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Abstract: In this paper we present new examples of simple p-local compact groups
for all odd primes. We also develop the necessary tools to show saturation, simpleness,
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applied in a more general framework.
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1. Introduction

In [BLO2], C. Broto, R. Levi, and B. Oliver defined the concept of
p-local compact group: given a prime number p, a p-local compact group
is a triple (S,F ,L) where S is a discrete p-toral group, F a saturated
fusion system over S, and L a centric linking associated to F . In [BLO2],
the authors also prove that compact Lie groups and p-compact groups
provide examples of p-local compact groups: given G a compact Lie
group (respectively a p-compact group X), there is a p-local compact
group structure (S,F ,L) together with an inclusion S ≤ G (respectively
a map Bf : BS → BX) which is a Sylow p-subgroup, such that F is
the fusion system over S induced by G (respectively by X) and L is a
centric linking system associated to F . Moreover, the same authors also
prove that, in these cases, |L|∧p ' BG∧p (respectively |L|∧p ' BX).

We are interested in proving the existence of simple p-local compact
groups (see Definition 2.3) which do not correspond neither to compact
Lie groups, nor to p-compact groups. The way we use to get examples
of this kind is looking to the already known exotic p-local finite groups,
identifying an abelian subgroup which plays the role of a torus, and
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checking if there is a way to consider a p-local compact group with
this structure. An example with this property is the 3-local finite group
labelled as F(32k+1, 3) in [DRV, Table 6]. This example gives a possible
structure of a 3-local finite group and, moreover, we have been able to
fit this case in a family which can be defined for every odd prime p.

To state the main result of the paper we need some notation: given a
prime p, let Cp be the cyclic group of order p (in multiplicative notation),
and let Z/p∞ denote the union of all the cyclic groups Z/pn (in additive
notation).

Theorem 1.1. Let p be an odd prime number. Consider the action

of Cp on T
def
= (Z/p∞)p−1 given by matrix B in Equation (3.9), and

define the split extension S
def
= (Z/p∞)p−1 o Cp. Consider s an element

of order p in S \ T , ζ a generator of the center of S, and define V
def
=

〈s, ζ〉 ∼= Cp × Cp. Then, there exist p-local compact groups (S,F ,L) for

each prime number p ≥ 3, and (S, F̃ , L̃) for p ≥ 5 fulfilling the following
table:

F AutF (S) AutF (T ) AutF (V ) prime

F 〈φ, ψ, Inn(S)〉 GL2(F3) GL2(F3) p = 3

F 〈φ2, ψφ−1, Inn(S)〉 Ap o Cp−1 SL2(Fp)o C(p−1)/2
p ≥ 5

F̃ 〈φ, ψ, Inn(S)〉 Σp × Cp−1 GL2(Fp)

and satisfying:

(a) Neither (S,F ,L), nor (S, F̃ , L̃) can be realized by a compact Lie
group, or by a p-compact group.

(b) For p ≥ 3, the p-local compact groups (S,F ,L) are simple, and for

p ≥ 5, (S,F ,L) is the only proper normal subsystem of (S, F̃ , L̃).

(c) The p-completed nerves of L (for p ≥ 3) and L̃ (for p ≥ 5) are
simply connected.

Proof: The fusion systems (S,F) (for p ≥ 3) and (S, F̃) (for p ≥ 5) are

defined in Subsection 4.1. The saturation of (S,F) and (S, F̃) is proved
in Theorem 4.3 and the exoticness results are proved in Theorems 4.10
and 4.12. The simplicity and normality conditions, together with the
property of the fundamental groups, are proved in Proposition 4.7.
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Proving this result requires some new techniques related to p-local
compact groups. Mainly, we develop the following tools:

• A saturation criterion for p-local compact groups (Proposition 2.9)
which generalizes [LO, Proposition 1.1] to the infinite case.
• A classification of saturated fusion subsystems of index prime to p

in a given p-local compact group: Appendix A generalizes the cor-
responding classification in the case of p-local finite groups [BCG+]
to the case of p-local compact groups.
• An analysis of the homotopy type and connectedness of classifying

spaces of certain centralizer p-local compact groups associated to
p-compact groups (Proposition 4.8).

Remark 1.2. Let S be a finite p-group or a discrete p-toral group. We
say that F is the fusion system over S generated by AutF (Q) for Q in
a list of subgroups of S if any other morphism in F is the composition
of restrictions of the given automorphism groups.

Acknowledgements. The authors thank the interest of C. Broto,
J. Møller, B. Oliver, and A. Viruel and the conversations with all of
them while working in the results of this paper. Each author thanks re-
spectively the Universitat Autònoma de Barcelona, the Centre for Sym-
metry and Deformation in Copenhagen, and the Kyoto University for
their hospitality during the corresponding stays.

2. On p-local compact groups

In this section we recall and generalize some concepts about p-local
compact groups that we will use throughout this paper. For a more
exhaustive treatment of this topic, the reader is referred to [BLO1],
[BLO2], and [AKO]. Let p be a prime to remain fixed for the rest of
this section.

2.1. Normal fusion subsystems. We start by reviewing the concept
of a normal subsystem of a fusion system. Let S be a discrete p-toral
group, and let F be a saturated fusion system over S. Let also P be a
subgroup of S. Recall that:

• P is strongly closed in F if we have ϕ(g) ∈ P for all g ∈ P and
ϕ ∈ HomF (〈g〉, S).

• P is normal in F if P is normal in S and each morphism ϕ ∈
HomF (Q,R) in F extends to a morphism ϕ ∈ HomF (PQ,PR)
such that ϕ(P ) = P . The maximal normal p-subgroup of F is
denoted by Op(F).



448 A. González, T. Lozano, A. Ruiz

The following definition was introduced by M. Aschbacher [Asc, Sec-
tion 6] for finite fusion systems, although it applies to fusion systems
over discrete p-toral groups without modification.

Definition 2.1. Let S be a discrete p-toral group, let F be a saturated
fusion system over S, and let (S′,F ′) ⊆ (S,F) be a subsystem. Then,
F ′ is normal in F if the following conditions are satisfied:

(N1) S′ is strongly closed in F .

(N2) For each P ≤ Q ≤ S′ and each γ ∈ HomF (Q,S), the map that
sends each f ∈ HomF ′(P,Q) to γ ◦ f ◦ γ−1 defines a bijection
between the sets HomF ′(P,Q) and HomF ′(γ(P ), γ(Q)).

(N3) F ′ is a saturated fusion system over S′.

(N4) Each f ∈AutF ′(S
′) extends to some f̃ ∈AutF (S′CS(S′)) such that

[f̃ , CS(S′)] = {f̃(g) · g−1 | g ∈ CS(S′)} ≤ Z(S′).

Lemma 2.2. Let G be a compact Lie group and S ∈ Sylp(G) be a
Sylow p-subgroup. Let H E G be a normal closed subgroup and write
R = S ∩H. Then R ∈ Sylp(H) and the saturated fusion system FR(H)
is normal in FS(G).

Proof: We have to show that R ∈ Sylp(H) and that (R,FR(H)) ⊆
(S,FS(G)) satisfies the properties of Definition 2.1.

To prove that R ∈ Sylp(H), choose P ∈ Sylp(H) such that R ≤ P ,
which can be done by [BLO2, Proposition 9.3(b)]. By the same result
from [BLO2], P ≤ Sg for some g ∈ G. Since H E G we get P =
P ∩ H ≤ Sg ∩ H = (S ∩ H)g = Rg. Therefore, R ≤ P ≤ Rg. By the
discussion after Definition 1.1 in [BLO2] we get |R| ≤ |P | ≤ |Rg| = |R|,
so R = P .

In conclusion, we have that R ∈ Sylp(H). It remains to prove that
the fusion system (R,FR(H)) ⊆ (S,FS(G)) satisfies the properties of
Definition 2.1.

Condition (N1): For every morphism ϕ ∈ FS(G) we have ϕ = cg for
some g ∈ G. Since H is normal in S we obtain ϕ(a) = cg(a) ∈ R for
all a ∈ R, so R is strongly closed in FS(G).

Condition (N2): Fix γ ∈ HomFS(G)(Q,S), again we have γ = cg for
some g ∈ G. It is easy to see that we can define the map

γ∗ : HomFR(H)(P,Q) // HomFR(H)(γ(P ), γ(Q))

f � // γ ◦ f ◦ γ−1

And, by considering β = cg−1 , the map β∗ is an inverse of γ∗, so γ∗ is
bijective.
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Condition (N3): Since H is a closed subgroup of G, it is itself a compact
Lie group. Moreover, R ∈ Sylp(H), so FR(H) is a saturated fusion
system over R by [BLO2, Lemma 9.5].

Condition (N4): Consider the p-toral group S, which is the topological
closure of S. An elementary computation shows that [NH(R), CS(R)] ≤
CH(R). Moreover, we can see that CH(R)CS(R) is a normal subgroup
of NH(R)CS(R). Then, since R is strongly closed in FS(G), it is also
fully centralized in FS(G), so we have CS(R) ∈ Sylp(CG(R)) by [BLO2,
Lemma 9.5]. Now we have CS(R) ∈ Sylp(CH(R)CS(R)) and we can
apply the Frattini argument to obtain

NH(R)CS(R) = CH(R)CS(R)NNH(R)CS(R)(CS(R)).

Finally, let f ∈ AutFR(H)(R), then f = cg with g ∈ NH(R). By the
previous decomposition, we can write g = xy for some x ∈ CH(R)CS(R)
and y ∈ NNH(R)CS(R)(CS(R)). So y = hz, with h ∈ NH(R) and z ∈
CS(R). Under this situation, h ∈NG(CS(R)): if s ∈CS(R) and r ∈R,
we have to check that (hsh−1)r(hsh−1)−1 = r, and it follows because
hs(h−1rh)s−1h−1 =h(h−1rh)h−1 (as h−1rh∈R and s∈CS(R)). Then,

we can consider f̃=ch, which defines an element f̃ ∈AutFS(G)(RCS(R))

and it is an extension of f . Moreover, if g ∈ CS(R), f̃(g) · g−1 ∈ H ∩
CS(R) = CR(R) = Z(R).

Next we recall the definition of simplicity for saturated fusion systems
and p-local compact groups [Gon2, Definition 3.1 and Remark 2.3].

Definition 2.3. Let F be a saturated fusion system over a discrete
p-toral group S. Then, F is simple if it satisfies one of the following
conditions:

(i) rk(F) = 0 and F has no proper normal subsystems.

(ii) rk(F) ≥ 1 and every proper normal subsystem of F is finite.

Similarly, a p-local compact group G = (S,F ,L) is simple if F is simple.

Note that if G = (S,F ,L) is a simple p-local compact group of positive
rank r ≥ 1, then the fusion system F may still contain finite normal
subsystems. The reader may compare this situation with the definitions
of finite simple group and simple compact Lie group, where a similar
phenomenon occurs.

For a (possibly infinite) group G, let Op(G) be the intersection of all
the normal subgroups of G that have finite p-power index. Similarly,
let Op

′
(G) be the intersection of all the normal subgroups of G that

have finite index prime to p. Following the usual notation for groups, let
also Op(G) be the maximal normal p-subgroup of G.
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Definition 2.4. Let S be a discrete p-toral group, and let F be a satu-
rated fusion system over S. The hyperfocal subgroup of F is the subgroup

OpF (S) = 〈T, {g · ϕ(g)−1 | g ∈ Q ≤ S, ϕ ∈ Op(AutF (Q))}〉 ≤ S.
Given a saturated subsystem (S′,F ′) ⊆ (S,F), we say that:

• F ′ has p-power index in F if S′ ≥ OpF (S), and AutF ′(P ) ≥
Op(AutF (P )) for all P ≤ S′.
• F ′ has index prime to p if S′ = S, and AutF ′(P ) ≥ Op′(AutF (P ))

for all P ≤ S′.
In some parts of this paper we deal with subsystems of F of p-power

index and of index prime to p. Such subsystems can be detected via
the computation of certain subgroups. The detection techniques in the
finite case were developed in [BCG+]. In the compact case, the tools for
the detection of subsystems of p-power index were developed in [Gon2,
Appendix B]. Regarding the detection of subsystems of index prime to p,
the necessary techniques are developed in Appendix A.

The following result states the classification of subsystems of p-power
index and of index prime to p for a given infinite fusion system. The
first part corresponds to [Gon2, Theorem B.12], together with [Gon2,
Corollary B.13], and the second part corresponds to Theorem A.10, to-
gether with Corollary A.12.

Theorem 2.5. Let (S,F ,L) be a p-local compact group, and set

Γp′(F)
def
= π1(|L|)/Op

′
(π1(|L|))

(see Equation (A.1) in the Appendix A for more details). Then, the
following holds:

(a) For each R ≤ S such that OpF (S) ≤ R, there exists a unique subsys-
tem (R,FR) ⊆ (S,F) of p-power index. In particular, F contains
a minimal subsystem of p-power index, denoted by Op(F), which
is normal in F .

(b) For each H ≤ Γp′(F) there exists a unique subsystem (S,FH) ⊆
(S,F) of index prime to p. In particular, F contains a minimal

subsystem of index prime to p, denoted by Op
′
(F), which is normal

in F .

Definition 2.6. The saturated fusion system (S,F) is reduced ifOp(F)=

1 and Op(F) = Op
′
(F) = F .

Lemma 2.7. Let (S,F) be a saturated fusion system, with S a finite
p-group. If F is reduced and S contains no proper strongly F-closed
subgroups, then F is simple.
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Proof: Suppose F is not simple, and let (R, E)C (S,F) be a (nontrivial)
normal subsystem. Then, R is a strongly F-closed subgroup of S. As
E is nontrivial and S contains no proper strongly F-closed subgroups, it
follows that R = S. By [Cra, Lemma 5.72], AutE(Q) has index prime
to p in AutF (Q) for all Q ≤ S. Hence, E must be of index prime to p

in F , contradicting the assumption that Op
′
(F) = F .

2.2. A saturation criterion. In this subsection we present a gener-
alization of [LO, Proposition 1.1] for infinite fusion systems (see [BM,
Proposition 4.4] for a topological analogue of the result in [LO]). Before
we prove the main result of this subsection, Proposition 2.9, we need a
technical result.

Lemma 2.8. Let S be a discrete p-toral group and P ≤ S any nontrivial
subgroup. Then, there exists an element x ∈ Z(P ) of order p which is
fixed by all ϕ ∈ AutS(P ).

Proof: As AutS(P ) = AutNS(P )(P ), we may assume that PCS. Suppose
first that P is finite. In this case, AutS(P ) = S/CS(P ) is a finite p-group,
and it is a well-known fact that 1 6= PS/CS(P ) ≤ Z(P ). Suppose now that
P is not finite. In this case, consider the quotient S/CS(P )T , where T ≤
S is the maximal torus. Let also T ′ be the maximal torus of P , and let
Ω1(T ′) ≤ T ′ be the subgroup generated by all elements of order p. Since
Ω1(T ′) is a characteristic subgroup of P and since T ′ ≤ T is abelian, it
follows that S/CS(P )T is a finite p-group which acts on Ω1(T ′). By the
finite case studied above, it follows that 1 6= Ω1(T ′)S/CS(P )T ≤ Z(P ).
This finished the proof.

Proposition 2.9. Let (S,F) be a fusion system over a discrete p-toral
group. Then, F is saturated if and only if the following holds:

(a) (S,F) satisfies axiom (III) in [BLO2, Definition 2.2]: let P1 ≤
P2 ≤ P3 ≤ · · · be an increasing sequence of subgroups of S, with
P∞ = ∪∞n=1Pn, and if ϕ ∈ Hom(P∞, S) is any homomorphims
such that ϕ|Pn

∈ HomF (Pn, S) for all n, then ϕ ∈ HomF (P∞, S).

(b) There exists a set X of elements of order p in S such that the
following conditions are satisfied:
(i) each x ∈ S of order p is F-conjugate to some y ∈ X;
(ii) if x, y are F-conjugate and y∈X, then there is some morphism

ρ ∈ HomF (CS(x), CS(y))

such that ρ(x) = y, and
(iii) for each x ∈ X, CF (x) is a saturated fusion system over CS(x).
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Proof: Suppose first that (S,F) is saturated. Then, condition (a) above
is obviously satisfied. To check condition (b), let X be the set of all
elements x ∈ S of order p such that 〈x〉 is fully centralized in F . Then,
conditions (i) and (ii) follow immediately from the saturation axioms
on F and condition (iii) is [BLO3, Theorem 2.3].

Suppose now that (S,F) satisfies conditions (a) and (b) in the state-
ment, for a certain set X. We have to show that (S,F) satisfies axioms (I)
and (II) in [BLO2, Definition 2.2]. For the reader’s convenience, we
recall the statement of axiom before proving it. Before checking that
axioms (I) and (II) are satisfied, we show that AutF (P ) has Sylow p-sub-
groups for all P ≤ S.

More precisely, given P ≤ S we show that AutF (P ) has a normal
subgroup of finite index which is isomorphic to a discrete p-torus. Let
x ∈ Z(P ) be an element of order p. As AutF (P ) ∼= AutF (P ′) if P ′ is
F-conjugate to P , by conditions (i) and (ii) in the statement we may
assume that x ∈ X. Consider the subgroup Ω1 = Ω1(Z(P )), generated
by all elements of order p in Z(P ). This is a characteristic subgroup
of P , and hence AutF (P ) acts on Ω1. Moreover, Ω1 is a finite sub-
group of Z(P ), and this implies that CAutF (P )(Ω1) is a normal subgroup
of AutF (P ) of finite index.

Note that CAutF (P )(Ω1) ≤ AutCF (P )(P ) just by definition of CF (x).
As the latter is a saturated fusion system by condition (iii) in the state-
ment, we know that OutCF (x)(P ) is a finite group, and this implies that
AutCF (P )(P ) contains a normal subgroup of finite index which is isomor-
phic to a discrete p-torus. Let H ≤ AutCF (P )(P ) denote such subgroup.
Since AutCF (P )(P ) has finite index in AutF (P ), it follows that H also
has finite index in AutCF (P )(P ). Furthermore, as H is both infinitely
p-divisible and a discrete p-toral subgroup of AutCF (P )(P ), it follows
that H is normal in AutF (P ).

Notice that the subgroup H above is a subgroup of AutCS(x)(P ) ≤
AutS(P ), and hence it follows that OutF (P ) is a finite group. In addi-
tion, [BLO2, Lemma 8.1] applies now to show that AutF (P ) has Sylow
p-subgroups. We are ready to prove axioms (I) and (II). We first prove
axiom (II), as we need it when proving axiom (I).

Axiom (II): If P ≤ S and ϕ ∈ HomF (P, S) are such that ϕ(P ) is fully
F-centralized, and if we set

Nϕ = {g ∈ NS(P ) | ϕ ◦ cg ◦ ϕ−1 ∈ AutS(P ′)},

then there is ϕ̃ ∈ HomF (Nϕ, S) such that ϕ̃|P = ϕ.
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Choose x′ ∈ Z(P ′) of order p and which is fixed under the action of
AutS(P ′), which exists by Lemma 2.8. Write x = ϕ−1(x′) ∈ Z(P ) and
note that, for all g ∈ Nϕ, the morphism ϕ◦ cg ◦ϕ−1 ∈ AutS(P ′) fixes x′,
thus cg(x) = x. Hence,

(A) x ∈ Z(Nϕ), which implies Nϕ ≤ CS(x). Also, we have NS(P ′) ≤
CS(x′).

Let y ∈ X be F-conjugate to x and x′, whose existence is guaranteed
by property (i) of the set X. Also, by property (ii) of X, there exist ρ ∈
HomF (CS(x), CS(y)) and ρ′ ∈ HomF (CS(x′), CS(y)) such that ρ(x) =
y = ρ′(x′). Set also Q = ρ(P ) and Q′ = ρ′(P ′). Since P is fully
F-centralized and CS(P ) ≤ CS(x), it follows that

(B) ρ′(CCS(x′)(P
′)) = ρ′(CS(P ′)) = CS(Q′) = CCS(y)(Q

′).

Set ω = ρ′ ◦ ϕ ◦ ρ−1 ∈ IsoF (Q,Q′). By construction, ω(y) = y, and thus
ω ∈ IsoCF (y)(Q,Q

′). Since P ′ is fully centralized in F , property (B) im-
plies that Q′ is fully centralized in CF (y). Then, we can apply axiom (II)
of saturated fusion systems on ω as a morphism in CF (y), which is a
saturated fusion system by property (iii) of X. We obtain that ω extends
to some ω̃ ∈ HomCF (y)(Nω, CS(y)), where

Nω = {g ∈ NCS(y)(Q) | ω ◦ cg ◦ ω−1 ∈ AutCS(y)(Q
′)}.

Note that, for all g ∈ Nϕ ≤ CS(x), we have, by property (A):

cω(ρ(g)) = ω ◦ cρ(g) ◦ ω−1 = (ω ◦ ρ) ◦ cg ◦ (ω ◦ ρ)−1

= (ρ′ ◦ ϕ) ◦ cg ◦ (ρ′ ◦ ϕ)−1 = cρ′(h) ∈ AutCS(y)(Q
′)

for some h ∈ NS(P ′) such that ϕ◦ cg ◦ϕ−1 = ch. In particular, ρ(Nϕ) ≤
Nω. Then, we obtain ω(ρ(g)) = ρ′(h)l′, for some l′ = CS(Q′). By
property (B) we know that CS(Q′) = ρ′(CS(P ′)), so in fact ω(ρ(g)) =
ρ′(h)ρ′(l). Since NS(P ′)≤CS(x′), we obtain ω̃(ρ(Nϕ))≤ρ′(NCS(x)(P

′)).
We can then define

ϕ̃ = (ρ′)−1 ◦ (ω̃ ◦ ρ)|Nϕ
∈ HomF (Nϕ, S)

which clearly satisfies axiom (II) above.

Axiom (I): For all P ≤ S which is fully normalized in F , P is fully
centralized in F , OutF (P ) is finite, and OutS(P ) ∈ Sylp(OutF (P )).

Let P ≤ S be fully normalized in F , with P 6= 1. As AutF (P ) has
Sylow p-subgroups, we have

OutS(P ) ∈ Sylp(OutF (P )) ks +3 AutS(P ) ∈ Sylp(AutF (P )).
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Before we proceed with the rest of the proof of axiom (I), we need to
define two sets and to prove two auxiliary results. Consider the sets U
and U0 defined as

U = {(P, x) | P ≤ S is finite, ∃Γ ∈ Sylp(AutF (P )) such that

AutS(P ) ≤ Γ and x ∈ Z(P )Γ has order p} and

U0 = {(P, x) ∈ U | x ∈ X}.

Note that for each nontrivial finite subgroup P ≤ S, there is some x ∈ P
such that (P, x) ∈ U , since every action of a finite p-group on Z(P ) has
nontrivial fixed set. Then, we have the following:

(C) If (P, x) ∈ U0 and P is fully centralized in CF (x), then P is fully
centralized in F .

Assume otherwise and let P ′ ∈ PF be fully centralized in F and ϕ ∈
IsoF (P, P ′). Write also x′=ϕ(x) ∈ Z(P ′). By property (ii) of the set X,
there is ρ ∈HomF (CS(x′), CS(x)) such that ρ(x′) = x, since we are as-
suming x ∈ X. Note that P ′ ≤ CS(x′) and set then P ′′ = ρ(P ′). In par-
ticular, ρ◦ϕ ∈ IsoCF (x)(P, P

′′) and therefore P ′′ is CF (x)-conjugate to P .
Also, since 〈x′〉≤P ′, we have CS(P ′)≤CS(x′) and then ρ sends CS(P ′)
injectively into CS(P ′′). Hence,

|CS(P )| < |CS(P ′)| ≤ |CS(P ′′)|.

However, the equalities CS(P ) = CCS(x)(P ) and CS(P ′′) = CCS(x)(P
′′)

contradict the assumption that P is fully centralized in CF (x), and this
proves property (C).

Note that, by definition, NS(P ) ≤ CS(x) for all (P, x) ∈ U , and hence

AutCS(x)(P ) = AutS(P ).

Also, if (P, x) ∈ U and Γ ∈ Sylp(AutF (P )) is as in the definition of U ,
then Γ ≤ AutCF (x)(P ). In particular, we have

(D) For all (P, x) ∈ U ,

AutS(P ) ∈ Sylp(AutF (P )) ks +3 AutCS(x)(P ) ∈ Sylp(AutCF (x)(P )).

We are ready to check that F satisfies axiom (I) of saturated fusion
systems. Fix P ≤ S, P 6= 1, a finite subgroup fully normalized in F . By
definition, |NS(P )| ≥ |NS(P ′)| for all P ′ ∈ PF . Choose x ∈ Z(P ) such
that (P, x) ∈ U and let Γ ∈ Sylp(AutF (P )) be such that AutS(P ) ≤ Γ

and such that x ∈ Z(P )Γ. Then, by properties (i) and (ii) of the set X,
there is some y ∈ X and ρ ∈ HomF (CS(x), CS(y)) such that ρ(x) = y.
Set P ′ = ρ(P ) and Γ′ = ρ ◦ Γ ◦ ρ−1 ∈ Sylp(AutF (P ′)).
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Note that, since P is assumed to be fully normalized in F , it follows
that ρ(NS(P )) = NS(P ′). Therefore, AutS(P ′) ≤ Γ′ and y ∈ Z(P ′)Γ′ ,
hence (P ′, y)∈U0. Since NS(P ′)≤CS(y), the maximality of |NS(P ′)|=
|NCS(y)(P

′)| implies that P ′ is fully normalized in CF (y).
Now, by property (iii) of X, the fusion system CF (y) is saturated.

Then, since P ′ is fully normalized in CF (y), we have that P ′ is fully
centralized in CF (y) and AutCS(y)(P

′) ∈ Sylp(AutCF (y)(P
′)). Therefore,

by properties (C) and (D), P ′ is fully centralized in F and AutS(P ′) ∈
Sylp(AutF (P ′)).

Recall that P is fully F-normalized. Since P ′ is fully centralized in F ,
and since we have already proved that axiom (II) holds on F , we may
apply [BLO3, Lemma 2.2] to deduce that P is also fully centralized in F
and AutS(P ) ∈ Sylp(AutF (P )). Finally, it is shown in [BLO2] that if
axiom (I) holds for all finite fully normalized subgroups, then axiom (I)
holds for all fully normalized subgroups.

3. Some families of exotic p-local finite groups

In this section we present some examples of exotic p-local finite groups,
for p ≥ 3. That is, we describe some p-local finite groups which are not
realized by any finite group. The examples in this section are organized
as follows. For p = 3, we present a family {(Sk,Fk,Lk)}k≥2. This
family was first studied in [DRV], where the exoticness was also proved.
Inspired by the family for p = 3, we construct, for p ≥ 5, two families

{(Sk,Fk,Lk)}k≥2 and {(Sk, F̃k, L̃k)}k≥2. As it turns out, the latter
family was already studied in [BLO1], where the authors also prove
exoticness.

3.1. A family of exotic 3-local finite groups. For this subsection
we focus on the prime p = 3. We are interested in the 3-local finite
groups corresponding to the saturated fusion systems over Sk denoted
in [DRV, Table 6] as F(32k+1, 3), with k ≥ 2. These saturated fusion
systems are over 3-groups which can be expressed as an split extension
(see Notation 3.5 below):

(3.1) 1 // Tk // Sk // C3
// 1,

where Tk ∼= (C3k)2, with a fixed (non-trivial) action of C3 on Tk. These
groups are noted as B(3, 2k + 1; 0, 0, 0) in [DRV, Appendix A]. As we
present in later sections a generalization of these 3-groups for all odd
primes, we do not give too many details and, instead, we refer the reader
to [DRV] for further details. Thus, consider the action of GL2(F3) on Tk
as explained in [DRV, Lemma A.17], ζ a generator of the center of Sk,
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s an element (of order 3) not in Tk, and V
def
= 〈ζ, s〉 an elementary abelian

3-group of rank 2.

Lemma 3.1. Let si1s
j
2s ∈ Sk be an element not in the maximal torus.

Then, si1s
j
2s is conjugated to s if and only if i ≡ 0 mod 3.

Proof: Note that if we conjugate s by any element sα1 s
β
2 s ∈ Sk we obtain

s3β
1 s−α+3β

2 s, and 3β ≡ 0 mod 3. Conversely, if i = 3l, conjugating s

by si−j1 sl2s we obtain si1s
j
2s.

Theorem 3.2 ([DRV]). Let Sk be a finite 3-group as in Equation (3.1)
and consider η, ω the outer automorphisms of Sk as in [DRV, Nota-
tion 5.9]. The following automorphisms groups generate simple saturated
fusion systems (Sk,Fk) = (Sk,F(32k+1, 3)) in the sense of Remark 1.2:

• AutFk
(Sk) = 〈η, ω, Inn(Sk)〉, getting OutFk

(Sk) ∼= C2 × C2,

• AutFk
(Tk) ∼= GL2(F3), and

• AutFk
(V )) ∼= GL2(F3).

Moreover, Sk, Tk, and V are representatives of the only Fk-conjugacy
classes of centric radical subgroups of Sk.

Proof: The saturation and exoticness properties are proven in [DRV,
Theorem 5.10]. For the simplicity property, note that F(32k+1, 3) has
no proper nontrivial strongly closed subgroups. Indeed, let P E Sk a
nontrivial strongly closed subgroup. By [AB, Theorem 8.1], P must
intersect the center in a nontrivial subgroup. Since the center of Sk has
order 3, we must have Z(Sk) ≤ P . Moreover, since ζ is F(32k+1, 3)-con-
jugated to s, we must have also s ∈ P , since P is strongly closed. Then,
by [Bla, Lemma 2.2], P must be of index at most 3 in Sk.

In fact, by Lemma 3.1, P must contain the subgroup generated by s
and all elements s3l

1 s
j
2 ∈ Tk, which is an index 3 subgroup of Sk. Then,

using that the automorphism group of Tk is all GL2(F3), we can conju-
gate, for example, the element s−3

1 s−2
2 to s1s2, obtaining that P contains

also elements not conjugated to s. Since P had index at most 3, we ob-
tain that P must be equal to Sk.

Hence, if there is a proper nontrivial normal subsystem of F(32k+1, 3),
it has to be over the same group Sk, by condition (N1) of Definition 2.1.
Then, by [Cra, Lemma 5.72], we have that the normal subsystem has to
be of index prime to p in F(32k+1, 3), but by the classification in [DRV,
Theorem 5.10], there is no subsystem of index prime to p in F(32k+1, 3).
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3.2. Some p-groups of maximal class. The Sylow 3-subgroups listed
in the previous subsection are particular cases of maximal nilpotency
class finite p-groups. These groups were classified by N. Blackburn and
fit in a family defined for every prime p ≥ 3 in [Bla, p. 88]. We recall
here the presentation given there.

Let p be an odd prime, to remain fixed for the rest of this section unless
otherwise specified. For k ≥ 2, define Sk as the group of order p(p−1)k+1

with parameters α = β = γ = δ = 0 in [Bla]. This means that Sk can
be given by the following presentation: {s, s1, s2, . . . , s(p−1)k} is a gen-
erating set, with relations

[s, si−1] = si for i = 2, . . . , (p− 1)k,(3.2)

[s1, si] = 1 for i = 2, . . . , (p− 1)k,(3.3)

sp = 1,(3.4)

s
(p
1)
i s

(p
2)
i+1 · · · s

(p
p)
i+p−1 = 1 for i = 1, . . . , (p− 1)k.(3.5)

In the last equation, we are assuming sj = 1 for j > (p− 1)k.

Consider γ(Sk)
def
= 〈si〉1≤i≤(p−1)k and the lower central series

γ2(Sk) = [Sk, Sk], γi(Sk) = [γi−1(Sk), Sk].

The following proposition gives two properties of Sk which will allow us
to see it as an extension of a finite torus by an element of order p:

Proposition 3.3. The following holds:

(a) The subgroup γ(Sk) is isomorphic to (Cpk)p−1 with generators
s1, . . . , sp−1.

(b) There are p conjugacy classes of subgroups of order p not contained
in γ(Sk). The subgroups 〈ssi1〉, for i ∈ {0, 1, . . . , p− 1}, form a set
of representatives of each conjugacy class.

Proof: Let us see first that the center of γ
def
= γ(Sk), that we denote

by Z(γ), is all of γ. From Equation (3.3) we obtain that s1 ∈ Z(γ).
Conjugation by s induces an automorphism of γ, so cs(Z(γ)) = Z(γ).
From Equation (3.2), cs(s1)=s1s2 ∈ Z(γ), which implies that s2∈Z(γ).
As cs(si) = sisi+1 we can iterate this argument and Z(γ) = γ. So γ is
abelian.

Now we must classify γ, an abelian group generated by {si}1≤i≤(p−1)k,
subject to (p − 1)k relations given by Equation (3.5). Using additive
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notation, these elements are given by the (p − 1)k × (p − 1)k upper
triangular matrix:

R =



(
p
1

) (
p
2

)
. . .

(
p
p

)
0 . . . 0

0
(
p
1

)
. . .

(
p
p−1

) (
p
p

)
. . . 0

...
...

. . .
...

...
. . .

...

0 0 . . .
(
p
1

) (
p
2

)
. . .

(
p
p

)
0 0 . . . 0

(
p
1

)
. . .

(
p
p−1

)
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . .
(
p
1

)


,

where
(
p
1

)
= p, p divides

(
p
k

)
if k 6∈ {0, p}, and

(
p
p

)
= 1. Then:

• The order of γ is the determinant of R, which is equal to p(p−1)k.

• If we consider the bottom-right (p − 1) × (p − 1) submatrix of R,
with all coefficients in the diagonal equals p and all coefficients
divisible by p, we get that 〈sm〉(p−1)(k−1)+1≤m≤(p−1)k generate a

subgroup which is a quotient of (Cp)
p−1.

• Consider now the bottom-right 2(p− 1)× 2(p− 1) submatrix of R,
with all the coefficients 1 in the last non-zero overdiagonal. This im-
plies that sm, for (p−1)(k−1)+1≤m≤(p−1)k is a combination of
〈spm〉(p−1)(k−2)+1≤m≤(p−1)(k−1), so 〈sm〉(p−1)(k−2)+1≤m≤(p−1)(k−1) =

〈sm〉(p−1)(k−2)+1≤m≤(p−1)k generate a quotient of (Cp2)p−1.

• Iterating this process, we get that γ is a quotient of (Cpk)p−1.

This quotient relation, together with the computation of the order of γ,
implies that γ = 〈sm〉1≤m≤(p−1)

∼= (Cpk)p−1.
For the second part of the statement, notice that using Equation (3.2)

we get that the element s is conjugated to ssi22 s
i3
3 · · · s

ip−1

p−1 for all 0 ≤ ij ≤
pk − 1. Use now Equation (3.5) for i = 1 to see that conjugating s by

powers of sp−1 we obtain all possible elements of the type sspi11 mod-
ulo γ2(Sk). Moreover s is not conjugated to ssi1 for 1 ≤ i ≤ p − 1
and then ssi1 is not conjugated to ssj for i and j such that p - (j − i).
Moreover (ssi1)p = 1: [Bla, p. 83, Equation (39)] with β = 0, getting

that (ssi1)p = sp(sp1s
(p
2)

2 · · · sp)i, which is equal to 1 by Equations (3.4)
and (3.5). The result follows from the fact that these are representatives
of all possible conjugacy classes of elements of order p which are not
in γ(Sk).
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This proposition tells us that Sk fits in a split extension:

(3.6) 1 // (Cpk)p−1 // Sk // Cp // 1

and the action of 〈s〉 ∼= Cp over (Cpk)p−1 is given by the matrix (us-

ing additive notation, hence with coefficients in Z/pk, on the genera-
tors {s1, . . . , sp−1}):

(3.7) A =



1 0 0 . . . 0 −
(
p
1

)
1 1 0 . . . 0 −

(
p
2

)
0 1 1 . . . 0 −

(
p
3

)
...

...
...

. . .
...

...

0 0 0 . . . 1 −
(
p
p−2

)
0 0 0 . . . 1 1−

(
p
p−1

)


.

Consider now (Z/pk)p generated by e1, . . . , ep and the action of Σp, the
symmetric group on p letters, by permutation of the elements of the basis.
This action leaves invariant the submodule Mk, isomorphic to (Z/pk)p−1,

generated by the basis 〈v1, . . . , vp−1〉, where v1
def
= e1 − e2, v2

def
= e2 −

e3, . . . , vp−1
def
= ep−1 − ep, so we get an action of Σp on (Z/pk)p−1, and

allows us to construct a split extension:

(3.8) 1 // (Cpk)p−1 // (Cpk)p−1 o Σp // Σp // 1.

In the basis {v1, v2, . . . , vp−1} the permutation (1, 2, . . . , p) corresponds
to the matrix:

(3.9) B =



0 0 0 . . . 0 −1
1 0 0 . . . 0 −1
0 1 0 . . . 0 −1
...

...
...

. . .
...

...

0 0 0 . . . 0 −1
0 0 0 . . . 1 −1


.

Lemma 3.4. The actions of Cp on (Cpk)p−1 induced by matrices A
and B from Equations (3.7) and (3.9) produce isomorphic split exten-
sions of the form

1 // (Cpk)p−1 // Sk // Cp // 1.

Proof: Here we use additive notation. Fix the generators {si}1≤i≤p−1

and the new generators {vi}1≤i≤p−1 defined as vj =
∑j−1
m=0

(
j−1
m

)
sm+1,



460 A. González, T. Lozano, A. Ruiz

for j = 1, . . . , p − 1. It is a straight forward computation to check
that if A corresponds to an automorphism in generators {si}1≤i≤p−1, B
corresponds to the same automorphism in generators {vj}1≤j≤p−1.

Notation 3.5. With all these computations we have obtained the fol-
lowing inclusion of split extensions:

1 // (Cpk)p−1 // Sk
ρk //

��

Cp //

��

1

1 // (Cpk)p−1 // (Cpk)p−1 o Σp // Σp // 1

with the action of Σp as in Equation (3.8), and where each term of the
first row is a p-Sylow subgroup of the corresponding position on the
second row. The kernel of ρk plays an important role in this paper, and

thus we fix the following notation: Tk
def
= Ker(ρk) ≤ Sk. We think of Tk

as the maximal torus of Sk generated by 〈v1, . . . , vp−1〉 and s an element
in Sk of order p which projects to a generator of Cp and that the action
of s on 〈v1, . . . , vp−1〉 is given by matrix B in Equation (3.9).

Below we enumerate some properties of the group Sk. To make it

clear we consider the elements of Sk written uniquely as vi11 · · · v
ip−1

p−1 s
i

with 0 ≤ ij ≤ pk − 1 and 0 ≤ i ≤ p− 1.

Lemma 3.6. Consider Notation 3.5 and let vi11 · · · v
ip−1

p−1 be an element
of Tk ⊂ Sk. Then, the following holds:

(a) s · vi11 · · · v
ip−1

p−1 · s−1 = v
−ip−1

1 v
i1−ip−1

2 v
i2−ip−1

3 · · · vip−2−ip−1

p−1 .

(b) vi11 · · · v
ip−1

p−1·s·(v
i1
1 · · · v

ip−1

p−1)−1=v
ip−1+i1
1 v

ip−1+i2−i1
2 · · · vip−1+ip−1−ip−2

p−1 s.

(c) vi11 · · · v
ip−1

p−1 s and vj11 · · · v
jp−1

p−1 s are Sk-conjugate if and only if∑p−1
l=1 il ≡

∑p−1
l=1 jl (mod p).

(d) The center of Sk is cyclic of order p and it is generated by ζ =

(v1
1v

2
2 · · · v

p−1
p−1)p

k−1

.

(e) There are p conjugacy classes of subgroups of order p not contained
in Tk, represented by the elements vi1s for 0 ≤ i ≤ p− 1.

Proof: The proofs of (a) and (b) are direct computation using the ac-

tion of s on vjkk , and statement (e) is the same as Proposition 3.3(b), just
changing the generators. Moreover, by [Bla], Sk is a p-group of max-
imal nilpotency class, which implies that the center of Sk has order p.
Consider ζ a generator of the center of Sk.
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We prove (c) by applying (a) and (b). Consider the setX
def
= {vs}v∈Tk

,
which has pk(p−1) elements. By (a) and (b) there is an action of Sk
on X by conjugation. This action keeps the congruence modulo p of
the sum of the exponents, so there are at least p Sk-conjugacy classes of
elements in X. Given an element vs ∈ X, its centralizer in Sk, CSk

(vs),
is the elementary abelian group of order p2 generated by 〈vs, ζ〉: if v′ ∈
Tk ∩CSk

(vs) then v′ commutes with all elements in Tk and s, so v ∈ 〈ζ〉;
if v′si ∈ CSk

(vs) and v′si 6∈ Tk, we can take a power of it such that
〈v′si〉 = 〈v′′s〉, then we get v′′s ∈ CSk

(vs), so s−1v′′vs = (v′′s)−1(vs) =
(vs)(v′′s)−1 = v′′v, obtaining that v′′v ∈ 〈ζ〉. This implies that the orbits
of the action of Sk on X have pk(p−1)−1 elements. So, there are exactly
p Sk-conjugacy classes of elements in X and the congruence modulo p of
the sum of the exponents determine if two of them are Sk-conjugated.

Next we prove the second part of (d) based on the fact that the center
of Sk has order p. To compute a generator of the center, consider the
action of Σp in the basis {e1, . . . , ep}. It is easy to see that the elements
of the form λ(e1+· · ·+ep) are invariant under the action of Σp (in partic-
ular, by the action of Cp). In particular, if λ is a multiple of pk−1, then
the corresponding element belongs to Tk. Finally, statement (e) follows
by passing to the basis {v1, . . . , vp−1} and in multiplicative notation.

3.3. Two families of exotic p-local finite groups for p > 3. We
now describe some generalizations to all primes p > 3 of the examples
constructed in Subsection 3.1 for p = 3. We start reducing the possi-
ble outer automorphism group of Sk of any saturated fusion system F
over Sk.

Proposition 3.7. Assume (Sk,F) is a saturated fusion system, then
OutF (Sk) ≤ Cp−1 × Cp−1.

Proof: As F is saturated, OutF (Sk) must be a p′-subgroup of Out(Sk).
Let Φ(Sk) be the Frattini subgroup of Sk. We claim that Φ(Sk) =
[Sk, Sk] = 〈s2, s3, . . . , s(p−1)k〉: as Sk is a p group, we have the inclu-
sion [Sk, Sk] ⊂ Φ(Sk), and, in this case, Sk/[Sk, Sk] is elementary abelian
of rank 2; if we had that [Sk, Sk] 6= Φ(Sk), then Sk/Φ(Sk) would have
rank 1, which would imply that Sk is cyclic. The kernel of the map

ρ : Out(Sk) // Out(Sk/Φ(Sk))

is a p-group, therefore ρ(OutF (Sk)) is isomorphic to a subgroup of
Out(Sk/Φ(Sk)). Use now that Sk/Φ(Sk) is a rank two elementary abelian
group, so we can consider as an Fp vector space with basis {s, s1} (im-
ages of s and s1 in Sk/Φ(Sk)). We have the equality γ = CSk

([Sk, Sk]),
so γ is a characteristic subgroup of Sk. This implies that in this basis,



462 A. González, T. Lozano, A. Ruiz

ρ(OutF (Sk)) is included in lower triangular matrices of GL2(p). Now
use again that p - # OutF (Sk) to get the result.

Notation 3.8. There are some subgroups of Sk which will be of special
interest in this subsection, and whose notation we now recall or fix. Let
Tk ≤ Sk be the maximal torus of Sk and the element s ∈ Sk as defined
in Notation 3.5. Consider now

V
def
= 〈ζ, s〉 ≤ Sk,

where ζ ∈ Z(Sk) is the generator of the center of Sk specified in Lem-
ma 3.6(d). Thus, V is an elementary abelian p-subgroup of rank 2. As
we work with concrete examples, we also specify certain automorphisms,
φ, ψ ∈ Aut(Sk) of order p− 1, for later use:

• The normalizer of 〈s〉 in {1} o Σp is isomorphic to Cp o Cp−1.
Let φ ∈ {1} o Σp be an element of order p − 1 normalizing 〈s〉.
φ acts over Sk = Tk o 〈s〉 by conjugation (here we consider Sk as
a subgroup of Tk o Σp). This action sends s 7→ sλ, λ a generator
of F×p , while φ(ζ) = ζ.

• As Aut(Cpk) ∼= (Z/pkZ)×, we can consider µ ∈ Aut(Cpk) an ele-
ment of order p− 1, and define ψ as the element in Aut(Sk) which

restricts to µ ×
p−1
· · · × µ in the maximal torus and to the identity

on 〈s〉. To facilitate computations, we can choose µ such that the
composition Aut(Cpk) ∼= (Z/pkZ)× → (Z/pZ)× (where the last
map is the reduction modulo p) sends µ to λ. With this definition,
ψ(ζ) = ζλ.

It can be checked that 〈φ, ψ〉 ∼= Cp−1×Cp−1. Moreover, restrictions to V
and Tk are given by φ|V =

(
λ 0
0 1

)
, ψ|V =

(
1 0
0 λ

)
(we are using additive

notation and taking V = 〈s, ζ〉), and by φ|Tk
= σ (σ ∈ Σp an element of

order (p− 1) normalizing s) and ψ|Tk
= λ Id.

Proposition 3.9. Consider the subgroups Tk and V of Sk, as given in
Notation 3.5 and 3.8 respectively. Consider also the action of Σp on Tk
described in Equation (3.8) and let φ and ψ be the automorphisms of Sk
fixed in Notation 3.8.

(a) For p ≥ 5, there are exotic saturated fusion systems (Sk, F̃k) gen-
erated, in the sense of Remark 1.2, by the following automorphisms
groups:
• AutF̃k

(Sk)=〈φ, ψ, Inn(Sk)〉 with an isomorphism OutF̃k
(Sk)∼=

Cp−1 × Cp−1,

• AutF̃k
(Tk) = 〈Σp, ψ〉 ∼= Σp × Cp−1, and

• AutF̃k
(V ) = GL2(Fp) ∼= SL2(Fp)o Cp−1.
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(b) The fusion system (Sk, F̃k) contains an exotic simple saturated fu-
sion subsystem (Sk,Fk) of index 2, generated by the following au-
tomorphisms groups:
• AutFk

(Sk) = 〈φ2, ψφ−1, Inn(Sk)〉 with an isomorphism
OutFk

(Sk) ∼= C p−1
2
× Cp−1,

• AutFk
(Tk) = 〈Ap, ψφ−1〉 ∼= Ap o Cp−1 (where Ap ≤ Σp is the

alternating group), and

• AutFk
(V ) = SL2(Fp)o C p−1

2
< GL2(Fp).

Moreover, Sk, Tk, and V are representatives of the only conjugacy classes

in F̃k (respectively Fk) of centric radical subgroups of Sk.

Proof: To prove (a), the existence of the saturated fusion systems (Sk, F̃k)
can be found in [BLO1, Example 9.3]. In the same result the authors
also prove that these examples are exotic.

To get (b), we can proceed classifying all the saturated fusion subsys-

tems of (Sk, F̃k) of index prime to p as in [BCG+, Section 5.1] or [AKO,
Part I.7]. To do this, we need to compute E0, the fusion system generated

by Op
′
(AutF̃k

(P )) for all P ∈ F̃ck and use it to compute

Aut0
F̃k

(Sk) = 〈α ∈ AutF̃k
(Sk) | α|p ∈ HomE0(P, Sk), some P ∈ Fck〉.

By [Rui, Theorem 3.4], it is enough to describe the groupsOp
′
(AutF̃k

(Q)),

where Q is centric and radical in F̃k.

• For P = Sk, Op
′
(AutF̃k

(Sk)) = Inn(Sk).

• For P = Tk, Op
′
(AutF̃k

(Tk)) ∼= Ap: the elements of order p in Σp
for odd prime p generate the alternating group Ap.

• For P = V , Op
′
(AutF̃k

(V )) ∼= SL2(Fp): for odd prime p the ele-

ments of order p in GL2(Fp) generate SL2(Fp).
Now we have to detect the elements in OutF̃k

(Sk) which restrict to mor-

phisms in OutE0(Sk). We recall that, by definition, there is λ a generator
of F×p such that φ|V =

(
λ 0
0 1

)
, ψ|V =

(
1 0
0 λ

)
, as matrices of GL2(Fp) (see

Notation 3.8 for details).

• φ2 is an even permutation, therefore it restricts to an element in
Op
′
(AutF̃k

(Tk)).

• ψiφ−i restricts to an automorphism of determinant one in V .
• 〈φ2, ψφ−1〉 is a subgroup of index 2 in 〈φ, ψ〉 and it remains to

prove that φ 6∈ AutE0(S). Using [Rui, Theorem 3.4] it is enough

to check that φ 6∈ Op′(AutF̃k
(P )) for P = V and P = Tk, which

are the only proper F̃k-centric, F̃k-radical subgroups (remark that
there are not inclusions between them): φ is an odd permutation,
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so the restriction to Tk does not give an element of Op
′
(AutF̃k

(Tk));
φ does not restrict to an automorphism of determinant 1 in V , so
φ 6∈ Op′(AutF̃k

(V )).

These computations show us that AutF̃k
(S)/Aut0

F̃k
(S) ∼= Z/2Z, so there

is just one proper saturated fusion subsystem F ′ def
= Op

′
(F̃k) of index

prime to p, and it is of index 2. By these computations, 〈φ2, ψφ−1〉 ≤
AutF ′(Sk), SL2(Fp) ≤ AutF ′(V ), and Ap ≤ AutF ′(Tk).

Consider Fk the (not necessarily saturated) fusion system generated,
in the sense of Remark 1.2, by the automorphisms in part (b) of the
theorem. The restriction φ2|V must also be in AutF ′(V ), proving that
AutFk

(V ) ≤ AutF ′(V ), and the restriction φψ−1|Tk
must also be in

AutF ′(Tk), getting that AutFk
(Q) ≤ AutF ′(Q) for all Q ∈ {V, Tk, Sk}.

It remains to check that there are no elements in AutF ′(Q)\AutFk
(Q)

for Q∈{V, Tk, Sk}: in these three cases AutF̃k
(Q)/AutFk

(Q)∼=Z/2Z, so

adding any other morphism α∈AutF̃k
(Q)\AutFk

(Q) implies AutF ′(Q0)=

AutF̃k
(Q0) with Q0 either V , Tk, or Sk. If Q0 = Sk, α would re-

strict to elements in AutF ′(Q) not in AutFk
(Q) for Q ∈ {V, Tk}, obtain-

ing F ′ = F̃k. If Q0 ∈ {V, Tk}, then AutF ′(Q0) = AutF̃k
(Q0) and, using

that F ′ is saturated, there is an automorphism which would extend to

ψ ∈ AutF ′(Sk), getting that also in this case F ′ = F̃k. As F ′ � F̃k, we
get that AutF ′(Q) = AutFk

(Q) for Q ∈ {V, Tk, Sk} and F ′ = Fk.
Let us see now that Fk is simple. By Lemma 2.7 we have to check that:

(i) Op(Fk)=1: there is not any proper nontrivial strongly closed sub-
group in Fk. Indeed, let P E Sk be a nontrivial strongly closed
subgroup. By [AB, Theorem 8.1], P must intersect the center in
a nontrivial subgroup. Since the center of Sk has order p, we must
have Z(Sk) ≤ P . Moreover, since ζ is Fk-conjugated to s by a mor-
phism in AutFk

(V ), we must have also s ∈ P , since P is strongly
closed. Then, by [Bla, Lemma 2.2], P is of index at most p in Sk.

In fact, by Lemma 3.6(c), P must contain the subgroup gener-

ated by s and all elements vii1 · · · v
ip−1

p−1 ∈ Tk whose sum of expo-
nents is congruent to 0 modulo p, which is an index p subgroup
of Sk. Then, let ϕ be the automorphism of Tk induced by the
cycle (123) ∈ Ap ∼= AutFk

(Tk). We have that

ϕ(v1) = v2,

ϕ(v2) = v−1
1 v−1

2 ,

ϕ(v3) = v1v2v3,

ϕ(vi) = vi, for 4 ≤ i ≤ p− 1.
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Taking for example the element v−1
2 v4, which is in P since the sum

of exponents is 0, we have that ϕ(v−1
2 v4) = v1v2v4. Thus, v1v2v4

must lie also in P , but since the sum of the exponents is not 0
modulo p for p ≥ 5, and using that the index of P is at most p,
we get that P = Sk. So there is not any proper nontrivial normal
subgroup in Fk.

(ii) Op(Fk) = Fk: by [Oli, Proposition 1.3(d)], we need to show that
foc(Fk) = Sk, where foc(Fk) is the focal subgroup of Fk, defined by

foc(Fk) = 〈g · ϕ(g)−1 | g ∈ Sk, ϕ ∈ HomFk
(〈g〉, Sk)〉

(remark that this definition applies only to finite saturated fusion
systems). First, note that there are elements ϕ,ϕ′ ∈ AutFk

(V )
such that ϕ(s) = sζ and also ϕ′(ζ) = sζ, and hence we get V0 ⊂
foc(Fk). The action of Cp−1 on the maximal torus Tk includes ϕ
such that ϕ(v) = v−1 for all v ∈ Tk, so we have all elements
〈v2

1 , . . . , v
2
p−1〉 ⊂ foc(Fk). Taking now the expression of ζ, we get

that v1v3 · · · vp−2 ∈ foc(Fk). Conjugating this element by s we
get v2v4 · · · vp−1 ∈ foc(Fk). Consider now ϕ the conjugation by an

element of order p in Ap on vp−1. This tells us that vp−1ϕ(v−1
p−1) =

v1v2 . . . vp−2v
2
p−1 ∈ foc(Fk). So v1v2 . . . vp−2 ∈ foc(Fk) and we get

that vp−1 ∈ foc(Fk). Conjugating v1v2 . . . vp−2 by s and using that
vp−1 ∈ foc(Fk) we get v1 ∈ foc(Fk), getting that Sk = 〈s, v1〉 ⊂
foc(Fk).

(iii) Op
′
(Fk) = Fk: as F̃ck = Fck, the computations in the first part of

this proof show us that Op
′
(Fk) = Op

′
(F̃k) = Fk.

Finally, (Sk,Fk) and (Sk, F̃k) are exotic because these examples do not
appear in the list of [BLO1, Proposition 9.5], which contains all the
finite groups realizing simple saturated fusion systems over p-groups of
this type.

4. New p-local compact groups

In this section we will introduce the p-local compact version of the
finite examples described in Section 3 and we will discuss about their ex-
oticness. When trying to generalize the definition of exotic from p-local
finite groups to p-local compact groups, it seems natural to just remove
the finiteness condition but, as we can see in [GL], there always ex-
ists some (non-compact) infinite group which realizes a given saturated
fusion system over a discrete p-toral group. So, in order to keep the con-
dition of being compact, we restrict our attention to compact Lie groups
and p-compact groups.
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Remark 4.1. There are several ways of producing examples of non-simple
p-local compact groups which are not p-compact groups. For example,
one could consider an extension of a torus by a non p-nilpotent finite
group. By Lemma 4.11, this produces a p-local compact group which
does not correspond to any p-compact group.

4.1. Families of p-local compact groups. In this subsection we de-
scribe the properties which define the p-local compact groups we are
interested in.

Notation 4.2. Consider the extension Tk → Sk → Cp and the par-
ticular elements s and {vi}1≤i≤p−1 described in Notation 3.5. We can
construct a discrete p-toral group by taking the monomorphims Ik : Sk →
Sk+1, defined by Ik(s) = s and Ik(vi) = vpi , which are compatible with
an obvious choice of sections of the extensions. Thus, the discrete p-toral
group

S =
⋃
k≥2

Sk

fits in a split extension T → S → Cp, where T = ∪k≥2Tk ∼= (Z/p∞)p−1.
Observe that, for each k ≥ 2, the generator ζ of Z(Sk) described in Lem-
ma 3.6(d) is mapped by Ik to the corresponding generator of Z(Sk+1).
It is thus reasonable to adopt the same notation for the resulting ele-
ment in S, and in fact we have Z(S) = 〈ζ〉 ∼= Z/p. We also consider
V = 〈s, ζ〉 ∼= Z/p × Z/p as a subgroup of S, via the obvious inclusion.
Finally, notice that the description of the different subgroups of Out(P )
for P ∈ {Sk, Tk, V } described in Section 3 can be generalized without
modification to describe certain subgroups of Out(Q), for Q ∈ {S, T, V }.
For later use, we also set Z

def
= Z(S).

Theorem 4.3. Let p be an odd prime number and S as in Notation 4.2.

Consider (S,F) for p ≥ 3, and (S, F̃) for p ≥ 5, the fusion systems
generated, in the sense of Remark 1.2, by the automorphisms in the
following table:

F AutF (S) AutF (T ) AutF (V ) prime

F 〈φ, ψ, Inn(S)〉 GL2(F3) GL2(F3) p = 3

F 〈φ2, ψφ−1, Inn(S)〉 Ap o Cp−1 SL2(Fp)o C(p−1)/2
p ≥ 5

F̃ 〈φ, ψ, Inn(S)〉 Σp × Cp−1 GL2(Fp)

where φ and ψ are defined in Notation 3.8 and the action of the sym-
metric group on maximal torus is the one described in Equation (3.8).
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Then, F (for p ≥ 3) and F̃ (for p ≥ 5) are saturated fusion systems
over S and there exist p-local compact groups (S,F ,L) (for p ≥ 3) and

(S, F̃ , L̃) (for p ≥ 5). Moreover, S, T , and V are representatives of the

only conjugacy classes in F̃ (respectively F) of centric radical subgroups
of S.

The proof of Theorem 4.3 essentially relies upon Proposition 2.9.
First, we need some technical lemmas.

Lemma 4.4. Let (S, E) be any of the fusion systems described in The-
orem 4.3, and let x ∈ S be an element of order p. Then, either x ∈ T
or x is E-conjugate to an element of Z.

Proof: Let v ∈ T and vsi, with i 6= 0, an element not contained in T . An
easy computation shows that 〈vsi〉 = 〈ws〉 for some w ∈ T . Since T =

(Z/p∞)p−1, we can write w = wpi11 · · ·wpip−1

p−1 , for some w1, . . . , wp−1 in

Z/pk⊂Z/p∞, for k big enough. Then, by Lemma 3.6(c), wpi11 · · ·wpip−1

p−1 s

and s are conjugate in Sk, and thus so are they in S. Hence vsi is

S-conjugate to sj for some j 6= 0. Finally, as F ⊆ F̃ for p ≥ 5, and as

OutF (V ) =

{
GL2(F3), if p = 3;

SL2(Fp)o C p−1
2
, if p ≥ 5;

we deduce that s is conjugate to sj for all j 6= 0 in all cases. This also
proves that s is conjugate to the element ζ ∈ Z, and this finishes the
proof.

The following result states some properties of centralizers of toral ele-
ments of order p. In the particular case of central elements, we describe
the centralizer fusion system in full detail, as we will need these compu-
tations later in this section.

Lemma 4.5. Let (S, E) be any of the fusion systems described in The-
orem 4.3, let v ∈ T be a nontrivial element of order p, and let CE(v)
be the centralizer fusion system of 〈v〉 over CS(v). Then, CE(v) is a
saturated fusion system over CS(v). Moreover, if v ∈ Z, then CE(v) is
given by the following table:

p = 3 CF (v) = FS(T o Σ3)

p ≥ 5
CF (v) = FS(T oAp)

CF̃ (v) = FS(T o Σp)
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Proof: Fix v ∈ T , a nontrivial element of order p, and let W = 〈v〉. By
definition, CE(v) is the fusion system over CS(v) whose morphisms are
those morphisms α : P → P ′ in E that extend to some α̃ : PW → P ′W
such that α̃|W = IdW .

Suppose first the following: for every morphism α : P → P ′ in CE(W ),
with W ≤ P , there is a factorization

α = α3|X3
◦ α2|X2

◦ α1|P ,

with X2 = α1(P ) and X3 = α2(X2), satisfying the following conditions:

(1) α1, α3 ∈ AutE(S) and α2 ∈ AutE(Q), with Q ∈ {S, T, V }; and
(2) αi|W = IdW for i = 1, 2, 3 (in particular, W ≤ Q in condition (1)).

Under this assumption, we claim that the statement follows: assume
that v /∈ Z, so that CS(v) = T and W 6≤ V . This means that every
morphism in CE(v) is the composition of restrictions of automorphisms
of S or T which restricts to the identity in 〈v〉. As CS(v) = T , we get
that CE(v) = FT (G), with G ∼= T oW (W a finite group). Such a G
satisfies the conditions in [BLO2, Theorem 8.7], getting that CE(v) is
saturated. Suppose, otherwise, that v∈Z, so that W =Z and CS(v)=S.
By properties (1) and (2) above, in order to describe CE(v), it is enough

to analyze the groups ΓQ
def
= {γ ∈ AutE(Q) | γ|Z = IdZ} for Q ∈

{S, T, V }. A case by case inspection shows that ΓQ = AutQ(G), where
Q ∈ {S, T, V } and G is the group specified in the statement. So CE(v)
corresponds to the fusion system FS(G), with G, again, as in [BLO2,
Theorem 8.7], which implies that CE(v) is saturated.

It remains to prove that each morphism in CE(v) admits a factoriza-
tion satisfying properties (1) and (2) above. Thus, fix some morphism
α : P → P ′ in CE(v). Without loss of generality we may assume that
W ≤ P, P ′. As E is generated by the automorphisms of S, T , and V
specified in Theorem 4.3, there exist βi ∈ AutE(Qi), with Qi ∈ {V, T, S}
such that

(4.1) α = βn|Pn
◦ · · · ◦ β1|P1

,

where P1 = P and Pi = βi−1(Pi−1). Consider now n0 minimal such
that a factorization of α exists. Such a minimal factorization fulfills the
following conditions:

(a) There is not Pi = Pi+1, as we can always compose αi with αi+1 to
obtain a shorter factorization.

(b) There is only one index i0 such that Pi0 = V : if there are two
indices i0 < i1 with Pi0 = Pi1 = V , then the composition βi1 |Pi1

◦
· · ·◦βi0 |Pi0

is the restriction of an element in the group AutE(V ) ≥
SL2(Fp).
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(c) If Pi = T , then Pi−1 6= V and Pi+1 6= V : as T ∩ V = Z, this
composition can only restrict to an automorphism of Z, and these
are all realized by restrictions of elements of AutE(Sp).

(d) There is only one index i0 such that Pi0 = T : by the previous cases,
if there are two indices i0 < i1 such that Pi0 = Pi1 = T , then the
above conditions imply that i1 = i0 + 2 and Qi0+1 = Sp. As T is
a characteristic subgroup of Sp, the composition βi0+2 ◦βi0+1 ◦βi0
can be realized as single element in AutE(T ), producing again a
shorter factorization.

With these restrictions, it follows that there always exists a factorization
α = β3|P3

◦ β2|P2
◦ β1|P , where α1, α3 ∈ AutE(S) and α2 ∈ AutE(Q)

for Q ∈ {V, T, S}. Notice that such factorization may not be of minimal
length, although that means no inconvenience.

Next, we refine such a factorization of α, by modifying the mor-
phisms βi if necessary, so that each morphism in the factorization re-
stricts to the identity on W . To do that, let AutT (S) ≤ AutE(S) be the
subgroup of automorphisms induced by conjugation by elements of T ,
let H ≤ AutE(S) be the subgroup of automorphisms induced by conju-
gation by a power of the element s ∈ S, and let G ≤ AutE(S) be the
subgroup 〈φ, ψ〉 or 〈φ2, ψφ−1〉, according to the appropriate case in Theo-
rem 4.3. This way, Inn(S) = 〈AutT (S), H〉, and AutE(S) = 〈G, Inn(S)〉.
Moreover, as T is characteristic in S, AutT (S) is a normal subgroup
of AutE(S).

Let α = β3|P3
◦β2|P2

◦β1|P be as above. By the above discussion, the
automorphisms β1, β3 ∈ AutE(S) admit factorizations

β1 = γ3 ◦ γ2 ◦ γ1 and β3 = λ1 ◦ λ2 ◦ λ3,

where γ3, λ3 ∈ G, γ2, λ2 ∈ H, and γ1, λ1 ∈ AutT (S). Notice that all
the elements of G and H restrict to automorphisms of both V and T .
Hence, the morphism α can be factored as

α = α3|Q3 ◦ α2|Q2 ◦ α1|P ,

where α1 = γ1, α2 = λ2 ◦ λ3 ◦ β2 ◦ γ3 ◦ γ2, and α3 = λ1, and where
Q2 = α1(P ) and Q3 = α2(Q2). Here, the morphisms λi, γi for i = 2, 3
are restricted to match the domain of β2 in order to produce α2. In
particular, the new factorization of α still satisfies that α1, α2 ∈ AutE(S)
and α2 ∈ AutE(Q), with Q ∈ {V, T, S}. Moreover, as W ≤ T , we have
β1|W = β3|W = IdW , and α|W = IdW by assumption, which implies
that β2|W = IdW . Notice also that W ≤ Q.
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Proof of Theorem 4.3: Let (S, E) be any of the fusion systems described
in Theorem 4.3. In order to show that E is saturated, we apply Proposi-
tion 2.9. Note that, by construction, E satisfies axiom (III) of saturated
fusion systems, which corresponds to condition (a) in Proposition 2.9,
and it remains to check condition (b): there exists a set X of elements
of order p in S satisfying conditions (i) through (iii) in Proposition 2.9.

Let X = {v ∈ T | v is of order p}. Then, condition (i) in Proposi-
tion 2.9 follows from Lemma 4.4, and condition (iii) in Proposition 2.9
follows from Lemma 4.5. It remains to check condition (ii) in Propo-
sition 2.9: if x, y are E-conjugate and y ∈ X, there is some morphism
ρ ∈ HomE(CS(x), CS(y)) such that ρ(x) = y. Observe that, for v ∈ T ,
CS(v) = T if v 6∈ Z and CS(v) = S if v ∈ Z.

Let first v ∈ T be a non-central element of order p. If v is E-conjugated
to other v′ ∈ T , then, by construction, there is an automorphism ρ ∈
AutE(T ) such that ρ(v) = v′. If v ∈ Z, then v = ζλ, for some λ, and ζλ

is conjugated to ζµ for all λ, µ 6= 0 by an E-automorphism of S.
Finally, let vsi be an element of order p, with v ∈ T and i 6= 0. By

Lemma 3.6(b) there exists some t ∈ T such that t(vsi)t−1 = si. Hence,
it is enough to prove that there is some ρ ∈ HomE(CS(si), CS(ζλ)) such
that ρ(si) = ζλ for some λ 6= 0. Recall that CS(si) = V and CS(ζλ)) =
S. Moreover, by construction there is an automorphism ρ ∈ AutE(V )
sending si to ζλ, and its composition with the inclusion V ≤ S yields a
morphism

ρ ∈ HomE(CS(si), CS(ζλ))

such that ρ(si) = ζλ. This proves that condition (ii) in Proposition 2.9
is satisfied, and thus E is saturated. The existence and uniqueness of a
linking systems for every saturated fusion system is proved by R. Levi
and A. Libman in [LL].

The next step is to prove that our examples have no proper nontrivial
strongly closed subgroups. This will be very useful to study the normal
subsystems.

Lemma 4.6. Let (S, E) be any of the fusion systems described in Theo-
rem 4.3. Then, E contains no proper nontrivial strongly closed subgroups.

Proof: Let P ≤ S be a strongly closed nontrivial subgroup. In particular,
P is normal in S and, if we write Pk = Sk∩P , we have that Pk is normal
in Sk. Since P is nontrivial, there exists k such that Pk is also nontrivial
and, by [AB, Theorem 8.1], the center Z(Sk) intersects Pk in a non
trivially way. Since the center has order p, we must have Z(Sk) ≤ Pk.
This implies that Z = Z(S) ≤ P .
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The generator of the center is E-conjugated to s, as proved in Lem-
ma 4.4. Hence, s ∈ P , since P is strongly closed by assumption. More-
over, we saw in the proof of Lemma 4.4 that all elements not in the
maximal torus are conjugated to s, so all elements not in the maximal
torus must belong also to P . Finally, if P contains s and all the elements
not in the maximal torus it also contains all elements of the maximal
torus, so the only possibility is P = S, and then P is not proper.

We finish this section with some properties of the examples described
in Theorem 4.3.

Proposition 4.7. The following holds:

(a) For p ≥ 3, the fusion system (S,F) is simple.

(b) For p ≥ 5, (S,F) is the only proper normal subsystem of (S, F̃),
with index 2.

(c) Let (S, E , T ) be any of the p-local compact groups described in The-
orem 4.3. Then, π1(|T |∧p ) = {e}.

Proof: To prove (a) we have to check that every proper normal subsys-
tem of (S,F) is finite. As there is not any proper F-strongly closed
subgroup in S, we only have to check that any normal subsystem over S
must be all F . Let F ′ ⊆ F be a normal subsystem over S. By con-
dition (N2) in Definition 2.1, as we have to consider fusion subsystems
over S, all the elements of order p in OutF (P ) must be in OutF ′(P ).
This implies that:

• for p = 3, OutF ′(T ) ≥ SL2(F3) and OutF ′(V ) ≥ SL2(F3);
• for p > 3, OutF ′(T ) ≥ Ap and OutF ′(V ) ≥ SL2(Fp).

To finish the proof, we make use of property (N3) of normal subsystems
and the saturation of F ′. We also distinguish the cases p = 3 and p ≥ 5.
Recall the outer automorphisms of S, φ, and ψ, defined in Notation 3.8.
Recall also that their restrictions to V and T are respectively given by
φ|V =

(
λ 0
0 1

)
, ψ|V =

(
1 0
0 λ

)
(where V = 〈s, ζ〉 and we use additive nota-

tion), and by φ|T = σ (σ ∈ Σp an element of order (p−1) normalizing s)
and ψ|T = λ Id, respectively.

• Consider first p = 3. In this case, − Id ∈ SL2(F3) ≤ AutF ′(V )
must extend to NS(V ) (see [BLO2, Definition 2.2(II)]), which is
strictly larger than V . Applying Alperin’s fusion theorem [BLO2,
Theorem 3.6], this morphism must extend to an automorphism ϕ ∈
AutF ′(S), since S, T , and V are representatives of the only F-con-
jugacy classes of centric radical subgroups in (S,F). As ϕ ∈
AutF (S), ϕ = φiψjcg, with g ∈ S, and checking the restriction
to V , we get ϕ = φψcg. The restriction of ϕ = φψcg to the
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maximal torus T will give an element in AutF ′(T ) with deter-
minant −1 (see Notation 3.8 for details, as the restrictions spec-
ified there applied to the infinite case too). This implies that
AutF ′(T ) = AutF (T ). Moreover, this argument can be applied
now to − Id ∈ SL2(F3) ≤ AutF ′(T3), which must extend to ψcg,
and restricting to AutF ′(V ) we get an element of determinant −1,
obtaining that AutF ′(V ) = AutF (V ). Finally, this shows that
AutF ′(S) contains 〈φψ, ψ〉 = 〈φ, ψ〉.
• Consider now the case p ≥ 5: the part of the proof concerning the

extension of elements in SL2(Fp) ≤ AutF ′(V ) is the same, replac-

ing − Id by diagonal matrices of the type
(
λ 0
0 λ−1

)
, for λ ∈ F×p ,

which will extend to (φψ−1)λ ∈ AutF ′(S). The extension and re-
striction argument implies that AutF ′(T ) ≥ ApoCp−1

∼= AutF (T ).
Finally, consider ϕ an element of order (p − 1)/2 in NAp

(〈s〉)
(we can assume ϕ = φ2 ∈ AutF (S)) and the induced action
on T . This action must extend to NS(T ) = S and the restriction
to V gives matrices of determinant λ2, a square in F×p , obtaining
AutF ′(T ) = AutF (T ). In this case, this also implies that AutF ′(S)
contains 〈φψ−1, φ2〉.

Now the result follows, as we have seen that F ′ must contain all the
generators of F .

To see (b), we have to proceed similarly, but all the computations have

been already done: any normal saturated fusion subsystem of (S, F̃ , L̃)

must be over S (as there is not any proper strongly F̃-closed subgroup
by Lemma 4.6) and must contain all the automorphisms of order p. So,

applying the computations in the proof of (a), we see that F = Op
′
(F̃)

(see Remark A.11), and by Corollary A.12 it follows that F is a normal

subsystem of index prime to p of F̃ . These computations also show that

Γp′(F̃) ∼= Z/2, where Γp′(F̃) is the group considered in Theorem A.10.
This tells that all the possible saturated fusion subsystems of index prime
to p are in bijective correspondence with the subgroups of Z/2, and this
proved (b).

Finally, we prove part (c). Let (S, E , T ) be any of the p-local compact
groups described in Theorem 4.3. By the hyperfocal subgroup theorem
[Gon2, Theorem B.5], we have

π1(|T |∧p ) = S/OpE(S),

where OpE(S) is the hyperfocal subgroup defined in Definition 2.4. By
[Gon2, B.12–B.13], it follows that OpE(S) � S is a strongly E-closed
subgroup containing T , and hence we have OpE(S) = S by Lemma 4.6.
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4.2. On the exoticness of p-local compact groups. In this sub-
section we prove that there does not exist any compact Lie group or
p-compact group realizing any of the fusion systems described in The-
orem 4.3. We start proving that there does not exist any p-compact
group with this fusion. In particular, as a connected compact Lie group
corresponds to a p-compact group, this also shows that there does not
exist any connected compact Lie group realizing these fusion systems.

Let us fix first the usual definitions and notations when working
with p-compact groups (we refer to W. Dwyer and C. Wilkerson pa-
pers [DW1] and [DW2] for more details): a p-compact group is a
triple (X,BX, e) where X is a space such that H∗(X;Fp) is finite, BX a
pointed p-complete space, and e : X → Ω(BX) is a homotopy equiva-
lence. We refer to X as a p-compact group and BX and e are assumed.
If X and Y are p-compact groups, a homomorphism f : X → Y is a
pointed map Bf : BX → BY . Two homomorphisms f, f ′ : X → Y are
conjugate if Bf and Bf ′ are freely homotopic.

The following is a general result about p-compact groups and p-local
compact groups. In order to avoid confusion with the notation in The-
orem 4.3, let (R, E , T ) be a p-local compact group, and let P ≤ R be
a fully E-centralized subgroup. We also fix the notation θ : BR → |T |∧p
as the composition of the inclusion of the Sylow p-subgroup BR → |T |
[BLO2, Proposition 4.4] and p-completion. In this situation, there is a
well-defined notion of centralizer p-local compact group of P , denoted
by (CR(P ), CE(P ), CT (P )), see [BLO3, Section 2] for the explicit def-
inition and properties. The following proposition describes the relation
between algebraic centralizers and mapping spaces for p-local compact
groups associated to p-compact groups.

Proposition 4.8. Let (R, E , T ) a p-local compact group such that |T |∧p '
BX, where (X,BX, e) is a p-compact group. Then, the following holds:

(a) X is connected if and only if all the elements in R are E-conjugate
to elements in the maximal torus.

(b) Let P be a fully E-centralized subgroup of R. Let also (CR(P ),
CE(P ), CT (P )) be the centralizer p-local compact group of P , and
let θ|BP : BP → |T |∧p be the composition of the inclusion BP →
BR with θ : BR → |T |∧p . Then there is a homotopy equivalence
Map(BP, |T |∧p )θ|BP

' |CT (P )|∧p .

Proof: By [BLO2, Proposition 10.1 and Theorem 6.3(a)], we can con-
sider f : R → X a maximal discrete p-toral subgroup and we use this
notation, and the corresponding Bf : BR→ BX in all this proof. More-
over, as we are also considering the p-local compact group structure
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of (X,BX, e), which is (R, E , T ), we assume that the composition of
θ : BR → |T |∧p with the fixed homotopy equivalence |T |∧p ' BX is
Bf : BR → BX: we can assume this, as all Sylow p-subgroups in a
p-compact group are conjugated [BLO2, Proposition 10.1].

We prove first (a): Consider T ⊂ R the inclusion of the maximal
torus in R. Define i : T → X to be the composition of the inclusion
map and f . Recall from [BLO2, Definition 10.2] that the saturated
fusion system over R corresponding to X, which is denoted by ER,f (X),
is defined as:

MorER,f (X)(P,Q)
def
= {ϕ ∈ Hom(P,Q) | Bf |BQ ◦Bϕ ' Bf |BP }.

Assume first that X is connected and let x ∈ R. The composition of the
inclusion of 〈x〉 in R and f gives a monomorphism g : Z/pn → X, where
pn = |〈x〉|. By [DW2, Proposition 3.11], as X is connected, any mor-
phism g : Z/pn → X extends to g : Z/p∞ → X. Applying now [DW1,
Proposition 8.11] we get that there is h : Z/p∞ → T such that i · h is
conjugate to g. The restriction of h to Z/pn gives a morphism ϕ ∈
MorER,f (X)(〈x〉, T ). If X is not connected, also by [DW2, Proposi-
tion 3.11], there exists g : Z/pn → X which does not extend to Z/p∞.
By the maximality of R, this map factors through g̃ : Z/pn → R. Con-

sider x
def
= g̃(1) ∈ R. This element cannot be conjugated to the maximal

torus, otherwise, we would be able to extend g̃ to a map from Z/p∞,
providing an extension of g.

To prove (b) consider first (CR(P ), CE(P ), CT (P )), the p-local com-
pact group defined as the centralizer of P in (R, E , T ). This p-local com-
pact group exists by [BLO3, Theorem 2.3] because P is fully E-central-
ized. This way, we may consider the mapping space Map(BP, |T |∧p )θ|BP

as a p-compact group. By [BLO2, Section 10], this has a p-local
compact group structure which we denote as (R′, E ′, T ′), with |T ′|∧p =
Map(BP, |T |∧p )θ|BP

.
By [BLO2, Proposition 10.4], as P is fully E-centralized, the map

γP : BCR(P ) → Map(BP, |T |∧p )θ|BP
= |T ′|∧p defined as the adjoint to

the composite

(4.2) B(P × CR(P ))
Bµ // BR

θ // |T |∧p

with µ : P × CR(P ) → R the multiplication, is a Sylow p-subgroup
of |T ′|∧p . So we get that we can consider R′ = CR(P ) and γP : BR′ →
|T ′|∧p a Sylow map.
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Thus, it remains to prove that for all Q, Q′ subgroups of CR(P ), the
homomorphism ϕ : Q→ Q′ belongs to HomCE(P )(Q,Q

′) if and only if ϕ
belongs to HomE′(Q,Q

′).
Consider now the following three diagrams:

BP ×BQ
Id×Bϕ//

Bµ|P×Q

��
(∗)

BP ×BQ′

Bµ|P×Q′

��
BPQ

Bϕ̃
// BPQ′

BPQ

θ|BPQ ""

Bϕ̃ //

(∗∗)

BPQ′

θ|BPQ′{{
|T |∧p

BP ×BQ
Id×Bϕ //

Bµ|P×Q

��
(∗∗∗)

BP ×BQ′

Bµ|P×Q′

��
BPQ

θ|BPQ %%

BPQ′

θ|BPQ′yy
|T |∧p

And split the proof in several steps:

Step 1: A group homomorphism ϕ : Q→ Q′ belongs to HomCE(P )(Q,Q
′)

if and only if we can construct the homotopy commutative diagram (∗∗):
If ϕ : Q → Q′ belongs to HomCE(P )(Q,Q

′), then there exists ϕ̃ ∈
HomE(PQ,PQ) such that ϕ̃|Q = ϕ and ϕ̃|P = IdP . But, by definition
of E as a fusion system corresponding to a p-compact group X and
the fixed notation at the beginning of this proof, this is equivalent to
θ|BPQ ' θ|BPQ′ ◦Bϕ̃.

Step 2: A group homomorphism ϕ : Q→ Q′ belongs to HomE′(Q,Q
′) if

and only if we can construct the homotopy commutative diagram (∗∗∗):
Recall γP : BCR(P )→ Map(BP, |T |∧p )θ|BP

the inclusion of the Sylow
p-subgroups considered above. Now ϕ ∈ HomE′(Q,Q

′) if and only if
BγP |BQ ' BγP |BQ′ ◦ Bϕ. And, considering adjoint maps (see Equa-
tion (4.2)), this is equivalent to verifying that the composition θ|BPQ ◦
Bµ|P×Q and θBPQ′ ◦ Bµ|P×Q′ ◦ Id×Bϕ are homotopy equivalent, ob-
taining diagram (∗ ∗ ∗).

Step 3: Homotopy commutative diagram (∗) can be constructed for any
ϕ ∈ HomCE(P )(Q,Q

′) and any ϕ ∈ HomE′(Q,Q
′):

If ϕ ∈ HomCE(P )(Q,Q
′), we can construct the commutative dia-

gram (∗) by definition of CE(P ).
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Assume now ϕ ∈ HomE′(Q,Q
′) (so, we have commutative dia-

gram (∗ ∗ ∗)). Consider diagram (∗) at the level of groups:

P ×Q
Id×ϕ //

µ

��

P ×Q′

µ

��
PQ

ϕ̃
// PQ′

Which exists (in the category of groups) if all the elements of P com-
mute with all the elements of Q and Q′, and ϕ|P∩Q = Id |P∩Q (here
we use Id as notation for the corresponding inclusion). Moreover, in
this case, ϕ̃ : P × Q → PQ is uniquely defined as ϕ̃(ab) = aϕ(b). As
Q,Q′ ≤ CR(P ), the commutation condition is satisfied, so we have to
check that ϕ|P∩Q = Id |P∩Q: P ∩ Q ≤ Z(P ) and the homomorphism
Bϕ|B(P∩Q) composed with the inclusion of BCR(P ) in |T ′|∧p is cen-
tral (as p-compact groups), so, by [DW2, Lemma 6.5], the morphism
of p-compact toral groups Bϕ|B(P∩Q) : B(P ∩ Q) → BPQ′ is unique.
By [BLO2, Proposition 1.10], Bϕ|B(P∩Q) corresponds to a group mor-
phism ϕ′ : P ∩Q → PQ′ which is the composition of the inclusion (be-
cause of the commutative diagram (∗ ∗ ∗)) with a conjugation in PQ′.
But, as PQ′ centralizes Z(P ), conjugation by any element in PQ′ is the
identity in Z(P ) and, in particular, in P ∩ Q ≤ Z(P ). So ϕ|P∩Q =
Id |P∩Q.

Step 4: As diagram (∗ ∗ ∗) can be constructed from (∗) and (∗∗), we get
the inclusion HomCE(P )(Q,Q

′) ⊂ HomE′(Q,Q
′).

Step 5: If ϕ is a morphism in E ′, then diagram (∗ ∗ ∗) is homotopy com-
mutative. We want to see that this implies that (∗∗) is also homotopy
commutative. For that, consider K to be the kernel of µ|P×Q. The map
from BK → |T |∧p is the composition θ|BPQ ◦Bµ|BK , and it is a central
map in |T |∧p , so Map(BK, |T |∧p )θ|BPQ◦Bµ|BK

' |T |∧p (here we are using
that |T |∧p is the classifying space of a p-compact group). This allows
us to see that the map |T |∧p → Map(BK, |T |∧p )θ|BPQ◦Bµ|BK

which sends
each point t to the constant map t is an homotopy equivalence. So, we
can apply Zabrodsky lemma as stated in [Dwy, Proposition 3.5] and we
get that Bµ|P×Q induce an equivalence Map(BPQ, |T |∧p )→ Map(BP ×
BQ, |T |∧p )[θ|BPQ◦Bµ|P×Q]. The class [θ|BPQ] ∈ π0(Map(BPQ, |T |∧p )) cor-
responds to [θ|BPQ ◦ Bµ|P×Q] ∈ π0(Map(BP × BQ, |T |∧p )), and the
class [θ|BPQ′ ◦ Bϕ̃] corresponds to [θ|BPQ′ ◦ Bϕ̃ ◦ Bµ|P×Q]. Using dia-
grams (∗) and (∗∗∗), we have that the following classes in π0(Map(BP×
BQ, |BK|∧p )) are the same:

[θ|BPQ′◦Bϕ̃◦Bµ|P×Q]=[θ|BPQ′◦Bµ|P×Q′◦Id×Bϕ]=[θ|BPQ◦Bµ|P×Q].
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This implies that diagram (∗∗) is also homotopy commutative and that
ϕ ∈ HomCE(P )(Q,Q

′), which finishes the proof.

Remark 4.9. In [Gon1, Theorem D] the first author proves a more gen-
eral version of Proposition 4.8(b). The proof we give above is indepen-
dent from [Gon1].

Theorem 4.10. There does not exist any p-compact group realizing the
p-local compact groups in Theorem 4.3.

Before the proof of the theorem we need a result which follows from
a result by K. Ishiguro [Ish, Proposition 3.1].

Lemma 4.11. Let p be a prime number and H a finite non p-nilpotent
group acting on a torus T . Then, there does not exist any p-compact
group realizing the fusion system of T oH over the prime p.

Proof: Consider the compact Lie group G
def
= T oH. By [BLO2, Theo-

rem 9.10] there is a p-local compact group (R, E , T ) with E the fusion sys-
tem of G over a Sylow p-subgroup S and |T |∧p ' BG∧p . Assume there is
a p-compact group X realizing also the p-local compact group (R, E , T ).
Then, by [BLO2, Theorem 10.7], |T |∧p ' BX, hence BG∧p ' BX. In
this case, by [Ish, Proposition 3.1], the group of components of G must
be a p-nilpotent group, in contradiction with the hypothesis in H.

Proof of Theorem 4.10: Let (S, E , T ) be any of the examples in Theo-
rem 4.3, and assume that there exists some p-compact group X such
that BX ' |L|∧p . Let Z be the centre of S, which is isomorphic to Z/pZ.
By definition, it is a fully centralized subgroup, so we can construct the
centralizer of Z in (S, E , T ), which is again a p-local compact group that
we denote by (S,CE(Z), CT (Z)). By Lemma 4.5, CE(Z) is the fusion
system over S of either T oΣ3 (if p = 3), T oAp (if p ≥ 5 and E = F),

or ToΣp (if p ≥ 5 and E = F̃). As neither Σp for p ≥ 3, nor Ap for p ≥ 5
are p-nilpotent, it follows by Lemma 4.11 that none of these is the fusion
system of a p-compact group.

If we denote by CX(Z) the centralizer in X of the composition of
maps Z ↪→ S → X we have that CX(Z) is again a p-compact group
by [DW1]. But by Proposition 4.8(b), CX(Z) ' |CT (Z)|∧p , so (S,CE(Z))
is the fusion system of a p-compact group, getting a contradiction with
the previous paragraph.

Until now we have proved that the p-local compact groups described
in Theorem 4.3 cannot be realized by p-compact groups. This result
includes the impossibility of these p-local compact groups to be realized
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by compact Lie groups whose group of components is a p-group. In order
to prove that the p-local compact groups of Theorem 4.3 are not realized
by any compact Lie group, it remains to eliminate the case of compact
Lie groups whose group of components is not a p-group.

Theorem 4.12. There does not exist any compact Lie group realizing
the p-local compact groups of Theorem 4.3.

Proof: Consider first the fusion system (S,F), for p ≥ 3, in Theorem 4.3,
and assume that there is a compact Lie group G such that F ∼= FS(G)
for S ∈ Sylp(G). Let G0 E G be the connected component of the iden-
tity in G. By Lemma 2.2, we have that T ≤ S ∩ G0 is strongly closed
in FS(G), but, by Lemma 4.6, F has no proper nontrivial strongly closed
subgroups, hence S ≤ G0. Then, again by Lemma 2.2, FS(G0) E FS(G),
but, since F is a simple saturated fusion system by Proposition 4.7(a),
we must have FS(G0) ∼= FS(G). This is impossible since a connected
compact Lie group gives rise to a p-compact group, and the saturated
fusion system F is not realized by any p-compact group by Theorem 4.10.

Let now p ≥ 5, consider the p-local compact group (S, F̃ , L̃) in Theo-

rem 4.3, and assume that there is a compact Lie group G̃ with S∈Sylp(G̃)

and such that (S, F̃ , L̃)∼= (S,FS(G̃),LcS(G̃)). Let again G̃0 E G̃ be the

connected component of the identity in G̃. As before, by Lemma 2.2,

we have S ≤ G̃0 and FS(G̃0) E FS(G̃). Then, we know by Propo-
sition 4.7(b) that F is the only proper nontrivial normal subsystem

of (S, F̃ , L̃). Therefore, in this case we must have FS(G̃0) ∼= F or

FS(G̃0) ∼= F̃ , but we have proved in Theorem 4.10 that there is no

p-compact group realizing any of these two fusion systems, hence G̃ can-
not exist.

Appendix A. Fusion subsystems of index prime to p in
p-local compact groups

In this section we generalize to the compact case the results in [BCG+]
about detection of subsystems of index prime to p of a given fusion sys-
tem (see Definition 2.4). We also show that the minimal subsystem of
index prime to p is always a normal subsystem. Throughout this appen-
dix, we fix a p-local compact group G = (S,F ,L).

Definition A.1. A subgroup P ≤ S is F-quasicentric if, for all Q ∈ PF
that is fully F-centralized, the centralizer fusion system CF (Q) is the
fusion system of CS(Q).
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We shall also use the following notation.

• For a subset H ⊆ Ob(F), FH ⊆ F denotes the full subcategory
of F with object set H. The set of all morphisms in FH is de-
noted Mor(FH). In the particular case where H is the set of all
F-quasicentric subgroups of S, we simply write Fq instead of FH.
• For a (discrete) group Γ, Sub(Γ) denotes the set of nonempty

subsets of Γ.

The main tool to detect subsystems of a given fusion system are the
so-called fusion mapping triples, which were already generalized from
[BCG+] to the context of p-local compact groups in [Gon2, Defini-
tion B.7].

When constructing fusion mapping triples we may have to deal with
infinitely many conjugacy classes of subgroups of S. The bullet func-
tor (−)• : F → F defined in [BLO2, Section 3] is the tool to reduce
to situations involving only finitely many F-conjugacy classes. We refer
to [BLO2] for the properties of (−)• which we use in this appendix.
Given a nonempty full subcategory F0 ⊆ F , we denote by F•0 ⊆ F0 the
full subcategory whose objects are the subgroups P ∈ Ob(F0) such that
P = P •. A priori, F•0 could be empty, but this is not be the case when
F0 is closed by over-groups, as P ≤ P • for all P ≤ S. The next result
constitutes the key to inductively construct fusion mapping triples.

Lemma A.2. Let H0 ⊆ Ob(F•q) be a nonempty subset closed by F-con-
jugacy and over-groups (in F•) and P be an F-conjugacy class in F•q
maximal among those not contained in H0. Set H = H0 ∪ P and let
FH0

⊆ FH ⊆ F•q be the corresponding full subcategories. Finally, let
(Γ, θ,Θ) be a fusion mapping triple for FH0

and, for each P ∈ P which
is fully F-normalized, fix a homomorphism

ΘP : AutF (P ) // NΓ(θ(CS(P )))/θ(CS(P ))

satisfying the following conditions:

(a) x·θ(f)·x−1 = θ(f(g)) for all g ∈ P , f ∈ AutF (P ), and x ∈ ΘP (f);
and

(b) ΘP (f) ⊇ Θ(f ′) for all P � Q ≤ S such that P CQ and Q is fully
F-normalized, and for all f ∈ AutF (P ) and f ′ ∈ AutF (Q) such
that f = f ′|P .

Then, there exists a unique extension of Θ to a fusion mapping triple

(Γ, θ, Θ̃) on FH such that Θ̃(f) = ΘP (f) for all f ∈ AutF (P ).

Proof: This is [Gon2, Lemma B.9] with minor modifications to restrict
to F•q.
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Lemma A.3. Let Q ≤ S be an F-quasicentric subgroup, let P ≤ S be
a subgroup such that Q C P , and let ϕ,ϕ′ ∈ HomF (P, S) be such that
ϕ|Q = ϕ′|Q, and such that ϕ(Q) is fully F-centralized. Then there exists
some x ∈ CS(ϕ(Q)) such that ϕ′ = cx ◦ ϕ.

Proof: As a first simplification, we may replace P by ϕ(P ) and Q

by ϕ(Q). This way, we may assume that ϕ′ = inclSP and ϕ|Q = IdQ.
Next, we justify reducing to the case where Q = Q•. Indeed, by [Gon1,
Lemma 1.23], Q is fully F-centralized if and only if Q• is so, in which
case we have CF (Q) = CF (Q•). In particular, this implies that Q• is
also F-quasicentric. The properties of the functor (−)• then justify the
restriction to the case Q = Q•. This last reduction allows us to do
induction on |Q| within the set of objects of F•, as this category con-
tains finitely many S-conjugacy classes of objects. Finally, note that the
statement is true if Q is F-centric by [BLO2, Proposition 2.8].

As Q is F-quasicentric and fully F-centralized, it follows that ϕ|CP (Q)

corresponds to the conjugation homomorphism induced by some x ∈
CS(Q). Thus, after composing with (cx)−1, we may assume without loss
of generality that ϕ|CP (Q)Q = Id. Moreover, if CP (Q)Q ≥ Q, then the

statement follows by induction on |Q|, simply by taking P = P • and
Q = (CP (Q)Q)•.

Assume then that CP (Q) ≤ Q, and set K = AutP (Q). Following the
notation of [BLO3, Section 2], we write

NK
S (Q) = {x ∈ NS(Q) | cx ∈ K},

and let NK
F (Q) be the fusion system over NK

S (Q) with morphism sets

HomNK
F (Q)(R,R

′) = {γ ∈ HomF (R,R′) | ∃α ∈ HomF (RQ,R′Q) :

α|Q ∈ K and α|R = γ}.

Note that P , ϕ(P ), and CS(Q) are subgroups of NK
S (Q). By [BLO3,

Lemma 2.2], if Q is not fully K-normalized in F , then there exists some
λ ∈ HomF (NK

S (Q), S) such that λ(Q) is fully λKλ−1-normalized in F .
Hence, by replacing all the subgroups by their images through λ if nec-
essary, we may assume that Q is already fully K-normalized in F .

The fusion system NK
F (Q) is saturated by [BLO3, Theorem 2.3]. Re-

placing F by NK
F (Q) if needed, we can then assume that S = NK

S (Q) =
PCS(Q), and F = NK

F (Q). In particular, each morphism in F extends
to a morphism whose domain contains Q and whose restriction to Q
corresponds to conjugation by some element of P .
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Fix α ∈ HomF (P, S) such that α(P ) is fully normalized in F . Since
α|Q=cg for some g∈P , we can replace α by α◦(cg)

−1, so that α|Q = Id.
If α and α ◦ ϕ−1 are both given by conjugation by elements in CS(Q),
then so is ϕ. Thus, to prove the statement it is enough to prove the same
statement under the extra assumption that ϕ(P ) is fully normalized in F .

Next, note that (CS(Q)Q)/Q is a nontrivial normal subgroup of
NS(Q)/Q = S/Q. Hence there is some x ∈ CS(Q) \ Q such that 1 6=
xQ ∈ Z(S/Q). It follows that x ∈ NS(P ) and x acts (via conjugation)
as the identity on both Q and P/Q. Thus,

cx ∈ Ker(AutF (P ) // AutF (Q)×Aut(P/Q)),

which is a normal p-subgroup of AutF (P ) by [Gon1, Lemma 1.7]. In
addition, AutS(ϕ(P )) ∈ Sylp(AutF (ϕ(P ))) as ϕ(P ) is fully normalized

in F . It follows that ϕcxϕ
−1 ∈AutS(ϕ(P )) (after replacing ϕ by ϕ ◦

ω for certain ω ∈ AutF (ϕ(P )) is needed). Thus, x ∈ Nϕ, and Q �
Nϕ. By axiom (II) of saturated fusion systems, ϕ extends to some ϕ ∈
HomF (Nϕ, S).

Set R = (Nϕ)•. Set also Q = (CR(Q)Q)• and P = NR(Q). Note that

Q C P . By construction, x ∈ Q \ Q. As Q is F-quasicentric, ϕ|CP (Q)

corresponds to conjugation by some element g ∈ CS(Q), and we can
replace ϕ by ϕ ◦ (cg)

−1, so that ϕ|Q = Id. As Q 	 Q, this finishes the
induction step.

Lemma A.4. Let (Γ, θ,Θ) be a fusion mapping triple on Fc. Then
there is a unique extension

Θ̃ : Mor(Fq) // Sub(Γ)

of Θ such that (Γ, θ, Θ̃) is a fusion mapping triple on Fq.

Proof: By the properties of the functor (−)•, we can restrict the fusion
mapping triple (Γ, θ,Θ) to a fusion mapping triple (Γ, θ,Θ•) on F•c.
Indeed, simply define Θ• = Θ ◦ incl : Mor(F•0 ) → Sub(Γ). Once we
extend this fusion mapping triple to all of F•q we can then extend it
to Fq using again the properties of the functor (−)•. Since there is no
place for confusion we denote Θ• simply by Θ.

LetH0 ⊆ Ob(F•q) be a set closed under F-conjugacy and over-groups
(in F•q), and such that it contains Ob(F•c), and let P be a conjugacy
class in F•q, maximal among those not in H0. We want to extend Θ
to H = H0 ∪ P.
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Let P ∈ P be fully F-normalized. For each α ∈ AutF (P ), there is
an extension β ∈ AutF (R), where R = P ·CS(P ), which in turn induces
a unique β• ∈ AutF (R•). Furthermore, by [BLO2, Proposition 2.7]
both R and R• are F-centric (because P is fully F-normalized), and in
particular R• ∈ H0. Thus we can define a map

ΘP : AutF (P ) // Sub(NΓ(θ(CS(P ))))

by the formula ΘP (α) = Θ(β•) · θ(CS(P )). By properties (i) and (ii)
of fusion mapping triples, Θ(β•) is a left coset of θ(CS(R)) (because
Z(R) = Z(R•) by [BLO2, Lemma 3.2(d)]), and by (iv) it is also a right
coset (where the left and right coset representatives can be chosen to be
the same). Hence ΘP (α) is a left and right coset of θ(CS(P )).

If β′ ∈ AutF (P ) is any other extension of α, then by Lemma A.3
there is some g ∈ CS(P ) such that β′ = cg ◦ β, and then Θ((β′)•) =
Θ(cg β

•) = θ(g)Θ(β•), and

Θ((β′)•) · θ(CS(P )) = θ(g) ·Θ(β•) · θ(CS(P ))

= Θ(β•) · θ(β•(g)) · θ(CS(P )) = Θ(β•) · θ(CS(P ))

and so the definition of ΘP (α) is independent of the choice of the exten-
sion of α. This shows that ΘP is well defined.

Note also that ΘP respects compositions and, since ΘP (α) = x ·
θ(CS(P ))=θ(CS(P ))·x for some x∈Γ, we conclude that x∈NΓ(θ(CS(P )).
Thus ΘP induces a homomorphism

ΘP : AutF (P ) // NΓ(θ(CS(P )))/θ(CS(P )).

We can now apply Lemma A.2 to extend Θ to H.
If α ∈ AutF (P ) and x ∈ ΘP (α), then x = y ·θ(h) for some h ∈ CS(P )

and y ∈ Θ(β•), where β• is some extension of α to R = P · CS(P ).
Hence, for any g ∈ P ,

xθ(g)x−1 = yθ(hgh−1)y−1 = yθ(g)y−1 = θ(β•(g)) = θ(α(g)).

This shows that condition (i) in Lemma A.2 holds.
Assume now that P � Q ≤ NS(P ), and let α ∈ AutF (P ), β ∈

AutF (Q) be such that α = β|P . Then, in the notation of axiom (II) for
saturated fusion systems, Q ·CS(P ) ≤ Nα, and hence α extends to some
other γ ∈ AutF (Q · CS(P )), and

ΘP (α) = Θ(γ•) · θ(CS(P ))
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by definition of ΘP . By Lemma A.3, γ|Q = cg ◦ β for some g ∈ CS(P ),
and hence by definition of fusion mapping triple, Θ(γ•) = Θ(cg ◦ β•) =
θ(g) ·Θ(β•), and

ΘP (α) = θ(g) ·Θ(β•) · θ(CS(P ))

= Θ(β•) · θ(β•(g)) · θ(CS(P )) = Θ(β•) · θ(CS(P )).

In particular, ΘP (α) ⊇ Θ(β•), and condition (ii) in Lemma A.2 also
holds.

Let H ⊆ Fq, and let (Γ, θ,Θ) be a fusion mapping triple for FH. For
a subgroup H ≤ Γ, let F∗H ⊆ F be the smallest restrictive (in the sense
of [Gon2, Definition B.6]) subcategory which contains all f ∈ Mor(Fq)
such that Θ(f) ∩ H 6= ∅. Let also FH ⊆ F∗H be the full subcategory
whose objects are the subgroups of θ−1(H). The following result is a
modification of the statement of [Gon2, Proposition B.8] for groups of
order prime to p (the statement in [Gon2] dealed with p-groups). As
the proof is exactly the same, we omit it.

Proposition A.5. Let (Γ, θ,Θ) be a fusion mapping triple on Fq, where
Γ is a finite group of order prime to p. Then the following holds for
all H ≤ Γ.

(a) FH is a saturated fusion system over SH = θ−1(H).
(b) A subgroup P ≤ SH is FH-quasicentric if and only if it is F-qua-

sicentric.

When Γ is a group of order prime to p, there is only one possible
morphism from a discrete p-toral group S to Γ, the trivial one. The
existence of a fusion mapping triple in this case is equivalent to the

existence of a functor Θ̂ : Fq → B(Γ) such that Θ(f) = {Θ̂(f)} for each
f ∈ Mor(Fq). This equivalent approach will be useful later on when
constructing fusion mapping triples.

Given a (possibly infinite) group G, recall that Op
′
(G) is the intersec-

tion of all normal subgroups K CG such that |G/K| is finite and prime
to p.

Lemma A.6. Let G, H be groups, and let f : G→H be an epimorphism

with Ker(f)≤Op′(G). Then, f induces an isomorphism f : G/Op
′
(G)

∼=−→
H/Op

′
(H).

Proof: Let K C G be such that |G/K| is finite and prime to p, and

note that Ker(f) ≤ Op
′
(G) ≤ K by assumption. Hence, f induces an

isomorphism G/K ∼= H/f(K). Conversely, let NCH be such that |H/N |
is finite and prime to p, and let K ≤ G be the preimage of N through f ,
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so Ker(f) ≤ K. Again, f induces an isomorphism G/K ∼= H/N . It

follows that f(Op
′
(G)) = Op

′
(H), and there is a commutative diagram

of extensions

Op
′
(G) //

f

��

G //

f

��

G/Op
′
(G)

f
��

Op
′
(H) // H // H/Op

′
(H)

where all the vertical maps are epimorphisms. As Ker(f) ≤ Op
′
(G), it

then follows that f must be an isomorphism.

Although [BCG+, Proposition 2.6] was originally proved for p-local
finite groups, a careful inspection of its proof shows that it applies with-
out modification in the compact case. Thus, combining [BCG+, Propo-
sition 2.6] with Lemma A.6 we deduce the existence of an isomorphism

(A.1) Γp′(F)
def
= π1(|L|)/Op

′
(π1(|L|)) ∼= π1(|Fc|)/Op

′
(π1(|Fc|)).

We shall show that Γp′(F) is a finite group of order prime to p, and that
the natural functor

ε : Fc // B(Γp′(F))

induces a bijective correspondence between subgroups of Γp′(F) and
fusion subsystems of F of index prime to p.

Definition A.7. We denote by Op
′

∗ (F) ⊆ F the smallest fusion sub-
system over S (not necessarily saturated) whose morphism set con-

tains Op
′
(AutF (P )) for all P ≤ S. Furthermore, we define Out0

F (S) ≤
OutF (S) as the subgroup generated by the elements [f ] ∈ OutF (S) such
that f |P ∈ Mor

Op′
∗ (F)

(P, S) for some P ∈ Ob(Fc) and f ∈ AutF (S)

representing [f ].

Lemma A.8. The following holds:

(a) Op
′

∗ (F) is normalized by AutF (S): for all f ∈ Mor(Op
′

∗ (F)) and
all γ ∈ AutF (S), we have

γ ◦ f ◦ γ−1 ∈ Mor(Op
′

∗ (F)).

(b) The fusion system F is generated by Op
′

∗ (F) together with AutF (S).

(c) Out0
F (S) is a normal subgroup of OutF (S).

Proof: Parts (a) and (b) follow from [BCG+, Lemma 3.4], since the
same proof applies here without modification (all the properties required
have the necessary counterpart for fusion systems over discrete p-toral
groups). Part (c) follows then from part (a).
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Proposition A.9. There is a unique functor

θ̂ : Fc // B(OutF (S)/Out0
F (S))

with the following properties:

(a) θ̂(f) = [f ] for all f ∈ AutF (S).

(b) θ̂(f) = [Id] if f ∈ Mor(Op
′

∗ (F)c). In particular, θ̂ sends inclusion
morphisms to the identity.

Furthermore, there is an isomorphism θ : Γp′(F)
∼=−→ OutF (S)/Out0

F (S)

such that θ̂ = B(θ) ◦ ε. In particular, Γp′(F) is a finite group of order
prime to p.

Proof: By Lemma A.8(b), there exist an automorphism α ∈ AutF (S)
and a morphism f ′ ∈ Hom

Op′
∗ (F)c

(α(P ), Q) such that f = f ′◦α|P . Thus,

if we have two such decompositions f = f ′1 ◦ (α1)|P = f ′2 ◦ (α2)|P , then
(after factoring out inclusions) we have

(α2 ◦ α−1
1 )|P = (f ′2)−1 ◦ f1 ∈ Iso

Op′
∗ (F)c

(α1(P ), α2(P )),

which implies that α2 ◦ α−1
1 ∈ Out0

F (S), and we can define

θ̂(f) = [α1] = [α2] ∈ OutF (S)/Out0
F (S).

This also proves that θ̂ is well defined on morphisms and maps all objects
in Fc to the unique object of B(OutF (S)/Out0

F (S)). By Lemma A.8(b)
again, this functor preserves compositions, and thus is well defined. Fur-
thermore, it satisfies conditions (a) and (b) above by construction. The

uniqueness of θ̂ is clear.
Let us prove then the last part of the statement. As OutF (S)/Out0

F (S)

is a finite p′-group, the morphism π1(|θ̂|) factors through a homomor-
phism

θ : π1(|Fc|)/Op′(π1(|Fc|)) // OutF (S)/Out0
F (S),

and the inclusion of BAutF (S) into |Fc| (as a subcomplex with a single
vertex S) induces then a homomorphism

τ : OutF (S) // π1(|Fc|)/Op′(π1(|Fc|)).

Furthermore, τ is an epimorphism since F is generated by Op
′

∗ (F) and

AutF (S), by Lemma A.8(b), and because every automorphism onOp
′

∗ (F)
is a composite of restrictions of automorphisms of p-power order.
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By part (a), the composite θ ◦ τ is the projection of OutF (S) onto
the quotient OutF (S)/Out0

F (S), and Out0
F (S) ≤ Ker(τ) by definition

of Out0
F (S). Thus θ is an isomorphism. As OutF (S) is a finite group of

order prime to p, the last part of the statement follows.

Theorem A.10. There is a bijective correspondence between the set of
subgroups H ≤ Γp′(F) = OutF (S)/Out0

F (S) and the set of saturated
fusion subsystems FH ⊆ F of index prime to p. The correspondence is

given by associating to H the fusion system generated by (θ̂)−1(B(H)),

where θ̂ is the functor in Proposition A.9.

Proof: Let F0 ⊆ F be a saturated subsystem of index prime to p. That

is, F0 is a saturated subsystem over S which contains Op
′

∗ (F). Then
Out0

F (S) C OutF0
(S), and we can set

H = OutF0(S)/Out0
F (S) ≤ Γp′(F).

We have to show that this provides the bijection in the statement. We

first show that a morphism f ∈ Mor(Fc) is in F0 if and only if θ̂(f) ∈ H,
which in turn implies that

F0 = (θ̂)−1(B(H)).

Clearly it is enough to prove this for isomorphisms in Fc.
Let P,Q ≤ S be F-centric, F-conjugate subgroups, and fix f ∈

IsoF (P,Q). By Lemma A.8 we can write f=f ′◦α|P , where α∈AutF (S)
and f ′ ∈ Iso

Op′
∗ (F)

(P,Q). Then f is in F0 if and only if α|P is in F0. Also,

by definition of θ̂ (and also h), θ̂(f) ∈ H if and only if α ∈ AutF0
(S).

Thus we have to show that α|P ∈ Mor(F0) if and only if α ∈ AutF0
(S).

The case when α ∈ AutF0(S) is clear, so let us prove the converse.
Note that α(P ) is F0-centric, and hence fully F0-centralized. Since α|P
extends to an (abstract) automorphism of S, axiom (II) implies that it
extends to some α1 ∈ HomF0

(NS(P ), S). By [BLO2, Proposition 2.8],

α1 = (α|NS(P )) ◦ cg
for some g ∈ Z(P ), and hence α|NS(P ) ∈ HomF0(NS(P ), S). Further-
more, P � NS(P ) since P � S by hypothesis. Applying this process
repeatedly it follows that α ∈ AutF0(S).

Now, fix a subgroup H ≤ Γp′(F), and let FH be the smallest fusion

system over S which contains (θ̂)−1(B(H)). We show then that FH is
a saturated fusion subsystem of F of index prime to p. Let P,Q ≤ S
be F-centric subgroups, and note that HomFH

(P,Q) is the set of all

morphisms f ∈ HomF (P,Q) such that θ̂(f) ∈ H. Thus, in particular
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FH contains Op
′

∗ (F) because all morphisms in Op
′

∗ (F) are sent by θ̂ to
the identity.

Define then a map Θ: Mor(Fc) → Sub(Γp′(F)) by setting Θ(f) =

{θ̂(f)}, that is, each image is a singleton. Let also θ ∈ Hom(S,Γp′(F))
be the trivial homomorphism. Then it follows that (Γp′(F), θ,Θ) is a
fusion mapping triple of Fc which, by Lemma A.4 extends to a unique
fusion mapping triple of Fq. Thus FH is saturated by Proposition A.5.

By Alperin’s fusion theorem, [BLO2, Theorem 3.6], FH is the unique
saturated fusion subsystem of F with the property that a morphism
f ∈ HomF (P,Q) between F-centric subgroups of S lies in FH if and

only if θ̂(f) ∈ H. This shows that the correspondence is bijective.

Remark A.11. There is a minimal fusion subsystem Op
′
(F) ⊆ F of

index prime to p, corresponding to the trivial subgroup {1} ≤ Γp′(F).

By [LL, Theorem B], Op
′
(F) has a unique associated centric linking

system Op
′
(L) (up to isomorphism), and thus there is a p-local compact

group Op
′
(G) = (S,Op

′
(F), Op

′
(L)).

Corollary A.12. Op
′
(F) is a normal subsystem of F .

Proof: Since Op
′
(F) is a saturated fusion subsystem over S, condi-

tions (N1) and (N3) in Definition 2.1 follow immediately. Also con-
dition (N4) is immediate since S = S ·CS(S). Finally, condition (N2) is
a consequence of the following. The fusion mapping triple (Γ, θ,Θ) as-

sociated to Op
′
(F) corresponds to a functor Θ̂ : Fq → B(Γ) which sends

the morphisms in Op
′
(F) to the trivial automorphism.
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Primera versió rebuda el 13 de setembre de 2017,
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