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that, in the case of the pseudovariety of aperiodic finite semigroups, the pseudoword

can be recovered from the labeled linear order.

2010 Mathematics Subject Classification: Primary: 20M07, 20M05; Secondary:
06A05, 68Q45, 37B10.

Key words: Relatively free profinite semigroup, aperiodic semigroup, equidivisible
semigroup, labeled linear order, pseudoword, pseudovariety.

Contents

1. Introduction 362
2. Preliminaries 364
3. Equidivisibility and pseudovarieties closed under

concatenation 365
4. The quasi-order of 2-factorizations 368
4.1. Definition and properties 368
4.2. The category of transitions 370
5. The minimum ideal semigroupoid and the J-class associated

to a ∼-class 372
6. Finitely cancelable semigroups 376
7. Step points and stationary points 379
8. Cluster words 385
9. Stabilizers 389
10. A characterization of the J-class associated to a ∼-class 392
11. Proof of Theorem 8.6 394
12. The effect of multiplication on the quasi-order 403
13. The image of the representation w 7→ Lc(w) in the aperiodic

case 407
14. On the cardinality of the set of stationary points 412
14.1. Subshifts 412
14.2. A special J-class 413



362 J. Almeida, A. Costa, J. C. Costa, M. Zeitoun

14.3. Uncountable <R-chains and uncountable sets of stationary
points 413

14.4. About the proof of Theorem 14.7 415
Acknowledgments 418
References 419

1. Introduction

Since the publication of Eilenberg’s textbook [19], a large body of
finite semigroup theory is in fact the theory of pseudovarieties of semi-
groups. Besides its own mathematical interest, it draws motivation from
the connections with computer science through Eilenberg’s correspon-
dence between pseudovarieties of semigroups and varieties of regular lan-
guages. As pseudovarieties are classes of finite semigroups, only in very
special cases do they contain most general members on a given finite
set of generators, that is relatively free semigroups, namely semigroups
on n generators in the pseudovariety such that every other member of the
pseudovariety on n generators is their homomorphic image. To obtain
relatively free structures, one needs to step away from finiteness into
the more general framework of profinite semigroups, and indeed such
a tool has been shown to lead to useful insights and has found many
applications [1, 3, 8, 36, 47, 40].

As topological semigroups, relatively free profinite semigroups S over
a finite alphabet A are generated by A, which means that elements of S
are arbitrarily well approximated by words in the letters of A. Thus, the
elements of S may be considered a sort of generalization of words on the
alphabet A, which are sometimes called pseudowords. Of course, S may
satisfy nontrivial identities, which means that different words may rep-
resent the same element of S, although in the most interesting examples
of pseudovarieties, this is not the case. Now, words on the alphabet A
may be naturally viewed as A-labeled finite linear orders, a perspective
that underlies many fruitful connections with finite model theory [45].
For some pseudovarieties, such as R, of all finite R-trivial semigroups,
and DA, of all finite semigroups in which the idempotents are the only
regular elements, representations of the corresponding finitely generated
relatively free profinite semigroups by labeled linear orders have been ob-
tained and significantly applied [10, 33]. The purpose of this paper is to
investigate such a linear nature of pseudowords for pseudovarieties with
suitable properties. Our main motivation is to understand pseudowords
over the pseudovariety A, of all finite aperiodic semigroups.

The key properties of the pseudovariety A that play a role in this
paper are of a combinatorial nature: the corresponding variety of lan-
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guages is closed under concatenation and the cancelability of first and
last letters. The first of these properties entails a very useful feature of
the corresponding finitely generated relatively free profinite semigroups,
namely equidivisibility, which means that different factorizations of the
same pseudoword have a common refinement. This condition already
forces a linear quasi-order on the factorizations of a given pseudoword,
and this is the starting point for the whole paper. The cancelability
condition leads to special types of factorizations, which we call step
points, to which a letter is naturally associated. The corresponding
linear order has interesting order and topological properties, such as
being compact for the interval topology. The step points are the isolated
points and there are only countably many of them. All other points are
called stationary and, in contrast, there may be uncountably many of
them. As one goes down in the J-order, one might expect to find more
complexity in terms of the number of stationary points. However, it
turns out that there is no correlation between the number of stationary
points and how low pseudowords fall in the J-order. This is basically
due to the fact that the product of pseudowords does not correspond to
the mere concatenation of the linear orders associated with the factors,
as some fusion may occur near the concatenating point.

Our main result is that the linear order of factorizations with alphabet-
labeled step points provides a faithful representation of pseudowords
over A. We also obtain a characterization of the partially labeled linear
orders that appear in this way, albeit in terms of properties involving
finite aperiodic semigroups. A natural goal for future work consists in
looking for a characterization of the image of the representation which
is independent of such semigroups, as has been done in the case of the
pseudovarieties R and DA [10, 33].

While this paper was being written, Gool and Steinberg developed a
different approach to pseudowords over A, applying Stone duality and
model theory to view them as elementary equivalence classes of labeled
linear orders [21]. They worked specially with saturated models. In our
paper, the models that appear in the image of the representation are not
saturated in general. It would be worth developing further research to
understand the relationship between the two approaches but this is out
of the scope of the present paper.

We also mention the articles [24] and [28], where labeled linear orders
were assigned only to a special class of pseudowords, the ω-terms, and
were used to solve the word problem for ω-terms in several pseudovari-
eties, either for the first time, or with new proofs, as in the case of A,
treated in [24].
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The paper is organized as follows. After a section of preliminaries, Sec-
tion 3 introduces the key notion of equidivisible semigroup in the context
of relatively free profinite semigroups, with an emphasis on pseudovari-
eties closed under concatenation. Several results of the paper apply to all
such pseudovarieties, but at a certain point our hypothesis restricts to A.
In the next four sections, we develop more on the tools and the language
necessary for the main results. In Section 8, we give our faithful repre-
sentation of pseudowords over A as labeled linear orders. The following
three sections relate to the proof of this representation (the first two of
them having independent interest). This is followed by a study of the
effect of the multiplication in the image of the representation, and by a
characterization of the image. The paper closes with Section 14 where,
among other things, it is shown that the ordered set of real numbers can
be embedded in the ordered set of the stationary points of a pseudoword
over a finitely cancelable pseudovariety containing LSl. This is done via
a connection with symbolic dynamics.

2. Preliminaries

We assume some familiarity with pseudovarieties of semigroups and
relatively free profinite semigroups [3, 1, 40]. For the reader’s conve-
nience, some notation and terminology is presented here. The following
is a list of some of the pseudovarieties we will be working with:

• I: all trivial semigroups;
• S: all finite semigroups;
• A: all finite aperiodic semigroups;
• N: all finite nilpotent semigroups;
• D: all finite semigroups in which the idempotents are right zeros;
• LSl: all finite local semilattices.

In the whole paper, A denotes a finite alphabet. Let V be a pseu-
dovariety of semigroups. The free pro-V semigroup generated by A is
denoted ΩAV. Its elements are pseudowords over V. When V 6= I, as the
associated generating mapping A→ ΩAV is injective, one considers A to
be contained in ΩAV. If ϕ : A → S is a generating mapping of a pro-V
semigroup, then we denote by ϕV the unique continuous homomorphism
ΩAV→ S extending ϕ.

If V contains N, then the subsemigroup of ΩAV generated by A is
isomorphic to A+ and its elements are the isolated points of ΩAV, in
view of which A+ is considered to be contained in ΩAV, and the ele-
ments of A+ and ΩAV \A+ are respectively called the finite and infinite
pseudowords over V.
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By a topological semigroup, we mean a semigroup endowed with a
topology that makes the semigroup multiplication continuous. Unlike
some authors, we require that a compact space be Hausdorff. By a
compact semigroup, we mean a compact topological semigroup. See [14].

We denote by SI the monoid obtained from the semigroup S by ad-
joining to S an element denoted by 1 which acts as the identity. Every
semigroup homomorphism ϕ : S → T is extended to a semigroup ho-
momorphism SI → T I , also denoted ϕ, such that ϕ(1) = 1. If S is a
topological semigroup, then SI is viewed as a topological monoid whose
topology is the sum of the topological spaces S and {1}, whence 1 is an
isolated point of SI .

We use the standard notation for Green’s relations and its quasi-orders
on a semigroup S. Hence, s ≤R t, s ≤L t, and s ≤J t respectively mean
s ∈ tSI , s ∈ SIt, and s ∈ SItSI ; R, L, J are the associated equivalence
relations, D = R ∨ L, and H = R ∩ L.

A semigroup S has unambiguous ≤L-order if, for every x, y, z ∈ S,
x ≤L y and x ≤L z implies y ≤L z or z ≤L y. One also has the dual
notion of unambiguous ≤R-order. An unambiguous semigroup is a semi-
group with unambiguous ≤R-order and unambiguous ≤L-order. The
next proposition is an important tool to show one of our main results.

Proposition 2.1. Let A be a finite alphabet. Let u, v ∈ ΩAA. Then
u = v if and only if ϕA(u) = ϕA(v) for every mapping ϕ from A onto an
unambiguous finite aperiodic semigroup.

Proof: The “only if” direction of the statement is immediate. To estab-
lish the “if” direction, it suffices to show that points of ΩAA, that may
be separated by continuous homomorphisms into finite aperiodic semi-
groups, may also be separated by such mappings into finite unambiguous
aperiodic semigroups.

It is well known that every A-generated finite aperiodic semigroup is
the image under a homomorphism respecting generators of an unambigu-
ous A-generated finite aperiodic semigroup, namely its Birget–Rhodes
expansion (also called iterated Rhodes expansion), cut down to the set of
generators A [12, 22]. Since pairs of distinct points of ΩAA may be sep-
arated by continuous homomorphisms into finite aperiodic semigroups,
the result follows.

3. Equidivisibility and pseudovarieties closed under
concatenation

A language L ⊆ A+ is said to be V-recognizable if there is a homomor-
phism ϕ : A+ → S into a semigroup S from V such that L = ϕ−1ϕ(L).
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We say that a pseudovariety V of semigroups is closed under concatena-
tion if, for every finite alphabet A, whenever L and K are V-recognizable
languages of A+, the set LK is also a V-recognizable language of A+.
We use ©m to denote the Mal’cev product of pseudovarieties.

Theorem 3.1. The following conditions are equivalent for a pseudova-
riety V of semigroups:

(a) V is closed under concatenation;
(b) A©m V = V;
(c) V contains N and the multiplication in ΩAV is an open mapping

for every finite alphabet A.

The equivalence (a)⇔(c) in Theorem 3.1 is from [4, Lemma 2.3]. The
difficult part of the theorem is the equivalence (a)⇔(b), which is a par-
ticular case of a more general result established by Chaubard, Pin, and
Straubing [15]. The latter, in turn, extends an earlier result of Straub-
ing [44], establishing that a nontrivial pseudovariety V of monoids sat-
isfies A©m V = V if and only if, for every finite alphabet A, whenever L
and K are V-recognizable languages of A∗, the set LK is also a V-rec-
ognizable language of A∗. In the case of semigroups, the absence in
Theorem 3.1 of reference to the pseudovariety I of trivial semigroups
is not surprising if we take into account that A+ is I-recognizable but
A+A+ is not, where we view these languages as languages of A+.

Schützenberger [43] proved that a language over a finite alphabet is
A-recognizable if and only if it is star-free, in the sense that it can be
obtained from finite languages by using only finite Boolean operations
and concatenation. In particular, it follows that A is closed under con-
catenation. As important classes of examples of pseudovarieties closed
under concatenation that include A, one has the complexity pseudova-
rieties Cn (cf. [40, Definition 4.3.10]) and every pseudovariety H formed
by the finite semigroups whose subgroups belong to the pseudovariety of
groups H.

Combined with Theorem 3.1, the next lemma, which will be quite
useful in the sequel, provides yet another characterization of the pseu-
dovarieties closed under concatenation. A weaker version of the direct
implication was proved in [4, Lemma 2.5]. In the special case of rel-
atively free profinite semigroups over pseudovarieties V such that V =
A©m V, condition (b) of Lemma 3.2 below was established in the proof
of [23, Lemma 4.3], which in turn provides a proof of (b)⇒(c) in Theo-
rem 3.1.
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Lemma 3.2. Let S be a topological semigroup whose topology is defined
by a metric. The following conditions are equivalent:

(a) The multiplication in S is an open mapping.
(b) For every u, v ∈ S, if (wn)n is a sequence of elements of S con-

verging to uv, then there are sequences (un)n and (vn)n of elements
of SI such that wn = unvn, limun = u, and lim vn = v.

Proof: Consider a metric d inducing the topology of S. We denote
by B(t, ε) the open ball in S with center t and radius ε.

(a)⇒(b): Let k be a positive integer. Since the multiplication is an
open mapping, the set B

(
u, 1k

)
B
(
v, 1k

)
is an open neighbourhood of uv.

Hence there is pk such that wn ∈ B
(
u, 1k

)
B
(
v, 1k

)
if n ≥ pk. Let nk be

the strictly increasing sequence recursively defined by n1 = p1 and nk =
max{nk−1 + 1, pk} whenever k > 1. Then there are sequences (un)n
and (vn)n satisfying the following conditions: if nk ≤ n < nk+1 then
un ∈ B

(
u, 1k

)
, vn ∈ B

(
v, 1k

)
, and wn = unvn; and if n < n1 then

un = 1 and vn = wn. The pair of sequences (un)n and (vn)n satisfies
condition (b).

(b)⇒(a): We want to prove that B(s, ε)B(t, ε) is open, for every s, t ∈ S
and ε > 0. Let (wn)n be a sequence of elements of S converging to an
element of B(s, ε)B(t, ε). Let u ∈ B(s, ε) and v ∈ B(t, ε) be such that
limwn = uv. Take sequences (un)n and (vn)n as in the statement of
condition (b). There is N such that d(un, u) < ε − d(u, s) for all n ≥
N . Then d(un, s) ≤ d(un, u) + d(u, s) < ε for all n ≥ N . Similarly,
d(vn, t) < ε for all sufficiently large n. Therefore, since wn = unvn, we
have wn ∈ B(s, ε)B(t, ε) for all sufficiently large n, which proves that
B(s, ε)B(t, ε) is open.

A semigroup S is said to be equidivisible [32, 29] if, for every equal-
ity of the form xy = uv, with x, y, u, v ∈ S, there exists t ∈ SI such
that, either xt = u and y = tv, or x = ut and ty = v. Clearly, free
semigroups and groups are equidivisible. Moreover, all completely sim-
ple semigroups are equidivisible. Actually, a semigroup S is completely
simple if and only if, for every x, y, u, v ∈ S such that xy = uv, there are
t, s ∈ S such that xt = u, y = tv, x = us, and sy = v [32]. Note that
every equidivisible semigroup is unambiguous. The converse is not true:
for instance, free bands are unambiguous, which follows easily from the
solution of the word problem for free bands (see, for instance [1, Sec-
tion 5.4]) but not equidivisible for more than one free generator since,
if a, b are two distinct free generators in a free band then, for x = a,
y = b, u = v = ab, we have xy = uv, yet y >L v and x >R u. More
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generally, it is shown in [39, Section 15] that, if V is a pseudovariety of
semigroups such that V = RB©m V, where RB denotes the pseudovariety
of finite rectangular bands, then ΩAV is unambiguous for every finite
alphabet A.

Let us say that a pseudovariety of semigroups V is equidivisible if ΩAV
is equidivisible for every finite alphabetA. This property is implicitly but
not explicitly established in [23] for pseudovarieties of the form A©m V.
The following result was proved by the first two authors [6], where LI
denotes the pseudovariety of all finite locally trivial semigroups and CS
the pseudovariety of all finite completely simple semigroups.

Theorem 3.3. A pseudovariety of semigroups V is equidivisible if and
only if V = LI©m V or V ⊆ CS.

In particular, every pseudovariety closed under concatenation is
equidivisible. Many of our results below are formulated not in terms
of pseudovarieties but more abstractly for free profinite semigroups with
suitable properties, which are satisfied for free profinite semigroups over
pseudovarieties that are closed under concatenation or, sometimes, more
generally, equidivisible.

4. The quasi-order of 2-factorizations

By a quasi-order on a set we mean a reflexive transitive relation. In
case the relation is additionally anti-symmetric, the quasi-order is called
a partial order. A quasi-ordering (X,≤), in the sense of a set X with a
quasi-order ≤, is said to be total, or linear if x ≤ y or y ≤ x, for every
x, y ∈ X.

4.1. Definition and properties. Let S be a semigroup. A 2-factor-
ization of s ∈ S is a pair (u, v) of elements of SI such that s = uv. We
denote the set of 2-factorizations of s by F(s). We introduce in F(s)
a relation ≤ defined by (u, v) ≤ (u′, v′) if there exists t ∈ SI such that
ut = u′ and v = tv′, in which case we say that t is a transition from (u, v)
to (u′, v′). The relation ≤ is a quasi-order. Concerning transitivity, we
have more precisely that if t is a transition from (u, v) to (u′, v′) and t′ is
a transition from (u′, v′) to (u′′, v′′), then tt′ is a transition from (u, v)
to (u′′, v′′).

Given a quasi-order ≤ on a set P , we denote by ∼ the equivalence
relation on P induced by ≤ and we write p < q if p ≤ q but not p ∼ q.
Denote by ≺ the relation on P such that p ≺ q if and only if q is a
successor of p (equivalently, p is a predecessor of q), that is, p ≺ q if and
only if p < q and p ≤ r ≤ q ⇒ (r ∼ p ∨ r ∼ q).
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For every element s of a semigroup S, the quotient set F(s)/∼ is
denoted L(s). We denote the quotient mapping F(s) → L(s) by χ.
The partial order on L(s) induced by the quasi-order ≤ on F(s) is also
denoted by ≤. For p, q ∈ L(s), we also write p ≺ q if p is a predecessor
of q. Sometimes we will also consider the unions F(S) =

⋃
s∈S F(s) and

L(S) =
⋃
s∈S L(s).

The following result is immediate.

Lemma 4.1. A semigroup S is equidivisible if and only if L(s) is linearly
ordered for every s ∈ S.

The previous lemma is the departing point motivating this paper. For
a good supporting reference on the theory of linear orderings, see [42].

We proceed to extract from topological assumptions on S some con-
sequences on the quasi-order of 2-factorizations. In what follows, F(s) is
viewed as a topological subspace of SI × SI .

Lemma 4.2. If S is a compact semigroup, then, for every s ∈ S, the
quasi-order ≤ on F(s) is a closed subset of F(s)× F(s).

Proof: Suppose (pi, qi)i∈I is a convergent net of elements of F(s)× F(s)
with limit (p, q) and such that pi≤qi for every i ∈ I. Then, for each i ∈ I,
there is ti ∈ SI making a transition from pi to qi. Since SI is compact,
the net (ti)i∈I has a subnet converging to some t ∈ SI . Then, by con-
tinuity of multiplication on SI , one deduces that indeed p ≤ q, with
t being a transition from p to q.

We shall denote the proper open intervals of a quasi-ordered set P by

]←, p[={r ∈ P : r < p}, ]p,→[ = {r ∈ P : p < r}, ]p, q[ = ]p,→[∩ ]←, q[,
for every p, q ∈ P . Considering the relation ≤, we also have the intervals
of the form ]←, p] = {r ∈ P : r ≤ p}, [p,→[ = {r ∈ P : p ≤ r}, and so on.
Recall that the order topology of a linearly ordered set P is the topology
with subbase the sets of the form ]←, p[ and ]p,→[. In particular, we
consider the order topology on L(s).

The underlying order part of the following result is probably well
known but we have not been able to locate it in the literature.

Proposition 4.3. Let S be a compact equidivisible semigroup. For ev-
ery s ∈ S, the mapping χ : F(s)→ L(s) is continuous.

Proof: It is sufficient to show that the sets of both forms χ−1(]←, q]) and
χ−1([q,→[) are closed. By duality, we are actually reduced to show that
χ−1([q,→[) is closed. Consider a net (ri)i∈I of elements of χ−1(]←, q]),



370 J. Almeida, A. Costa, J. C. Costa, M. Zeitoun

converging to some r ∈ F(s). Let q̂ ∈ χ−1(q). Then ri ≤ q̂ for every
i ∈ I. It follows from Lemma 4.2 that r ≤ q̂, that is, r ∈ χ−1(]←, q]),
showing that χ−1(]←, q]) is closed.

Corollary 4.4. Let S be a compact equidivisible semigroup. Then, for
every s ∈ S, the order topology of L(s) is compact. Moreover, if the
space S is metrizable, then the space L(s) is also metrizable and the set
of isolated points of L(s) is countable.

Proof: Since S is compact, F(s) is compact, being the preimage in SI×SI
under multiplication of the closed set {s}, it is a closed subset of a
compact space, whence compact. Since L(s) is clearly Hausdorff, it
follows from Proposition 4.3 that L(s) is compact.

Suppose that S is metrizable. Then F(s) is metrizable, being a sub-
space of a product of two metrizable spaces. Since the continuous image
of a compact metric space in a Hausdorff space is metrizable (cf. [48,
Corollary 23.2]), it also follows from Proposition 4.3 that L(s) is metriz-
able. As a compact metrizable space, L(s) has a dense countable subset.
Since isolated points belong to every dense subset, they form a countable
set.

Recall that a linearly ordered set L is said to be complete if every
subset of L which is bounded above has a least upper bound (i.e., a
supremum) or, equivalently, if every subset of L which is bounded below
has a greatest lower bound (i.e., an infimum) [42, Section 2.4].

Proposition 4.5. Suppose S is a compact equidivisible semigroup. Then
the linearly ordered set L(s) is complete.

Proof: As S is equidivisible, we know by Lemma 4.1 that L(s) is a linear
order, whence in particular it is a semilattice. By Corollary 4.4, L(s) is
also compact. By [26, Corollary VII.1.5], it follows that L(s) is complete.

4.2. The category of transitions. A directed graph with vertex set V
and edge set E, which are assumed to be disjoint, is given by mappings
α, ω : E → V assigning to each edge s its source α(s) and its target ω(s).
A semigroupoid is a directed graph, with a nonempty set of edges, en-
dowed with a partial associative binary operation on the set of its edges
such that if s and t are edges, then st is defined if and only if ω(s) = α(t),
in which case α(st) = α(s) and ω(st) = ω(t).

Semigroupoids can be viewed as generalizations of semigroups, which
in turn can be viewed as one-vertex semigroupoids. In particular, Green’s
relations generalize straightforwardly to Green’s relations between the
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edges in semigroupoids. For instance, in a semigroupoid S, s ≤J t means
that the edge t is a factor of the edge s and s J t means that s ≤J t and
t ≤J s. A subsemigroupoid of the semigroupoid S is a subgraph T of S,
with a nonempty set of edges, such that s, t ∈ T implies st ∈ T whenever
ω(s) = α(t). Also, an ideal of a semigroupoid S is a subsemigroupoid I
of S such that for every t ∈ I and every s ∈ S, ω(s) = α(t) implies
st ∈ I, and ω(t) = α(s) implies ts ∈ I.

A category is a semigroupoid such that, for each vertex v, there is a
loop 1v at v satisfying 1vs = s and t1v = t for every edge s starting
in v and every edge t ending in v. This coincides with the notion of
small category from Category Theory, except that we compose in the
opposite direction. In doing so, we are following a common convention
in Semigroup Theory, see for example [46].

If the sets of edges and vertices of a semigroupoid are both endowed
with compact topologies, for which the semigroupoid operation and the
mappings α and ω are continuous, then the semigroupoid is said to be
compact.

Let S be an arbitrary semigroup. To each s ∈ S, we associate a
category T(s), the category of transitions for s, as follows:

(a) the set of vertices of T(s) is F(s);
(b) we have an edge (u, v, t, x, y) from (u, v) to (x, y), which we may

denote (u, v)
t−→ (x, y), if t is a transition from (u, v) to (x, y) (thus

implying (u, v) ≤ (x, y)); we say that t is the label of the edge;
(c) multiplication of consecutive edges is done by multiplying their

labels, that is, the product of (u1, v1)
t1−→ (u2, v2) an (u2, v2)

t2−→
(u3, v3) is (u1, v1)

t1t2−−→ (u3, v3).

Note that the sets of vertices of the strongly connected components
of the category T(s) are precisely the ∼-classes of F(s).

The category of transitions for S, denoted T(S), is the coproduct
category

⋃
s∈S T(s). This natural construction appears elsewhere in the

literature. Rhodes and Tilson introduced in [41] the kernel category
of a relational morphism of semigroups, of which T(S) is an example:
T(S) is the kernel category of the identity on S. More precisely, in [41]
one works with monoids, but an immediate translation is provided via
the mapping S 7→ SI , as done in [40] in situations where one deals with
the semigroup counterpart of some construction on monoids. We also
mention that in [41] the kernel category of the identity on a monoid is
called the two-sided Cayley category.

We denote by Λ the faithful functor T(S) → SI mapping each edge
(u, v, t, x, y) to t. We say that Λ is the labeling functor associated to T(S).
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We remark that if S is a compact semigroup, then T(S) is a compact
category, with the vertex and edge sets respectively endowed with the
subspace topology of (SI)2 and of (SI)5. Note that Λ is continuous.

Suppose that in L(s) we have p ≤ q. An element t ∈ SI will be called
a transition from p to q if t is a transition from an element of p to an

element of q, in which case we use the notation p
t−→ q.

For future reference, it is convenient to register the following remark,
concerning the relationship between T(u) and T(uv).

Remark 4.6. Let u, v be elements of a semigroup S. If (α, β)
t−→ (γ, δ)

is an edge of T(u), then (α, βv)
t−→ (γ, δv) is an edge of T(uv).

This remark is applied in the proof of the following lemma, which in
turn will later be used in the proof of Theorem 10.1.

Lemma 4.7. Let S be an equidivisible semigroup. Consider two edges σ
and τ of T(S) with the same target and such that α(σ) < α(τ). Then
the label of σ is a suffix of the label of τ .

Proof: Let σ be the edge (β, γ)
t−→ (ϕ,ψ) and τ be the edge (δ, ε)

z−→
(ϕ,ψ), with (β, γ) < (δ, ε). The following equalities hold: ϕ = βt = δz,
γ = tψ, and ε = zψ. From the equality βt = δz and by equidivisibility,
we deduce that if z is not a suffix of t, then there exists s ∈ S such that

δs = β and st = z, that is, we have an edge (δ, z)
s−→ (β, t) in T(ϕ). By

Remark 4.6, there is an edge (δ, ε)
s−→ (β, γ) in T(S), which contradicts

the hypothesis that (β, γ) < (δ, ε). Hence z is a suffix of t.

5. The minimum ideal semigroupoid and the J-class
associated to a ∼-class

In a strongly connected compact semigroupoid C, there is an underly-
ing minimum ideal semigroupoid K(C) which may be defined as follows.
Consider any vertex v of C and the local semigroup Cv of C at v, that
is, the semigroup formed by the loops at v. Then Cv is a compact
semigroup, and therefore it has a minimum ideal Kv. Let K(C) be the
subsemigroupoid of C with the same set of vertices as C and whose edges
are those edges of C which admit some (and therefore every) element
of Kv as a factor. The next lemma is folklore.

Lemma 5.1. If C is a strongly connected compact semigroupoid, then
K(C) is a closed ideal of C whose definition does not depend on the
choice of v. Moreover, the edges in K(C) are J-equivalent, more precisely
they are J-below every edge of C.
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Let (u, v) ∈ F(S). An element z ∈ SI stabilizes (u, v) if z labels a
loop of T(S) at (u, v). Note that the set M(u,v) of stabilizers of (u, v) is
a monoid and that M(u,v) is the isomorphic image, under the labeling
functor Λ, of the local monoid of T(S) at (u, v).

Assume S is a compact semigroup. For p ∈ L(S), let Tp be the
strongly connected component of T(S) whose vertices are the elements
of p. We denote by Kp the minimum ideal semigroupoid K(Tp). Since
Λ: T(S) → SI is a (continuous) functor, where SI is viewed as the set
of edges of a single vertex semigroupoid, in view of Lemma 5.1 the set
of labels of edges in Kp is contained in a single J-class of SI , which we
denote Jp. For every (u, v) ∈ p, the minimum ideal of M(u,v), which we
denote I(u,v), is the image under Λ of the minimum ideal of the local
monoid of T(S) at (u, v), whence I(u,v) ⊆ Jp. Note that Jp is regular,
since I(u,v) is itself regular. The set Jp can also be characterized as the
set of J-minimum transitions from p to itself, as seen in the next lemma.

Lemma 5.2. Let S be a compact semigroup, and let p ∈ L(S). Then
t is a transition from p to p if and only if t is a factor of the elements
of Jp.

Proof: Let (u, v)
t−→ (x, y) be a transition between elements of p. Since

(u, v) ∼ (x, y), there is a transition (x, y)
s−→ (u, v). The loop (u, v)

ts−→
(u, v) is a factor of every element ε in the minimum ideal of the local
monoid at (u, v). Therefore, ts is a factor of Λ(ε) ∈ Jp.

Conversely, suppose that t is factor of the elements of Jp. Then there is

a loop (u, v)
z−→ (u, v) in Kp such that z = xty for some x, y ∈ SI . In T(S)

we have the following path: (u, v)
x−→ (ux, tyv)

t−→ (uxt, yv)
y−→ (u, v).

Therefore, (ux, tyv)
t−→ (uxt, yv) is an edge of Tp.

We next give some results that further highlight the role of idem-
potent stabilizers of 2-factorizations of elements of S, specially those
idempotents in a J-class of the form Jp.

Recall that a semigroup is stable if J ∩ ≤L = L and J ∩ ≤R = R. In
particular, any compact semigroup is stable, see for instance [40].

Lemma 5.3. Let S be a stable unambiguous semigroup. Let e, f be
idempotents stabilizing an element (u, v) of F(S). If e J f then e = f .

Proof: The hypothesis gives ue = u = uf and ev = v = fv. Since S is
unambiguous, from ue = uf we get e ≤L f or f ≤L e. By stability,
as e J f , it follows that e L f . Dually, from ev = fv we get e R f .
Hence e = f .
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Corollary 5.4. Let S be a compact unambiguous semigroup, p ∈ L(S),

and (u, v), (x, y) ∈ p. The edge (u, v)
t−→ (x, y) of T(S) belongs to Kp if

and only if t ∈ Jp.

Proof: The “only if” part holds by definition of Jp. Conversely, suppose

that t ∈ Jp. Denote by ε the edge (u, v)
t−→ (x, y). As Jp is regular,

there is an idempotent e ∈ Jp such that t = et. Since t is a prefix

of v, we have v = ev, thus we may consider the edges (u, v)
e−→ (ue, v),

(ue, v)
e−→ (ue, v), and (ue, v)

t−→ (x, y), respectively denoted by α, β, and
γ. Observe that ε = αβγ, and so it suffices to show that the loop β
belongs to Kp. The ideal Kp contains the minimum ideal of the local
monoid of T(S) at (ue, v). The latter contains an idempotent, of the

form (ue, v)
f−→ (ue, v) for some f ∈ Jp. But f = e by Lemma 5.3 and

therefore ε ∈ Kp.

Note that in the next lemma one does not assume that S is unam-
biguous.

Lemma 5.5. Let S be a compact semigroup, and let (u, v) ∈ F(S). Let
e be an idempotent stabilizing (u, v). If f is an idempotent J-equivalent
to e, then f stabilizes an element of the ∼-class p of (u, v). Moreover, if
e labels a loop of Kp, then f also labels a loop of Kp.

Proof: If f J e, then there are in the J-class of e some elements s, t
such that sts = s, tst = t, st = e, ts = f . We have the four edges
in T(S) which are depicted in Figure 1. In particular, f stabilizes a
vertex ∼-equivalent to (u, v).

Denote by ε, σ, φ, τ the edges in Figure 1 labeled by e, s, f , t,
respectively. Since s = es, t = te, f = ts, we have σ = εσ, τ = τε,
and φ = τσ. Therefore, if ε belongs to the ideal Kp, then all edges in
Figure 1 belong to Kp, and so f labels a loop of Kp.

(u, v) (us, tv)e

s

f

t

Figure 1. Edges in T(S).

Corollary 5.6. Let S be a compact semigroup, and let p ∈ L(S). Every
idempotent of Jp labels a loop of Kp.

For e ∈ Jp, denote by pe the nonempty set of elements of p stabilized
by e.
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Proposition 5.7. Let S be a compact unambiguous semigroup. Let p ∈
L(S). Then Jp is the set of labels of edges of Kp. Moreover, if s ∈ Jp
and e and f are idempotents such that e R s L f , then s labels an edge
from pe to pf . Moreover, there is a bijection pe → pf , given by µs(u, v) =
(us, tv), where t is the unique t ∈ Jp such that st = e and ts = f .

Proof: Let s be an element of Jp and let e and f be idempotents such
that e R s L f . Then there exists (a unique) t ∈ Jp such that st = e
and ts = f , for which we have e L t R f . Let (u, v) ∈ pe. Note that
such a pair (u, v) exists by Corollary 5.6. Therefore, we are in the same
situation as in the proof of Lemma 5.5, with the four edges depicted
in Figure 1 belonging to Kp by Corollary 5.4. If there is another edge

(u, v)
s−→ (x, y) in Kp with (x, y) ∈ pf , then x = us and v = sy, thus

y = fy = tsy = tv. Hence, there is for each vertex in pe exactly one
edge labeled s into a vertex of pf . This defines the function µs : pe → pf
such that µs(u, v) = (us, tv). Finally, note that µs and µt are mutually
inverse.

We finish this section with a couple of observations concerning aperi-
odic semigroups, starting with the next lemma.

Lemma 5.8. Let S be a compact aperiodic semigroup. Let p ∈ L(S). If
(u, v), (x, y) are elements of p stabilized by the same idempotent e of Jp,
then (u, v) = (x, y).

Proof: Since (u, v) ∼ (x, y), there are t, z ∈ SI such that there are edges

(u, v)
t−→ (x, y) and (x, y)

z−→ (u, v) in the category T(S). Then we also
have edges as in Figure 2.

(u, v) (x, y)e

ete

e

eze

Figure 2.

By Lemma 5.2 and stability of S, we conclude that ete and eze are
H-equivalent to e, thus, by aperiodicity, we get ete = eze = e. By the
definition of the category T(S), we deduce that u = ue = x and v =
ey = y.

In the following result, we have a case in which the idempotents of Jp
parameterize the elements of p.
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Proposition 5.9. Let S be a compact and unambiguous aperiodic semi-
group. Let p ∈ L(S). Then there is a bijection between the ∼-class p and
the set of idempotents in Jp, sending each (u, v) to the unique idempo-
tent e ∈ Jp that stabilizes (u, v).

Proof: Let (u, v) ∈ p. There are in Jp idempotents that stabilize (u, v),
as Jp contains the minimum ideal of the monoid of stabilizers of (u, v). If
e, f are idempotents of Jp stabilizing (u, v), then e = f by Lemma 5.3.
Hence, we can consider the function ε : p → Jp sending (u, v) to the
unique idempotent of Jp stabilizing (u, v). The function ε is injective by
Lemma 5.8, and it is surjective by Corollary 5.6.

6. Finitely cancelable semigroups

Consider a compact semigroup S generated by a closed set A. Recall
that, in the context of topological semigroups, that means that every
element of S is arbitrarily close to products of elements of A. Note that,
since A is closed, we have S = SIA = ASI . Indeed, every element of S
is the limit of a net of the form (wiai)i∈I , where the ai ∈ A and the wi
are perhaps empty products of elements of A. By compactness, we may
assume that the nets (wi)i∈I and (ai)i∈I converge in SI , say to w and a,
respectively. Since A is closed, we conclude that a ∈ A, which shows
that S ⊆ SIA.

Say that S is right finitely cancelable with respect to A when, for every
a, b ∈ A and u, v ∈ SI , the equality ua = vb implies a = b and u = v.
This implies A ∩ SA = A ∩AS = ∅.

Say that S is right finitely cancelable if it is finitely cancelable with
respect to some closed generating subset A. It turns out that the set A
is uniquely determined by S, as shown next.

Lemma 6.1. Let S be a compact semigroup generated by closed sub-
sets A and B such that A∩SA = B∩SB = ∅. Then we have A = B. In
particular, if S is right finitely cancelable with respect to both A and B,
then A = B.

Proof: Let a ∈ A. Since S = SIB = SIA, we have a = sb for some s ∈
SI and b ∈ B, and b = tc for some t ∈ SI and c ∈ A. We obtain the
factorization a = stc. Since A ∩ SA = ∅, we must have s = t = 1, and
so a = b ∈ B, showing that A ⊆ B. By symmetry, we have B ⊆ A.

Say that a pseudovariety of semigroups is right finitely cancelable if
ΩAV is right finitely cancelable with respect to A, for every finite alpha-
bet A.



The Linear Nature of Pseudowords 377

Proposition 6.2. A pseudovariety of semigroups V is right finitely can-
celable if and only if V = D ∗ V.

Proof: It is observed in [7] that V is right finitely cancelable if and only
if, for every finite alphabet A, and for every V-recognizable language L
of A+ and a ∈ A, the language La is also V-recognizable. In [37] one
finds a proof that this is equivalent to V = D ∗ V.

The above definitions have obvious duals which are obtained by re-
placing right by left. Note that a semigroup pseudovariety V is right
finitely cancelable if and only the pseudovariety Vop of semigroups of V
with reversed multiplications is left finitely cancelable. We say that a
compact semigroup is finitely cancelable (with respect to A) if it is simul-
taneously right and left finitely cancelable (with respect to A). Similarly,
a pseudovariety of semigroups is finitely cancelable if it is simultaneously
right and left finitely cancelable.

Example 6.3. If V is a semigroup pseudovariety containing some non-
trivial monoid and such that V = V ∗ D, then V is finitely cancelable
(cf. [1, Exercise 10.2.10] and [16, Proposition 1.60]).

The following proposition is [6, Proposition 6.3].

Proposition 6.4. If V is an equidivisible pseudovariety of semigroups
not contained in CS, then V is finitely cancelable.

The next lemma is the first of a series of results in which the hypothesis
of a semigroup being finitely cancelable enables us to get further insight
into the quasi-order of 2-factorizations.

Lemma 6.5. Suppose S is a compact semigroup, finitely cancelable with
respect to A. Let u, v ∈ SI and a ∈ A. If the ∼-class of at least one
of (ua, v) and (u, av) is not a singleton, then (u, av) ∼ (ua, v).

Proof: By duality, it suffices to consider the case where the ∼-class of p =
(ua, v) is not a singleton. Let q be in p/∼ with p 6= q. As p ≤ q, we
may consider a transition x from p to q. Then we have q = (uax, y) for
some y ∈ SI such that v = xy. Since q ≤ p, there is t such that ua = uaxt
and y = txy. Because p 6= q, we must have t 6= 1, whence we may take
b ∈ A and z ∈ SI such that t = zb. Because S is finitely cancelable with
respect to A, from ua = uaxt = uaxzb we get a = b and u = (ua)(xz).
On the other hand, we have (xz)(av) = x(za)v = xtxy = xy = v, which
shows that (ua, v) ∼ (u, av).

We now turn our attention to profinite semigroups.
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Proposition 6.6. Suppose S is a profinite semigroup generated by a
closed subset A. Let p, q ∈ F(s) with p < q. Then, there are x, y ∈ SI
and a ∈ A such that

p ≤ (x, ay) < (xa, y) ≤ q.

Proof: Let p = (u, v) and q = (u′, v′). Since (u, v) < (u′, v′), there exists
t ∈ S such that u′ = ut and v = tv′, and the system

(6.1)

{
utX = u,

Xtv′ = v′

has no solution X ∈ S. By a standard compactness argument which can
be found in the proof of [1, Theorem 5.6.1], there is some continuous
onto homomorphism ϕ0 : S → R, with R finite, which may be naturally
extended to an onto continuous homomorphism ϕ : SI → RI , and such
that the following system (6.2) has no solution X ∈ R:

(6.2)

{
ϕ(u)ϕ(t)X = ϕ(u),

Xϕ(t)ϕ(v′) = ϕ(v′).

Let (tn)n be a net of elements of the (discrete) subsemigroup of S gen-
erated by A such that (tn)n converges to t and such that ϕ(tn) = ϕ(t)
for all n. Write tn = an,0an,1 · · · an,kn , with the an,i ∈ A. Then the
following inequalities hold for i = 0, . . . , kn:

(6.3) (ϕ(uan,0 · · · an,i−1), ϕ(an,i · · · an,knv′))
≤ (ϕ(uan,0 · · · an,i), ϕ(an,i+1 · · · an,knv′)).

Since ≤ is a transitive relation and the non-existence of a solution to (6.2)
guarantees that the following strict inequality holds

(ϕ(u), ϕ(an,0 · · · an,knv′)) < (ϕ(uan,0 · · · an,kn), ϕ(v′)),

we deduce that there is i= in such that the inequality (6.3) is also strict.
As A is closed and S is compact, by taking subnets we may assume
that the net (an,in)n converges to some a ∈ A, that ϕ(an,in) = ϕ(a)
for every n, and that each of the nets t′n = an,0 · · · an,in−1 and t′′n =
an,in+1 · · · an,kn converges to some t′, t′′ ∈ SI , respectively (in particular,
this yields t = t′at′′). Then the strict inequality in (6.3), with i = in,
yields (ϕ(ut′), ϕ(at′′v′)) < (ϕ(ut′a), ϕ(t′′v′)), which implies that

p = (u, t′at′′v′) ≤ (ut′, at′′v′) < (ut′a, t′′v′) ≤ (ut′at′′, v′) = q.

Thus, it suffices to choose x = ut′ and y = t′′v′ to obtain the inequalities
of the statement of the proposition.
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We close this subsection with a result regarding the existence of a
successor in the quasi-ordered set of 2-factorizations.

Proposition 6.7. Suppose S is a profinite semigroup, finitely cancelable
with respect to A. Let p, q ∈ F(s) and suppose that p < q.

(a) Consider the unique u, v, a such that u, v ∈ SI , a ∈ A, and
p = (u, av). If p ≺ q, then we have

p = (u, av) ≺ (ua, v) = q.

Moreover, the ∼-classes of p and q are singletons.
(b) Conversely, if p = (u, av) and q = (ua, v), where u, v ∈ SI and

a ∈ A, then we have p ≺ q.

Proof: (a) Notice that u, v, a really exist and are unique. Indeed, take
p = (u,w), with u,w ∈ SI . One has w 6= 1, because p < q, and so
w = av for some a ∈ A and v ∈ SI , which are unique because S is
finitely cancelable with respect to A. By Proposition 6.6, there are
u′, v′ ∈ SI and a′ ∈ A such that p ≤ (u′, a′v′) < (u′a′, v′) ≤ q. Since
p ≺ q, we must have p ∼ (u′, a′v′) < (u′a′, v′) ∼ q. It then follows from
Lemma 6.5 that the ∼-classes of (u′, a′v′) and (u′a′, v′) are singletons,
thus p = (u′, a′v′) and q = (u′a′, v′). By the uniqueness of u, v, and a,
we then have q = (ua, v)

(b) Assume there exists r = (x, y) with p < r < q. There are z, t such
that x = ut, av = ty, ua = xz, and y = zv. If t = 1, then r = p, while if
z = 1, then r = q, hence both t and z are different from 1. Since av = ty,
from the fact that S is finitely cancelable with respect to A, it follows
that there is t′ such that t = at′ and v = t′y. Similarly, there is z′

such that z = z′a and u = xz′. Therefore, u = xz′ = utz′ = ua · t′z′
and v = t′y = t′zv = t′z′ · av. This shows that p ∼ q, in contradiction
with p < q. Hence p ≺ q.

7. Step points and stationary points

In this section, we continue gathering important properties of the
linear orders induced by pseudowords. We identify two types of elements
in such orders, that we call step points and stationary points. Let us
start by introducing these notions.

Let L be a partially ordered set. We call step points the points of L
that admit either a successor or a predecessor, or are the minimum or the
maximum of L, if they exist. All other points are said to be stationary.
The set of step points of L will be denoted by step(L), and the set of
stationary points of L will be denoted by stat(L).
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For an element s of a semigroup S, we also say that p ∈ F(s) is a step
point (respectively, a stationary point) if χ(p) is a step point (respec-
tively, a stationary point) of L(s). In this section we further develop the
results obtained in Section 6, using the notions of step point and station-
ary point. If S is profinite and finitely cancelable, then the ∼-class p of a
step point (u, v) of F(S) is a singleton (cf. Proposition 6.7(a)), for which
reason, in that case, we feel free to make the abuse of notation p = (u, v).

As preparation for the following example, recall that in a compact
semigroup S, if s ∈ S, then sω denotes the unique idempotent in the
closed subsemigroup of S generated by s. Later on, we shall also make
use of the notation sω+1 for sωs, and sω−1 for the inverse of sω+1 in the
maximal subgroup containing sω+1.

Example 7.1. Consider the pseudoword aω of the free pro-aperiodic
semigroup Ω{a}A. Then F(aω) has only one stationary point, namely
(aω, aω). The set F(aω) is linearly ordered, whence isomorphic to L(aω),
with order type ω + 1 + ω∗. More precisely, its elements are ordered as
follows:

(1, aω) < (a, aω) < (a2, aω) < · · · < (aω, aω) < · · ·
· · · < (aω, a2) < (aω, a) < (aω, 1).

Example 7.1 should be compared with the following one.

Example 7.2. Consider the pseudoword aω of the free profinite semi-
group ΩAS. Like in Example 7.1, L(aω) has order type ω + 1 + ω∗, and
its sole stationary point is p = (aω, aω)/∼:

(1, aω) < (a, aω−1) < (a2, aω−2) < · · · < p < · · ·
· · · < (aω−2, a2) < (aω−1, a) < (aω, 1).

But (aω, aω)/∼ has infinitely many elements, namely, the pairs of the
form (g, gω−1), where g is an element in the maximal subgroup contain-
ing aω.

Examples 7.1 and 7.2 fit in the following definition.

Definition 7.3 (Clustered sets). We say that the partially ordered set L
is clustered if the following conditions hold:

(C.1) L has a minimum minL and a maximum maxL;
(C.2) for every q ∈ L, if q = minL or q has a predecessor, then q has a

successor or q = maxL;
(C.3) for every q ∈ L, if q = maxL or q has a successor, then q has a

predecessor or q = minL;
(C.4) for every p, q ∈ L, if ]p, q[ is nonempty, then there is a step point

in the interval ]p, q[.
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Property (C.4) translates into saying that the set of step points of L
is dense with respect to the order topology of L.

Theorem 7.4. Let S be a profinite semigroup which is finitely cance-
lable, and let s ∈ S. Then L(s) is clustered.

Proof: Property (C.1) in Definition 7.3 holds trivially, with minL(s) =
(1, s) and maxL(s) = (s, 1).

Let us show (C.2). Take s ∈ S and p, q ∈ F(s) with p ≺ q. We
have to show that either q has a successor, or q = maxL(s). Let A
be the generating set with respect to which S is finitely cancelable. By
Proposition 6.7, there are u, v ∈ SI and a ∈ A with p = (u, av) and
q = (ua, v). If v = 1, then q = maxL(s), so that we may assume v 6= 1.
Let v = bw with b ∈ A, and let r = (uab, w). Clearly, we have q ≤ r.
We claim that q ≺ r. Indeed, if q = r, then ua = uab and bw = w.
Therefore, a = b, u = ua, and av = aaw = aw = v, showing that p = q,
in contradiction with the hypothesis. Hence, we must have q < r, since
otherwise we would obtain q ∼ r and q 6= r, which entails p ∼ q by
Lemma 6.5. Finally, by Proposition 6.7(b) applied to q and r, we get
q ≺ r. This establishes (C.2), and (C.3) holds dually.

Finally, let us prove (C.4). If p is a step point, then ]p, q[ 6= ∅ implies
that the successor of p belongs to ]p, q[. Hence, it suffices to consider
the case where p is stationary. Let p̂ ∈ χ−1(p) and q̂ ∈ χ−1(q). By
Proposition 6.6, there are u, v ∈ SI and a ∈ A such that p̂ ≤ (u, av) <
(ua, v) ≤ q̂ in F(s). By Proposition 6.7(b), we have (u, av) ≺ (ua, v).
Therefore, (u, av) and (ua, v) are step points. In particular, we have
(u, av) ∈ ]p, q[ ∩ step(L(s)).

In the next result, we characterize the stationary points as the vertices
with a nontrivial local monoid in the category of transitions.

Proposition 7.5. Let S be a profinite semigroup which is finitely can-
celable. Let (u, v) ∈ F(S). Then (u, v) is a stationary point if and only
if it is stabilized by some element of S.

Proof: Suppose that (u, v) is stationary. Let A be the set with respect
to which S is finitely cancelable. Since v 6= 1, we may take a factor-
ization v = aw with a ∈ A and w ∈ SI . Clearly, (u, aw) ≤ (ua,w)
holds, and so (u, aw) ∼ (ua,w) by Proposition 6.7(b). Hence, there is

an edge (ua,w)
t−→ (u, aw), for some t ∈ SI . This implies that at ∈ S

stabilizes (u, v).
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Conversely, suppose there is z ∈ S stabilizing (u, v). There is some
factorization of the form z = at, for some a ∈ A and t ∈ SI . The
following equalities and inequalities

(u, v) = (u, atv) ≤ (ua, tv) ≤ (uat, v) = (u, v)

show that (u, v) = (u, atv) ∼ (ua, tv). It follows from Proposition 6.7(a)
that (u, v) has no successor, since otherwise this successor would
be (ua, tv), in contradiction with (ua, tv) ≤ (u, v). Since (u, v) is not
the maximum of F(s) (because v = zv 6= 1), it must be a stationary
point.

Proposition 7.5 is applied in the proof of the next result.

Proposition 7.6. Let S be an equidivisible profinite semigroup S which
is finitely cancelable. Then, in T(S), any two coterminal edges between
elements of distinct strongly connected components are equal. In other

words, if (α, β)
t−→ (γ, δ) and (α, β)

s−→ (γ, δ) are edges of T(S) such that
(α, β) < (γ, δ), then t = s.

Proof: The hypothesis translates into the following equalities: γ = αt =
αs and β = tδ = sδ. We first assume that at least one of the points (α, β)
and (γ, δ) is a step point. By symmetry, we may as well assume that
(α, β) is a step point. From the equality αt = αs, by equidivisibility and
without loss of generality, we may assume that there is some z ∈ SI such
that αz = α and t = zs. Then, we have zβ = zsδ = tδ = β. This shows

that (α, β)
z−→ (α, β) is a loop of T(w). Since (α, β) is assumed to be a

step point, applying Proposition 7.5 we obtain z = 1, thus t = s.
It remains to consider the case where both (α, β) and (γ, δ) are sta-

tionary. By Theorem 7.4, there is a step point (x, y) ∈ F(w) such that
(α, β) < (x, y) < (γ, δ). By the preceding paragraph, there are unique
edges in T(w) from (α, β) to (x, y) and from (x, y) to (γ, δ). Let r1
and r2 be the respective labels. To prove the proposition, it suffices to

show that τ = r1r2 whenever (α, β)
τ−→ (γ, δ) is an edge of T(w).

Note that (x, r2) and (α, τ) are elements of F(γ). Since β = τδ
and y = r2δ, if (x, r2) ≤ (α, τ) (in F(γ)), then (x, y) ≤ (α, β) (in F(w))
by Remark 4.6, which gives a contradiction. Hence, by equidivisibility,

there is in T(γ) an edge (α, τ)
r0−→ (x, r2). In particular, we have τ = r0r2.

Remark 4.6 guarantees the existence of the edge (α, β)
r0−→ (x, y). But

we defined, in the previous paragraph, the edge (α, β)
r1−→ (x, y) as the

unique edge from (α, β) to (x, y). Therefore r0 = r1, and so we have the
equality τ = r1r2, which we have seen to be sufficient to conclude the
proof.
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Corollary 7.7. Let S be an equidivisible profinite semigroup S which
is finitely cancelable. Let p1, p2 ∈ L(w). If p1 < p2 then the set of
transitions from p1 to p2 is contained in a J-class of S.

Proof: Let x1, x
′
1 ∈ p1 and x2, x

′
2 ∈ p2, and consider edges x1

t−→ x2

and x′1
t′−→ x′2. Then we have edges xi

si−→ x′i and x′i
ri−→ xi, and also

x1
s1t
′r2−−−−→ x2 and x′1

r1ts2−−−→ x′2. By Proposition 7.6, we must have t =
s1t
′r2 and t′ = r1ts2, whence t J t′.

Remark 7.8. We remark that there is a large class of pseudovarieties
whose corresponding finitely generated relatively free profinite semi-
groups satisfy the hypotheses of Proposition 7.6. Let V be a pseudova-
riety of semigroups such that V = LI©m V. Then every semigroup of the
form ΩAV, with A a finite alphabet, satisfies all conditions in Proposi-
tion 7.6: they are profinite, equidivisible, and finitely cancelable (cf. The-
orem 3.3 and Proposition 6.4, where the latter may be applied because
V = LI©m V implies V ⊇ LI and thus V 6⊆ CS).

The pseudovarieties of the form V = LI©m V are closed under the two-
sided Karnofsky–Rhodes expansion, and therefore also under the cor-
responding profinite expansion that is defined according to the general
method given in [39]. From this it easily follows that Proposition 7.6
holds in the case where S is a semigroup of the form ΩAV for some
finite alphabet A and some pseudovariety V such that V = LI©m V. In-
deed, in that case, the (profinite) two-sided Karnofsky–Rhodes expansion
of ΩAV with respect to the generating mapping ΩAV→ ΩAV is isomor-
phic to ΩAV, which straightforwardly entails that T(ΩAV) does not have
distinct edges between two connected components.

Proposition 7.6 is used in the proof of the following lemma, establish-
ing a sufficient condition for equality between stationary points.

Lemma 7.9. Let S be an equidivisible profinite semigroup which is
finitely cancelable. Let p and q be stationary points of L(S). If there

is a transition p
t−→ q such that t lies J-above both Jp and Jq then p = q.

Proof: We have p ≤ q, so, arguing by contradiction, suppose that p < q.

Consider an edge (u, v)
t−→ (x, y) of T(S) with (u, v) ∈ p and (x, y) ∈ q.

Let e ∈ Jp and f ∈ Jq be idempotents respectively stabilizing (u, v)

and (x, y). Then we have a transition (u, v)
etf−−→ (x, y). By Proposi-

tion 7.6, it follows that etf = t, whence, since S is stable, and by the
hypothesis that t lies J-above both e and f , we have e R t L f . There-
fore, there exists s ∈ Jp = Jq such that ts = e and st = f . Now, the
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assumption that we have a transition (u, v)
t−→ (x, y) means that the

equalities ut = x and v = ty hold. Combining with the equalities ue = u
and fy = y, we deduce that xs = uts = ue = u and sv = sty = fy = y.
Hence (x, y) ≤ (u, v), which contradicts the assumption p < q. To avoid
the contradiction, we must have p = q.

The following is an example obtained by application of Lemma 7.9.

Example 7.10. Let V be a pseudovariety containing LSl, and let A be a
finite alphabet. It is shown in [2] (see also [4]), using Zorn’s Lemma and
a standard compactness argument, that ΩAV contains regular elements
that are J-maximal among the elements of ΩAV \ A+. We next verify
that if V is closed under concatenation and u is a J-maximal regular
element of ΩAV, then the order type of L(u) is ω + 1 + ω∗. Indeed, let
p, q be two stationary points of L(u) such that p ≤ q, and let e ∈ Jp,
f ∈ Jq. From the maximality assumption on u, we deduce that e J u J f .
Hence p = q by Lemma 7.9, showing that L(u) has only one stationary
point.

Restricting our attention to the case of profinite semigroups that are
free relatively to pseudovarieties closed under concatenation, we obtain
stronger results about step and stationary points. The next lemma is a
provisional result with this flavor, which is improved later on, namely in
Proposition 7.13.

Lemma 7.11. Let A be a finite alphabet, and let V be a pseudovariety
closed under concatenation. Let w ∈ ΩAV. If (u, v) is a stationary
point of F(w), then there exists a strictly increasing sequence (un, vn)n
of points of F(w) such that limun = u and lim vn = v.

Proof: Since A is finite, ΩAV is metrizable, and so L(w) is metrizable by
Corollary 4.4. Let p = (u, v)/∼. By Theorem 7.4, there is a strictly in-
creasing sequence (xn, yn)n of step points converging in L(w) to p. As S
is compact, taking subsequences we may assume that (xn, yn)n converges
in F(w) to some (x, y) ∈ F(w). By Proposition 4.3, we know that (x, y) ∈
p. Then there are edges (x, y)

s−→ (u, v) and (u, v)
t−→ (x, y) in T(w).

Note that limxn = x = xst. Hence, by Theorem 3.1 and Lemma 3.2,
for every n there is a factorization xn = x′nsntn with limx′n = x,
lim sn = s, and lim tn = t. Then, we have lim(x′nsn, tnyn) = (u, v)
in F(w), thus lim(x′nsn, tnyn)/∼ = p in L(w) by Proposition 4.3. And
since (x′nsn, tnyn) ≤ (xn, yn) < (x, y), we conclude that the sequence
((x′nsn, tnyn)/∼)n has p as supremum but not as maximum, enabling
us to extract from the sequence (x′nsn, tnyn)n a strictly increasing sub-
sequence. Since this subsequence also converges to (u, v) in F(w), this
completes the proof.
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Lemma 7.12. Let A be a finite alphabet, and let V be a pseudovariety
closed under concatenation. Let w ∈ ΩAV and let K be a nonempty
clopen subset of F(w). Then K has minimum and maximum, and both
of them are step points.

Proof: As K is closed, whence compact, we know from Proposition 4.3
that its projection under χ is also compact, whence closed. Let p =
inf χ(K) and q = supχ(K). Since χ(K) is closed, we have p = minχ(K)
and q = maxχ(K). Hence, there exist p̂ ∈ K ∩ χ−1(p) and q̂ ∈ K ∩
χ−1(q). Although these points are perhaps not unique, all choices are
∼-equivalent. Moreover, for every other point r ∈ K, from χ(r) ∈ [p, q]
we deduce that p̂ ≤ r ≤ q̂.

It remains to show that p̂ and q̂ are step points. Suppose on the
contrary that p̂ is a stationary point. By Lemma 7.11, there is a strictly
increasing sequence (p̂n)n in F(w) converging to p̂. Since K is open, it
must contain points of the form p̂n. As p̂n < p̂, this contradicts the fact
that p̂ is the minimum of K. Hence, p̂ is a step point and, similarly, so
is q̂.

Lemma 7.11 was used to prove Lemma 7.12. We next use Lemma 7.12
to show that the sequence in Lemma 7.11 may be formed only by step
points.

Proposition 7.13. Let A be a finite alphabet, and let V be a pseudova-
riety closed under concatenation. Let w ∈ ΩAV. If (u, v) is a stationary
point of F(w), then there exists a strictly increasing sequence (un, vn)n
of step points of F(w) such that limun = u and lim vn = v.

Proof: Consider in F(w) the ball B
(
(u, v), 1

n

)
of radius 1

n centered
at (u, v). It is a clopen subset of F(w). By Lemma 7.12, its minimum
is a step point (un, vn). Clearly, the sequence (un, vn)n contains some
subsequence with the required properties.

8. Cluster words

In this section, we use the knowledge about the labeled linear orders
induced by pseudowords over A to obtain a representation theorem: ev-
ery pseudoword over A may be represented by a (partially) labeled linear
order having specific properties, which we introduce now.

By a partially labeled ordered set, we mean a pair (P, f) such that P is
an ordered set and f is a function (the labeling) with domain contained
in P . An isomorphism between partially labeled ordered sets (P, f)
and (Q, g) is an isomorphism ϕ : P → Q of ordered sets such that
Dom g = ϕ(Dom f) and f(p) = g ◦ ϕ(p) for every p ∈ Dom f .
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Consider a profinite equidivisible semigroup S which is finitely can-
celable with respect to A. We may then consider the mappings i and t
from SI to A ] {1} such that i(1) = t(1) = 1 and, for s ∈ S, the im-
ages i(s) and t(s) are respectively the unique prefix and the unique suffix
of s in A. For s ∈ S, denote by Lc(s) the partially labeled linearly or-
dered set (L(s), `) defined by the mapping ` : step(L) → A ] {1} such
that `(u, v) = i(v), for (u, v) ∈ step(L(s)). Note that `(p) = 1 if and only
if p = (s, 1). Recall from Theorem 7.4 that L(s) is clustered. By a clus-
ter word over A we mean a partially labeled linearly ordered set (L, `)
such that L is clustered, ` is a function step(L)→ A] {1}, and `(p) = 1
if and only if p = maxL.

Example 8.1. For the pseudoword w = (aωb)ω of Ω{a,b}A, the cluster
word Lc(w) is described in Diagram (8.1),

(8.1) aa · · ·︸ ︷︷ ︸
ω

• · · · aa︸ ︷︷ ︸
ω∗

b aa · · ·︸ ︷︷ ︸
ω

• · · · aa︸ ︷︷ ︸
ω∗

b aa · · ·︸ ︷︷ ︸
ω

• · · · aa︸ ︷︷ ︸
ω∗

b · · ·︸ ︷︷ ︸
ω

• · · · aa · · ·︸ ︷︷ ︸
ω

• · · · aa︸ ︷︷ ︸
ω∗

b aa · · ·︸ ︷︷ ︸
ω

• · · · aa︸ ︷︷ ︸
ω∗

b aa · · ·︸ ︷︷ ︸
ω

• · · · aa︸ ︷︷ ︸
ω∗

b 1︸ ︷︷ ︸
ω∗

,

where each of the small bullets • represent a stationary point q such
that aω ∈ Jq and the bigger bullet • represents the unique stationary
point r such that (aωbaω)ω ∈ Jr. Note that, in particular, the order type
of L(w) is (ω + 1 + ω∗)ω + 1 + (ω + 1 + ω∗)ω∗.

We next introduce, in Definition 8.2, a notion of algebraic recognition
of cluster words inspired by the definition of automata recognizing words
indexed by linear orders, introduced in [13]. A notable similarity resides
in the role played by cofinal sets, whose definition we next recall. In a
linearly ordered set L, a subset X of L is left cofinal at p if X ∩ ]q, p[ 6= ∅
for every q < p, right cofinal at p if X ∩ ]p, q[ 6= ∅ for every q > p,
and cofinal if it is right or left cofinal at p. Cofinality of sets may be
viewed as a sort of Büchi recognizability condition [35]. In other words,
it captures in finite recognizing devices the behavior at limit points.

Definition 8.2. Let ϕ : A → S be a generating mapping of a semi-
group S, and let s ∈ S. We say that the cluster word (L, `) over A is
recognized by the pair (ϕ, s) if there is a mapping g : step(L) → F(s)
satisfying:
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(R.1) g(minL) = (1, s);
(R.2) g(maxL) = (s, 1);

(R.3) if p1 ≺ p2 in L, then g(p1)
ϕ(`(p1))−−−−−→ g(p2) is an edge of T(s);

(R.4) if p is a stationary point of L then, for every q ∈ F(s), the set g−1(q)
is left cofinal at p if and only if it is right cofinal at p.

If such conditions are satisfied, then we say that (L, `) is g-recognized by
the pair (ϕ, s). We also say that (L, `) is recognized by the pair (ϕ, s) if it
is g-recognized, for some g. Finally, when (L, `) is g-recognized by (ϕ, s),
we define Fg to be the function from stat(L) to the power set P(F(s))
such that

Fg(p) = {q ∈ F(s) : g−1(q) is left cofinal at p}
= {q ∈ F(s) : g−1(q) is right cofinal at p},

for every stationary point p of L (cf. (R.4)).

Remark 8.3. If f : (L′, `′) → (L, `) is an isomorphism of cluster words
over A and if (L, `) is g-recognized by (ϕ, s), then (L′, `′) is (g ◦f)-recog-
nized by (ϕ, s). Hence, the property of (L, `) being recognized by (ϕ, s)
is invariant under isomorphism of cluster words.

The next lemma, concerning the function Fg, will be applied in Sec-
tion 11.

Lemma 8.4. Consider a cluster word (L, `) over A, recognized by the
pair (ϕ, s), where ϕ : A → S is a generating mapping of a finite semi-
group S and s ∈ S. Suppose that the order topology of L is metrizable.
Let p be a stationary point of L. Then the following properties hold:

(a) if P is a subset of F(s) such that F−1g (P ) is cofinal at p, then
P ⊆ Fg(p);

(b) there is an open interval I containing p such that Fg(q) ⊆ Fg(p)
for every stationary point q in I.

Proof: (a) Without loss of generality, suppose that F−1g (P ) is left cofinal
at p. Then, taking into account that L is metrizable, there is a strictly
increasing sequence (pn)n of stationary points of L converging to p such
that Fg(pn) = P for all n. Consider a metric d on L inducing the
order topology of L. For each k ≥ 1, let ]qk, p[ be an open interval
of L such that d(qk, p) <

1
k . Then, there is nk such that pnk ∈ ]qk, p[.

Let (s1, s2) ∈ P . By the definition of Fg, we know that g−1(s1, s2) is
left cofinal at pnk . Therefore, there is in the interval ]qk, pnk [ a step
point belonging to g−1(s1, s2). Since ]qk, pnk [ ⊆ ]qk, p[, this proves that
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g−1(s1, s2) is left cofinal at p, thus (s1, s2) ∈ Fg(p). We have therefore
proved that the inclusion P ⊆ Fg(p) holds.

(b) Let P be the set of subsets P of F(s) such that F−1g (P ) is not cofinal
at p. For each P ∈ P, there is an open interval IP containing p such
that F−1g (P ) ∩ IP = ∅. Because S is a finite semigroup, the set P is
finite, and so I =

⋂
P∈P IP is an open interval of L containing p. Let

q be a stationary point in I. Let R = Fg(q). Suppose R ∈ P. Then
q ∈ IR. But we also have q ∈ F−1g (R), which leads to F−1g (R) ∩ IR 6= ∅,
a contradiction with the definition of IR. This shows that R /∈ P. We
then deduce from part (a) of the lemma that R ⊆ Fg(p).

The main results in this section are about cluster words defined by
elements of ΩAA, but in the next proposition we embrace without addi-
tional effort all pseudovarieties closed under concatenation.

Proposition 8.5. Consider a pseudovariety V closed under concatena-
tion. Given w ∈ ΩAV, and a generating mapping ϕ : A → S of a semi-
group S of V, let s = ϕV(w). Consider the mapping gw,ϕ : step(L(w))→
F(s) such that gw,ϕ(u, v) = (ϕV(u), ϕV(v)) for every step point (u, v)
of L(w). Then the cluster word Lc(w) is gw,ϕ-recognized by (ϕ, s).

Proof: The conditions (R.1)–(R.2) in Definition 8.2 for gw,ϕ-recognition
by (ϕ, s) are clearly satisfied, and (R.3) follows directly from Proposi-
tion 6.7(a).

Let us check condition (R.4). Let (x, y)∈F(s) be such that g−1w,ϕ(x, y) is
left cofinal at p. Then, there is a strictly increasing sequence (un, vn)n≥1
of step points belonging to g−1w,ϕ(x, y) converging in F(w) to an ele-
ment (u, v) of p. Since (ϕV(un), ϕV(vn)) = (x, y) for every n ≥ 1, we
also have (ϕV(u), ϕV(v)) = (x, y), by continuity of ϕV. By the dual of
Proposition 7.13, there is a strictly decreasing sequence (u′n, v

′
n)n≥1 of

step points converging to (u, v) in F(w). In particular, by continuity
of ϕV, for all sufficiently large n, we have (ϕV(u′n), ϕV(v′n)) = (x, y), and
so g−1w,ϕ(x, y) is right cofinal at p. Dually, if g−1w,ϕ(x, y) is right cofinal at p

then g−1w,ϕ(x, y) is left cofinal at p. This establishes condition (R.4).

In the case of unambiguous aperiodic semigroups, we have a converse
for Proposition 8.5, as stated in the next theorem.

Theorem 8.6. Let w∈ΩAA, and consider a generating mapping ϕ : A→
S of a finite aperiodic unambiguous semigroup S. Then ϕA(w) = s if
and only if Lc(w) is recognized by (ϕ, s).
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We defer the proof of Theorem 8.6 to Section 11 (but note that the
direct implication in Theorem 8.6 is an immediate application of Propo-
sition 8.5). Meanwhile, we use it to prove the following main result.

Theorem 8.7. Let u, v ∈ ΩAA. Then u = v if and only if the cluster
words Lc(u) and Lc(v) are isomorphic.

Proof: The isomorphism of cluster words is clearly necessary to have u =
v. Conversely, suppose Lc(u) and Lc(v) are isomorphic. Let ϕ : A → S
be a generating mapping of a finite unambiguous aperiodic semigroup S.
Take s = ϕA(u). Then Lc(u) is recognized by (ϕ, s), according to the
direct implication in Theorem 8.6. But then Lc(v) is also recognized
by (ϕ, s) (cf. Remark 8.3). Hence, we have s = ϕA(v) by the converse
implication in Theorem 8.6. By Proposition 2.1, this establishes u =
v.

9. Stabilizers

Given a semigroup S and s ∈ S, we say that an element x of SI sta-
bilizes s on the right if sx = s; the set rstab(s) of all such x constitutes a
submonoid of SI and is called the right stabilizer of s. One defines dually
the elements that stabilize s on the left, which form a submonoid lstab(s)
of SI , called the left stabilizer of s.

An application of the following result will be required in the sequel.

Theorem 9.1. Let S be an equidivisible profinite semigroup which is
finitely cancelable. Let u ∈ S. Let g be an element of the monoid rstab(u)
or of the monoid lstab(u). If g is regular within that monoid, then g = g2.

In Theorem 9.1, the hypothesis that S is finitely cancelable is not
superfluous: if G is a group, then the semigroup G0 obtained from G by
adjoining a zero is equidivisible, and G0 is the left and right stabilizer of
zero.

We should mention that we do not know of any other examples of
equidivisible profinite semigroups that are finitely cancelable other than
free pro-V semigroups, where V is a pseudovariety with suitable closure
properties. For such semigroups, Theorem 9.1 follows from more general
results in [39, Theorem 13.1]. Nevertheless, since our results apply to all
equidivisible profinite semigroups that are finitely cancelable, we present
a proof of Theorem 9.1 which may be of independent interest.

As a first step we have the following simple statement.

Lemma 9.2. Let x and y be D-equivalent elements of a stable semi-
group S. If yx = x then y = y2.
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Proof: Since yx = x and y are in the same D-class and S is stable, we
must have y R x. Therefore, y = xu for some u ∈ SI , so y2 = yxu =
xu = y.

We proceed with an auxiliary lemma.

Lemma 9.3. Let S be an equidivisible profinite semigroup which is
finitely cancelable. Let g, w ∈ S be such that gw = w. If (x, y) ∈ F(w) is
a step point satisfying (gω, w) ≤ (x, y), then gx = x.

Proof: Note that (gω, w) ≤ (x, y) implies x ≤R gω, thus x = gωx, a fact
that we shall use along the proof.

By equidivisibility, (x, y) and (gx, y) are comparable in F(w). Suppose
first that (gx, y) ≤ (x, y). Then there is t ∈ SI such that gxt= x and
ty= y. It suffices to show that t= 1. The equality gxt = x entails x =
gnxtn for every n ≥ 1, thus x = gωxtω = xtω. And since ty = y, we
conclude that tω stabilizes (x, y) in T(S). Because (x, y) is a step point,
Proposition 7.5 implies that t = 1.

Suppose next that (x, y) ≤ (gx, y). Then (gω−1x, y) ≤ (gωx, y) =
(x, y) (cf. Remark 4.6) and, by the preceding case, we deduce that
gω−1x = x. With a left multiplication by g on both sides of the lat-
ter equality, we obtain x = gωx = gx, as desired.

Proof of Theorem 9.1: It suffices to consider the case where g is an ele-
ment of lstab(u), as the other case is dual.

We first establish the theorem when g is a group element, that is,
g = gω+1.

Let R be the set of elements (α, β) of F(u) such that α R g. Note that
R is nonempty, indeed (g, u) ∈ R. The set R is closed, whence compact,
and so by continuity of χ, the image χ(R) is also compact, whence
closed. Therefore, by completeness of L(u) (cf. Proposition 4.5), the
closed set χ(R) has a maximum p = (x, y)/∼. Let us observe that, since
two ∼-equivalent elements must have R-equivalent first components, the
inclusion χ−1(p) ⊆ R holds. Moreover, since g = gω+1, we have (gω, u) ∈
R, thus (gω, u) ≤ (x, y) by definition of p.

Suppose first that p is a step point. Then gx = x by Lemma 9.3. As
x R g, we conclude that g = g2 by Lemma 9.2.

If p is stationary, then, by Theorem 7.4, there is a net (xi, yi)i∈I of step
points converging in L(u) to p and such that p < (xi, yi) for all i ∈ I. By
compactness, taking a subnet, we may assume that (xi, yi)i∈I converges
in F(u) to some element (x′, y′) of p. As (gω, u) < (xi, yi), we deduce
from Lemma 9.3 that gxi = xi for every i ∈ I. Taking limits, it follows
that gx′ = x′. Since (x′, y′) ∈ p, we have x R x′, whence g R x′, and we
again deduce that g = g2 by Lemma 9.2.
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We have thus concluded the proof for the case where g is a group
element of S. Let us now suppose that g is regular within lstab(u).
Then there is h ∈ lstab(u) such that g = ghg and h = hgh. Since hu =
gu, by equidivisibility we know that h and g are R-comparable in S.
We actually have h R g in S, by stability of S. Let z ∈ SI be such
that h = gz. Then g = g2zg, and therefore g R g2. This shows that g is
a group element of S, and so, as we are in the case already proved, we
get g = g2.

A semigroupoid S is trivial if, for any two vertices p, q ∈ S, there is
at most one edge p→ q.

Corollary 9.4. Let S be an equidivisible profinite semigroup which is
finitely cancelable. For every p ∈ L(S), the ideal Kp is a trivial category.

Proof: Let (u, v)
s−→ (x, y) and (u, v)

t−→ (x, y) be edges of Kp. The

proof amounts to showing that s = t. There is an edge (x, y)
z−→ (u, v)

in Kp. In particular, sz and (sz)2 label loops in Kp at vertex (u, v).
Hence, sz and (sz)2 belong to Jp, and so sz is a group element of S
stabilizing u on the right. We then deduce from Theorem 9.1 that sz
is an idempotent of Jp, denoted by e, which stabilizes (u, v). Similarly,
tz is an idempotent of Jp stabilizing (u, v). It follows from Lemma 5.3
that sz = tz = e. Symmetrically, we have zs = zt = f , with f an
idempotent of Jp. As s, t, z belong to Jp, this shows that s = t.

For a compact semigroup S and p ∈ L(S), let Up be the union of
the maximal subgroups of Jp. The next proposition, whose proof relies
on Theorem 9.1, should be compared with Proposition 5.9. We show
that Up parameterizes in a natural way the class p, without assuming
aperiodicity, but assuming equidivisibility and finite cancelability.

Proposition 9.5. Let S be an equidivisible profinite semigroup which is
finitely cancelable. Let p ∈ L(S) be a stationary point. Then we have a
bijection νp : Up → p, defined as follows:

(a) for each idempotent e ∈ Jp, fix an element (ue, ve) of p stabilized
by e;

(b) to each g in the maximal subgroup He of S containing e, associate
the element νp(g) = (ueg, g

ω−1ve) of p.

Proof: We first verify that the function νp is well defined. Corollary 5.6
guarantees that every idempotent e ∈ Jp stabilizes some (ue, ve) ∈ p.

If g ∈ He, then (ueg, g
ω−1ve)

gω−1

−−−→ (ue, ve) and (ue, ve)
g−→ (ueg, g

ω−1ve)
are edges of T(S), whence (ueg, g

ω−1ve) ∼ (ue, ve). It follows that νp is
indeed well defined.



392 J. Almeida, A. Costa, J. C. Costa, M. Zeitoun

We next show that νp is injective. If g ∈ Up then gω is an idempotent
of Jp stabilizing νp(g) = (ugωg, g

ω−1vgω ). Hence, by Lemma 5.3, if
νp(g) = νp(h), then gω = hω, thus g, h belong to the same maximal
subgroup and ugωg = ugωh. The latter is equivalent to ugω = ugωhg

ω−1,
and so, by Theorem 9.1, we have hgω−1 = gω. This means that g = h,
thereby showing that νp is injective.

It remains to show that νp is surjective. Let (u, v) be an arbitrary
element of p and let e be an idempotent in Jp stabilizing (u, v). Since p
is the set of vertices of a strongly connected component of T(S), there is

some edge (ue, ve)
t−→ (u, v), and whence also an edge (ue, ve)

ete−−→ (u, v).
By Lemma 5.2, it follows that ete ∈ He. Hence, we must have νp(ete) =
(u, v).

Note that, under the conditions of Proposition 9.5, the set pe of ele-
ments of p stabilized by e is precisely νp(He).

10. A characterization of the J-class associated to a
∼-class

Let S be an equidivisible compact semigroup, w ∈ S and p ∈ L(w).
We define a subset Lp of SI , depending only on p, as follows. Take
an arbitrary strictly increasing sequence p1 < p2 < · · · converging to p
in L(w) – if such a sequence does not exist, for instance, if p has a pre-
decessor, then take Lp = ∅. For each m ≥ 1 and n > m, let tm,n be
a transition from pm to pn. For fixed m ≥ 1, let tm be an accumula-
tion point of the sequence (tm,n)n>m. If t is an accumulation point of
the sequence (tm)m then t ∈ Lp, and every element of Lp is obtained
by this process, the sequence p1 < p2 < · · · being allowed to change.
Dually, taking strictly decreasing sequences converging to p, we define a
subset Rp of S associated with p.

Theorem 10.1. Let S be an equidivisible compact semigroup. For ev-
ery p ∈ L(S), the sets Lp and Rp are contained in Jp.

Proof: Let w ∈ S be such that p ∈ L(w), and suppose that (pn)n is
a strictly increasing sequence of elements of L(w) converging to p. For
each m ≥ 1 and n > m, let tm,n be a transition from pm to pn, and
let tm be an accumulation point of the sequence (tm,n)n. Finally, let
t be an accumulation point of the sequence (tm)m. The proof that Lp is
contained in Jp is concluded once we show that t ∈ Jp.

We first claim that, for every fixed m ≥ 1, tm is a transition from pm
to p. For each n > m, choose (un, vn) ∈ pm and (xn, yn) ∈ pn such
that untm,n = xn and vn = tm,nyn. By compactness, the sequence
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(tm,n, un, vn, yn)n has some subnet (tm,nk, unk , vnk , ynk)nk such that tm=
limk tm,nk and the nets (unk)k, (vnk)k, and (ynk)k converge, respec-
tively to some u, v, and y. Since (unk , tm,nkynk) = (unk , vnk) ∈ pm
and (unktm,nk , ynk) = (xnk , ynk) ∈ pnk , it follows from Proposition 4.3
that (u, v) = (u, tmy) ∈ pm and (utm, y) ∈ p, which proves the claim.

Since (pm)m converges to p and t is an accumulation point of the se-
quence (tm)m, it follows again from Proposition 4.3 that t is a transition
from p to p.

Choose z ∈ Jp such that there is a loop (utm, y)
z−→ (utm, y). Since

(u, v) < (utm, y) and (u, v)
tm−−→ (utm, y) is an edge of T(S), Lemma 4.7

yields that z is a suffix of tm. This holds for every m ≥ 1, whence z is
a suffix of t. As we have already shown that t is a transition from p
to p, we deduce that t ∈ Jp by Lemma 5.2. Hence we have Lp ⊆ Jp and
dually Rp ⊆ Jp.

Corollary 10.2. Let S be an equidivisible profinite semigroup which
is finitely cancelable. Let w ∈ S. Suppose that (un, vn)n is a strictly
increasing sequence in F(w) converging to a stationary point (u, v). For
each pair m < n, let tm,n ∈ S be a transition (um, vm) → (un, vn).
Then, for each m, the sequence (tm,n)n converges to the unique transition
from (um, vm) to (u, v). Moreover, the sequence (tm)m converges to the
label of the only loop at the vertex (u, v) in the trivial category Kp, where
p = (u, v)/∼.

Proof: Every accumulation point of the sequence (tm,n)n labels an edge
from (um, vm) to (u, v). But there is only one such edge, by Proposi-
tion 7.6. Since we are dealing with a compact space, this implies that
(tm,n)n converges to some element tm. To conclude the proof, it suffices
to show that every accumulation point t of the sequence (tm)m labels
the same loop at vertex (u, v). By the definition of Lp, we have t ∈ Lp,
whence t ∈ Jp by Theorem 10.1. Moreover, in T(w) the sequence of

edges (um, vm)
tm−−→ (u, v) admits the loop (u, v)

t−→ (u, v) as an accumu-
lation point. Since t ∈ Jp, this loop belongs to Kp by Corollary 5.4. By
Corollary 9.4, there is only one loop of Kp at (u, v). Therefore, every
accumulation point of (tm)m is the label of that loop.

In some cases, Theorem 10.1 can be strengthened, as seen next.

Theorem 10.3. Let A be a finite alphabet, and let V be a pseudovariety
closed under concatenation. Then Lp = Jp = Rp for every stationary

point p ∈ L(ΩAV).

Proof: According to Theorem 10.1, it remains to prove that Jp is con-
tained in Lp and in Rp. By symmetry, it suffices to prove that Jp ⊆ Lp.
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Let τ be an element of Jp. Then by Proposition 5.7 there are el-

ements (u, v) and (u′, v′) of p such that (u, v)
τ−→ (u′, v′) is an edge

of Kp. According to Proposition 7.13, there are strictly increasing se-
quences (qn)n and (q′n)n of step points of F(w) converging to (u, v)
and (u′, v′), respectively. We may define recursively a strictly ascending
sequence of step points pn as follows:

• p1 = q1;
• if n > 1 is even, then pn is the smallest term of the sequence (q′n)n

belonging to ]pn−1, p[;
• if n > 1 is odd, then pn is the smallest term of the sequence (qn)n

belonging to ]pn−1, p[;

For each m ≥ 1 and each n ≥ m let tm,n be the unique transition
from p2m−1 to p2n. Let tm be an accumulation point of the sequence
(tm,n)n≥m. Since (p2n)n converges to (u′, v′), the pseudoword tm labels
an edge from p2m−1 to (u′, v′). Let t be an accumulation point of the
sequence (tm)m. Since (p2m−1)m converges to (u, v), the pseudoword t
labels an edge from (u, v) to (u′, v′). By the definition of Lp, we have
t ∈ Lp. It follows that t ∈ Jp by Theorem 10.1. By Corollary 9.4, the
category Kp is trivial, whence t = τ , thus proving that τ ∈ Lp.

11. Proof of Theorem 8.6

Throughout this section, when not explicitly stated, we consider w to
be an element of ΩAA, where A is a finite alphabet, and ϕ : A → S to
be a generating mapping of a finite aperiodic semigroup S. We also take
s = ϕA(w).

Consider a mapping g : step(L(w)) → F(s). From hereon, we assume
that Lc(w) is g-recognized by the pair (ϕ, s). In particular, all properties
of Definition 8.2 are fulfilled when (L, `) = Lc(w).

Definition 11.1 (g-projection). Let x and y be two step points of L(w)
such that x ≤ y. By Propositions 7.6 (in case x < y) and 7.5 (in
case x = y), there is a unique edge in T(w) from x to y. Let t be its

label, which is 1 if x = y. If g(x)
ϕA(t)−−−→ g(y) is an edge of T(s), then we

say that the edge x
t−→ y is g-projected (to g(x)

ϕA(t)−−−→ g(y)).

The unique edge from x to y will sometimes be denoted simply by x −→
y, without reference to the label.

Remark 11.2. Let x, y, and z be step points such that x ≤ y ≤ z. If
x −→ y and y −→ z are g-projected, then x −→ z is g-projected.
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Given two step points x and y, write x ≺≺ y if x ≤ y and the
interval [x, y] is finite.

Remark 11.3. If x ≺≺ y, then x −→ y is g-projected.

Let ≈ be the equivalence relation on step(L(w)) generated by ≺≺,
that is, x ≈ y if and only x ≺≺ y or y ≺≺ x. The ≈-class of x is
denoted [x]≈. Note that w ∈ A+ if and only if (1, w) ≈ (w, 1). Let Ow
be a subset of step(L(w)) such that each ≈-class contains exactly one
element of Ow, with the additional restriction that if w /∈ A+ then we
have

Ow ∩ [(1, w)]≈ = {(1, w)} and Ow ∩ [(w, 1)]≈ = {(w, 1)}.

Definition 11.4 (Bridges). A bridge in L(w), with respect to the map-
ping g, is a nonempty open interval I of L(w) such that, for every pair
of step points x, y of I, with x < y, the edge x → y is g-projected. A
special bridge in L(w) is a bridge of the form [X,Y [, with X,Y ∈ Ow
such that X < Y .

Notice that every nonempty interval contained in a bridge is also a
bridge, and that special bridges are clopen intervals.

Lemma 11.5. Let F be a nonempty family of special bridges of L(w).
If
⋃
F is a closed interval, then

⋃
F is a special bridge.

Before proving Lemma 11.5, we remark that the hypothesis that the
union

⋃
F is closed cannot be removed. Indeed, consider a case where we

have a strictly increasing sequence (qn)n of stationary points converging
to a stationary point q (cf. Example 8.1). Between qn and qn+1 pick an
element pn of Ow. Then the union of the special bridges [minL(w), pn[
is [minL(w), q[, which is not a special bridge.

Proof of Lemma 11.5: Since
⋃
F is a compact set having an open cover

by the elements of F, we have
⋃
F =

⋃
F′ for some finite subfamily F′

of F. Then, for some n ≥ 1, we may assume that there are elements
X1 < X2 < · · · < Xn and Y1 < Y2 < · · · < Yn of Ow such that

F′ = {[Xk, Yk[ : 1 ≤ k ≤ n}.
Consider the set

Z = {Xi : 1 ≤ k ≤ n} ∪ {Yi : 1 ≤ k ≤ n},
and let Z1 < Z2 < · · · < Zm be the elements of Z. Notice that m ≥ 2.
For each k ∈ {1, . . . ,m − 1}, denote by Ik the interval [Zk, Zk+1[. In
case Zk = Xj for some j, we have Zk+1 ≤ Yj , and so Ik is a special
bridge contained in the special bridge [Xj , Yj [. If Zk = Yj for some j,
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then, since Zk < Zm, we must have Zk ∈
⋃

F, whence Zk ∈ [Xi, Yi[ for
some i. As Zk < Yi, we have Zk+1 ≤ Yi, and so Ik is a special bridge
contained in the special bridge [Xi, Yi[. Hence, the set

F′′ = {Ik : 1 ≤ k ≤ m− 1}
is a family of special bridges.

Let Uk =
⋃k
j=1 Ij . Note that Uk = [Z1, Zk+1[. We prove by induction

on k ∈ {1, . . . ,m − 1} that Uk is a special bridge. The initial step is
trivial. Suppose that Uk is a special bridge, for some k ∈ {1, . . . ,m−2}.
To prove that Uk+1 is a special bridge, consider two step points x, y
in Uk+1 with x < y. We have to show that the edge x −→ y is g-projected.
Using induction, it suffices to consider the case where x ∈ Uk and y ∈
Ik+1. Let Z ′k+1 be the predecessor of the step point Zk+1 in L(w).
Since Uk = [Z1, Zk+1[ and Ik+1 = [Zk+1, Zk+2[, the edges x −→ Z ′k+1

and Zk+1 −→ y are g-projected, and the same is true obviously for the
edge Z ′k+1 −→ Zk+1; hence, by Remark 11.2, x −→ y is g-projected. This
proves that Uk+1 is a special bridge, concluding the induction.

The result now follows because Um−1 =
⋃

F′′ =
⋃

F′ =
⋃
F.

In the proof of the next lemma and in the sequel, we use the notation
λ(x) = inf[x]≈ and ρ(x) = sup[x]≈, for a step point x. Note that
λ(x) is stationary unless (1, w) ≺≺ x, and ρ(x) is stationary unless
x ≺≺ (w, 1). Also, when r ∈ step(L(w)), the unique element of Ow∩ [r]≈
is denoted Ow(r).

Lemma 11.6. Let X,Y ∈ Ow be such that X < Y . Suppose that for
every stationary point p in [X,Y [ there is a special bridge containing p.
Then [X,Y [ is a special bridge.

Proof: Let P = [X,Y [∩ stat(L(w)). By hypothesis, for each p ∈ P there
is a special bridge Ip containing p. Note that Ip ∩ [X,Y [ is also a special
bridge containing p. Therefore, we may as well assume that Ip ⊆ [X,Y [.
Let U =

⋃
p∈P Ip. Then U ⊆ [X,Y [.

We claim that U = [X,Y [. As we trivially have P ⊆ U , we are reduced
to showing that, for every z ∈ [X,Y [ ∩ step(L(w)), we have z ∈ U .

If ρ(X) < z < λ(Y ) holds, then the stationary points ρ(z) and λ(z)
belong to [X,Y [. Either z ∈ ]λ(z),Ow(z)[ or z ∈ [Ow(z), ρ(z)[. As
]λ(z),Ow(z)[ ⊆ Iλ(z) and [Ow(z), ρ(z)[ ⊆ Iρ(z), it follows that z ∈ U .

Suppose that ρ(X) ≥ z. Then, since X is the only point in Ow that
belongs to Iρ(X) ∩ [X, ρ(X)[ and z ∈ [X, ρ(X)[, we have z ∈ Iρ(X).
Similarly, if λ(Y ) ≤ z then z ∈ Iλ(Y ). In both cases z ∈ U .

We proved that U = [X,Y [. By Lemma 11.5, the interval [X,Y [ is a
special bridge.
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Let p1 and p2 be two elements of L(w) such that p1 ≤ p2. If p1 < p2,
then, as written in Corollary 7.7, the set of transitions from p1 to p2 is
contained in a J-class Jp1,p2 . In case p1 = p2, let Jp1,p2 = Jp1 . By a
J-minimum transition from p1 to p2, we mean a transition from p1 to p2
belonging to Jp1,p2 ; this terminology is useful to unify both cases p1 < p2
and p1 = p2 in some of our arguments.

Lemma 11.7. Let p1, p2 ∈ L(w), with p1 ≤ p2. For every (x1, y1) ∈ p1
and (x2, y2) ∈ p2, the intersection I of Jp1,p2 with the set of labels of
edges from (x1, y1) to (x2, y2) is a singleton. If t is the unique element
of I, and if ei is the unique idempotent of Jpi that stabilizes (xi, yi)
(cf. Lemma 5.3), then t = e1te2.

Proof: If p1 < p2, then the lemma follows straightforwardly from Propo-
sition 7.6. If p1 = p2 = p, then Jp1,p2 = Jp. Since edges in Tp labeled by
elements of Jp are edges of Kp by Corollary 5.4, and since Kp is trivial
by Corollary 9.4, we have also in this case that there is only one edge
from (x1, y1) to (x2, y2) with label in Jp1,p2 . Let ei and t be as in the
statement of the lemma. Because ei stabilizes (xi, yi), we may consider

the edge (x1, y1)
e1te2−−−→ (x1, y2), and so t J e1te2. By the already proved

uniqueness, we must have t = e1te2.

Definition 11.8 (J-bridge). A pair of elements (p1, p2) of stat(L(w)) is
a J-bridge with respect to g, if

(a) p1 ≤ p2,
(b) Fg(p1) ∩ Fg(p2) 6= ∅,
(c) the elements of ϕA(Jp1) are J-equivalent to the elements of ϕA(Jp2),

and
(d) if τ is a J-minimum transition from an element of p1 to an element

of p2, then ϕA(τ) is J-equivalent to the elements of ϕA(Jp1).

Note that (p, p) is a J-bridge, whenever p is a stationary point.
In the proof of the following proposition, the hypothesis that S is an

unambiguous aperiodic semigroup is essential.

Proposition 11.9. Suppose that S is an unambiguous aperiodic semi-
group and let (p1, p2) be a J-bridge with respect to g. Suppose there are
step points z1 and z2 such that [z1, p1[ and ]p2, z2] are bridges with respect
to g. Let (s1, s2) ∈ Fg(p1) ∩ Fg(p2). Then there are step points x1 ∈
[z1, p1[ and x2 ∈ ]p2, z2] such that x1 −→ x2 is g-projected to an idempo-
tent loop of T(s) of the form (s1, s2) −→ (s1, s2).

Proof: Let I1 = [z1, p1[ and I2 = ]p2, z2]. By the definition of Fg(pi),
there are strictly monotone sequences (ri,m)m≥1 (increasing if i = 1,
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decreasing if i = 2) of step points in Ii ∩ g−1(s1, s2), converging in F(w)
to elements ri of pi (i = 1, 2). Denote by ei the unique idempotent of Jpi
that stabilizes ri.

For each n ≥ m, let t1,m,n be the label of the unique edge from r1,m
to r1,n, and let t2,m,n be the label of the unique edge from r2,n to r2,m.
By Corollary 10.2 and its dual, for each i ∈ {1, 2} the sequence (ti,m,n)n
converges to an element ti,m, and in turn the sequence (ti,m)m con-
verges to ei. Therefore, by continuity of ϕA, for each i ∈ {1, 2} we may
take mi ≥ 1 and ni ≥ mi for which we have

(11.1) ϕA(ei) = ϕA(ti,mi) = ϕA(ti,mi,ni).

Our hypothesis yields that the edge r1,m1

t1,m1,n1−−−−−→ r1,n1
is g-projected

to the edge (s1, s2)
ϕA(e1)−−−−→ (s1, s2). In particular, (s1, s2) is stabilized

by ϕA(e1). Similarly, (s1, s2) is stabilized by ϕA(e2). It follows that
ϕA(e1) = ϕA(e2), by Lemma 5.3, since the finite semigroup S is unam-
biguous.

By Lemma 11.7, the unique minimum J-transition τ from r1 to r2 is
such that τ = e1τe2. By the definition of J-bridge, we have ϕA(e1) J

ϕA(τ). On the other hand, τ ≤R e1 and τ ≤L e2. We deduce that
ϕA(e1) H ϕA(τ) because ϕA(e1) = ϕA(e2) and S is stable. Therefore,

(11.2) ϕA(e1) = ϕA(τ) = ϕA(e2),

since S is aperiodic.
The unique edge (cf. Proposition 7.6) from r1,m1

to r2,m2
, with label ζ,

is factorized by the edges r1,m1

t1,m1−−−→ r1, r1
τ−→ r2, and r2

t2,m2−−−→ r2,m2
.

It follows that ζ = t1,m1
τt2,m2

. From (11.2) and (11.1) we get ϕA(ζ) =
ϕA(e1). Therefore, r1,m1 −→ r2,m2 is g-projected to the idempotent loop

(s1, s2)
ϕA(ζ)−−−→ (s1, s2). Since ri,mi is a step point in Ii, this concludes

the proof.

We next show a pair of lemmas where the function g does not appear,
but which will be used later in this section in the proof of Theorem 8.6.

Lemma 11.10. Consider a pseudovariety V closed under concatenation.
Let w be an element of ΩAV. Consider a generating mapping ϕ : A→ S
of a semigroup in V. For every stationary point p of L(w), there is
a clopen interval I containing p such that, if t is a transition between
elements q, r of I with q ≤ r, then ϕV(t) is a factor of the elements
of ϕV(Jp).

Proof: Let (u, v) ∈ p. By Proposition 7.13 and its dual, there is in F(w)
an increasing sequence (pn)n of step points converging to (u, v) and a
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decreasing sequence (p′n)n of step points converging to (u, v). Denote
by τn the unique edge from pn to (u, v), and by τ ′n the unique edge
from (u, v) to p′n (uniqueness of these edges is given by Proposition 7.6).
Let ε be a loop in Tp at vertex (u, v). Then τnετ

′
n converges to a loop ε̃

of T(w) at vertex (u, v). Since ε is a factor of ε̃, we must have Λ(ε̃) ∈ Jp
(thus we have ε̃ = ε by Corollary 9.4, although we shall not use that
fact). Therefore, since ϕA and the labeling mapping Λ are continuous,
there is N such that ϕV(Λ(τnετ

′
n)) ∈ ϕV(Jp) for all n ≥ N . Consider

the clopen interval I = [pN , p
′
N ]. Let q and r be elements of I such

that q ≤ r, and let t be a transition from q to r. Then t is a factor
of a transition from pN to p′N . But Λ(τNετ

′
N ) is the unique transition

from pN to p′N , by Proposition 7.6. Hence, ϕV(t) is a factor of the
elements of ϕV(Jp).

Lemma 11.11. Let (qn)n be a sequence of stationary points of L(w)
converging to q. For each n, let un be an element of Jqn . Suppose that
(un)n converges to u. Then u is J-above Jq.

Proof: The sequence of edges (qn
un−−→ qn)n of T(w) converges to q

u−→ q.
Since u labels a transition from q to itself, u is J-above Jq.

In Lemma 11.11 it is not true in general that u ∈ Jq. In Example 8.1,
the stationary point r such that (aωbaω)ω belongs to Jr is the limit of a
sequence (qn)n of stationary points such that aω ∈ Jqn , but aω /∈ Jr.
Definition 11.12 (Mapping Γ). Let JS be the set of regular J-classes
of S, and denote by Υ the mapping stat(L(w))→ JS sending a stationary
point p to the J-class containing ϕA(Jp). Denote by Γ the mapping Υ×
Fg : stat(L(w))→ JS × Im(Fg) sending p to (Υ(p), Fg(p)).

In the next lemma, we continue to assume that Lc(w) is g-recognized
by (ϕ, s).

Lemma 11.13. Suppose that the semigroup S is unambiguous. Let X, Y
be elements of Ow such that X < Y . Suppose that the restriction of Γ to
stat(L(w)) ∩ [X,Y [ is constant. Then [X,Y [ is a special bridge.

Proof: Let p ∈ stat(L(w)) ∩ [X,Y [. By Lemma 11.6, it suffices to prove
that there is a special bridge containing p. Let I be a clopen interval
containing p satisfying the properties described in Lemma 11.10, and let
[x0, y0] be the clopen interval I ∩ [X,Y [, which is indeed nonempty as
it contains p. Note that x0 and y0 are step points. Let X ′ = Ow(x0)
and Y ′ = Ow(y0). By the definition of Ow, x0 ≥ X implies X ′ ≥ X,
and y0 ≤ Y implies Y ′ ≤ Y , thus [X ′, Y ′[ ⊆ [X,Y [. Therefore, we have
p ∈ [X ′, Y ′[ and [ρ(X ′), λ(Y ′)] ⊆ I ∩ [X,Y [.
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Let x, y be step points in [X ′, Y ′[ such that x < y. We want
to show that x −→ y is g-projected. If x ≺≺ y, then we apply Re-
mark 11.3, so we suppose that is not the case, which implies ρ(x) ≤ λ(y).
Note that [ρ(x), λ(y)] ⊆ [ρ(X ′), λ(Y ′)]. If t is a J-minimum transition
from ρ(x) to λ(y) then t ≤J Jρ(x) and t ≤J Jλ(y) by Lemma 11.7, thus
ϕA(t) ≤J Υ(ρ(x)) and ϕA(t) ≤J Υ(λ(y)). Hence ϕA(t) ≤J Υ(p), because
the restriction of Υ to stat(L(w)) ∩ [X,Y [ is constant. By the choice
of I (cf. Lemma 11.10), this implies ϕA(t) ∈ Υ(p). Therefore, since the
restriction of Γ to stat(L(w)) ∩ [X,Y [ is constant, we have shown that
the pair (ρ(x), λ(y)) is a J-bridge. By Remark 11.3, [x, ρ(x)[ and ]λ(y), y]
are bridges, whence it follows from Proposition 11.9 that there are step
points x′ ∈ [x, ρ(x)[ and y′ ∈ ]λ(y), y] such that x′ −→ y′ is g-projected.
Therefore x −→ y is g-projected by Remarks 11.3 and 11.2. This con-
cludes the proof that [X ′, Y ′[ is a special bridge containing p.

Proposition 11.14. Suppose that the finite aperiodic semigroup S is
unambiguous. Then every stationary point p of L(w) is contained in
some special bridge.

Proof: Endow JS × Im(Fg) with the following partial order:

(J1, P1) ≤ (J2, P2) ⇐⇒ (J2 <J J1 or (J1 = J2 and P1 ⊆ P2)).

For each p ∈ stat(L(w)), let

G(p) = {Γ(q) : q ∈ stat(L(w)) and Γ(q) < Γ(p)}.

We shall prove by induction on the cardinal of G(p) that p is contained
in some special bridge.

We start with some preliminary remarks. Let I = [α, β] be a clopen
interval containing p satisfying the properties described in Lemmas 11.10
and 8.4(b). Let X = Ow(α) and Y = Ow(β). Then the following holds:

stat(L(w)) ∩ I = stat(L(w)) ∩ [X,Y [.

Let q ∈ stat(L(w)) ∩ [X,Y [. Then we have Υ(p) ≤J Υ(q) by the
choice of I (cf. Lemma 11.10). It also follows from the choice of I
(cf. Lemma 8.4(b)) that Fg(q) ⊆ Fg(p). Hence we have

(11.3) Γ(q) ≤ Γ(p) for all q ∈ stat(L(w)) ∩ [X,Y [.



The Linear Nature of Pseudowords 401

Initial step. Suppose that G(p) = ∅. It follows from (11.3) that Γ(q) =
Γ(p) for every q ∈ stat(L(w)) ∩ [X,Y [. Therefore, [X,Y [ is a special
bridge, by Lemma 11.13.

Inductive step. Suppose that for every stationary point q such that
|G(q)| < |G(p)|, there is a special bridge containing q. Consider the sets

M = {q ∈ stat(L(w)) ∩ [X,Y [ : Γ(q) < Γ(p)},
N = {q ∈ stat(L(w)) ∩ [X,Y [ : Γ(q) = Γ(p)}.

Note that M ∪N = stat(L(w))∩ [X,Y [, by (11.3). Note also that, by the
induction hypothesis, every element of M is contained in some special
bridge, as Γ(q) < Γ(p) implies G(q) ( G(p) with Γ(q) ∈ G(p) \ G(q).
Our goal is to apply Lemma 11.6 to the interval [X,Y [. So, it remains
to show that every element of N is contained in some special bridge. For
that purpose, we prove the following lemma.

Lemma 11.15. The set N is closed.

Proof: Consider a sequence (qn)n of elements of N converging to q. Since
[X,Y [ and stat(L(w)) are closed (the latter in view of Proposition 7.5),
we only need to prove that Γ(q) = Γ(p).

By Lemma 8.4(b), we have Fg(qn) ⊆ Fg(q) for sufficiently large n. By
the definition of N , we have Fg(qn) = Fg(p) for all n, whence Fg(p) ⊆
Fg(q). On the other hand, since q ∈ [X,Y [ and thus q ∈ I, by the choice
of I (cf. Lemma 8.4(b)) we have Fg(q) ⊆ Fg(p). This concludes the proof
of the equality Fg(q) = Fg(p).

By Lemma 11.11, we have Υ(q) ≤J Υ(qn) for some sufficiently large n.
By the definition of N , we have Υ(p) = Υ(qn) for all n, whence Υ(q) ≤J

Υ(p). On the other hand, since q ∈ [X,Y [ we have Υ(p) ≤J Υ(q)
by (11.3). Therefore we have Γ(p) = Γ(q).

Let us proceed with the proof of Proposition 11.14. Suppose that
q ∈ N . Let I ′ be a clopen interval containing q, and contained in [X,Y [,
satisfying the properties described in Lemmas 11.10 and 8.4(b). In a
similar way as we have built X, Y from I, we may build from I ′ elements
X ′, Y ′ ∈ Ow such that q ∈ [X ′, Y ′[ and stat(L(w)) ∩ [X ′, Y ′[ ⊆ I ′.

Let x and y be two step points of [X ′, Y ′[ such that x < y. We want
to prove that the edge x −→ y is g-projected. By Remark 11.3, we may
as well assume that x and y are not ≈-equivalent.

Suppose N ∩ [x, y] = ∅. Then every element of the nonempty inter-
section stat(L(w)) ∩ [x, y[ belongs to M and is therefore contained in
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a special bridge, as observed earlier. Hence [Ow(x),Ow(y)[ is a special
bridge by Lemma 11.6. It follows that the edge x −→ y is g-projected
(cf. Remarks 11.3 and 11.2).

Suppose that N ∩ [x, y] 6= ∅. Then N ∩ [x, y] has a minimum rx and
a maximum ry, because N ∩ [x, y] is closed by Lemma 11.15.

Let t be a J-minimum transition from rx to ry. Then we have t ≤J Jrx
by Lemma 11.7, thus ϕA(t) ≤J Υ(rx). On the other hand, rx, ry ∈ I ′,
and so, by the choice of I ′ (cf. Lemma 11.10), we know that ϕA(t) ≥J

Υ(q). Since by the definition of N , the equalities Υ(rx) = Υ(ry) = Υ(q)
hold, we obtain ϕA(t) ∈ Υ(q). Also by the definition of N , we conclude
that Fg(rx) = Fg(ry). This shows that (rx, ry) is a J-bridge.

We claim that [x, rx[ is a bridge. Let x1 and x2 be step points such
that x < x1 ≤ x2 < rx. We want to show that x1 −→ x2 is g-projected, for
which we may as well assume that x1 and x2 are not ≈-equivalent. Recall
that M ∪ N = stat(L(w)) ∩ [X,Y [ by (11.3), and so, by the definition
of rx, the set stat(L(w)) ∩ [Jw(x1),Ow(x2)[ is contained in M . But we
already observed that every element of M is contained in some special
bridge. Hence, [Ow(x1),Ow(x2)[ is a special bridge by Lemma 11.6, and
so x1 −→ x2 is g-projected (cf. Remarks 11.3 and 11.2), thus proving the
claim. Similarly, ]ry, y] is a bridge.

By Proposition 11.9, there are step points x0 and y0 satisfying x <
x0 < rx and ry < y0 < y such that x0 −→ y0 is g-projected. Again
by the definition of rx and by (11.3), every element of stat(L(w)) ∩
[Ow(x),Ow(x0)[ belongs to M , and so [Ow(x),Ow(x0)[ is a special bridge
by Lemma 11.6. Hence, the edge x −→ x0 is g-projected. Similarly, y0 −→
y is g-projected. It follows that x −→ y is g-projected by Remark 11.2.

We showed in all cases that x −→ y is g-projected. Hence, [X ′, Y ′[ is
a special bridge containing q.

We have established that every element of stat(L(w))∩ [X,Y [ is con-
tained in some special bridge. From Lemma 11.6, we then deduce that
[X,Y [ is a special bridge containing p. This concludes the inductive step
in our proof, thereby showing that the proposition holds.

Theorem 11.16. Let w be an element of ΩAA. Let ϕ : A → S be
a generating mapping of a finite aperiodic unambiguous semigroup S.
Suppose that Lc(w) is g-recognized by (ϕ, s). Then L(w) is a bridge.

Proof: Clearly, if w ∈ A+ then L(w) is a bridge by Remark 11.3. Suppose
that w ∈ ΩAA \ A+. By Proposition 11.14, for each stationary point p
of L(w), there is a special bridge [Xp, Yp[ containing it. The union of the
nonempty family ([Xp, Yp[)p∈stat(L(w)) is L(w) \ {(w, 1)}, therefore L(w)
is a bridge, in view of Lemma 11.5.
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Conclusion of the proof of Theorem 8.6: The direct implication in The-
orem 8.6 follows directly from Proposition 8.5.

Conversely, suppose that L(w) is g-recognized by (ϕ, s), for some g.

Then (1, w)
w−→ (w, 1) is g-projected to g(1, w)

ϕA(w)−−−−→ g(w, 1) by The-
orem 11.16. But g(1, w) = (1, s) and g(w, 1) = (s, 1). It follows that
s = ϕA(w).

12. The effect of multiplication on the quasi-order

In this section, under suitable conditions, we relate F(uv) on one hand,
with F(u) and F(v) on the other hand.

The quasi-orders considered in this section are all total, as they stem
from the quasi-order of 2-factorizations of equidivisible semigroups. We
want to compare different intervals of quasi-ordered sets of 2-factoriza-
tions. This leads us to introduce the following definitions. Let (P,≤)
and (Q,≤) be two quasi-ordered sets, and let ϕ be a function from P
to Q. Recall that ϕ is monotone if p ≤ q implies ϕ(p) ≤ ϕ(q), for
every p, q ∈ P . Suppose moreover that the quasi-order on P is total.
Then we say that ϕ is a quasi-isomorphism if ϕ is a surjective monotone
mapping such that, for all p, q ∈ P , we have p < q ⇒ ϕ(p) < ϕ(q).
Because the quasi-order on P is total, we have ϕ(p) < ϕ(q)⇒ p < q and
ϕ(p) ∼ ϕ(q)⇒ p ∼ q, for all p, q ∈ P . Therefore, ϕ induces the isomor-
phism of linearly ordered sets ϕ̃ : P/∼ → Q/∼ sending p/∼ to ϕ(p)/∼.
In particular, the quasi-order on Q is also total.

Let Iu be an interval of L(u) and Iv an interval of L(v), for some u, v in
a compact semigroup S. A mapping θ : Iu → Iv is said to be J-preserving
if Jp = Jθ(p) for every p ∈ Iu.

Proposition 12.1. Consider an equidivisible profinite semigroup S
which is finitely cancelable, and take w ∈ S. Let (u, v) ∈ F(w). For
p = (u, v)/∼, let e be the unique idempotent of Jp stabilizing (u, v).
Then the following mappings are quasi-isomorphisms of intervals of the
respective totally quasi-ordered sets F(w), F(u), and F(v):

λ(u,v) : [(1, u), (u, e)]→ [(1, w), (u, v)]

(x, y) 7→ (x, yv),

ρ(u,v) : [(e, v), (v, 1)]→ [(u, v), (w, 1)]

(x, y) 7→ (ux, y).

Moreover, the induced isomorphisms λ̃(u,v) and ρ̃(u,v) are J-preserving.
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Before proceeding with the proof of Proposition 12.1, let us recall
that the uniqueness of e mentioned in its statement is guaranteed by
Lemma 5.3. The next technical lemma will be used in the proof of
Proposition 12.1.

Lemma 12.2. Let S be an equidivisible compact semigroup, and let
x, y, z ∈ S. If xy = xyz, then there exists some idempotent e ∈ SI such
that yzω = ey and xe = x. Dually, if yz = xyz, then there exists some
idempotent e ∈ SI such that xωy = ye and ez = z.

Proof: We deal only with the case xy = xyz, as the other case is dual.
Since S is equidivisible, the pairs (x, y) and (x, yz) are comparable ele-
ments of the quasi-ordered set F(xy). If (x, yz) ≤ (x, y), then there exists
t ∈ SI such that x = xt and yz = ty, and so yzk = tky for every k ≥ 1,
whence yzω = tωy and we choose e = tω. Otherwise, (x, y) < (x, yz),
and so there exists u ∈ S such that x = xu and y = uyz, whence x = xuω

and y = uωyzω; since yzω = y = uωy, we may choose e = uω.

Proof of Proposition 12.1: By symmetry, it suffices to consider the map-
ping λ = λ(u,v). By Remark 4.6, and since ev = v, the mapping λ indeed
takes its values in the interval [(1, w), (u, v)] and it is monotone.

Let (x, z) ∈ F(w) be such that (x, z) ≤ (u, v). Then there is t ∈ SI
such that xt = u and z = tv. And, since u = ue, we deduce that

(x, te)
t−→ (u, e) is and edge of T(u), whence (x, te) belongs to the inter-

val [(1, u), (u, e)]. As λ(x, te) = (x, tev) = (x, z), we conclude that λ is
surjective.

To prove that λ is a quasi-isomorphism, it remains to show that if
(x1, y1), (x2, y2) are elements of [(1, u), (u, e)], then

(12.1) (x1, y1) < (x2, y2) =⇒ (x1, y1v) < (x2, y2v).

Reasoning by reductio ad absurdum, suppose that the implication fails,
that is, that (x1, y1) < (x2, y2) and (x2, y2v) ≤ (x1, y1v). We may
then consider s, t ∈ SI such that x1t = x2, y1 = ty2, x2s = x1, and
y2v = sy1v. The latter equality can be written as y2v = st · y2v, and
applying the second case of Lemma 12.2 to it, we conclude that there
exists an idempotent f ∈ SI such that (st)ωy2 = y2f and fv = v. The
calculations

x2 · (st)ω−1s = x1(ts)ω = x1 and (st)ω−1s · y1 = (st)ωy2 = y2f

show that x2 · y2f = x1y1 = u and

(12.2) (x2, y2f) ≤ (x1, y1)
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in [(1, u), (u, e)]. Since (x1, y1) < (x2, y2), we reach a contradiction pro-
vided we prove that y2f = y2.

Recall that v = fv, and note that u = x2y2f implies u = uf . Hence,

as (u, v)
e−→ (u, v) belongs to the ideal Kp, we conclude that (u, v)

efe−−→
(u, v) also belongs to Kp. From Corollary 9.4, we get efe = e. On the
other hand, since (x2, y2f) ≤ (u, e) (cf. (12.2)) and (x2, y2) ≤ (u, e),
we have y2fe = y2f and y2e = y2. Hence, y2f = y2fe = y2efe =
y2e = y2, and so we reach the desired contradiction. The contradiction
was originated by the assumption that the implication (12.1) fails in the
interval [(1, u), (u, e)]. Hence, the implication holds, which concludes the
proof that λ is a quasi-isomorphism.

It remains to show that, for (x, y) ∈ [(1, u), (u, e)], we have Jq = Jλ̃(q),

where q = (x, y)/∼. Let ε ∈ SI be an idempotent. Observe that if ε
stabilizes (x, y) then it also stabilizes (x, yv), which shows that Jq lies
J-above Jλ̃(q).

Conversely, suppose that ε stabilizes (x, yv). As εyv = yv, it follows
from Lemma 12.2 that there is some idempotent f ∈ SI with εy = yf
and fv = v.

We claim that (x, yf) ≤ (u, e). Suppose on the contrary that

(12.3) (u, e) < (x, yf).

Then e ≤L yf , and so in particular we have e = ef . Similarly, from

(12.4) (x, y) ≤ (u, e)

we get y = ye. Therefore, yf = yef = ye = y, yielding a contradiction
between (12.3) and (12.4). This shows the claim that (x, yf) ≤ (u, e).

We are now assured that (x, yf) belongs to the domain of λ. From v =
fv, we get λ(x, y) = (x, yv) = λ(x, yf). We have already proved that
λ is a quasi-isomorphism, and so we conclude that (x, y) ∼ (x, yf). On
the other hand, ε clearly stabilizes (x, yf) = (x, εy). Hence, Jλ̃(q) lies

J-above Jq, which proves that the two J-classes coincide.

Remark 12.3. Notice that in Proposition 12.1, in the special case where
(u, v) is a step point, we have e = 1 and so the domains of λ(u,v) and ρ(u,v)
are, respectively, F(u) and F(v).

Remark 12.4. Suppose that in Proposition 12.1 we have e 6= 1. Let q be
the stationary point (e, e)/∼ of L(e). Since e stabilizes (e, e) and Jq is
J-above e, we have e ∈ Jq. Therefore, applying Proposition 12.1, we may
consider the quasi-isomorphisms λ(e,v) : [(1, e), (e, e)]→ [(1, v), (e, v)] and
ρ(u,e) : [(e, e), (e, 1)]→ [(u, e), (u, 1)].
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The diagram in Figure 3 may facilitate the understanding of the ap-
plications of Proposition 12.1 in the case in which (u, v) is a stationary
point.

w
(u, v)

u
(u, e)

e
(e, e)

v
(e, v)

6λ(u,v)

6ρ(u,e)

?
λ(e,v)

6

ρ(u,v)

Figure 3. Quasi-isomorphisms associated with a sta-
tionary point (u, v).

The arrows indicate quasi-isomorphisms between various intervals of the
quasi-ordered sets F(w), F(u), F(v), and F(e). Those quasi-isomorphisms
induce isomorphisms between the corresponding intervals of the linearly
ordered sets L(w), L(u), L(v), and L(e). The picture is perhaps clearer if
interpreted in this context, in which case, the points (u, v), (u, e), (e, v),
and (e, e) should be replaced by their respective ∼-classes.

Let S be an equidivisible profinite semigroup S which is finitely can-
celable, and let w ∈ S. We endow every ordered subset Q of L(w) with
the following labeling l: for a step point p = (u, v) of L(w) belonging
to Q, let l(p) = i(v) (and so if Q = L(w) then the labeling on step points
is the one defining the cluster word Lc(w)); for a stationary point p
of L(w) belonging to Q, let l(p) = Jp. The resulting labeled ordered set
is denoted Ql. In the next result, Pl+Ql denotes the labeled ordered set
with underlying ordered set P + Q and labeling whose restriction to P
and Q is respectively the labeling of Pl and Ql. The symbol ∼= stands
for isomorphism of labeled ordered sets.

Proposition 12.5. Let S be an equidivisible profinite semigroup S which
is finitely cancelable. Take w ∈ S. Let u, v ∈ S be such that w = uv. If
e is the unique idempotent of J(u,v)/∼ stabilizing (u, v), then

L(w)l ∼= [(1, u)/∼, (u, e)/∼[l + [(e, v)/∼, (v, 1)/∼]l.

In particular, if (u, v) is a step point, then L(w)l ∼= (L(u) \ {(u, 1)})l +
L(v)l.

Proof: Consider the quasi-isomorphism λ(u,v) and respective isomor-

phism λ̃(u,v) as in Proposition 12.1. Then, the pair (x, y) ∈ F(u) is a step
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point of the interval [(1, u), (u, e)[ if and only if its image λ(u,v)(x, y) =
(x, yv) is a step point of [(1, w), (u, v)[, and i(y) = i(yv). This fact,

together with λ̃(u,v) being J-preserving, enables us to conclude that

[(1, u)/∼, (u, e)/∼[l
∼= [(1, w)/∼, (u, v)/∼[l.

Similarly, we obtain

[(e, v)/∼, (v, 1)/∼]l
∼= [(u, v)/∼, (w, 1)/∼]l.

Since we clearly have

L(w)l = [(1, w)/∼, (u, v)/∼)[l + [(u, v)/∼, (w, 1)/∼]l,

this concludes the proof.

13. The image of the representation w 7→ Lc(w) in the
aperiodic case

Consider a cluster word (L, `) over A. Let ϕ : A→ S be a generating
mapping of a semigroup S. Let s ∈ S and g : step(L) → F(s) be such
that (L, `) is g-recognized by (ϕ, s). We say that g is a (ϕ, s)-recognizer
of (L, `).

Lemma 13.1. Let ϕ : A→ S be a generating mapping of a finite semi-
group S, and let π : S → T be an onto homomorphism of semigroups.
Suppose that (L, `) is recognized by (ϕ, s). Then (L, `) is recognized
by (π ◦ ϕ, π(s)).

Proof: Let g : step(L) → F(s) be a (ϕ, s)-recognizer of (L, `). For each
p ∈ step(L), let g(p) = (up, vp). Consider the mapping h : step(L) →
F(π(s)) defined by h(p) = (π(up), π(vp)). We claim that (L, `) is h-rec-
ognized by (π ◦ϕ, π(s)). The conditions (R.1)–(R.3) in Definition 8.2 for
h-recognition by (π ◦ ϕ, π(s)) are clearly satisfied. It remains to show
that condition (R.4) holds. Let p be a stationary point of (L, `). Take
an element q of F(π(s)) such that h−1(q) is left cofinal at p. Consider
the set

X = {(u, v) ∈ F(s) : (π(u), π(v)) = q}.
Then we have h−1(q) = g−1(X) =

⋃
x∈X g

−1(x). Since h−1(q) is left
cofinal at p and X is finite, there is at least one element x0 of X such
that g−1(x0) is left cofinal at p. But then g−1(x0) is also right cofinal
at p, because (L, `) is g-recognized by (ϕ, s). Therefore, h−1(q) is right
cofinal at p. Symmetrically, if h−1(q) is right cofinal at p, then it is left
cofinal at p. This concludes the proof.
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For a cluster word (L, `) over A, if p and q are step points of L such
that p ≤ q, then ([p, q], `) is the cluster word obtained from (L, `) by
restricting ` to [p, q[, and letting `(q) = 1.

We wish to study cluster words (L, `) satisfying the following condi-
tions:

(W.1) For every finite aperiodic unambiguous A-generated semigroup S,
and every generating mapping ϕ : A→ S, there is a unique s ∈ S
such that (L, `) is recognized by (ϕ, s).

(W.2) If p and q are step points of L such that p < q, then ([p, q], `)
satisfies (W.1).

(W.3) Consider an arbitrary finite aperiodic unambiguous A-generated
semigroup S and a generating mapping ϕ : A→ S. Let s be such
that (L, `) if recognized by (ϕ, s). Take a (ϕ, s)-recognizer g.
Suppose p and q are step points such that p < q. If t ∈ S is

such that (ϕ, t) recognizes ([p, q], `), then g(p)
t−→ g(q) is an edge

of T(s).

Remark 13.2. In the setting of condition (W.3), there is only one such
(ϕ, s)-recognizer, assuming that (W.1) and (W.2) also hold. Indeed, if
g is a (ϕ, s)-recognizer, and p is a step point of L, and if s1 and s2 are
(the unique) elements of S such that ([minL, p], `) and ([p,maxL], `)

are respectively recognized by (ϕ, s1) and (ϕ, s2), then g(minL)
s1−→ g(p)

and g(p)
s2−→ g(maxL) are edges of T(s), and so g(p) = (s1, s2).

Finally we consider a fourth condition, assuming (W.1)–(W.3) hold:

(W.4) For every step point p of L, there is a finite aperiodic unambiguous
semigroup S and a generating mapping ϕ : A→ S such that, for
the unique (ϕ, s)-recognizer g of (L, `), there are no elements of S
that stabilize g(p) in T(S).

A cluster word satisfying conditions (W.1)–(W.4) is called a worthy
cluster word.

Theorem 13.3. A cluster word (L, `) over A is isomorphic to a cluster
word of the form Lc(w), w ∈ ΩAA, if and only if it is a worthy cluster
word.

Proof: Let w ∈ ΩAA. By Proposition 8.5 and Theorem 11.16, the cluster
word Lc(w) satisfies condition (W.1).

Take two step points p and q of Lc(w) such that p < q. Let t ∈ ΩAA
be the unique transition from p to q. Applying twice Proposition 12.1,
we conclude that ([p, q], `) is isomorphic with Lc(t). Therefore, by the
preceding paragraph, ([p, q], `) satisfies condition (W.1).
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By the previous paragraph and by Theorem 11.16, the cluster
word Lc(w) satisfies condition (W.3).

Suppose condition (W.4) does not hold for Lc(w). Then, there is a
step point p such that, for every finite aperiodic unambiguous A-gen-
erated semigroup S and every generating mapping ϕ : A → S, the ver-
tex g(p) of T(s) is stabilized by some element of S. Let p = (u, v). We
then have g(p) = (ϕA(u), ϕA(v)) (cf. Theorem 11.16). By a standard
compactness argument, this implies that (u, v) is stabilized by some el-
ement of ΩAA. In view of Proposition 7.5, this is impossible since p is a
step point.

Conversely, suppose that (L, `) is a worthy cluster word over A. Let
(πi)i∈I be an inverse system of continuous homomorphisms πi : ΩAA→
Si onto finite aperiodic unambiguous A-generated semigroups, with con-
necting homomorphisms πj,i : Sj → Si, such that ΩAA = lim←−i∈I Si. Ac-

cording to condition (W.1), for each i ∈ I, we may consider the unique
element si of Si such that (L, `) is recognized by (πi, si). Applying
Lemma 13.1, we then conclude that πj,i(sj) = si, whenever i, j ∈ I are

such that i ≤ j. Hence, we may consider the unique element wL of ΩAA
such that

(13.1) πi(wL) = si,

for every i ∈ I.
Consider the mapping λ : step(L)→ step(L(wL)) defined by

λ(p) = (w[minL,p], w[p,maxL]).

Note that condition (W.2) ensures that w[minL,p] and w[p,maxL] are
well defined. We claim that λ is an isomorphism between the cluster
words (L, `) and Lc(wL). In the process of proving this we show that
(w[minL,p], w[p,maxL]) is indeed a step point of F(wL) (and thus of L(wL)).

We begin by observing that formula (13.1) generalizes to every gener-
ating mapping ϕ : A→ S of a finite aperiodic unambiguous A-generated
semigroup. Indeed, take s ∈ S such that (L, `) is recognized by (ϕ, s).
There is some i ∈ I for which there is an onto homomorphism ρ : Si → S
satisfying ϕA = ρ ◦ πi. By Lemma 13.1 and since (L, `) satisfies (W.1),
we know that ρ(si) = s. Therefore, we have

(13.2) ϕA(wL) = s.
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For such a pair (ϕ, s), let gϕ : step(L) → F(s) be the unique (ϕ, s)-rec-
ognizer of (L, `). If p is a step point of L, then applying formula (13.2)
to [minL, p] and to [p,maxL], and taking into account Remark 13.2, we
conclude that

(13.3) gϕ(p) = (ϕA(w[minL,p]), ϕA(w[p,maxL])).

In particular, we have

ϕA(w[minL,p]w[p,maxL]) = s = ϕA(wL).

Because ϕ was arbitrarily chosen among generating mappings of finite
aperiodic unambiguous A-generated semigroups, this shows that the
pair λ(p) = (w[minL,p], w[p,maxL]) indeed belongs to F(wL).

Consider step points q and r of L such that q ≺ r. Let a = `(q). Take
a generating mapping ϕ : A→ S of a finite aperiodic unambiguous semi-
group S and s ∈ S such that (ϕ, s) recognizes (L, `). By the definition

of (ϕ, s)-recognizer, we can consider in T(s) the edge gϕ(q)
ϕ(a)−−−→ gϕ(r).

In view of formula (13.3), applied to q and r, we then have

ϕA(w[minL,q]a) = ϕA(w[minL,r]) and ϕA(w[q,maxL]) = ϕA(aw[r,maxL]).

Since ϕ was arbitrarily chosen among generating mappings of finite ape-
riodic unambiguous A-generated semigroups, we conclude that

w[minL,q]a = w[minL,r] and w[q,maxL] = aw[r,maxL],

that is, λ(q)
a−→ λ(r) is an edge of T(wL). By Proposition 6.7, we have

either λ(q) ∼ λ(r) or λ(q) ≺ λ(r).

If λ(q) ∼ λ(r), then there is z ∈ a(ΩAA)I such that λ(q)
z−→ λ(q)

is an edge of T(wL). Therefore, in view of formula (13.3), we conclude
that ϕ(z) labels a loop of T(s) rooted at gϕ(q). This contradicts the
assumption that condition (W.4) holds.

We then conclude that, for step points q, r of L, we have

(13.4) q ≺ r =⇒ λ(q) ≺ λ(r).

We also showed that `(λ(q)) = `(q), thus establishing that the map-
ping λ : step(L)→ step(L(wL)) has a well-defined codomain and that it
preserves labels.

Notice that formula (13.3) can now be seen as follows: for the (ϕ, s)-
recognizer gwL,ϕ : step(L(wL)) → F(s) of Lc(wL), as in Proposition 8.5,
we have

(13.5) gϕ(p) = gwL,ϕ(λ(p)),

for every step point p of L.
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Let q and r be step points such that q < r. Suppose that λ(q) ≥ λ(r).
Then, for the pair (ϕ, s) considered so far, and in view of (13.5), we

may consider in T(s) an edge gϕ(r)
t−→ gϕ(q) labeled by some t ∈ SI .

On the other hand, according to condition (W.3), there is in T(s) an

edge gϕ(q)
z−→ gϕ(r) labeled by some z ∈ S. It follows that there is a

loop in T(s) at gϕ(q) labeled by zt ∈ S. This contradicts (W.4). Hence,
we have λ(q) < λ(r).

It remains to show that λ is onto. Let (u, v) be a step point of L(wL).
Consider the set

X = {q ∈ step(L) : λ(q) ≤ (u, v)}.
Notice that X is nonempty: indeed, one clearly has minL ∈ X.

We claim that p = supX is a step point. Suppose not. Let ϕ : A→ S
be the generating mapping of a finite aperiodic unambiguousA-generated
semigroup. Since Im gϕ is finite and {q ∈ step(L) : q > p} is right cofinal
at p, there is (s1, s2) ∈ Im gϕ such that

R = {q ∈ step(L) : q > p and gϕ(q) = (s1, s2)}
is right cofinal at p. In particular, g−1ϕ (s1, s2) is right cofinal at p. Taking

into account condition (R.4) in Definition 8.2, we know that g−1ϕ (s1, s2)
is also left cofinal at p. Therefore, there is a step point q such that q < p
and gϕ(q) = (s1, s2). Since p = supX, there is a step point q′ such that
q < q′ < p and λ(q′) ≤ (u, v). We have already shown that λ is injective
and respects the order, so we actually have λ(q) < (u, v). Let r be an
element of the nonempty set R. Since r > p, we have (u, v) < λ(r). Let
t1 and t2 be (the unique) transitions from λ(q) to (u, v) and from (u, v)
to λ(r), respectively. Then, in T(s), we have the following edges

(13.6) gwL,ϕ(λ(q))
ϕA(t1)−−−−→ gwL,ϕ(u, v)

ϕA(t2)−−−−→ gwL,ϕ(λ(r)).

But we have gwL,ϕ(λ(q)) = gϕ(q) = (s1, s2) = gϕ(r) = gwL,ϕ(λ(r)).
Hence, we can multiply the second edge in (13.6) with the first edge,
obtaining a loop at gwL,ϕ(u, v) = (ϕA(u), ϕA(v)) labeled by ϕA(t2t1) ∈ S,
leading to a contradiction, since Lc(wL) satisfies (W.4). This establishes
the claim that p is a step point, thus p ∈ X.

Suppose that λ(p) < (u, v). Let p′ be the step point such that p ≺ p′.
Then, applying (13.4), we get λ(p) ≺ λ(p′). Since λ(p) < (u, v), we
obtain λ(p′) ≤ (u, v), and so p′ ∈ X. But then p′ ≤ supX = p, a
contradiction with p < p′. As p ∈ X, to avoid the contradiction, we
must have λ(p) = (u, v). This concludes the proof that λ is onto.

It would also be interesting to characterize the worthy clustered linear
orders that arise as the images Lc(w) of ω-words w. We leave this as an
open problem.
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14. On the cardinality of the set of stationary points

Let V be an equidivisible pseudovariety of semigroups not contained
in CS. Then V is finitely cancelable (cf. Proposition 6.4), and so, by The-
orem 7.4, for a finite alphabet A and for w ∈ ΩAV, the set step(L(w)) of
step points is the set of isolated points of L(w), with respect to the order
topology. Therefore, step(L(w)) is at most countable by Corollary 4.4.
The aim of this section is to show that when A has at least two elements,
there are elements w in ΩAV for which the set stat(L(w)) of stationary
points has cardinal 2ℵ0 . This will be done using some tools originated
from symbolic dynamics, following an approach that has been success-
fully used in recent years to elucidate structural aspects of relatively free
profinite semigroups [2, 9, 4, 17, 5].

14.1. Subshifts. Consider a finite alphabet A, and endow AZ with
the product topology, where A is endowed with the discrete topology.
The shift map of AZ is the homeomorphism σ : AZ → AZ, defined
by σ((xi)i∈Z) = (xi+1)i∈Z. A symbolic dynamical system of AZ, also
called subshift of AZ, is a nonempty closed subset X of AZ such that
σ(X) = X. The books [30, 27] are good references on symbolic dynam-
ical systems.

We say that a subset L of a semigroup S is

• factorial if it is closed under taking factors;
• prolongable if, for every s∈L, there are t, u ∈ S such that ts, su∈L;
• irreducible if, for all s, t ∈ L, there is u ∈ S such that sut ∈ L.

If X is a subshift of AZ, then L(X) denotes the language of the words
of A+ of the form xkxk+1 . . . xk+n, where k ∈ Z, n ≥ 0, and (xi)i∈Z ∈ X.
The set L(X) is a factorial and prolongable language of A+, and in
fact all nonempty factorial and prolongable languages of A+ are of this
form; moreover, Y ⊆ X if and only if L(Y) ⊆ L(X), whenever X and Y are
subshifts of AZ [30, Proposition 1.3.4]. Finally, X is said to be irreducible
if L(X) is an irreducible subset of A+.

If X is a subshift of AZ then the sequence
(
1
n log2 |L(X) ∩ An|

)
n

converges to its infimum, which is called the entropy of X and de-
noted h(X) [30]. Note that X ⊆ Y implies h(X) ≤ h(Y), whenever X

and Y are subshifts.

Remark 14.1. If X is a subshift of AZ then h(X) ≤ log2 |A| = h(AZ).
Moreover, from the fact that

(
1
n log2 |L(X) ∩ An|

)
n

converges to its in-

fimum one easily deduces that the subshift X of AZ satisfies h(X) =
log2 |A| if and only if X = AZ (this a special case of [30, Corollary 4.4.9]).
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14.2. A special J-class. Consider a subshift X of AZ, and suppose
that V is a pseudovariety containing LSl. Let MV(X) be the set of pseu-
dowords w ∈ ΩAV such that all finite factors of w belong to L(X). The
set MV(X) is a factorial subset of ΩAV. Because, as it is well known, the
languages of the form A∗uA∗, with u ∈ A+, are LSl-recognizable, the
hypothesis that V contains LSl ensures that MV(X) is a closed subset
of ΩAV (cf. [16]).

Lemma 14.2. Let X be an irreducible subshift of AZ. Consider a pseu-
dovariety V containing LSl. For every u, v ∈ MV(X) there is w ∈ ΩAV,
depending only on the finite suffixes of u and on the finite prefixes of v,
such that uwv ∈MV(X).

Proof: If V is a pseudovariety containing D and its dual, then every
infinite element of ΩAV has a unique prefix (suffix) in A+ with length n,
for every n ≥ 1. Let sn be the suffix of length n of u and let pn be the
prefix of length n of v. Since X is irreducible, for each n ∈ N, there is
wn ∈ L(X) such that snwnpn ∈ L(X). Let w be an accumulation point
of (wn)n. Then w has the desired property.

Proposition 14.3 ([17, Proposition 3.6]). Let S be a compact semigroup
and let X ⊆ S. Then X is a closed, factorial, irreducible subset of S if
and only if X consists of all factors of some regular element of S.

By Lemma 14.2 and Proposition 14.3, if X is an irreducible subshift,
then there is a unique regular J-class JV(X) such that the elements
of MV(X) are the factors of elements of JV(X).

Remark 14.4. It also follows from Proposition 14.3 that JV(X) ≤J JV(Y)
if and only if MV(Y) ⊆ MV(X). Since we clearly have MV(Y) ⊆ MV(X)
if and only if L(Y) ⊆ L(X), we conclude that

(14.1) Y ⊆ X ⇐⇒ JV(X) ≤J JV(Y).

Remark 14.5. If X = AZ then MV(X) = ΩAV, and so JV(X) is the
minimum ideal of ΩAV.

14.3. Uncountable <R-chains and uncountable sets of station-
ary points. We use the standard notation dαe for the least integer
greater than or equal to the real number α.

Theorem 14.6. There is a family (Sβ)β∈]1,+∞[ of symbolic dynamical
systems, parameterized by the set of real numbers greater than one, such
that:

(a) Sβ is an irreducible subshift of {0, . . . , dβe − 1}Z;
(b) h(Sβ) = log2 β;
(c) for every α, β ∈ ]1,+∞[, we have α < β if and only if Sα ( Sβ.
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A concrete family of symbolic dynamical systems satisfying the con-
ditions of Theorem 14.6 is the family of β-shifts. A comprehensive expo-
sition about this family can be found in [31, Chapter 7] and [20]. That
these subshifts are irreducible follows from them being coded [11] – a
subshift X of AZ is coded if there is a prefix code Y contained in A+

such that L(X) is the set of factors of elements of Y +. The entropy
of β-shifts was computed in [38, 34]. The fact that this class fits into
property (c) of Theorem 14.6 appears at the beginning of [25, Section 4]
(actually, only the implication α ≤ β ⇒ Sα ⊆ Sβ is explicit there, but
from property (b) one gets Sα ( Sβ ⇒ α < β).

As usual, the notation <J stands for the irreflexive relation origi-
nated by ≤J, and similarly for <R and <L. From Theorem 14.6 and
equivalence (14.1) in Remark 14.4 one immediately deduces the exis-
tence of a <J-chain in ΩAV formed by 2ℵ0 regular elements, whenever V
contains LSl and A has at least two letters. The next theorem gives a
refinement of this, as it shows in particular the existence in ΩAV of a
<R-chain formed by 2ℵ0 regular elements. We remark that in [18] an
example is given of a <R-chain of 2ℵ0 non-regular elements in ΩALSl,
when |A| > 1.

Theorem 14.7. Let V be a finitely cancelable pseudovariety of semi-
groups containing LSl and let (Sβ)β∈]1,+∞[ be a family of subshifts as in
Theorem 14.6. Fix an integer n > 1 and let A be the alphabet {0, . . . , n−
1}. There is a family (w(β))β∈]1,n] of pseudowords of ΩAV satisfying the
following conditions:

(a) w(β) ∈ JV(Sβ) ⊆ ΩAV, for every β ∈ ]1, n];

(b) α < β ⇔ w(β) <R w(α), for every α, β ∈ ]1, n];
(c) w(n) is an element of the minimum ideal of ΩAV;
(d) there is a subnet of (w(β))β∈]1,n[ converging to w(n), where ]1, n[ is

endowed with the usual order;
(e) for each β ∈ ]1, n], there are v(β), f (β) such that (w(β), v(β)) is

a stationary point of F(w(n)), and, for qβ = (w(β), v(β))/∼, the

pseudoword f (β) is an idempotent in Jqβ stabilizing (w(β), v(β))

and satisfying f (β) L w(β);
(f) we have α < β ⇒ qα < qβ, and if moreover ΩAV is equidivisible,

then the equivalence α < β ⇔ qα < qβ holds, for every α, β ∈ ]1, n].

The proof of Theorem 14.7 will be done in several steps. But first we
highlight the following corollary, which is our main motivation for the
theorem.
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Corollary 14.8. Let V be a finitely cancelable pseudovariety of semi-
groups containing LSl and let A be a finite alphabet with at least two
elements. Then there are pseudowords w in the minimum ideal of ΩAV
such that stat(L(w)) has 2ℵ0 elements.

Note also that Theorem 14.7 gives an example of a pseudoword in
the minimum ideal of ΩAV whose set of stationary points contains a
subset with the same order type as the set of real numbers. In contrast,
the following example exhibits a pseudoword also in the minimum ideal
of ΩAV with only one stationary point. As was pointed out by the
anonymous referee, all saturated labeled linear orders considered in [21]
for elements of the minimum ideal of ΩAA are uncountable.

Example 14.9. Let u1, u2, u3, . . . be an enumeration of the elements
of A+, and let V be a pseudovariety containing LSl such that ΩAV is
equidivisible. For each k ≥ 1, consider in ΩAV an accumulation point vk
of the sequence (ukuk+1 · · ·un−1un)n≥k and an accumulation point wk
of the sequence (unun−1 · · ·uk+1uk)n≥k. As every element of A+ is a
factor of vk and wk, we know that vk and wk belong to the minimum
ideal KA of ΩAV. Therefore, if p and q are respectively the first and last
stationary point of L(v1w1), then Jp = Jq = KA by Theorem 10.1, and
so p = q by Lemma 7.9.

14.4. About the proof of Theorem 14.7. Let S be a compact semi-
group and I an ordered set. Suppose that F = (Fi)i∈I is a nonempty
family of compact subsets of S. Denote by RF the set of partial func-
tions f from I to

⋃
F such that f(i) ∈ Fi for all i ∈ Dom f , and such

that i ≤ j ⇒ f(i) ≤R f(j) whenever i, j ∈ Dom f . We endow RF with
the partial order ≤ defined by

f ≤ g ⇐⇒ (f = g ∨Dom f ( Dom g).

Lemma 14.10. The ordered set RF has a maximal element.

Proof: Let C be a chain of elements of RF . We want to show that C has
an upper bound in RF . For each f ∈ RF , let f ′ be an element of

∏
i∈I Fi

whose restriction to Dom f equals f . Since
∏
i∈I Fi is compact, the

net (f ′)f∈C has a subnet converging to some ϕ ∈
∏
i∈I Fi. For achieving

our goal, we may as well assume that (f ′)f∈C converges. Let us fix an
element f0 of C, and take i, j ∈ Dom f0 such that i ≤ j. For all f ∈ C
such that f0 ≤ f , one has f(i) ≤R f(j). As the net (f ′)f∈C∧f0≤f
converges to ϕ and ≤R is a closed relation, we deduce that ϕ(i) ≤R ϕ(j).
Moreover, since Fi is closed, we also have ϕ(k) ∈ Fk for all k ∈ Dom f0.
As f0 was chosen arbitrarily from C, we conclude that the restriction
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of ϕ to
⋃
f∈C Dom f belongs to RF and is an upper bound for C. Hence,

by Zorn’s Lemma, RF has a maximal element.

Proposition 14.11. For the relation ⊇, let C be a nonempty chain of
irreducible subshifts of AZ. Consider a pseudovariety of semigroups V
that contains LSl. Let J be the family of J-classes (JV(X))X∈C. Then
there is an element of RJ with domain C.

Proof: By Lemma 14.10, we know there is in RJ a maximal element f .
We claim that Dom f = C. Suppose this is false. Let Z ∈ C \ Dom f .
Supposing that I = {X ∈ Dom f : X ⊆ Z} is nonempty, let u be an
accumulation point of the net (f(X))X∈(I,⊆); in case I = ∅, we let u be
any element of JV(Z). Since X ⊆ Z implies MV(X) ⊆ MV(Z), we have
f(X) ∈ MV(Z) for all X ∈ I. And since MV(Z) is closed, we conclude
that u ∈ MV(Z). Moreover, fixed X ∈ I, then, as f ∈ RJ , we have
f(Y) ≤R f(X) for all Y ∈ I such that X ⊆ Y, whence

(14.2) X ∈ I =⇒ u ≤R f(X).

Let v ∈ JV(Z). By the irreducibility of MV(Z), there is w ∈ ΩAV such
that uwv ∈ MV(Z). Since uwv is a factor of v and v is a J-minimum
element of MV(Z), we have uwv ∈ JV(Z). As f ∈ RJ , every two
elements in the image of f are R-comparable, and so the elements in the
image of f have all the same set P of finite prefixes. By Lemma 14.2, for
each X ∈ Dom f such that Z ⊆ X, there is a pseudoword w′, depending
only on uwv and P , such that uwvw′f(X) ∈MV(X). More precisely, we
have uwvw′f(X) ∈ JV(X), as f(X) ∈ JV(X). The partial function

f ′ : X ∈ Dom f ∪ {Z} 7→


f(X) if X ( Z,

uwv if X = Z,

uwvw′f(X) if Z ( X,

belongs to RJ (cf. implication (14.2)) and Dom f ( Dom f ′. This
contradicts the fact that f is a maximal element of RJ . The absurdity
comes from the hypothesis C \Dom f 6= ∅.

We recall the concept of entropy of a pseudoword, first introduced
in [9], and applied there in the study of relatively free profinite semi-
groups. Some further applications were given in [17]. Let V be a pseu-
dovariety containing LSl and A an alphabet with at least two letters. For
w ∈ ΩAV, let qw(n) denote the number of factors of length n of w. If w
is an infinite pseudoword then the sequence 1

n log2 qw(n) converges to its
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infimum, which is denoted by h(w) and called the entropy of w.1 This
definition extends to finite words, by letting h(w) = 0 when w is finite.
If X is a subshift, then h(X) = h(w) for every pseudoword w whose set
of finite factors is equal to L(X). For instance, if X is irreducible then
h(X) = h(w) when w ∈ JV(X).

Note that h(w) ∈ [0, log2 |A|], for all w ∈ ΩAV. Moreover, we have
the following fact from [9].

Proposition 14.12. Let w ∈ ΩAV. Then h(w) = log2 |A| if and only if
w belongs to the minimum ideal of ΩAV.

In particular, the entropy of pseudowords of ΩAV is not continuous,
since every finite word has entropy zero and the set of finite words is
dense. However, it is upper semi-continuous, as proved next.

Lemma 14.13. Let V be a pseudovariety containing LSl. If (wn)n is a
sequence of elements of ΩAV converging to w then lim suph(wn) ≤ h(w).

Proof: Since lim suph(wn) is the greatest accumulation point of the se-
quence (h(wn))n, the proof is reduced to the case where (h(wn))n con-
verges.

Since limwn = w and V contains LSl, for each k there is pk such
that for all n ≥ pk the pseudowords wn and w have the same factors
of length k. Let (nk)k be the sequence recursively defined by n1 = p1
and nk+1 = max{nk, pk+1}. Given ε > 0, consider the set K = {k :
h(wnk) ≥ h(w) + ε}. For every k ∈ K, one has

(14.3)
1

k
log2 qw(k) =

1

k
log2 qwnk (k) ≥ h(wnk) ≥ h(w) + ε.

As lim 1
k log2 qw(k) = h(w), if K is infinite then (14.3) leads to the

contradiction h(w) ≥ h(w) + ε. Hence K is finite, and so limh(wnk) ≤
h(w) + ε. Since ε is arbitrary and (h(wn))n converges, we conclude that
limh(wn) ≤ h(w).

We now have all the tools to achieve the proof of Theorem 14.7.

Proof of Theorem 14.7: Let C be the chain (Sβ)]1,n[, ordered by ⊇. Ap-
plying Proposition 14.11 to the family of J-classes (JV(X))X∈C, we con-
clude that there is a function f : C → ΩAV such that f(Sβ) ∈ JV(Sβ)
and

Sβ ⊇ Sα =⇒ f(Sβ) ≤R f(Sα), ∀α, β ∈ ]1, n[.

1This is the definition used in [17]. In [9] the entropy of w is defined as 1
n

log|A| qw(n),

which equals h(w) log|A| 2 for h(w) as defined here.



418 J. Almeida, A. Costa, J. C. Costa, M. Zeitoun

On the other hand, if f(Sβ) ≤R f(Sα), then Sβ⊇Sα by equivalence (14.1)
in Remark 14.4. Therefore, we actually have

(14.4) Sβ ) Sα ⇐⇒ f(Sβ) <R f(Sα), ∀α, β ∈ ]1, n[.

For each β ∈ ]1, n[, let w(β) = f(Sβ). By the given characterization
of (Sβ)β∈]1,+∞[ (cf. Theorem 14.6), we know that Sβ ) Sα if and only
if α < β, whence (14.4) translates to

(14.5) α < β ⇐⇒ w(β) <R w(α), ∀α, β ∈ ]1, n[.

Let (αk)k be an increasing sequence of elements of the open interval ]1, n[
such that limαk = n. Thus, we have limh(w(αk)) = lim log2 αk =
log2 n. Hence, if w(n) is an accumulation point of the sequence (w(αk))k,
then h(w(n)) = log2 n by Lemma 14.13 and Remark 14.1. By Propo-
sition 14.12, the pseudoword w(n) then belongs to the minimum ideal
of ΩAV. Since ≤R is a closed relation, we have w(n) ≤R w(β) for
all β ∈ ]1, n[. Then, taking into account (14.5), we conclude that the
net (w(β))β∈]1,n] satisfies conditions (a)–(d) in Theorem 14.7.

As w(n) ≤R w(β), there is u(β) with w(n) = w(β)u(β). Since w(β)

is regular, there is an idempotent f (β) in the L-class of w(β). Take
v(β) = f (β)u(β). Then (w(β), v(β)) is an element of F(w(n)) stabilized
by f (β). By Proposition 7.5, this implies that qβ = (w(β), v(β))/∼ is

a stationary point. The elements of Jqβ are factors of w(β), and so

by the minimality of Jqβ we have f (β) ∈ Jqβ . Hence, condition (e) in
Theorem 14.7 holds.

Let α, β ∈ ]1, n]. Since qα ≤ qβ ⇒ w(β) ≤R w(α), we deduce
from (14.5) that qα ≤ qβ ⇒ α ≤ β. Thus, if α < β then we cannot

have qβ ≤ qα, and so assuming ΩAV is equidivisible, we get qα < qβ ,
thereby establishing condition (f) in Theorem 14.7.
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Primera versió rebuda el 13 de març de 2017,
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