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1. Introduction

Recognition results for modular forms have been a very useful theme
in the theory. We know that the Sturm’s bound, which applies quite
generally to a wide class of modular forms, says that two modular forms
are equal if (in a suitable sense) their ‘first’ few Fourier coefficients agree.
Moreover, the classical multiplicity-one result for elliptic newforms of in-
tegral weight says that if two such forms f1, f2 have the same eigenvalues
of the p-th Hecke operator Tp for almost all primes p, then f1 = f2. Even
stronger versions are known, e.g., a result of D. Ramakrishnan [13] says
that primes of Dirichlet density more than 7/8 suffices.

However, when one moves to higher dimensions, say, to the spaces of
Siegel modular forms of degree 2 onwards, the situation is drastically dif-
ferent. Such a form, which is an eigenfunction of the Hecke algebra, does
not necessarily have multiplicative Fourier coefficients, and multiplicity-
one for eigenvalues (in a suitable sense, for Sp2(Z)) is not known yet.
However the Fourier coefficients, which are indexed by half-integral sym-
metric positive definite matrices, do determine a modular form. Thus one
can still ask the stronger question whether a certain subset, especially
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one which consists of an arithmetically interesting set of Fourier coeffi-
cients (say e.g., the primitive Fourier coefficients, i.e., those which are
indexed by primitive matrices), already determines a Siegel cusp form.
These may be considered as a substitute for a “weak multiplicity-one”,
as Scharlau–Walling [18] puts it, in the context of Fourier coefficients.

This line of investigation has attracted the attention of many math-
ematicians. As a first result in this direction, it was shown by D. Za-
gier [22] that the Siegel cusp forms of degree 2 are determined by primi-
tive Fourier coefficients. This has been generalized to Siegel and Hermit-
ian cusp forms with levels and of higher degrees by S. Yamana [21]. Sim-
ilar results along this line, essentially distinguishing Siegel Hecke eigen-
forms of degree 2 by the so-called ‘radial’ Fourier coefficients (i.e., by
certain subset of matrices of the form mT with T half-integral, m ≥ 1),
has been obtained in Breulmann–Kohnen [2], Scharlau–Walling [18],
Katsurada [10]. A result of B. Heim [8] improves upon some of these
results using differential operators on Siegel modular forms of degree 2.
More recently in [15], [16] A. Saha and R. Schmidt have proved that the
Siegel cusp forms of degree 2 are determined (in a quantitative way) by
their fundamental (in fact by odd and square-free) Fourier coefficients.

In this paper we take up the question of determining when two Her-
mitian cusp forms of degree 2 on the full Hermitian modular group,
which are not necessarily eigenforms, coincide when a certain subset of
their Fourier coefficients are the same. This certain set is given explic-
itly in the theorem stated below, e.g., for K = Q(i), it consists of all
square-free Fourier coefficients up to a divisor of 4. Let DK < 0 be a
fundamental discriminant such that K = Q(

√
DK) has class number 1

(see Remark 4.20 for comments on this condition), and OK be its ring
of integers. Recall that in this case DK belongs to the following set
{−4,−8,−3,−7,−11,−19,−43,−67,−163}.

Let Sk(OK) denote the space of Hermitian cusp forms of degree 2
and weight k on the Hermitian modular group Γ2(OK). Each such cusp
form F has a Fourier expansion of the form (see Subsection 2.1 for the
formal definitions)

(1.1) F (Z) =
∑

T∈Λ+(OK)

a(F, T )e(trTZ), (e(z) := e2πiz for z ∈ C),

where Λ+(OK) :={T ∈M(2,C) | T = T ′ > 0, tµ,µ ∈ Z, tµ,ν ∈ i√
|DK |
OK}

is the lattice dual to the lattice consisting of OK-integral 2× 2 Hermit-
ian matrices with respect to the trace form tr. Let us note here that
(see Subsection 2.1) |a(F, T )| is invariant under the action T 7→ U ′TU
(U ∈ GL2(OK)), and that |DK |det(T ) is a positive integer. Further, let
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pK be the prime such that |DK | = prK , for some r ≥ 1, i.e., pK = |DK |
when DK is odd and pK = 2 when DK is even. We can now state the
main results of this paper.

Theorem 1. Let F ∈ Sk(OK) be non-zero. Then:

(a) a(F, T ) 6= 0 for infinitely many matrices T such that |DK |det(T )
is of the form pαKn, where n is square-free with (n, pK) = 1 and
0 ≤ α ≤ 2 if DK 6= −8 and 0 ≤ α ≤ 3 if DK = −8.

(b) For any ε > 0,

#{0 < n < X, n square-free, (n, pK) = 1, a(F, T ) 6= 0,

pαKn = |DK |det(T )} �F,ε X
1−ε.

We say a few words about the proof of the theorem. We assume that
F 6= 0 and via the Fourier–Jacobi expansion of F , reduce the question to
Hermitian Jacobi forms of prime index in Section 3, thanks to a theorem
of H. Iwaniec. The standard avenue now would be to pass on to the
integral weight forms by using the injectivity of the so-called Eichler–
Zagier map (which is essentially the average of all theta components of a
Jacobi form). However we stress here that the possibility of this passage
to the integral weight forms turns out to be rather non-trivial in our case.

The main point is that even in the case of prime indices, the Eichler–
Zagier map (see (2.14) for the definition) may not be injective; unlike
the scenario for the classical Jacobi forms. The only result known in
this regard is from [6] that such a map is injective on a certain sub-
space J spez

k,p (OK) (p prime, see Subsection 4.1). Moreover Lemma 4.6,

Proposition 4.7 in Subsection 4.2 show that J spez
k,p (OK) may be a proper

subspace of Jk,p(OK) and the Eichler–Zagier map may fail to be injective
in the complementary space (see Remark 4.9).

The heart of this paper is devoted to overcome such an obstacle, this
is at the same time the second main topic of the paper, treated in detail
in Section 4. Given that our aim is to reduce the question to Sk(N,χ)
(the space of cusp forms of weight k on Γ0(N) with character χ) which
are pleasant to work with, we consider a ‘collection’ of Eichler–Zagier
maps ιξ indexed by suitable characters ξ of the group of units of the

ring OK/i
√
|DK |pOK , see Subsection 4.3 for more details. Each ιξ do

map J cusp
k,p (OK) to Sk(N,χ) for certain N and χ (see Subsection 2.2).

Working with this collection of maps, we show that

(i) if the index p of the Hermitian Jacobi form φp at hand is inert
in OK , then this ‘collection’ {ιξ}ξ defines an injective map, and

(ii) if p splits, then either this ‘collection’ is injective or that ι itself
is injective. For this, we have to develop a part of the theory of
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index-old Hermitian Jacobi forms of index p à la Skoruppa–Zagier
in [20]. See Subsection 4.3.

Finally (i) and (ii) allow us to reduce the problem to the following
theorem on Sk(N,χ) (the space of cusp forms on Γ0(N) with character χ)
for certainN and χ. Results somewhat similar to this have been obtained
by Yamana [21], but his results do not imply ours. Thus as far as we
know, the following result is not available in the literature. We assume
χ(−1) = (−1)k, so that Sk(N,χ) 6= {0}.

Theorem 2. Let χ be a Dirichlet character of conductor mχ and N be
a positive integer such that mχ | N and N/mχ is square-free.

(a) If f ∈ Sk(N,χ) and a(f, n) = 0 for all but finitely many square-free
integers n, then f = 0.

(b) Let f ∈ Sk(N,χ) and f 6= 0, then for any ε > 0

#{0 < n < X, n square-free, a(f, n) 6= 0} �f,ε X
1−ε.

Clearly, part (a) of Theorem 2 follows from part (b), however we
include an independent proof of part (a) using an argument adapted
from the work of Balog–Ono [1], which we feel is worth noting and the
method could be useful in other circumstances. In a nutshell and loosely
speaking, this method allows one to reduce to the case of newforms. In
either of the proofs, the condition on the ratio of the level and conduc-
tor is necessary; this can be seen by taking the example of a non-zero
form g(τ) ∈ Sk(SL2(Z)) and considering g(m2τ) for some m > 1. The
proofs of these results are given in Section 5. Let us mention here that
motivated by Theorem 2 and with the same hypotheses, very recently
we could prove that there exists a constant B depending only on k, N
such that if af (n) = 0 for all square-free n ≤ B, then f = 0.

For the proof of part (b), we essentially consider the cusp form ob-
tained from a given form by sieving out squares and then apply the
Rankin–Selberg method to get asymptotics of the second moment of its
Fourier coefficients; the details are rather technical, see Subsections 5.2
and 5.3. Along the way, we present some nice calculations on the Pe-
tersson norms of Ur2f , which arise as a part of the main term in the
asymptotic alluded to above, with f as in the theorem, and which ex-
tends the results of [3].

Finally we remark that with some modifications, one expects to ex-
tend our results to the corresponding spaces of Eisenstein series as well;
it could be interesting to work this out.
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comments and encouragement about the topic of the paper. The first au-
thor is a DST-INSPIRE Fellow at IISc, Bangalore, and acknowledges the
financial support from DST (India). The second author acknowledges
financial support in parts from the UGC Centre for Advanced Studies,
DST (India), and IISc, Bangalore, during the completion of this work.

2. Notation and terminology

We mostly follow standard notation throughout the paper:M(n,R) de-
notes, as usual, the space of n×n matrices over a commutative ring R; for
A ∈M(n,C), A∗ := A′, with A′ denoting the transpose of A; A is Her-
mitian if A = A∗ and is positive definite (resp. semi-definite) if ξ∗Aξ > 0
(resp. ≥ 0) for all ξ ∈ Cn\{0}.

2.1. Hermitian modular forms. We define the unitary group of de-
gree 2 as

U(2, 2) := {M ∈ GL(4,C) |M ′JM = J},
where J =

(
0 −I2
I2 0

)
. We recall the Hermitian upper half-space of de-

gree 2 on which most of the holomorphic functions in this paper live:

H2 := {Z ∈M(2,C) | (Z − Z∗)/2i > 0}.

Let DK be a fundamental discriminant and K denote an imaginary
quadratic field of discriminant DK , i.e., K = Q(

√
DK). The class num-

ber of K is assumed to be 1. Denote the ring of integers of K by OK and
the order of the unit group O×K of OK by w(DK). The inverse different
of K is denoted by

O#
K :=

i√
|DK |

OK .

We denote by Γ2(OK) the Hermitian modular group of degree 2 defined
by

Γ2(OK) := U(2, 2) ∩M(4,OK).

Given an integer k, the vector space of Hermitian modular forms of
degree 2 and weight k consists of all holomorphic functions f : H2 → C
satisfying

f(Z) = det(CZ +D)−kf(M〈Z〉) for all Z ∈ H2, M =

(
A B
C D

)
∈ Γ2(OK),

where M〈Z〉 := (AZ + B)(CZ + D)−1. The vector space of Hermitian
modular forms of degree 2 (with respect to K) and weight k is denoted
by Mk(OK). Further, those forms in Mk(OK) which have Fourier ex-
pansion as in (1.1) are cusp forms and the subspace of all cusp forms is
denoted by Sk(OK).
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Moreover, following Yamana [21] let us define the content c(T ) of a
matrix T ∈ Λ+(OK) by

c(T ) := max{a ∈ N | a−1T ∈ Λ+(OK)}.

T ∈ Λ+(OK) is called primitive if c(T ) = 1.
Expanding an F ∈ Sk(OK) along the Klingen parabolic subgroup, we

can write its Fourier–Jacobi expansion as

(2.1) F (Z) =
∑
m≥1

φm(τ, z1, z2)e(mτ ′),

where Z=
( τ z1
z2 τ

′
)

and for eachm≥1, the Fourier–Jacobi coefficient φm ∈
J cusp
k,m (OK) with

(2.2) φm(τ, z1, z2) =
∑

n∈Z, r∈O#
K

nm>N(r)

a

(
F,

(
n r
r m

))
e(nτ + rz1 + rz2),

where N(·) is the norm function of K and J cusp
k,m (OK) is the space of

Hermitian Jacobi cusp forms for the group ΓJ(OK) (see next section for
details).

2.2. Hermitian Jacobi forms.

The Hermitian-Jacobi group. Let S1 denote the unit circle. Then
the set C2×S1 is a group with the following twisted multiplication law,
which we would use freely throughout the paper:

[(λ1, µ1), ξ1] · [(λ2, µ2), ξ2] := [(λ1 + λ2, µ1 + µ2), ξ1ξ2 e(2 Re(λ1µ2))].

The group U(1, 1) = {εM | ε ∈ S1, M ∈ SL2(R)} acts on C2 × S1 as

[(λ, µ), ξ](εM) := [(ελ, εµ)M, ξe(abN(λ) + cdN(µ) + 2bcRe(λµ))].

Let GJ denote the semi-direct product U(1, 1) n (C2 × S1). The multi-
plication in GJ is given by

[ε1M1, X1][ε2M2, X2] = [ε1ε2M1M2, (X1(ε2M2)) ·X2].

GJ acts from left on H×C2 and from right on functions φ : H×C2 → C.
These actions are given by individual actions of U(1, 1) and C2 × S1 as
below:

(2.3)
εM(τ, z1, z2) :=

(
Mτ,

εz1

cτ + d
,
εz2

cτ + d

)
,

[(λ µ), ξ](τ, z1, z2) := (τ, z1 + λτ + µ, z2 + λτ + µ).
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(2.4)

(φ|k,mεM)(τ, z1, z2) := ε−k(cτ + d)−ke
−2πimcz1z2

cτ+d

× φ
(
Mτ,

εz1

cτ + d
,
εz2

cτ + d

)
,

(φ|m[(λ µ), ξ])(τ, z1, z2) := ξme2πim(N(λ)τ+λz1+λz2)

× φ(τ, z1 + λτ + µ, z2 + λτ + µ).

Here M =
(
a b
c d

)
is in SL2(R), Mτ = aτ+b

cτ+d , and k,m ∈ Z.

The Hermitian-Jacobi group ΓJ(OK) is defined as ΓJ(OK) :=Γ1(OK)n
O2
K , where

Γ1(OK) := {ε SL2(Z) | ε ∈ O×K} ⊂ U(1, 1)

and O2
K = {(λ, µ) | λ, µ ∈ OK} is the subgroup of C2 × S1 with compo-

nent wise addition (here (λ, µ) is identified with [(λ, µ), 1]).
For positive integers k and m, the space of Hermitian Jacobi forms

of weight k and index m for the group ΓJ(OK) consists of holomorphic
functions φ on H×C2 such that (see [6], [7]):

(1) φ|k,mγ = φ, for all γ ∈ ΓJ(OK).
(2) φ has a Fourier expansion of the form

φ(τ, z1, z2) =

∞∑
n=0

∑
r∈O#

K
nm≥N(r)

cφ(n, r)e(nτ + rz1 + rz2).

The complex vector space of Hermitian Jacobi forms of weight k and in-
dexm is denoted by Jk,m(OK). Moreover, if cφ(n, r) = 0 for nm = N(r),
then φ is called a Hermitian Jacobi cusp form. The space of Hermitian
Jacobi cusp forms of weight k and index m is denoted by J cusp

k,m (OK).
For the rest of the paper, for the sake of simplicity we just write O

instead of OK , D instead of DK , and Jk,m instead of Jk,m(OK). Since

O#
K = i√

|D|
OK , if φ ∈ Jk,m we can rewrite the Fourier expansion of φ

equivalently as

(2.5) φ(τ, z1, z2) =

∞∑
n=0

∑
r∈O

|D|nm≥N(r)

cφ(n, r)e

(
nτ +

ir√
|D|

z1 +
ir√
|D|

z2

)
.

Theta decomposition. As in the case of classical Jacobi forms, Her-
mitian Jacobi forms admit a theta decomposition. Let φ ∈ Jk,m has the
Fourier expansion as in (2.5). Then we have

(2.6) φ(τ, z1, z2) =
∑

s∈O/i
√
|D|mO

hs(τ) · θm,s(τ, z1, z2),
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where, for s as above

θm,s(τ, z1, z2) :=
∑

r≡s (mod i
√
|D|m)

e

(
N(r)

|D|mτ +
ir√
|D|

z1 +
ir√
|D|

z2

)
,(2.7)

hs(τ) :=
∑
n>0

N(s)+n∈|D|mZ

c

(
n+N(s)

|D|m , s

)
e(nτ/|D|m).(2.8)

The theta components hs of φ ∈ Jk,m (see [6, 17]) have the following
transformation properties under SL2(Z) and O×:

hs(τ + 1) = e

(
−N(s)

|D|m

)
hs,(2.9)

εkhεs(τ) = hs(τ) where ε ∈ O×,(2.10)

hs(−τ−1) =
i√
|D|m

τk−1
∑

r∈O/i
√
|D|mO

e

(
2 Re(sr)

|D|m

)
hr(τ).(2.11)

Let χD :=
(
D
·
)

be the unique real primitive Dirichlet character mod-

ulo |D|. Then, for any M =
(
a b
c d

)
∈ Γ0(m|D|) and J =

(
0 1
−1 0

)
, we

have

(2.12) θm,s|1,sMJ=
iχD(d)

m
√
|D|

∑
s′∈O/i

√
|D|mO

e(a(bN(s)+2 Re(ss′))/|D|m)θm,s′ .

An exponential sum. For K, D as above, we would encounter the
following exponential sum. Its evaluation is standard, so we just state
it:

(2.13)
∑

r∈O/sO

e

(
2 Re

(
irx√
|D|s

))
=

{
N(s) if x ∈ sO,
0 otherwise.

Eichler–Zagier maps. Using the theta decomposition for φ ∈ Jk,m
as in (2.6) define the Eichler–Zagier map ι : Jk,m → Sk−1(|D|m,χD) by
ι(φ) = h, where (see [5] for the classical case and [6] for more details)

(2.14) h(τ) :=
∑

s∈O/i
√
|D|mO

hs(|D|mτ).

Let D =
√
|D|iO denote the different of Q(

√
D) and define the sub-

group G of (O/i
√
|D|mO)× by

(2.15) G := {µ+mD | N(µ) ≡ 1 (mod |D|m)}.
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Let η : G→ C be any character of G such that η(ε) = ε−k for all ε ∈ O×.

Let η̃ be an extension of η to (O/i
√
|D|mO)×. Now define the twisted

Eichler–Zagier map ιη̃ : Jk,m → Sk−1(2f |D|m,χD · η̃) by ιη̃(φ) = hη̃(τ),
where

(2.16) hη̃(τ) :=
∑

s∈O/i
√
|D|mO

η̃(s)hs(|D|mτ)

and f ∈ Z ∩ i
√
|D|mO. We choose f to be the minimal such positive

integer, so that f = |D|m when D is odd and f = |D|m
2 when D is even.

For the convenience of the reader we indicate how one can prove that
hη̃ ∈ Sk−1(2f |D|m,χD · η̃).

Namely, for any M =
(

a b
2cf |D|m d

)
∈ Γ0(2f |D|m) and f as above,

(2.17) hη̃|k−1M(τ) =
∑

s∈O/i
√
|D|mO

η̃(s)

(
hs|k−1

(
a b|D|m

2cf d

))
(|D|mτ).

Now using the transformation formula (2.12) for θm,s, we have

hs|k−1

(
a b|D|m

2cf d

)
= hs|k−1J

(
−d 2cf

b|D|m −a

)
J

=
χD(d)

|D|m2

∑
s′,s′′∈O/i

√
|D|mO

e((2cdfN(s′)−2 Re(ss′)+2dRe(s′′s′))/|D|m)hs′′ .

Using this in (2.17) and evaluating the exponential sum over s′ from
(2.13) we infer that hη̃ ∈ Sk−1(2f |D|m,χD · η̃).

2.2.1. Decomposition of Jk,m. For µ∈O withN(µ)≡1 (mod m|D|)
define

Wµ(φ) :=
∑

s∈O/i
√
|D|mO

∑
hµs(τ) · θm,s(τ, z1, z2),

where φ ∈ Jk,m and has theta decomposition as in (2.6). Then Wµ is an
automorphism of Jk,m.

Let G be the group defined as above. Then the map G→ End(Jk,m),
µ 7→ Wµ is a homomorphism. Now as in the case of classical Jacobi
forms we can decompose Jk,m as

Jk,m =
⊕
η

J ηk,m,

where η is a character of G as above and

J ηk,m := {φ ∈ Jk,m |Wµ(φ) = η(µ)φ for all µ ∈ G}.
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Now let η0 be the trivial character of G. For η 6= η0, let φ ∈ J ηk,m.

Then we have Wµ(φ) = η(µ)φ for all µ ∈ G. That is hµs = η(µ)hs for

all µ ∈ G. Note that µ is a unit in O/i
√
|D|mO. Thus if h = ι(φ) is

defined as in (2.14), then

h(τ) =
∑

s∈O/i
√
|D|mO

hs(|D|mτ) =
s 7→µs

∑
s∈O/i

√
|D|mO

hµs(|D|mτ)

= η(µ)
∑

s∈O/i
√
|D|mO

hs(|D|mτ) = η(µ)h(τ).

Since η 6= η0, we have h = 0. This implies that ⊕η 6=η0J
η
k,m ⊂ ker(ι).

Similarly for any non trivial character η of G it follows that ⊕η′ 6=ηJ η
′

k,m ⊂
ker(ιη̃).

2.3. Elliptic modular forms. For positive integers k, N and a Dirich-
let character χ (mod N), let Sk(N,χ) denote the space of cusp forms of
weight k and character χ for the group Γ0(N).

For f ∈ Sk(N,χ) we write its Fourier expansion as

f(τ) =

∞∑
n=1

a′(f, n)n
k−1
2 e(nτ),

so that by Deligne [4], we have the estimate for any ε > 0:

(2.18) |a′(f, n)| �ε,f n
ε.

For a positive integer n with (n,N)=1, the Hecke operator Tn on Sk(N,χ)
is defined by

(2.19) Tnf = n
k
2
−1
∑
a>0
ad=n

χ(a)

d−1∑
b=0

f |
(
a b
0 d

)
.

For any n, the operator Un is defined as

(2.20) Unf = n
k
2
−1

n−1∑
b=0

f |
(

1 b
0 n

)
.

The space Sk(N,χ) is endowed with Petersson inner product defined
by

(2.21) 〈f, g〉N =

∫
Γ0(N)\H

f(τ)g(τ)yk−2 dx dy.
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3. Proof of Theorem 1

3.1. Reduction to Hermitian Jacobi forms. In order to prove The-
orem 1, as is quite natural (see also [15]) we first reduce the question
to the setting of Hermitian Jacobi forms of prime index. This would be
possible, as is explained later, if we could show that any matrix in Λ+(O)
is equivalent to one with the right lower entry an odd prime. The fol-
lowing lemma allows us to do that. To prove the lemma, we crucially
use the following very non-trivial result due to H. Iwaniec [9] on primes
represented by a general primitive quadratic polynomial of 2 variables,
stated in a way to suit our need.

Theorem 3. Let P (x, y) = Ax2 +Bxy+Cy2 +Ex+Fy+G ∈ Z[x, y] be
such that (A,B,C,E, F,G) = 1. If P is irreducible in Q[x, y], represents
arbitrarily large odd integers, and it depends essentially on two variables,
then it represents infinitely many odd primes.

In the above theorem, P (x, y) is said to depend essentially on two
variables if (∂P/∂x) and (∂P/∂y) are linearly independent.

Lemma 3.1 (Hermitian forms representing primes). Let T ∈ Λ+(O) be
a primitive matrix. Then there exists g ∈ GL2(O) such that g∗Tg =
( ∗ ∗∗ p ) for some odd prime p.

Proof: Let us write g =
(
α β
γ δ

)
and T = ( n r

r m ) ∈ Λ+(O). Then one

computes that

g∗Tg =

(
∗ ∗
∗ N(β)n+ δrβ + βrδ +N(δ)m

)
.

At this point we would like to invoke Theorem 3, choosing g appropri-
ately according to the following cases.

Case 1. Either m or n is odd: If m is odd, set δ = 1, γ = 0. Such a
matrix can be easily completed to GL2(O) for any value of β.

When D ≡ 0 (mod 4), r is of the form r = i√
|D|

(
r1 + i

2

√
|D|r2

)
and

set β = x+ i
2

√
|D|y. We put

P (x, y) = n

(
x2 +

|D|
4
y2

)
− r2x+ r1y +m.

When D ≡ 1 (mod 4), r is of the form r = i√
|D|

(
r1
2 +

i
√
|D|
2 r2

)
and set

β = x+ i
√
|D|y. In this case we put

P (x, y) = n(x2 + |D|y2)− r2x+ r1y +m.
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Noting that T is primitive, it is easily seen that in both cases P satisfies
the first hypothesis of Theorem 3. Hence it is enough to prove that
P (x, y) is irreducible in Q.

If at all there is a non-trivial factorization over Q, it has to be into
two linear factors, say

P (x, y) = (a1x+ b1y + c1)(a2x+ b2y + c2).

A short calculation shows that a1/b1 = −a2/b2 = λ (say). Now com-
paring the coefficients of x2 and y2 we get that λ2 = − 4

|D| , when D ≡ 0

(mod 4) and λ2 = − 1
|D| , when D ≡ 1 (mod 4). A contradiction in both

cases. Hence P is irreducible.
Further that P represents arbitrarily large odd values is clear since

m is odd and we can vary x, y over large even integers. Essential depen-
dence in two variables is trivial in our case. Thus P represents infinitely
many odd primes. The case when n is odd follows by symmetry of the
situation (we take β = 1 and proceed similarly).

Case 2. Both m and n are even: In this case we can take P as before and
note that one of r1 or r2 must be odd, since T was primitive. Say r2 is
odd. Then varying x through odd integers and y through even ones, we
see that P represents arbitrarily large odd integers. The other properties
of P continue to hold.

We embark upon the proof of Theorem 1 by using the following result
due to S. Yamana [21].

Theorem 4. If F ∈ Sk(O) is non-zero, then there exists a primitive T ∈
Λ+(O) such that a(F, T ) 6= 0.

3.2. Reduction to elliptic cusp forms and proof of Theorem 1.
Let F ∈ Sk(O) be non-zero and by Theorem 4, choose T0 ∈ Λ+(O)
primitive such that a(F, T0) 6= 0. From the fact that a(F, g∗Tg) =
(det g)ka(F, T ) for all g ∈ GL2(O) and by using Lemma 3.1 with T = T0,
we can assume that T0 = ( ∗ ∗∗ p ) for an odd prime p.

Appealing to the Fourier–Jacobi expansion of F as in (2.1) and the

above conclusion, it follows that there is an odd prime p with (p, i
√
|D|)=

1 such that φp ∈ Jk,p is non-zero. Recall that the Fourier expansion of φp
has the shape

(3.1) φp(τ, z1, z2) =

∞∑
n=0

∑
r∈O

|D|np≥N(r)

cF (n, r)e

(
nτ +

ir√
|D|

z1 +
ir√
|D|

z2

)
,

where cF (n, r) = a

(
F,

(
n ir/

√
|D|

ir/
√
|D| p

))
.
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Now let hF and hFη̃ be the images of φp under ι and ιη̃ respectively

(defined in Subsection 2.2). The crucial fact is the following, proved at
the end of Subsection 4.3.

Proposition 3.2. Let p ∈ Z be a prime and φ ∈ Jk,p be non zero. Then
ιη̃(φ) 6= 0 for some η or ι(φ) 6= 0.

Now suppose that hF 6= 0. Let the Fourier expansion of hF be given
by hF (τ) =

∑
n>0A(n)e2πinτ , where A(n) is given by

A(n) =
∑

s∈O/i
√
|D|pO

N(s)+n∈|D|pZ

cF

(
n+N(s)

|D|p , s

)
.

Since hF 6= 0 and N/mχ is square-free, using Theorem 2(a), we get
infinitely many square-free n such that A(n) 6= 0. For each of these n,

we get an s such that cF
(n+N(s)
|D|p , s

)
= a

(
F,

(
n+N(s)
|D|p is/

√
|D|

is/
√
|D| p

))
is not

equal to zero. Moreover by Theorem 2(b), for any ε > 0 we have

#{0 < n < X, n square-free, A(n) 6= 0} �hF ,ε X
1−ε.

Thus, for any ε > 0,

#{0 < n < X, n square-free, a(F, T ) 6= 0, n = |D|det(T )} �F,ε X
1−ε.

Now suppose hF = 0, then by Proposition 3.2, there exists a charac-
ter η of G such that hFη̃ 6= 0. We need another proposition, whose proof
is deferred to end of Subsection 4.4.

Proposition 3.3. Let η be a character of G. Suppose ιη̃(φ) 6= 0 for
some extension η̃ of η, then there exists an extension η̃0 of η such that
restriction of η̃0 to Z has conductor divisible by p and ιη̃0(φ) 6= 0.

Proof: Note that there is a choice in extending η to η̃. But different ιη̃(φ)
obtained in this way are either all vanish or none of them can vanish (see
Lemma 4.22). This allows us to assume that hFη̃ satisfies the conditions
in Proposition 3.3.

We can write hFη̃ (τ) =
∑
n>0B(n)qn, where B(n) is given by

B(n) =
∑

s∈O/i
√
|D|pO

N(s)+n∈|D|pZ

η̃(s)cF

(
n+N(s)

|D|p , s

)
.

Case 1: When D is odd, 2f |D|p/mχD·η̃ is of the form |D|α2p, where
1 ≤ α ≤ 2.

If α = 1, then we can apply Theorem 2 to hFη̃ and we get the result.
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If α = 2, then we apply Proposition 5.10 (please see the end of Sec-
tion 5) to hFη̃ with p1 = 2, p2 = |D|, p3 = p, and α1 = 1, α2 = β = 2
and we get the result.

Case 2: When D is even, 2f |D|p/mχD·η̃ is of the form |D|p, since χD · η̃
is a primitive character modulo |D|p. We use Proposition 5.10 for hFη̃ ,
with p2 = 2, p3 = p, α1 = 0, and α2 = 4, β = 2, when D = −4 and
α2 = 6, β = 3, when D = −8 to get the result.

4. Interlude on Hermitian Jacobi forms

4.1. Some operators on Jk,m. In order to proceed further we need
a few operators on Jk,m. Let ρ ∈ O (ρ 6= 0), define the Hecke-type
operator Uρ : Jk,m → Jk,mN(ρ) by [6, p. 51]

(4.1) φ|Uρ(τ, z1, z2) = φ(τ, ρz1, ρz2).

If φ has a Fourier expansion as in (2.5), then the Fourier expansion
of φ|Uρ is given by

(4.2) φ|Uρ(τ, z1, z2)=

∞∑
n=0

∑
r∈ρO

|D|N(ρ)nm≥N(r)

cφ(n, r/ρ)e

(
nτ+

ir√
|D|

z1+
ir√
|D|

z2

)
.

Now for ρ ∈ O with ρ | m and N(ρ) | m we define a new operator uρ
on Jk,m as given below:

(4.3) φ|uρ(τ, z1, z2) := N(ρ)−1
∑

x∈O2/ρO2

(
φ|k,m

[
x

ρ

])
(τ, z1/ρ, z2/ρ).

Lemma 4.1. Let uρ be defined as above. Then uρ is an operator from Jk,m
to Jk,m/N(ρ).

Proof: Let εM ∈ Γ1(O) and [λ, µ] ∈ O2. Then the requisite transfor-
mation properties of φ|uρ easily follow since if {x = (x1, x2)} is a set of
representatives for O2/ρO2, then {(x1, x2)εM} and {(x1+λ, x2+µ)} are
again a set of representatives for O2/ρO2. Further using that N(ρ) | m
and the formulas (2.3), (2.4) we get

(φ|uρ)|k,m/N(ρ)εM = (φ|k,mε)|uρ = φ|uρ,
(φ|uρ)|m/N(ρ)[λ, µ] = φ|uρ.

To complete the proof we find the Fourier expansion of φ|uρ. Let x =
(x1, x2) ∈ O2/ρO2, then from (2.4)(
φ|
[
x

ρ

])
(τ, z1/ρ, z2/ρ) = e

(
pN(x1)

N(ρ)
τ +

px1

ρ
z1 +

px1

ρ
z2

)

× φ
(
τ, z1 +

x1

ρ
τ +

x2

ρ
, z2 +

x1

ρ
τ +

x2

ρ

)
.
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On writing the Fourier expansion and using (2.13), we see that φ|uρ
equals∑

x1∈O/ρO
n,r

cφ

(
n− Re

((
2ir√
|D|
− mx1

ρρ

)
x1

)
, ρ

(
r −

√
|D|mx1

iρρ

))

× e

(
nτ +

ir√
|D|

z1 +
ir√
|D|

z2

)
.

Now let r′ = r −
√
|D|mx1

iρρ . As x1 varies modulo ρ, r′ varies mod-

ulo
i
√
|D|m
ρ with r′ ≡ r (mod

i
√
|D|m
ρρ ). Also we have that 2ir√

|D|
− mx1

ρρ =

i√
|D|

(r′ + r) and so

(4.4) φ|uρ =
∑
n,r

∑
r′≡r (mod

i
√
|D|m
ρρ

)

r′ (mod
i
√
|D|m
ρ

)

cφ

(
n+N(ρ)

N(r′)−N(r)

|D|m , ρr′
)

× e

(
nτ +

ir√
|D|

z1 +
ir√
|D|

z2

)
.

From this the conditions at cusps are easily seen to be satisfied. This
completes the proof.

Proposition 4.2. Let ρ ∈ O.

(a) If φ ∈ Jk,m, then φ|Uρuρ = N(ρ)φ.
(b) If φ ∈ Jk,1 and (ρ, ρ) = 1, then φ|Uρuρ = φ.

Proof: (a) Let cρρ(n, r) denote the (n, r)-th Fourier coefficient of φ|Uρuρ.
Then from (4.2) and (4.4) we have

cρρ(n, r) =
∑

r′ (mod i
√
|D|ρm)

r′≡r (mod i
√
|D|m)

cφ

(
n+

N(r′)−N(r)

|D|m , r′
)

= N(ρ)cφ(n, r).

The last step follows from the fact that if φ ∈ Jk,m, then cφ(n′, r′) =

cφ(n,r) whenever |D|n′m−N(r′)= |D|nm−N(r) and r′≡r (mod i
√
|D|m).

This condition is satisfied in each summand above.

(b) Let cρρ(n, r) denote the (n, r)-th Fourier coefficient of φ|Uρuρ.
Then we have

cρρ(n, r) =
∑

r′ (mod i
√
|D|ρ)

r′≡r (mod i
√
|D|)

cφ

(
n+

N(r′)−N(r)

|D|m ,
ρr′

ρ

)
.
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Since (ρ, ρ) = 1, the only non-zero summand is for which ρ | r′. But there

exists exactly one such r′ (mod i
√
|D|ρ) with r′ ≡ r (mod i

√
|D|). Now

the proof follows by noting that if φ ∈ Jk,1, then cφ(n′, r′) = cφ(n, r)

whenever |D|n′ −N(r′) = |D|n−N(r) and r′ ≡ r (mod i
√
|D|).

Let J spez
k,m denote the subspace of Jk,m consisting of those φ ∈ Jk,m

whose Fourier coefficients c(n, r) depend only on |D|nm − N(r). We
present the following arguments for the benefit of the reader.

Proposition 4.3. The Eichler–Zagier map ι defined in Subsection 2.2
is injective on J spez

k,m .

Proof: Let φ ∈ J spez
k,m . Then cφ(n, r) = cφ(n′, r′), whenever |D|n′m −

N(r′) = |D|nm − N(r). Recall from (2.8), the definition of the theta
component hs:

hs(τ) =
∑
n>0

N(s)+n∈|D|mZ

cφ

(
n+N(s)

|D|m , s

)
e(nτ/|D|m).

But |D|
(n+N(s)
|D|m

)
m−N(s) = n, thus cφ

(n+N(s)
|D|m , s

)
= cφ( n

|D|m , 0). That

is hs = h0. This is true for every s. Now if h := ι(φ) = 0, then
0 = h(τ) = m|D|ih0|k−1J(m|D|τ) (from (2.11)). Thus h0 = 0. This
along with hs = h0 for all s implies φ = 0.

Lemma 4.4.

(a) For k 6= 0 (mod w(D)), J spez
k,m = 0.

(b) For k = 0 (mod w(D)), J spez
k,1 = Jk,1.

Proof: For (a) note that from (2.10), we have εkh0 = h0, for ε ∈ O×.
Since k 6= 0 (mod w(D)), choosing suitable ε we get h0 = 0. Thus h =
ι(φ) = 0 for any φ ∈ Jk,m. Now the proof follows from Proposition 4.3.

(b) follows from the fact that if φ ∈ Jk,1, then cφ(n′, r′) = cφ(n, r)

whenever |D|n′ −N(r′) = |D|n−N(r) and r′≡r (mod i
√
|D|). More-

over for our choice of discriminants D (which are of the form −p, p ≡ 3
(mod 4) as in Theorem 1), N(r) − N(r′) ∈ |D|·Z implies that ε ∈ O×
such that r−εr′ ∈ i

√
|D|O. This can be checked by hand for D = −4,−8

and for odd D, using Lemma 4.12.

Lemma 4.5. Let ρ ∈ O and φ ∈ J spez
k,m . Then φ|Uρ ∈ J spez

k,mN(ρ).

Proof: Let cρ(n, r) denote the (n, r)-th Fourier coefficient of φ|Uρ. Then
cρ(n, r) = 0 if ρ - r and cρ(n, r) = cφ(n, r/ρ) if ρ | r. Hence it is enough
to prove the result for (n, r) when ρ | r.
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Let (n, r) and (n′, r′) be such that |D|nmN(ρ)−N(r) = |D|n′mN(ρ)−
N(r′). Then |D|nm− N(r)

N(ρ) = |D|n′m− N(r′)
N(ρ) . i.e., we have cφ(n, r/ρ) =

cφ(n′, r′/ρ). Since φ ∈ J spez
k,m this implies cρ(n, r) = cρ(n

′, r′). Thus

φ|Uρ ∈ J spez
k,mN(ρ).

For any l ∈ N, like in the classical case we can define an operator
Vl : Jk,m → Jk,ml (see [6]). For any φ ∈ Jk,m, the Fourier expansion
of φ|Vl is given by

(4.5) φ|Vl(τ, z1, z2) =
∑
n≥0

∑
N(r)≤|D|lmn

 ∑
r/a∈O
a|(n,l)

ak−1cφ

(
nl

a2
,
r

a

)
× e

(
nτ +

ir√
|D|

z1 +
ir√
|D|

z2

)
.

4.2. Injectivity of Eichler–Zagier map ι. The aim of this subsection
is to indicate that the Eichler–Zagier map ι : Jk,p → Sk−1(|D|p, χD)
defined by φ 7→ ι(φ) =: h (as in (2.14)) may fail to be injective at least
for certain primes p. This is in contrast with the classical case where
it is known (see [5]) that the Eichler–Zagier map is injective for prime
indices. Perhaps this subsection justifies our efforts in Section 4 to prove
Theorem 1 using these maps. In this subsection we restrict ourselves
to K = Q(i) (i.e., D = −4). We start with some auxiliary results.

Lemma 4.6. For any odd prime p ∈ N, p > 5, let Vp be the operator
on Jk,1. Then Vp’s are injective on J cusp

k,1 .

Proof: Let V ∗p denote the adjoint of Vp. Then from [12, p. 190] we

have V ∗p Vp = Tp + (p + 1)pk−2, where Tp is the p-th Hecke operator

on Jk,1. Suppose φ ∈ J cusp
k,1 is such that φ|Vp = 0, write φ =

∑
ciφi

as a sum of Hecke eigenforms, say, with c1 > 0. Then we get that
λ1(p) = −(p + 1)pk−2, where φ1|Tp = λ1(p)φ1. We also have from
[12, Lemma 2, p. 195] that λ1(p) = a(p2) − pk−3χ−4(p) for any odd
prime p and for some normalized eigenform f ∈ Sk−1(Γ0(4), χ−4) such
that f(τ) =

∑
n≥1 a(n)e(nτ). This means that a(p2) = −pk−1 − pk−2 +

pk−3χ−4(p). Thus

|a(p2)| = |pk−1 + pk−2 − pk−3χ−4(p)| = pk−1

∣∣∣∣1 +
1

p
− 1

p2
χ−4(p)

∣∣∣∣ > pk−1.

But this is impossible since we have |a(p2)| ≤ 3pk−2 (from Deligne’s
bound). Thus Vp must be injective on J cusp

k,1 .
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Proposition 4.7. Jk,p \ J spez
k,p is non-empty when k ≥ 12 is even and

p > 5 splits in Q(i).

Proof: For k, p as in the theorem, we claim that there exists a non-zero
Φ ∈ J cusp

k,1 such that Φ|Vp /∈ J spez
k,p . Note that Φ|Vp 6= 0 by Lemma 4.6.

To prove this, we start more generally by taking a non-zero form φ ∈ Jκ,1
(κ > 4) and consider φ|Vp.

Now cp(n, r) = cφ(np, r)+pκ−1cφ
(
n
p ,

r
p

)
, where cp(n, r) is the (n, r)-th

Fourier coefficient of φ|Vp and the term cφ
(
n
p ,

r
p

)
= 0 if either p - n or

p - r. Since p splits in Q(i), we can write p = ππ, where π ∈ O is a prime.
Choose two pairs of (n, r) as n1 = Np, r1 = p, and n2 = Np, r2 = π2.
Then 4n1p − N(r1) = 4n2p − N(r2). But cp(n1, r1) = cφ(Np2, p) +
pκ−1cφ(N, 1) and cp(n2, r2) = cφ(Np2, π2). Since φ ∈ J8,1 and from
Lemma 4.4, we get cφ(Np2, p) = cφ(Np2, π2). Thus to prove our claim,
it is enough to get a φ such that cφ(N, 1) 6= 0 for some N > 0 or
equivalently h1(φ) 6= 0, where h1(φ) denotes the ‘odd’ theta component
of φ.

Let Ψ := Ψ8,1 ∈ J8,1 be the cusp form as given in [17, p. 308]. Then
one can directly verify that the theta component h1(Ψ) of Ψ is non-zero.
Now consider the Jacobi form

Ψk = Ek ·Ψ,

where Ek ∈ M1
k is the Eisenstein series in one variable. Clearly Ψk ∈

Jk+8,1 is such that h1(Ψk) = Ek · h1(Ψ) 6= 0. By our discussion in
the above paragraph (with φ = Ψk and κ = k + 8 ≥ 12), we see that
Ψk|Vp 6∈ J spez

k,p .

Proposition 4.8. If p does not split in Q(i), then J spez
k,p is the maximal

subspace of Jk,p on which the Eichler–Zagier map ι is injective.

Proof: We first claim that, under the above assumptions, J η0k,p = J spez
k,p .

Granting this for the moment, note that the proposition follows since
ι annihilates Jk,p \ J spez

k,p ; see Subsection 2.2.1. To prove the above

equality, by the same reason as above, clearly J spez
k,p ⊆ J

η0
k,p.

Now suppose that φ ∈ J η0k,p, so that hµs = hs for all s (mod 2p) such

that (s, 2p) = 1 and µ ∈ G (see (2.15)). Therefore it is enough to show
that r1 ≡ µr2 (mod 2p) for some µ ∈ G, whenever r1, r2 ∈ O, with
N(r1) ≡ N(r2) (mod 4p) and (r1r2, 2p) = 1. The proof now is a easy
exercise in congruences, and we omit it.

Remark 4.9. Summarizing the content of the above results, we see that
in general J spez

k,p could be strictly smaller than Jk,p and that ι may fail
to be injective in its complement.
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4.3. Index-old Hermitian Jacobi forms of index p. In this sub-
section we prove the assumptions made in Subsection 3.2 that given
φ ∈ Jk,p, either h 6= 0 or hη̃ 6= 0 with η and η̃ as in Subsection 2.2. In
the process we also show that if φ ∈ Jk,p is such that c(n, s) = 0 for

all s with (s, i
√
|D|p) = 1, then either φ = 0 or φ must come from a

Hermitian Jacobi form of lower index depending on whether χD(p) = −1
or χD(p) = 1 respectively.

Let G be the group defined in Subsection 2.2. Denote the group
(O/i

√
|D|pO)× by G̃.

Proposition 4.10. Let φ ∈ Jk,p be such that hη̃ = 0 for all extensions η̃
of any character η of G. Then the theta components hs of φ are zero for
all (s, i

√
|D|p) = 1.

Proof: Suppose for any character η on G

hη̃ =
∑

t∈O/i
√
|D|pO

η̃(t)ht = 0 for all extensions η̃ of η.

Let us fix δ to be one character which extends η. We say that δ is

over η. Then all other characters which extend η are of the form δ ·̂̃G/G,

where ̂ denotes the character group. Let s ∈ O with (s, i
√
|D|p) = 1.

Now look at the sum∑
η̃ over η

η̃(s)hη̃ =
∑

t∈O/i
√
|D|pO

(∑
λ

δλ(ts−1)

)
ht.

In the above sum, λ varies in ̂̃G/G. Let us look at the sum in braces.
Let α ∈ O. Then by orthogonality

∑
λ

(δλ)(α) = δ(α)
∑
λ

λ(α) =


0 if (α, i

√
|D|p) 6= 1,

δ(α)#(G̃/G) if α ∈ G,
0 if α ∈ G̃−G.

This means that the sum above is

(4.6) 0 =
∑

η̃ over η

η̃(s)hη̃ = #(G̃/G)
∑
µ∈G

η(µ)hµs.

Note that when η(ε) 6= ε−k, then hη̃ is automatically zero (see [6]).
Thus (4.6) is true for all characters η on G. Now sum (4.6) over charac-
ters of G to get

0 =
∑
η∈Ĝ

∑
µ∈G

η(µ)hµs = #(G)hs.

Thus hs = 0 for all (s, i
√
|D|p) = 1. This completes the proof.
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Remark 4.11. Proposition 4.10 remains true for any fundamental dis-
criminant D.

Lemma 4.12. Let ρ ∈ O be a prime such that N(ρ) ∈ Z is a prime.
Then {1, 2, . . . , N(ρ)} is a set of coset representatives for O/ρO.

Proof: Let C = {1, 2, . . . , N(ρ)}. It is enough to prove that any two
distinct elements of C are not congruent modulo ρ. Suppose α, β ∈ C
are such that α ≡ β (mod ρ). Since N(ρ) is a prime, this would imply
N(ρ) | (α− β). But this is possible only when α = β.

Remark 4.13. Note that when D is odd, |D| is a prime in Z. Thus i
√
|D|

is a prime in O. If D = −4, then i
√
|D| = (1 + i)2 and if D = −8, then

i
√
|D| = (−i

√
2)3. Both (1 + i) and −i

√
2 are primes in their respective

ring of integers.

Proposition 4.14. Let p ∈ Z be a prime such that χD(p) = −1 and

φ ∈ Jk,p be such that hs = 0 for s ∈ O with (s, i
√
|D|p) = 1. Then

hs = 0 for (s, i
√
|D|) = 1.

Proof: First we consider the case when D is odd. Since p is a prime in O
and (p,D) = 1 and since we already know that hs = 0 for (s, i

√
|D|p)=1,

it is enough to prove that hs = 0 for s with (s, i
√
|D|p) = p. Any such

s is of the form αp, where α ∈ O/i
√
|D|O and (α, i

√
|D|) = 1. By

Remark 4.13 and Lemma 4.12, we can choose C = {1, 2, . . . , |D|} to be

the set of coset representatives for O/i
√
|D|O. Now if N(αp) ≡ N(βp)

(mod |D|p) for some α, β ∈ C, then we must have that N(α) ≡ N(β)
(mod |D|) or equivalently α2 ≡ β2 (mod |D|). But since |D| is a prime
we must have that α = ±β.

From the given condition and using (2.11) we get, for any s with

(s, i
√
|D|p) = 1, ∑

r∈O/i
√
|D|pO

e

(
2 Re(sr)

|D|p

)
hr = 0.

Now it is clear from (2.10) that hαp = 0. This completes the proof when
D is odd.

When D = −4 or −8, we replace i
√
|D| in the above proof by (1 +

i) and −i
√

2 respectively and proceed to prove the result in the same
manner.

Proposition 4.15. Let φ ∈ Jk,p be such that c(n, s) = 0 for all s with

(s, i
√
|D|) = 1. Then φ = 0.
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Proof: First we prove this for the case D odd.

Let φ(τ, z1, z2) =
∑
c(n, s)e

(
nτ + is√

|D|
z1 + is√

|D|
z2

)
. For any r ∈ O

with (r, i
√
|D|) = i

√
|D|, we have 1 − e

(
2√
|D|

Re
(

r√
|D|

))
= 0. Since

c(n, s) = 0 for all s with (s, i
√
|D|) = 1, for any r ∈ O we have(

φ− φ|

[
0,

r

i
√
|D|

])
(τ, z1, z2)

=
∑

c(n, s)

(
1− e

(
2√
|D|

Re

(
rs√
|D|

)))
e(. . . ) = 0.

Now applying the matrix ( ∗ 0
1 1 ) ∈ Γ1(O) to the above equation and using

the formulas in Subsection 2.2 we get

(4.7) φ = e

(
pN(r)

|D|

)
φ|

[
r

i
√
|D|

,
r

i
√
|D|

]
.

Also applying the matrix
(

0 −1
1 0

)
∈ Γ1(O) we get, φ = φ|

[
r

i
√
|D|
, 0
]
. Thus

(4.8) φ = φ|

[
0,

r

i
√
|D|

]
|

[
r

i
√
|D|

, 0

]
= φ|

[
r

i
√
|D|

,
r

i
√
|D|

]
.

Now from (4.7) and (4.8) and from the fact that (p, |D|) = 1, we get φ=0.

When D = −4 or −8, the proof follows similarly by replacing i
√
|D|

by (1 + i) and −i
√

2 respectively.

Corollary 4.16. Let p ∈ Z be a prime such that χD(p) = −1 and
φ ∈ Jk,p be non-zero. Then there exists a character η of G such that
hη̃ 6= 0.

Proof: This is immediate from Propositions 4.10, 4.14, and 4.15.

For any r ∈ O, let (r) denote the ideal generated by r. We now define
the Möbius function on O similarly as in case of Z.

Definition 5. Let r ∈ O, then define the Möbius function µ as follows

µ(r) =


1 when (r) = (1),

(−1)t if (r) = p1p2 · · · pt for distinct prime ideals pi,

0 otherwise.

The following lemma is the starting point of our discussion of index
old forms.
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Lemma 4.17. Let r, s ∈ O be such that (r, s) 6= 1. Then∑
t|s

µ(t)
∏
π|t

e

(
2√
|D|

Re

(
ir

π

))
= 0.

Proof: By our assumption on r and s, there exists a prime divisor π of s
such that π | r. Thus we have 1− e

(
2√
|D|

Re
(
ir
π

))
= 0. Now taking the

product over all prime divisors of s we get∏
π|s

(
1− e

(
2√
|D|

Re

(
ir

π

)))
= 0.

Expanding the product on the left hand side we get the required expres-
sion.

Proposition 4.18. Let p ∈ Z be a prime such that χD(p) = 1 and

φ ∈ Jk,p be such that hs = 0 for s ∈ O with (s, i
√
|D|p) = 1. Then

φ ∈ Jk,1|Uπ + Jk,1|Uπ, where p = ππ, with π ∈ O prime.

Proof: Suppose φ is such that hs = 0 for all s ∈ O with (s, i
√
|D|p) = 1.

Then c
(n+N(s)
|D|p , s

)
= 0 for all s ∈ O with (s, i

√
|D|p) = 1. This in

turn implies c(n, s) = 0 whenever (s, i
√
|D|p) = 1. We now prove the

proposition by adapting a method as outlined in [20], and with some
care.

We first prove the result when D is odd. Let r ∈ O, then using
c(n, s) = 0 whenever (s, i

√
|D|p) = 1 and Lemma 4.17 with s = i

√
|D|p

we get

(4.9)
∑

t|i
√
|D|p

µ(t)φ|

∏
ρ|t

[
0,
r

ρ

] = 0.

Now, by applying suitable matrices ( ∗ ∗c d ) ∈ Γ1(O) and summing up, we
get

0 =

|D|p2∑
r=1

⌊
|D|p2
r

⌋∑
c,d=1

(c,d)=1

∑
t|i
√
|D|p

µ(t)φ|

∏
ρ|t

[(
rc

ρ
,
rd

ρ

)
, e

(
cdr2

N(ρ)

)]

=
∑

t|i
√
|D|p

µ(t)

|D|p2∑
x1,x2=1

φ|

∏
ρ|t

[(
x1

ρ
,
x2

ρ

)
, e

(
x1x2

N(ρ)

)] .

Recall that ρ in the above sums are primes in O and that N(ρ) is a
prime in Z (cf. Remark 4.13). Now using Lemma 4.12 we note that for
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each ρ, the number of distinct x1 (mod ρ) as x1 varies from 1 to |D|p2

is |D|p2/N(ρ) (and similarly for x2). Finally using the Chinese Remain-
der theorem we can rewrite the above as

(4.10) 0 =
∑

t|i
√
|D|p

µ(t)
|D|2p4

N(t)2

∏
ρ|t

∑
x1,x2 (mod ρ)

φ|
[(

x1

ρ
,
x2

ρ

)
, e

(
x1x2

N(ρ)

)]
.

Since (4.9) is unchanged if we change the order of the variables in-

volved, separating the terms in (4.10) according to whether (t, i
√
|D|)=1

or not (and recalling that i
√
|D| is a prime), we get

(4.11) |D|2ψ =

|D|∑
x1,x2=1

ψ|

[(
x1

i
√
|D|

,
x2

i
√
|D|

)
, e

(
x1x2

|D|

)]
,

where

ψ = p4φ− p2
∑

x (mod π)

φ|
[x
π

]
− p2

∑
x (mod π)

φ|
[x
π

]
+
∏
π|p

∑
x (mod π)

φ|
[x
π

]
.

Since χD(p) = 1, p splits in O, say p = ππ. Now using the operators
defined in Subsection 4.1 we have

ψ = p4φ− p3φ|uπUπ − p3φ|uπUπ + p2φ|uπUπuπUπ
= p4φ− p3φ|uπUπ − p3φ|uπUπ + p2φ|uπUπ.

The last equality follows from part (b) of Proposition 4.2. Thus ψ ∈ Jk,p.
Now applying [0, r] ∈ O2 to (4.11) we get

|D|2ψ =
∑
x1,x2

e

(
2pRe

(
x1r

i
√
|D|

))
ψ|

[(
x1

i
√
|D|

,
x2

i
√
|D|

)
, e

(
x1x2

|D|

)]
.

Now summing over r (mod i
√
|D|) in (4.11) and using (2.13) for the

exponential sum over r, we get

|D|3ψ = |D|
|D|∑
x2=1

ψ|

[
0,

x2

i
√
|D|

]
.

Now writing the Fourier expansion of the right hand side, we find that
cψ(n, s) = 0 for all s with (s, i

√
|D|) = 1. That is, ψ satisfies the

hypothesis of Proposition 4.15. Thus ψ = 0, that is we get

φ− 1

p
φ|uπUπ −

1

p
φ|uπUπ +

1

p2
φ|uπUπ = 0.

When D = −4 or −8, the proof follows very similarly by replacing i
√
|D|

by (1 + i) and −i
√

2 respectively. We omit the details. This completes
the proof since φ|uπ, φ|uπ ∈ Jk,1.
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Corollary 4.19. Let p ∈ Z be a prime such that χD(p) = 1 and φ ∈ Jk,p
be non zero.

(a) If k 6≡ 0 (mod w(D)), then there exists a character η over G such
that hη̃ 6= 0.

(b) If k ≡ 0 (mod w(D)) and hη̃ = 0 for all η̃, then h 6= 0.

Proof: (a) Suppose not, then by Proposition 4.18 φ ∈ Jk,1|Uπ+Jk,1|Uπ.
By Lemma 4.5 this means φ ∈ J spez

k,p = {0} (by Lemma 4.4), a contra-
diction.

(b) By Proposition 4.10, the given condition means hs = 0 for all

(s, i
√
|D|p) = 1. Thus by Proposition 4.18 and Lemma 4.5 we have

φ ∈ J spez
k,p . Thus h 6= 0 (see Proposition 4.3).

Proof of Proposition 3.2: This is immediate from the above corollary.

Remark 4.20. When the class number of Q(
√
D) is not 1, we do not

see immediately how to adapt the arguments used in Proposition 4.18.
Moreover, the definition of the operator Uρ (ρ ∈ O) perhaps has to
be generalized to the setting of ideals, which again is not clear at the
moment.

4.4. Some lemmas about characters of G. To descend to the ellip-
tic modular forms we must control N/mχ ratio. To this end we prove the
following results about the characters of G defined as in Subsection 2.2.

Lemma 4.21. Let η be a character of G. Then there exists an exten-
sion η̃ of η to G̃ such that restriction of η̃ to Z is non trivial and its
conductor is divisible by p.

Proof: Since (i
√
|D|, p) = 1, any extension η̃ of η to G̃ can be decom-

posed as η̃ = η̃D · η̃p, where η̃D and η̃p are characters of (O/i
√
|D|O)×

and (O/pO)× respectively.
Let ψ denote the restriction of η̃ to Z so that ψ is a Dirichlet character

modulo |D|p. Since (|D|, p) = 1 we can decompose ψ = ψ|D| · ψp, where
ψ|D| and ψp are Dirichlet characters modulo |D| and p respectively. Note
that ψ|D| and ψp are the restrictions of η̃D and η̃p to Z respectively. Now
it is enough to prove that ψp is non trivial for some restriction of η̃. We
proceed as follows.

Let n ∈ Z be such that (n, p) = 1 and n 6≡ ±1 (mod p). Choose
m ∈ Z such that m ≡ n (mod p) and m ≡ 1 (mod |D|). Then ψ(m) =
ψp(m) = ψp(n). Now summing over all η̃ over η we get∑

η̃ over η

ψp(m) =
∑

η̃ over η

η̃p(m) =
∑

η̃ over η

η̃(m).
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Now for the last sum we have
∑
η̃ over η η̃(m) =

∑
ξ∈̂̃G/G

η̃0(m)ξ(m) =

#(G̃/G)η̃0(m)δG(m), where δG(s) = 1 if s ∈ G, 0 otherwise, and η̃0 is a

fixed extension of η to G̃. Thus we have∑
η̃ over η

ψp(m) = #(G̃/G)η̃0(m)δG(m).

Clearly by our choice of m and n we have N(m) = m2 6≡ 1 (mod |D|p).
Thus δG(m) = 0. Hence not all ψp could be trivial. This completes the
proof.

Lemma 4.22. Let η be a character of G and ξ, ξ′ ∈ G̃ be two extensions
of η. Then hξ defined as in (2.16) is zero if and only if hξ′ = 0.

Proof: We can write hξ(τ) :=
∑
s mod i

√
|D|p, (s,i

√
|D|p)=1

ξ(s)hs(|D|pτ)
as

hξ(τ) =
∑

s∈G̃/G

ξ(s)

(∑
µ∈G

η(µ)hµs(|D|pτ)

)
and similarly for hξ′ . Now hξ = 0 implies that each of the terms (let us
call them fs) in the braces above are zero. This can be checked from the
shape of the Fourier expansion of the fs’s. Namely, the Fourier expansion
of fs is supported on all n such that n ≡ −N(s) (mod |D|p) and no two

norms of two distinct elements s1, s2 from G̃/G with (s1s2, i
√
|D|p) = 1

can be congruent modulo |D|p (cf. end of proof of Proposition 4.8). Since
fs does not depend on ξ, this proves the lemma.

Proof of Proposition 3.3: This is an immediate consequence of Lem-
ma 4.21 and Lemma 4.22.

5. The case of elliptic modular forms

5.1. Proof of Theorem 2(a).

Theorem 6. Let χ be a Dirichlet character of conductor mχ and N be a
positive integer such that N/mχ is square-free. Let f ∈ Sk(N,χ) be such
that a(f, n) = 0 for all but finitely many square-free integers n. Then
f = 0.

Proof: When f ∈Sk(N,χ) is a newform the result follows from multiplic-
ity-one. Let f ∈Sk(N,χ) be non-zero. Consider a basis {f1, f2, . . . , fs}
of newforms of weight k and level dividing N . Let their Fourier expan-
sions be given by fi(τ) =

∑∞
n=1 bi(n)qn. Then for all primes p, one has

Tpfi = bi(p)fi. By “multiplicity-one”, if i 6= j, we can find infinitely
many primes p > N such that bi(p) 6= bj(p). Now by the theory of
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newforms, there exists αi,δ ∈ C such that f(τ) can be written uniquely
in the form

(5.1) f(τ) =

s∑
i=1

∑
δ|N

αi,δfi(δτ).

Since f 6= 0, after renumbering the indices, we may assume α1,δ 6= 0 for
some δ | N . Let p1 - N be any prime for which b1(p1) 6= b2(p1). Then
consider the form g1(τ) =

∑∞
n=1 a1(n)qn := Tp1f(τ)−b2(p1)f(τ) so that

g1(τ) =

s∑
i=1

(bi(p1)− b2(p1))
∑
δ|N

αi,δfi(δτ).

The cusp forms f2(δτ) for any δ | N , do not appear in the decomposition
of g1(τ) but f1(δτ) does for some δ | N . Also it is easy to see that a1(n) =

a(f, p1n)+χ(p1)pk−1
1 a(f, n/p1)−b2(p1)a(f, n). Proceeding inductively in

this way, we can remove all the non-zero newform components fi(δτ) for
all i = 2, . . . , s, to obtain a cusp form F (τ) in Sk(N,χ). After dividing
by a suitable non-zero complex number we get

F (τ) =

∞∑
n=1

A(n)qn :=
∑
δ|N

α1,δf1(δτ).

Now by repeating the above steps we get finitely many algebraic num-
bers βj and positive rational numbers γj such that for every n

(5.2) A(n) =
∑
δ|N

α1,δb1(n/δ) =
∑
j

βja(f, γjn).

Let δ1 be the smallest divisor of N such that α1,δ1 6= 0 in (5.1) and let
F ∗(τ) = Uδ1F (τ). Then F ∗(τ) ∈ Sk(N,χ) with F ∗(τ)=

∑∞
n=1A(δ1n)qn.

Since f1 6= 0 there are infinitely many primes p such that b1(p) 6= 0.
Let S = {p : p prime, p | N} ∪ {p : p prime, b1(p) = 0} ∪ {the primes pi
chosen as above}.

If p /∈ S, then A(δ1p) = α1,δ1b1(p) 6= 0 and there are infinitely many
such primes. For each of these p we get a j = j0 such that a(f, γj0δ1p) 6=
0. Let us now finish the proof of the theorem.

Let m1 | N be such that f1(τ) is a newform in Sk(m1, χ1), where
χ1 (mod m1) is the character induced by χ (mod N). Then mχ | m1

and for each δ in the sum (5.1), δm1 | N . Since N/mχ is square-free we
must have that each of the δ in (5.1) is square-free (since δ | (N/mχ)). In
particular δ1 is square-free. Next, in the process of obtaining F as above,
clearly we can choose primes p1, p2, . . . pairwise distinct (by multiplicity-
one). By construction, the prime divisors of any γj appearing in (5.2) are
from the set {p1, p2, . . . , ps}. Moreover, since the highest power of a pi
(i = 1, 2, . . . , s) is either 0, ±1, all the γj ’s are square-free. In particular
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γj0 is square-free and δ1, p, γj0 are pairwise co-prime. The result thus
follows with n = γj0δ1p with any p 6∈ S.

5.2. Second moment of square-free Fourier coefficients. Theo-
rem 2 would be proved by studying the second moment of the Fourier
coefficients of an integral weight cusp form. We first recall the following
well known result due to Rankin [14] and Selberg [19].

Theorem 7. Let f ∈ Sk(N,χ) be non-zero. Then there exists a con-
stant Af > 0 such that

(5.3)
∑
n≤X

|a′(f, n)|2 = AfX +O(X
3
5 ).

Moreover, Af = 3
π

(4π)k

Γ(k) [SL2(Z) : Γ0(N)]−1〈f, f〉N . The implied constant

depends only on f .

The following is a first step towards the proof of Theorem 2, adapted
from Saha [15].

Proposition 5.1. Let N be a positive integer and χ be Dirichlet char-
acter modulo N whose conductor is mχ. Let f ∈ Sk(N,χ) be non-zero
and a(f, n) = 0 whenever (n,N) > 1. Let M be a fixed square-free inte-
ger such that M contains all the primes dividing N . Then there exists
Bf,M > 0 such that

(5.4)
∑
n≤X

(n,M)=1

|a′(f, n)|2 = Bf,MX +O(X
3
5 ).

Proof: Define g(τ)=
∑

(n,M)=1 a(f, n)qn. Let p1, p2, . . . , pt be the primes

in M that do not divide N and M0 be such that M = M0p1p2 · · · pt.
Then g ∈ Sk(NM2/M0, χ) (see [11]). If g 6= 0 then∑

n≤X, (n,M)=1

|a′(f, n)|2 =
∑
n≤X

|a′(g, n)|2 = AgX +O(X
3
5 ),

where Ag is as in Theorem 7. Put Bf,M := Ag. Since g 6= 0, we have
Bf,M > 0.

We now prove that g 6= 0. Let g0 =f and g1(τ)=
∑

(n,p1)=1 a(g0, n)qn.

Then g1 ∈ Sk(Np2
1, χ) (see [11, p. 157]). If g1 = 0, then a(f, n) = 0

for every (n, p1) = 1, which in turn implies (p1, N/mχ) > 1, which is
impossible.

For each 1≤j≤ t construct gj as gj(τ)=
∑

(n,pj)=1 a(gj−1, n)qn. Then

gj ∈ Sk(Np2
1 · · · p2

j , χ). If for any 1 ≤ j ≤ t, gj = 0 but gj−1 6= 0, then

a(gj−1, n)=0 for (n, pj)=1. This would mean (pj , Np
2
1 · · · p2

j−1/mχ)>1,
which is impossible. Hence gj 6= 0 for 1 ≤ j ≤ t.
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We have from the definition of g that

g(τ) =
∑

(n,M0)=1

a(gt, n)qn.

If g=0, then a(gt, n)=0 whenever (n,M0)=1; that is a(f, n)=0 when-
ever (n,M0)=1. Consequently f=0 which is not possible. Thus g 6=0.

Corollary 5.2. Let f ∈ Sk(N,χ) be non-zero. Then for any r with
(r,N) = 1, there exists a constant Af,r > 0 depending only on f and r
such that

(5.5)
∑
n≤X

|a′(f, nr)|2 = Af,rX +O(X
3
5 ).

Moreover, Af,r = 3
π

(4π)k

Γ(k) [SL2(Z) : Γ0(Nr)]−1r1−k〈Urf, Urf〉Nr.

Proof: Consider the Hecke operator Ur acting on f defined by Urf =∑
n>0 a(f, nr)e(nτ). Let g = Urf , then we have that g ∈ Sk(Nr, χ).

Now applying Theorem 7 to g we get (5.5).

5.2.1. Some bounds for Peterson norms. In order to get an es-
timate for Af,r in (5.5) we slightly modify a result by J. Brown and
K. Klosin [3] to include characters and use it to get an expression
for 〈Urf, Urg〉. The following results might be of independent interest
also.

Theorem 8. For p - N , let f, g ∈ Sk(N,χ) be eigenfunctions for the
Hecke operator Tp with eigenvalues λf (p) and λg(p) respectively. Then

(5.6) 〈Upf, Upg〉Np =

(
pk−2 +

(p− 1)λf (p)λg(p)

p+ 1

)
〈f, g〉Np.

Proof: We have Upf = Tpf − χ(p)p
k
2−1f |Bp, where Bp is the ma-

trix
(
p 0
0 1

)
. Thus 〈Upf, Upf〉Np is given by (λf (p)λg(p)+pk−2)〈f, g〉Np−

p
k
2−1(λg(p)χ(p)〈f |Bp, g〉Np+λf (p)χ(p)〈g|Bp, f〉Np), where Bp is the ma-

trix
(
p 0
0 1

)
.

Now we evaluate 〈f |Bp, g〉Np and 〈g|Bp, f〉Np. Since
(

1 j
0 p

)
=
(

1 0
0 p

)(
1 j
0 1

)
,

we get

p1− k
2 〈Tpf, g〉Np =

p−1∑
j=0

〈
f |
(

1 0
0 p

)
, g

〉
Np

+ χ(p)〈f |Bp, g〉Np.

Now there exists a, b ∈ Γ0(N) such that a
(

1 0
0 p

)
b =

(
p 0
0 1

)
and, proceed-

ing as in [3], we get that

(5.7) 〈f |Bp, g〉Np = p1− k
2

λf (p)

χ(p)(p+ 1)
〈f, g〉Np.

We get a similar expression for 〈g|Bp, f〉Np.
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Putting everything together we get

〈Upf, Upg〉Np =

(
pk−2 +

(p− 1)λf (p)λg(p)

p+ 1

)
〈f, g〉Np.

We now use Theorem 8 to study the quantity 〈Ur2f, Ur2g〉, where r is
square-free.

Proposition 5.3. Let p - N and f, g ∈ Sk(N,χ) be eigenfunctions for
the Hecke operators Tp and Tp2 with the eigenvalues λf (p), λg(p), and
λf (p2), λg(p

2) respectively. Then

(5.8) 〈Up2f, Up2g〉Np2 =(
λf (p2)λg(p2) + pk−2λf (p)λg(p)−

λf (p2)λ2
g(p) + λ2

f (p)λg(p2)

p+ 1

)
〈f, g〉Np2 .

Proof: Using the definition of Tp2 from (2.19) we have

Tp2f = Up2f + χ(p)p
k
2
−1(Upf)|Bp + χ(p2)pk−2f |Bp2 ,

i.e., Up2f = Tp2f − χ(p)p
k
2
−1(Upf)|Bp − χ(p2)pk−2f |Bp2 ,

where for d ≥ 1, Bd is the matrix ( d 0
0 1 ). Now expanding 〈Up2f, Up2g〉Np2

using the above expression for Up2f and using Theorem 8 we get the
proposition.

Corollary 5.4. Let f, g ∈ Sk(N,χ) be eigenfunctions for all Hecke oper-
ators Tn with (n,N) = 1 and r be any square-free integer with (r,N) = 1.
If 〈f, g〉N = 0, then 〈Ur2f, Ur2g〉Nr2 = 0.

Proof: First we prove by induction on the number of prime factors of r
that 〈Ur2f, Ur2g〉Nr2 equals
(5.9)

〈f, g〉Nr2 ·
∏
p|r

(
λf (p2)λg(p2) +pk−2λf (p)λg(p)−

λf (p2)λ2
g(p) + λ2

f (p)λg(p2)

p+ 1

)
.

Let r = p1p2 · · · pm. For m = 1 the result in (5.9) is true from Proposi-
tion 5.3. Now we assume (5.9) to hold for m− 1.

Let r1 = r/pm and let f1 = Ur21f and g1 = Ur21g. Then f1, g1 ∈
Sk(Nr2

1, χ) and f1, g1 are eigenfunctions for Tpm and Tp2m with the eigen-

values λf (pm), λg(pm), and λf (p2
m), λg(p

2
m) respectively (since Ur21 com-

mutes with Tpm and Tp2m). Now using Proposition 5.3, 〈Up2mf1, Up2mg1〉Nr2
equals

〈f1, g1〉Nr2

×

(
λf (p2

m)λg(p2
m)+pk−2

m λf (pm)λg(pm)−
λf (p2

m)λ2
g(pm) + λ2

f (pm)λg(p2
m)

pm + 1

)
.



336 P. Anamby, S. Das

The proof of (5.9) follows now by induction, and Corollary 5.4 is imme-
diate.

For any positive integer r, let ω(r) denote the number of distinct
primes dividing r. We have the following corollary.

Corollary 5.5. Let f ∈ Sk(N,χ) be an eigenfunction of the Hecke op-
erators Tn for all (n,N) = 1 with the corresponding eigenvalues λf (n)
and r be a square-free integer with (r,N) = 1. Then

(5.10) 〈Ur2f, Ur2f〉Nr2 ≤ 19ω(r)r2k−2〈f, f〉Nr2 .

Proposition 5.6. Let f ∈ Sk(N,χ) and r be a square-free integer with
(r,N) = 1. Then

(5.11) 〈Ur2f, Ur2f〉Nr2 ≤ 19ω(r)r2k−2〈f, f〉Nr2 .

Proof: Let {fi}si=1 be a orthogonal basis for Sk(N,χ) such that fi is an
eigenfunction for Hecke operators Tn for all (n,N) = 1. Write f(τ) =∑s
i cifi(τ). Then using the orthogonality property from Corollary 5.4,

〈Ur2f, Ur2f〉Nr2 =
∑
|ci|2〈Ur2fi, Ur2fi〉Nr2 .

Using Corollary 5.5 we get

〈Ur2f, Ur2f〉Nr2≤19ω(r)r2k−2
∑
i

|ci|2〈fi, fi〉Nr2 =19ω(r)r2k−2〈f, f〉Nr2 .

An immediate consequence is the following.

Corollary 5.7. Let Af,r be as in (5.5) and r = s2 where s is a square-

free integer with (s,N) = 1. Then Af,r ≤ 19ω(s)Af .

Proof: From the expression for Af,r in Corollary 5.2 and Proposition 5.6
we get

Af,r ≤
3

π

(4π)k

Γ(k)
[SL2(Z) : Γ0(Nr)]−119ω(s)〈f, f〉Nr.

Since 〈f, f〉Nr = r
∏
p|r
(
1 + 1

p

)
〈f, f〉N , we get the required bound.

Let S denote the set square-free positive integers and let SM ⊂ S
denote those which are coprime to an integer M . We now proceed as
in [15] to prove Theorem 2.

Proposition 5.8. Let N be a positive integer and χ be Dirichlet char-
acter modulo N . Let f ∈ Sk(N,χ) be non-zero and a(f, n) = 0 whenever
(n,N) > 1. Then there are infinitely many odd and square-free integers n
such that a(f, n) 6= 0. Moreover, for any ε > 0,

#{0 < n < X : n ∈ S, a(f, n) 6= 0} �f,ε X
1−ε.
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Proof: For any square-free positive integer M as in Proposition 5.1, de-
fine

(5.12) Sf (M,X) =
∑
n∈SM
n≤X

|a′(f, n)|2.

Letting g(τ) =
∑

(n,M)=1 a(f, n)qn and use the sieving identity

∑
r2|n

µ(r) =

{
1 if n is square-free,

0 otherwise,

for sieving the square-free terms from the Fourier expansion of g to get

Sf (M,X) =
∑
r∈SM
r≤X

µ(r)
∑

m≤X/r2
(m,M)=1

|a′(g,mr2)|2.

Thus for large X, we get from Proposition 5.1

Sf (M,X) ≥ Bf,M
2

X −
∑
r∈SM

2≤r≤
√
X

∑
m≤X/r2

|a′(g,mr2)|2

≥ Bf,M
2

X −
∑
r∈SM

2≤r≤
√
X

2Ag,r2
X

r2
,

where Ag,r2 is as in Corollary 5.2. Using the bound for Ag,r2 from
Corollary 5.7 and the definition of Bf,M from Proposition 5.1, we get

Ag,r2 ≤ 19ω(r)Ag = 19ω(r)Bf,M , hence

Sf (M,X) ≥

1

2
− 2

∑
r≥2
r∈SM

19ω(r)r−2

Bf,MX

=

5

2
− 2

∏
p-M

(
1 +

19

p2

)Bf,MX.

Let us choose M to be the product of primes p < 87 and the primes di-
viding N such that M is square-free. Note that

∏
p>Y

(
1+ 19

p2

)
is bounded

by e
∑
p>Y

19
p2 which in turn bounded above by e

19
Y . In our case Y ≥ 87

and so e
19
Y < 5/4. Therefore Sf (M,X) > BfX, for some Bf > 0. Now

using (2.18) it is immediate that, for any ε > 0,

#{0 < n < X : n ∈ S, a(f, n) 6= 0} �f,ε X
1−ε.

Remark 5.9. The introduction of the parameterM in the previous propo-
sition is done so as to make the quantity

∑
r∈S
r>2

19ω(r)r−2 less than 1/4.
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Now we prove the result in general case by reducing it to the situation
of Proposition 5.8.

5.3. Proof of Theorem 2. Let p1, p2, . . . , pt be the distinct prime fac-
tors of N . We construct a sequence {fi : 1 ≤ i ≤ t} with the following
properties:

(a) fi 6= 0.
(b) fi ∈ Sk(NNi, χ), where Ni is composed of primes p1, p2, . . . , pi.
(c) a(fi, n) = 0, whenever (n, p1p2 · · · pi) > 1.
(d) If there exist infinitely many square-free integers n such that

a(fi, n) 6= 0, then same is true for fi−1.
(e) If #{0 < n < X : n square-free, a(fi, n) 6=0} � Xε, for some ε>0,

then #{0 < n < X : n square-free, a(fi−1, n) 6= 0} � Xε.

Let f0 = f . Now we construct f1. If

(5.13)
∑

(n,p1)=1

a(f0, n)qn 6= 0,

then we take f1(τ) =
∑

(n,p1)=1 a(f0, n)qn. Then f1 ∈ Sk(Np1, χ)

(see [11]) and satisfies all the required properties. If (5.13) is not
true, then a(f0, n) = 0 for all (n, p1) = 1, that is (p1, N/mχ) > 1 and
f0(τ) = fp1(p1τ) for some fp1 ∈ Sk(N/p1, χ). Since f0 6= 0, we see that
fp1 6= 0 and let

f1(τ) =
∑

(n,p1)=1

a(fp1 , n)qn.

We have f1 ∈ Sk(N,χ). If f1 = 0, then (p1, N/(p1mχ)) > 1, which is
impossible since N/mχ is square-free. Thus again f1 6= 0 and satisfies
all the listed properties. Now we construct fi from fi−1 inductively for
1 ≤ i ≤ t as above. Let fi−1 ∈ Sk(NNi−1, χ). If

(5.14)
∑

(n,pi)=1

a(fi−1, n)qn 6= 0,

then we take
fi(τ) =

∑
(n,pi)=1

a(fi−1, n)qn

and it satisfies all the required properties. If (5.14) is not true then
(pi, Ni/mχ) > 1 and fi−1(τ) = fpi(piτ) for some fpi ∈ Sk(Ni−1/pi, χ).
Since fi−1 6= 0, fpi 6= 0 and we take

fi(τ) =
∑

(n,pi)=1

a(fpi , n)qn.

As above fi 6= 0 and satisfies all the properties. Thus we have con-
structed the sequence {fi : 1 ≤ i ≤ t} as claimed. Now take g = ft and
N ′ = NNt. Then g ∈ Sk(N ′, χ) and a(g, n) = 0 whenever (n,N ′) > 1.
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Now we can apply Proposition 5.8 to g and get that a(g, n) 6= 0 for
infinitely many odd and square-free integers n. The properties of the
sequence {fi : 1 ≤ i ≤ t} allow us to reach f from g and we find that
the result is true for f .

Theorem 2 can be generalized to any N and χ, however the state-
ment of the theorem becomes much more complicated. Here we give
one sample of this when N has three distinct prime factors. The fol-
lowing proposition indeed is necessary for us, it is used to arrive at the
statement of Theorem 1.

Proposition 5.10. Let N = pα1
1 pα2

2 p2
3 (α2 ≥ 2 and 0 ≤ α1 ≤ 1),

where p1, p2, p3 are distinct primes, and let χ be a Dirichlet character

modulo N of conductor mχ such that N/mχ = pα1
1 pβ2p3 with 0 ≤ β ≤ α2.

Let f ∈ Sk(N,χ) be non zero. Then there exist infinitely many odd and
square-free integers n with (n, p2) = 1 such that a(f, pγ2n) 6= 0, where
γ ≤ α2 if α2 = β and γ ≤ α2 − β if α2 > β. Moreover, for any ε > 0,

#{0 < n < X : n ∈ S, a(f, pγ2n) 6= 0} �f,ε X
1−ε.

Proof: We construct a new cusp form g such that g satisfies the hypoth-
esis of Proposition 5.8 or Theorem 2 and get the result for f from the
corresponding result for g.

Let δ = α2 − β − 1, when β < α2, and α2 − 1, when α2 = β. For
0 ≤ i ≤ δ, define f0 = f and fi(τ) :=

∑
n≥1 a(fi−1, p2n)qn. Since

α2 ≥ 2 and i ≤ δ, fi ∈ Sk(pα2−i
1 p2

3, χ). If fi 6= 0 for all 1 ≤ i ≤ δ take

g = fδ. Then g ∈ Sk(pα1
1 pα2−δ

2 p2
3, χ) and a(g, n) = a(f, pδ2n). Now, by

the definition of δ, we get that the ratio N/mχ = pα1
1 p2p3, i.e., square-

free. Using Theorem 2 we get the result for g and hence for f .
If fi = 0 for some 1 ≤ i ≤ δ, let 0 ≤ i0 < δ be the smallest i such

that fi0+1 = 0. Then a(fi0 , p2n) = 0 for every n ≥ 1. Thus fi0(τ) =∑
(n,p2)=1 a(fi0 , n)qn and we already have fi0 ∈ Sk(pα1

1 pα2−i0
2 p2

3, χ).

If
∑

(n,p3)=1 a(fi0 , n)qn 6= 0, we set g1(τ) :=
∑

(n,p3)=1 a(fi0 , n)qn.

Then g1 ∈ Sk(pα1
1 pα2−i0

2 p3
3, χ). If the above sum is zero, then fi0(τ) =

g̃1(p3τ), for some non-zero g̃1 ∈ Sk(pα1
1 pα2−i0

2 p3, χ). We set g2(τ) :=∑
(n,p3)=1 a(g̃1, n)qn. Clearly g2 ∈ Sk(pα1

1 pα2−i0
2 p2

3, χ). If g2 = 0, then

(p3, p
α1
1 pα2−i0

2 ) > 1 (see [11]), which is impossible. Hence g2 6= 0.
Now let g1 6= 0 (resp. g2 6= 0). We repeat the above procedure with g1

(resp. g2) and prime p1 to get g such that g satisfies the hypothesis of
Proposition 5.8.

The proof now follows by noting that i0 ≤ δ and that a(g, n) =

a(f, pi02 n), when (n, p2) = 1 and 0 otherwise.
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Boston, Mass., 1981, pp. 371–394.

Department of Mathematics, Indian Institute of Science, Bangalore - 560012, India

E-mail address: pramatha@iisc.ac.in, pramath.anamby@gmail.com

E-mail address: soumya@iisc.ac.in, soumya.u2k@gmail.com
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