Then, if s=max{s1, . . . , sn},
we have:

(1) F (x, f1(x), . . . , fn(x)) is defined in a P -sector Π̃ = ΠP (a, b; r̃),
with r̃ ≤ r small enough.

(2) F (x, f1(x), . . . , fn(x)) has a P -s-Gevrey asymptotic expansion

in Π̃.

Proof: The conditions f̂i(0) = 0 imply that lim
Π3x→0

fi(x) = 0 and the

first statement follows. As a P -si-Gevrey asymptotic expansion also is
a P -s-Gevrey asymptotic expansion, we can assume that all si = s. For

simplicity of notation, we combine f(x) = (f1(x), . . . , fn(x)), f̂(x) =

(f̂1(x), . . . , f̂n(x)). By Proposition 7.17, there exist a P -cover {Π =
Π1,Π2, . . . ,Πr}, with Πi = ΠP (ai, bi; r̃), and functions f i ∈ O(Π;Cn),

1 ≤ i ≤ r, such that f i(x) has f̂(x) as P -s-asymptotic expansion. Con-
sider the functions gi(x) = F (x,f(x)), defined on ΠP (ai, bi; r̃), reducing
r̃ again if necessary. If Πj1 ∩Πj2 6= ∅ then

(gj1 − gj2)(x) = H(x)(f j1 − f j2)(x),

where H(x) =

∫ 1

0

∂F

∂y
(x, τf j1(x) + (1− τ)f j2(x)) dτ.

As with k = 1/s

|f j1(x)− f j2(x)| ≤ K exp

(
− A

|P (x)|k

)
for certain K, A > 0, we obtain that

|gj1(x)− gj2(x)| ≤ K̃ exp

(
− A

|P (x)|k

)
for appropriate K̃ > 0, reducing radii if necessary. These estimates and
Theorem 7.18 show that every gi(x), i = 1, . . . , r, has a P -s-asymptotic
expansion, and the result follows.

Remark 7.28. This result provides an alternative proof that the product
of functions having P -s-Gevrey asymptotic expansions has a P -s-Gevrey
asymptotic expansion. Indeed, just take F (x, y1, y2) = y1y2 in the above
theorem.

Concerning the partial derivatives of a function having P -s-Gevrey
asymptotic expansion, we can proceed as above first embedding the
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function in a P -k-quasifunction using Proposition 7.17 and applying the
Ramis–Sibuya Theorem 7.18 to the derivatives. For this approach, we
have to show that, if f(x) ∈ O(ΠP ) verifies an estimate

(7.11) |f(x)| ≤ C exp

(
− A

|P (x)|k

)
,

then their derivatives satisfy similar estimates.
To show this, consider ΠP = ΠP (a, b; r), f ∈ O(Πp) verifying (7.11).

Lemma 5.4 shows the existence of a bounded holomorphic function F :
V (a, b;σ)×D(0; ρ)→ C with F (P (x),x) = f(x) and

F (t,x) ≤ CL

|t| exp

(
− A

|t|k

)
.

Choosing some positive A′ < A, there exist C ′ > 0 such that

|F (t,x)| ≤ C′ exp

(
− A′

|t|k

)
.

Taking derivatives, we obtain

∂f

∂xi
(x) =

∂F

∂t
(P (x),x)

∂P

∂xi
(x) +

∂F

∂xi
(P (x),x).

Now choose a < α < β < b, 0 < σ′ < σ, and 0 < ρ′ < ρ. Applying
Cauchy’s formula for the derivative of a holomorphic function, we obtain
in a well known way the existence of certain positive D, B such that∣∣∣∣∂F∂t (t,x)

∣∣∣∣ ≤ D exp

(
− B

|t|k

)
and

∣∣∣∣ ∂F∂xi (t,x)

∣∣∣∣ ≤ D exp

(
− B

|t|k

)
for (t,x) ∈ V (α, β;σ′)×D(0; ρ′). We obtain the existence of positive C̃,

Ã such that ∣∣∣∣ ∂f∂xi (x)

∣∣∣∣ ≤ C̃ exp

(
− Ã

|P (x)|k

)
.

as needed. Thus we have proved:

Proposition 7.29. If Π = ΠP (a, b; r) is a P -sector and f ∈ Ob(Π) has
a P -s-Gevrey asymptotic expansion, then for α, β such that a < α <
β < b, ∂f

∂xi
(x) has a P -s-Gevrey asymptotic expansion in ΠP (α, β; r).

8. Examples

8.1. First example. We consider the following singular ordinary dif-
ferential equation depending upon a small parameter ε

(8.1) P (x, ε)2 dy

dx
= (P ′(x, ε) +A(x, ε))y +B(x, ε) + y2f(x, ε, y),

where P (x, ε)=xn+ · · · is a homogeneous polynomial having n ≥ 2 sim-
ple roots if ε 6= 0, P ′ = ∂P

∂x , A, B, f are holomorphic near the origin in C2

resp. C3, A has a homogeneous valuation w(A) ≥ n and w(B) ≥ 2n− 1
if f is not identically 0. If ε 6= 0 then (8.1) has n finite irregular singular
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points of Poincaré rank 1. If ε = 0, then x = 0 is an irregular singular
point of Poincaré rank n after the reduction y = xn−1z. This means
that our equation has n coalescing irregular singular points.

Theorem 8.1. Suppose that (8.1) has a formal solution y(x, ε)∈CJx,εK.
Then it is P -1-summable in every direction d 6≡ 0 mod 2πZ.

Remark 8.2. The existence of such a formal solution is quite exceptional.
It is nevertheless possible to have a divergent formal solution, as the sim-
ple example y =

∑∞
m=0m!Pm+1 solution of P 2 dy

dx = P ′y − PP ′ shows.

Proof: We apply Theorem 7.24 with x1 replaced by x, x2 replaced by ε.
Then the set Z is the set of zeroes of the polynomial P (u, 1) – it contains
exactly n elements. We have to show that y ◦ bξ is P ◦ bξ-1-summable in
every direction d 6≡ 0 mod 2πZ for any ξ ∈ Z.

For simplicity, we consider only the case ξ = 0 ∈ Z; the modification
for arbitrary ξ ∈ Z is left to the reader. Here, we perform the blow-
up x = εu and at the same time change the dependent variable by
putting y = εn−1z. We obtain the doubly singular equation

(8.2) εnu2 dz

du
=

1

Q(u)2

(
(P ′(u, 1)+εÃ(u, ε))z+εB̃(u, ε)+z2f(εu, ε, εn−1z)

)
,

where Q(u) = P (u)/u is a polynomial satisfying Q(0) = P ′(0, 1) and

Ã, B̃ are analytic near the origin. (As there exists a formal solution, we
can assume that w(B) ≥ 2n− 1 also in the linear case.)

The main result of [CMS] applies to this equation and yields that
its unique formal solution z(u, ε) is εnu-1-summable in every direction
not in − arg(P ′(0, 1)) mod 2πZ. It remains to multiply εnu by the
unit Q(u). Observing that Q(0) = P ′(0, 1) we obtain the z(u, ε) is
εnP (u, 1)-1-summable for every direction not in 2πZ.

8.2. Second example. We consider the following singular partial dif-
ferential equation

(8.3)

(
x2

∂P

∂Px2
+ αP k+1+PA

)
x1

∂f

∂x1
−
(
x1
∂P

∂x1
+βP k+1+PB

)
x2

∂f

∂x2
=h,

where P is a quasi-homogeneous polynomial for the valuation w deter-
mined by w(x1) = a, w(x2) = b, where k ∈ N∗, h, A, B are convergent
power series and w(A), w(B) > k g, g = w(P ).

Theorem 8.3. If (8.3) has a formal solution f(u) ∈ CJuK then it is
P -k-summable provided α, β satisfy the following conditions.

(1) α+ β 6= 0 if P is not a monomial.
(2) aµ0β 6= (g − bµ0)α if x2 is a factor of P of multiplicity µ0 > 0.
(3) bµ∞α 6= (g − aµ∞)β if x1 is a factor of P of multiplicity µ∞ > 0.
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Remark 8.4. (1) The existence of a formal solution is a very strong
hypothesis, comparable to the necessary condition (see [CE, Lak]) for
Ackerberg–O’Malley resonance [AO]. The investigation of conditions
for the existence of formal solutions, also for non-linear equations, will
be done in a future article.

(2) A formal solution of (8.3) is not necessarily convergent, as the sim-
ple example f(x) = x1

∑∞
n=0 n!P (x)n+1 with any quasi-homogeneous

polynomial P shows. It is solution of (8.3) with k = 1, α = 0, β = 1,
A = B = 0, and h(x) = x2

∂P
∂x2

P .

(3) In the case of a monomial P , equations like (8.3) have been studied
by Pingli Li [Li] using a different method.

Proof: In a first step, we prove the statement in the case of monomi-
als P . Then we reduce the statement for homogeneous and then quasi-
homogeneous polynomials P to the former one using Theorem 7.24 and
Proposition 7.26.

In the case of a monomial P = xc1x
d
2, c, d positive integers, the choice

of a and b is arbitrary. The conditions (2) and (3) are both equivalent
to the condition that α/d 6= β/c. The right hand side of equation (8.3),
moreover, is divisible by P , because the left hand side is. We obtain the
equation

(8.4) (d+ αP k +A)x1
∂f

∂x1
− (c+ βP k +B)x2

∂f

∂x2
= h/P.

For later use, it is convenient to relax the conditions on A, B slightly.
We we also allow terms in A, B that are divisible by xkc+1

1 or xkd+1
2 . Let

I denote the ideal of all convergent series satisfying this condition.
We can now apply a result of Martinet and Ramis [MR] and obtain

a formal change of coordinates x = x̃ + ψ(x̃) where both components
of ψ are in I such that the vector field

(d+ αP k +A)x1
∂

∂x1
− (c+ βP k +B)x2

∂

∂x2

in (8.4) is reduced its formal normal form (d+αP k)x̃1
∂
∂x̃1
−(c+βP k)x̃2

∂
∂x̃2

except for a unit factor 1 + φ(x̃) ∈ 1 + I. It is proved in [MR], fur-
thermore, that φ and the components of ψ are P -k-summable under our
condition α/d 6= β/c.

It remains to solve a partial differential equation

(8.5) (d+ αP k)x1
∂f

∂x1
− (c+ βP k)x2

∂f

∂x2
= h,

where P = xc1x
d
2 and h is a P -k-summable power series such that (8.5)

admits a formal solution f .
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If c > 1 then replacing x1 by x1e
2πi/c we find that f̃(x1, x2) =

f(x1e
2πi/c, x2) is a solution of (8.5) with right hand side h̃(x1, x2) =

h(x1e
2πi/c, x2). This leads us to split f and h into c series: f(x1, x2) =∑c−1

j=0 x
j
1fj(x

c
1, x2) and a similar formula for h and hj , j = 0, . . . , c − 1.

We obtain c equations for the fj = fj(u1, x2).

(8.6) (d+ αP̄ k)u1
∂fj
∂u1
−
(

1 +
β

c
P̄ k
)
x2
∂fj
∂x2

+
j

c
(d+ αP̄ k)fj =

1

c
hj ,

j = 0, . . . , c− 1,

where P̄ (u1, x2) = u1x
d
2. In a similar way, splitting

fj(u1, x2) =

d−1∑
m=0

xm2 fjm(u1, x
d
2)

we obtain equations for each of the fjm. We simplify the notation by
omitting the indices and the constant factor 1

cd and by introducing α̃ =

α/d, β̃ = β/c, P̃ (u1, u2) = u1u2. This yields the equation

(8.7) (1 + α̃P̃ k)u1
∂f

∂u1
− (1 + β̃P̃ k)u2

∂f

∂u2
+ (γ(1 + α̃P̃ k)−µ(1 + β̃P̃ k))f = h,

with γ ∈ M = {0, 1
c , . . . , 1 −

1
c} ⊂ [0, 1[, µ ∈ N = {0, 1

d , . . . , 1 −
1
d} ⊂

[0, 1[, where now h = h(u1, u2) is P̃ -k-summable.

Now we use Proposition 7.22 to establish the P̃ -k-summability of a
formal solution f of (8.7) provided α̃ 6= β̃.

Consider any direction θ for which h is P̃ -k-summable and which is not
congruent to − 1

k arg(α̃− β̃) mod π
kZ. Then there is a function H(u, τ)

holomorphic for u ∈ D(0; ρ) and τ ∈ D(0, δ) or τ ∈ V (θ − δ, θ + δ;∞)
with the properties (1), (2), (3) stated in Proposition 7.22. In particular,
there are positive constants C, A such that

(8.8) |H(u, τ)| ≤ C exp(A|τ |k) if |u| < ρ, τ ∈ (D(0, δ)∪V (θ− δ, θ+ δ;∞)),

for every τ , we have Ju(H(., τ)) ∈ C{u1} + C{u2}, the Laplace trans-
forms

L(H)(u, t) = k t−k
∫

arg τ=θ̃

e−τ
k/tkH(u, τ)τk−1 dτ

converge for θ̃ near θ and we have h(u) as P̃ -k-Gevrey asymptotic ex-

pansion of L(H)(u, P̃ (u)) in some P̃ -sector of angular opening larger

that 2π
k bisected by arg(P̃ (u)) = θ.

Suppose for a moment that there is a function F = F (u, τ) with

properties similar to H such that L(F )(u, P̃ (u)) is a solution of (8.7)

having f(u) as its P̃ (u)-asymptotic expansion. Using classical properties

of the Laplace transform we obtain that ur
∂f
∂ur

(u, P̃ (u)) = L
(
ur

∂F
∂ur

+
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τ ∂F∂τ
)
(u, P̃ (u)), r = 1, 2, and tkL(G)(u, t) = L(kI(G))(u, t) for G with

properties like F , where I(G)(u, τ) =
∫ τ

0
σk−1G(u, σ) dσ. Inserting

into (8.9) this yields that F satisfies the following equation

(8.9) u1
∂F

∂u1
− u2

∂F

∂u2
+k(α̃− β̃)(τkF − kI(F )) + kα̃u1

∂I(F )

∂u1
− kβ̃u2

∂I(F )

∂u2

+ (γ − µ)F + k(γα̃− µβ̃)I(F ) = H.

Conversely, the existence of a solution F of (8.9) with properties analo-

gous to (1), (2), (3) proves the P̃ -k-summability of a formal solution f
of (8.7), because (8.7) has a unique formal solution except for its con-
stant term in the special case ` = γ = µ = 0. This last assertion follows
by consideration of the terms of f of lowest valuation. Details are left
to the reader.

In order to solve (8.9), we expand H and F into series with respect
to u1, u2. We have H(u, τ) =

∑∞
`=0H`(τ)u`1 +

∑∞
`=1H−`(τ)u`2 and want

F (u, τ) =
∑∞
`=0 F`(τ)u`1 +

∑∞
`=1 F−`(τ)u`2. Equation (8.9) is equivalent

to a sequence of equations for the functions G` = I(F`)

(`+γ−µ+ k(α̃−β̃)τk)G′`+kτ
k−1(χ`−k(α̃−β̃) + γα̃−µβ̃)G`=τk−1H`,

G`(0)=0,
(8.10)

for ` ∈ Z, where χ = α̃ if ` ≥ 0, χ = β̃ otherwise.
If `+γ−µ 6= 0, i.e. ` 6= 0 or γ = µ, we can write the solutions of (8.10)

using the solutions of the corresponding homogeneous equations

U`(τ) =

(
1 +

k(α̃− β̃)τk

`+ γ − µ

)−(χ`−k(α̃−β̃)+γα̃−µβ̃)/(k(α̃−β̃))

.

We obtain

G`(τ) = U`(τ)

∫ τ

0

τk−1H`(s)

(`+ γ − µ+ k(α̃− β̃)sk)U`(s)
ds,

F`(τ) =
H`(τ)− k(χ`− k(α̃− β̃) + γα̃− µβ̃)G`

`+ γ − µ+ k(α̃− β̃)τk
.

By our hypothesis on θ, we can assume that q = k(α̃−β̃)τk

`+γ−µ is in the

sector |arg q| < π − δ/2 and therefore 1
q log(1 + q) is bounded by some

constant. This implies that there are constants K, M such that |U`(τ)|
and 1/|U`(τ)| are bounded by MeK|τ |

k

for τ ∈ D(0, δ) ∪ V (θ − δ/2, θ +
δ/2;∞) and all ` ∈ Z, γ ∈ M, µ ∈ N , ` 6= 0, γ 6= µ. By (8.8),

we have |H`(τ)| ≤ Cδ−|`|eA|τ |
k

for all `, γ, µ, and all τ . The above
formula for F` implies that there is a constant D such that |F`(τ)| ≤
Dδ−|`|e(A+2K+1)|τ |k for all `, γ, µ, τ in the case ` 6= 0, γ 6= µ.
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Observe that the formula for F` remains valid in the exceptional case
` = 0, γ = µ, if we replace U0 by Ũ0(τ) = τk−γ . It is straightforward to

prove that |F0(τ)| ≤ De(A+2K+1)|τ |k for a certain D in the finitely many
cases γ ∈M, µ ∈ N , γ = µ.

This implies that

|F (u, τ)| ≤ 4D

2− δ e
(A+2K+1)|τ |k

for u ∈ D(0; δ/2), τ ∈ D(0, δ)∪ V (θ− δ/2, θ+ δ/2;∞). Thus the P̃ (u)-
k-summability of the formal solution f of (8.7) is proved.

Going back to the formal solution of equation (8.3) in the case of the
monomial P = xc1x

d
2, we obtain its P -k-summability provided α/d 6= β/c.

In the terms of the theorem, this condition is equivalent to conditions (2)
and (3) and the theorem is proved for monomials P .

In a second step, we consider (8.3) with a homogeneous polynomial P
that is not a monomial, i.e. the case a = b. We can assume that a = b =
1. We apply Theorem 7.24 to the formal solution f of (8.3) that exists
according to the assumption of the theorem. Let M denote the set of
zeroes of P in P1

C. If we show that f ◦ bξ is P ◦ bξ-k-summable for ξ ∈M
then the statement follows in the present case.

It is sufficient to consider the case where ξ ∈ C, the case ξ = ∞ is
reduced to the case ξ = 0 by exchanging v1 and v2, α and β, a and b
respectively.

Now we consider f̃ = f ◦ bξ and the analogously constructed h̃, P̃ ,

Ã, B̃. We calculate

∂f

∂x2
(v2, (ξ + v1)v2) =

1

v2

∂f̃

∂v1
(v1, v2),

∂f

∂x1
(v2, (ξ + v1)v2) =

(
∂f̃

∂v2
− ξ + v1

v2

∂f̃

∂v1

)
(v1, v2)

(8.11)

and obtain analogous formulas for P̃ . This leads to the following partial
differential equation for f̃ .

(8.12)

(
(ξ + v1)

∂P̃

∂v1
+ αP̃ k+1 + P̃ Ã

)
v2
∂f̃

∂v2

−
(
v2
∂P̃

∂v2
+ (α+ β)P̃ k+1 + P̃ (Ã+ B̃)

)
(ξ + v1)

∂f̃

∂v1
= h̃,

where now the v2-valuation of Ã and B̃ is larger than kg, g = w(P ),

and P̃ (v1, v2) = P (v2, (ξ + v1)v2) = vg2Q(v1) with some polynomial Q
vanishing at the origin.
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In order to reduce P̃ to a monomial, we consider a holomorphic func-
tion φ such that Q(φ(v1)) = vc1, where c is the multiplicity of v1 = 0 as a
zero of Q. Then replacing v1 by φ(v1), multiplying by v1φ

′(v1), and di-

viding by ξ+φ(v1), we obtain a new equation for f̄(v1, v2) = f̃(φ(v1), v2)
with P̄ = vc1v

d
2 .

(8.13)

(
v1
∂P̄

∂v1
+

v1φ
′(v1)

ξ + φ(v1)
(αP̄ k+1 + P̄ Ā)

)
v2
∂f̄

∂v2

−
(
v2
∂P̄

∂v2
+ (α+ β)P̄ k+1 + P̄ (Ā+ B̄)

)
v1
∂f̄

∂v1
= h̄,

where h̄(v1, v2) = v1φ
′(v1)

ξ+φ(v1) h̃(φ(v1), v2) and Ā, B̄ are certain convergent

series containing only terms of v2-valuation larger than kd. Choosing
the quasi-homogeneous valuation appropriately, more precisely a = 1
and b sufficiently large, we arrive at an equation of the form (8.3) with
the monomial P = xc1x

g
2. In the case ξ 6= 0, the factors α, β replaced

by α+β, 0, and f ◦ bξ is P ◦ bξ-k-summable if α+β 6= 0; this is satisfied
by condition (1). In the case ξ = 0, these factors have to be replaced
by (α + β, α). As c = µ0 > 0 and d = g here, we obtain that f ◦ b0
is P ◦ b0-k-summable if (α + β)/g 6= α/µ0. This condition is equivalent
to (2). In the case ξ = ∞ the reduction to the case ξ = 0, that is
exchange x1 and x2 etc., proves that f ◦ b∞ is P ◦ b∞-k-summable if
(α + β)/g 6= β/µ∞. This is condition (3). Thus the theorem is proved
for homogeneous non-monomial P .

In a third and last step, we reduce a quasi-homogeneous non-monomial
case to a homogeneous case by the ramifications x1 = va1 , x2 = vb2. It
suffices to use Proposition 7.26 twice. The ramifications preserve the
form (8.3) of the equation, only α, β are replaced by bα, aβ, it is ho-
mogeneous for w satisfying w(v1) = w(v2) = 1 and µ0, µ∞ are replaced
by bµ0, aµ∞, but g remains unchanged. This yields the conditions of
the theorem for P -k-summability in the present case.

References

[AO] R. C. Ackerberg and R. E. O’Malley, Jr., Boundary layer problems

exhibiting resonance, Studies in Appl. Math. 49(3) (1970), 277–295. DOI:
10.1002/sapm1970493277.

[AHV] J. M. Aroca, H. Hironaka, and J. L. Vicente, “The Theory of the Max-
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Primera versió rebuda el 2 de febrer de 2017,
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