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Abstract: We show that the universal groupoid of an inverse semigroup S is topo-
logically (measurewise) amenable if and only if S is hyperfinite and all members of

a family of subsemigroups of S indexed by the spectrum of the commutative C∗-al-

gebra C∗(ES) on the idempotents ES of S are amenable. Thereby we solve some
problems raised by A. L. T. Paterson.
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1. Introduction

Locally compact (Hausdorff) groups are the central object in abstract
harmonic analysis. In the last century a great deal of progress has been
made on the analysis of locally compact groups. There are several classes
of groups such as Abelian or compact groups for which we know a lot
more, but there are many important examples which are not Abelian or
compact. Therefore, finding classes of groups which are large enough to
include these special cases and restricted enough to satisfy interesting
properties is of great importance. One important class of this kind is
the class of amenable groups. There are several equivalent definitions of
amenability of a locally compact group G; for instance G is amenable if
and only if the space of bounded continuous functions on G has a state
which is invariant under left translations by elements of G. The class
of amenable groups is fairly large. It contains all Abelian and compact
groups and is closed under extensions, taking quotients, or passing to
closed subgroups. We refer the interested reader to [13] for more details.
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One of the pioneering works on amenable groups in the language of co-
homology is that of B. E. Johnson [9]. In this important monograph a
concept of amenability is defined for Banach algebras and it is shown that
amenability of a locally compact group G is equivalent to amenability
of its group algebra L1(G), consisting of all absolutely integrable com-
plex valued functions on G (with respect to a left Haar measure on G).
Amenability plays a central role in the theory of Banach algebras. It is
equivalent to other interesting properties for important subclasses such
as C∗-algebras or von Neumann algebras. Indeed, the Banach space bid-
ual A∗∗ of any C∗-algebra A is a von Neumann algebra, called the en-
veloping von Neumann algebra of A and, by a result of Choi–Effros [3],
A is nuclear if and only if A∗∗ is injective, and this is the case if and
only if A is amenable, as shown by Connes [4] and Haagerup [8]. It is
also shown that amenability of a locally compact group G, nuclearity of
its reduced C∗-algebra C∗r (G), and injectivity of its group von Neumann
algebra V N(G) are equivalent [13].

Locally compact groups are still the most common theme of research
in abstract Harmonic analysis, but there are many examples in which
the underlying symmetries are described by more general algebraic struc-
tures. Topological semigroups and groupoids are two important examples
of such a structure. The main difficulty to deal with harmonic analysis
on semigroups is the lack of a Haar measure. One class of (discrete) semi-
groups for which a good progress on the analysis has been made is the
class of inverse semigroups. One of the most important problems for an
inverse semigroup S, which has been the subject of an intense research,
is the problem of finding necessary and sufficient conditions on S such
that the semigroup algebra `1(S) is amenable. There is an important
negative result by Duncan and Namioka [6]. They showed that if `1(S)
is amenable, then the set ES of idempotents of S is finite. As there are
amenable inverse semigroups for which ES is not finite, there is no hope
for Johnson’s theorem to be true for inverse semigroups. When ES is fi-
nite, it is shown in [6] that amenability of `1(S) is equivalent to amenabil-
ity of all maximal subgroups of S. One important recent result in this
direction is due to A. L. T. Paterson who showed in his recent mono-
graph that if all the maximal subgroups of S are amenable, then the
semigroup von Neumann algebra V N(S) is injective [14]. In this result,
the finiteness of ES is not assumed but S is assumed to be countable.
The approach of [14] is based on the fact that the reduced C∗-alge-
bra of S and its universal groupoid GS are ∗-isomorphic (as it stands
in [14], this result is proved for the case in which GS is Hausdorff, and
so the above result is valid only if S is E-unitary, but this restriction
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could be removed [10]). The importance of this approach is mainly be-
cause we know a lot about amenability of (topological and measured)
groupoids [1]. In the same monograph, Paterson asks if a similar result
could be proved for the reduced C∗-algebra C∗r (S). In particular, he
asks if the amenability of all maximal subgroups of S implies nuclearity
of C∗r (S) (something which is true if ES is finite). This is an interesting
problem on its own and could be related to some more central problems
in operator algebras. Recently there has been very significant interest in
the construction of C∗-algebras from inverse semigroups and structural
questions for these C∗-algebras, including nuclearity, membership to the
UCT class, and the possession of a natural Cartan subalgebra (for other
related advances, see [7] and [12]).

The present paper was motivated by an example suggested by David
Cowan which negatively answers the above question (see Section 3). In
our search for necessary and sufficient conditions for nuclearity of C∗r (S),
we realized that a larger class of subsemigroups of S should be consid-
ered. The maximal subgroups of S are indexed by elements of ES which
is a commutative inverse semigroup. Motivated by [10], we considered a
class of subsemigroups of S indexed by the spectrum of the commutative
C∗-algebra C∗(ES) which includes all maximal subgroups. It is shown
that amenability of all these subgroups plus an extra measure theoretic
property of S is equivalent to the nuclearity of C∗r (S). The latter prop-
erty is called hyperfiniteness and is motivated by the celebrated theorem
of Connes–Feldman–Weiss [5] (see also [1]). The proof uses the fact that
C∗r (S) and C∗r (GS) are ∗-isomorphic for any inverse semigroup S [10].
It is quite natural to solve the amenability problem for an inverse semi-
group by passing to its universal groupoid. This is mainly because there
is an extensive literature on amenability of (r-discrete) groupoids [1]. We
freely use such concepts as quasi-invariant measures, principal groupoid,
discrete (hyperfinite) equivalence relations, ample groupoids, for which
we refer the reader to [17] and [1].

2. Universal groupoid

In this section we briefly review the basic properties of the universal
groupoid of an inverse semigroup. Our main references are [14] and [10].
Recall that a (discrete) semigroup S is called an inverse semigroup if
for each s ∈ S, there is a unique element s∗ ∈ S such that ss∗s = s
and s∗ss∗ = s∗. The set of idempotents in S is denoted by ES . This is
a commutative subsemigroup of S which has a natural ordering defined
by e ≤ f if and only if ef = e. For each e ∈ ES , the set

See = {s ∈ S : ss∗ = s∗s = e}
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is a subgroup of S. Indeed it is easy to see that these are exactly the maxi-
mal subgroups of S (see Subsection 4.5 of [14]). The left regular represen-
tation of S in `2(S) is naturally defined by π2(s)(δt) = δst if tt∗ ≤ s∗s,
and π2(s)(δt) = 0 otherwise. This lifts to a (faithful) ∗-representation
of `1(S) in `2(S). The C∗-algebra and W ∗-algebra generated by π2(S),
which are the norm and weak operator closures of π2(`1(S)) in B(`2(S)),
are called the reduced C∗-algebra and the von Neumann algebra of S
and denoted by C∗r (S) and V N(S), respectively. Similarly the full C∗-al-
gebra C∗(S) could be defined by considering all representations of S
(see [14] for details).

Now we briefly discuss the construction of the universal groupoid GS
of an inverse semigroup S. For each unital, discrete, commutative ∗-semi-
group T , the set T ∗ of semicharacters of T with the topology of pointwise
convergence is a unital, locally compact, Hausdorff ∗-semigroup in which
the subset T̂ of bounded semicharacters form a compact unital subsemi-
group [2]. If T is not unital, then T̂ is not necessarily compact. In each

case, elements of T̂ take value in the closed unit disk D (in the unit cir-
cle T, when S is a group). When T is an idempotent semigroup, elements

of T ∗ = T̂ take only values 0 and 1. When S is an inverse semigroup,
ES is a commutative inverse semigroup, which is unital exactly when it
has a maximum element in its natural order. Consider the commutative
Banach ∗-algebra `1(ES) and let X be the space of all multiplicative
bounded linear functionals on `1(ES) with the relative weak∗-topology,
hence X is the spectrum of the abelian C∗-algebra C∗(ES). We may then
regard elements of ES as continuous functions on X. For each s ∈ S,
and x ∈ X with s∗s(x) = 1, we define s.x ∈ X by s.x(e) = x(s∗es)

(e ∈ ES). This defines an action of S on ÊS which keeps (the dense
subset) ES invariant (see [18] for more details on the space of semichar-

acters ÊS , its topology, and the above action). Indeed, one can easily
check that s.e = ses∗, for each s ∈ S, e ∈ ES . There is an alternative
way of thinking about the action of S on X. For each s ∈ S, consider
the subset

Xs := {x ∈ X : x(s∗s) = 1, s.x = x}

of X. It is clear that Xs is compact and open in X. Now each s ∈ S
could be considered as a surjective homeomorphism s : Xs → Xs∗ , and
S could be considered as a semigroup of partial homeomorphisms on X,
acting relatively free on X [17, Definition I.2.11].

Now let Σ = {(s, x) ∈ S ×X : s∗s(x) = 1} with the relative product
topology, and define an equivalence relation on Σ by (s, x) ∼ (t, y) if and
only if x = y and there is e ∈ ES such that e(x) = 1 and se = te. Let GS
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be the quotient of Σ with respect to this equivalence relation and π : Σ→
GS be the quotient map. We write [s, x] for the equivalence class π((s, x))

of (s, x). Then GS is a locally compact groupoid with G
(0)
S = X under

the quotient topology and the following operations:

s[s, x]=x, r[s, x]=s.x, [s, x]−1 =[s∗, s.x], and [s, t.y][t, y]=[st, y],

for s, t ∈ S and x, y ∈ X. The groupoid GS is called the universal
groupoid of S. It is an r-discrete groupoid which is not Hausdorff in gen-
eral (it is Hausdorff if S is E-unitary, see [14], or see [18, Theorem 5.17]
for a complete characterization). Each e ∈ ES defines an element εe ∈ X
by f(εe) = 1 if e ≤ f and f(εe) = 0 otherwise, where f ∈ ES . The fact
that εe ∈ X follows from the observation that ē := {f ∈ ES : f ≥ e}
forms a filter in the semilattice ES [14, p. 174]. Also each s ∈ S defines
an element εs = [s, εs∗s] ∈ GS . This provides an embedding of S in GS
which sends ES onto a dense subset of X. We usually identify ES with
its image. For each x ∈ X = C∗(ES )̂ ,

Sx := {s ∈ S : x(s∗s) = 1, s.x = x}

is a subsemigroup of S. Indeed if s, t ∈ Sx, then

x((st)∗(st)) = x(t∗s∗st) = t.x(s∗s) = x(s∗s) = 1.

The maximal group homomorphic image of Sx is the discrete group
G(Sx) = Sx/ ∼, where for s, t ∈ Sx, we define s ∼ t if and only if there
is e ∈ ES such that e(x) = 1 and se = te. When x = e ∈ ES , then
Se = {s ∈ S : s∗s ≥ e} and G(Se) = See . In general, it is easy to see that
the group G(Sx) is isomorphic to the isotropy group (GS)xx. Moreover,
the principal groupoid ΓS := {(r(γ), s(γ)) : γ ∈ GS} of GS [17, p. 39] is
an r-discrete groupoid whose ample semigroup ΓaS is the ample inverse
semigroup generated by S [17, Proposition I.2.13].

Lemma 2.1. For each x ∈ X, the maximal group homomorphic image
of the subsemigroup

Sx = {s ∈ S : x(s∗s) = 1, s.x = x}

is isomorphic to the isotropy group

(GS)xx = {[s, x] : s ∈ S, x(s∗s) = 1}.

Lemma 2.2. X = C∗(ES )̂ with the weak∗ topology is homeomorphic

to ÊS with the topology of pointwise convergence.
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3. Amenability of the universal groupoid

Our main reference for amenability of groupoids is [1] to which we
refer the reader for the definition of (locally compact and measured)
groupoids and different types of amenability defined for them (in partic-
ular, see Definitions 2.2.8 and 3.3.1 in [1], respectively for topological and
measurewise amenability). As in the previous section, throughout this
section S is an arbitrary inverse semigroup with universal groupoid GS .
For a general (measured or locally compact) groupoid G, the C∗-alge-
bras C∗r (G) and C∗(G) could be defined as in the group case. Also for
each quasi-invariant measure µ on the set X = G(0) of the unit elements,
the von Neumann algebra V N(G,µ) is defined similar to the group case
(see [1] for details). Note that in [1] an alternative von Neumann alge-
bra W ∗(G,µ) is also defined, which is naturally isomorphic to V N(G,µ)
(see the remarks in the beginning of Subsection 6.2 in [1]).

Proposition 3.1. The C∗-algebras C∗(S) and C∗r (S) are ∗-isomorphic
to C∗(GS) and C∗r (GS), respectively. If S is countable, the von Neumann
algebras V N(S) and V N(GS , µ0) are ∗-isomorphic, where

µ0 =

∞∑
i=1

2−nδen .

Proof: The first statement is proved in [14, Theorems 4.4.1 and 4.4.2]
for the countable, E-unitary case and in [10] for the general case. The
second statement is included in the proof of Theorem 4.5.2 in [14].

For a groupoid G, the isotropy is the family of groups Gxx := {γ ∈ G :
s(γ) = r(γ) = x} indexed by x ∈ G0).

Lemma 3.2. GS has discrete isotropy everywhere. Also it has a con-
tinuous Haar system. When S is countable, GS has a (discrete) quasi-
invariant measure µ.

Proof: This follows from the fact that GS is étale. Alternatively, consider
the quotient map π : S×X → GS . Then, for x ∈ X, the set π−1((GS)xx) =
{s ∈ S : s∗s(x) = 1, s.x = x}×{x} is discrete in S×X, so (GS)xx is dis-
crete in GS . The Haar system of GS consists of counting measures which
is clearly a continuous system. The (discrete) quasi-invariant measure µ
on GS is constructed in the proof of Theorem 4.4.2 in [14].

The next two lemmas can be found in [1, Corollary 5.3.33 and Theo-
rem 5.3.42]:
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Lemma 3.3. If (G,λ, µ) is a measured groupoid and (Γ, α, µ) is its
associated principal groupoid, then G is amenable if and only if Γ is
amenable and, for µ-a.a. x ∈ G(0), the isotropy groups Gxx are amenable.

Lemma 3.4. A discrete equivalence relation (Γ, α, µ) is amenable if and
only if it is hyperfinite.

The following follows from Lemma 3.2 and [17, Proposition I.2.13].

Lemma 3.5. Let ΓS be the principal groupoid of GS. Then ΓS is an

r-discrete ample groupoid with Γ
(0)
S = X (identified with the diagonal

subspace of X × X). Moreover, the elements of ΓaS are exactly finite
disjoint unions of the sets of the form

s •K := {(x, s.x) ∈ X ×X : x(s∗s) = 1, x ∈ K},
where s ∈ S and K is a compact open subset of X.

Lemma 3.6. Let µ be a probability measure on X. Then the following
are equivalent:

(i) µ is quasi-invariant for (GS , λ).
(ii) µ is quasi-invariant for (ΓS , α).
(iii) For each s ∈ S, s.µ ∼ µ on Xs.

Proof: The equivalence of (i) and (ii) is true for any r-discrete groupoid
and its principal groupoid [1, p. 72]. Now µ is quasi-invariant for (ΓS , α)
if and only if it is quasi-invariant under ΓaS [17, I.3.22]. By Lemma 3.5,
this means that if each of the measures

∫
X
αx dµ(x) and

∫
X
αx dµ(x)

vanishes on a set of the form s •K, where s ∈ S and K ⊆ X is compact,
then so does the other. Switching the role of source and range maps for
the sets of the form s•K amounts to switching the role of x and y := s.x.
Now x satisfies x(s∗s) = 1 and s.x = x if and only if y satisfies y(ss∗) = 1
and s∗.y = y. Therefore, (ii) means that, for each s, K as above, µ(K ∩
Xs) = 0 if and only if µ(s.K ∩Xs∗) = 0, where s.K := {s.x : x ∈ K}.
But µ(s.K ∩Xs∗) = µ(s.(K ∩Xs)) = s.µ(K ∩Xs), so (ii) is equivalent
to (iii).

A probability measure on X is called θ-invariant if it satisfies any of
the above conditions. Next, let us put

[s] = {x ∈ X : x(s∗s) = 1} (s ∈ S).

Definition 3.7. A subset S0 of S is called θ-invariant if it has the
following properties:

(i) For each x ∈ X, there is s ∈ S0 such that x ∈ Xs.
(ii) For each s ∈ S0 and x ∈ [s], there exists t ∈ S0 with x ∈ Xts.
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(iii) For each s, t ∈ S0, there is some u ∈ S0 such that [t] ∩ [st] ⊆ [u]
and st.x = u.x, for each x ∈ [t] ∩ [st].

Note that any subsemigroup S0 of S with ES0 = ES is θ-invariant
(for (i), take any e ∈ supp(x) and choose s ∈ S0 with s∗s = e, and for
(ii) and (iii), take t = s∗ and u = st, respectively) but the converse is
not true in general.

Lemma 3.8. The subgroupoids of ΓS with the same unit space X are
exactly the subsets of the form

Γ0 := {(x, s.x) ∈ X ×X : s ∈ S0, x ∈ X, x(s∗s) = 1},
where S0 ⊆ S is θ-invariant.

Proof: First assume that Γ0 is a subgroupoid of ΓS with Γ
(0)
0 = X

(recall that the left hand side is indeed the diagonal of X×X, naturally
identified with the right hand side). It is clear that Γ0 is of the above
form for some subset S0 of S. We need to show that S0 is θ-invariant.

Given x ∈ X, then (x, x) ∈ Γ
(0)
0 , so there is s ∈ S0 such that x ∈ [s]

and (x, x) = (x, s.x). Hence x ∈ Xs. Next, let s ∈ S0 and x ∈ [s].
Then (x, s.x) ∈ Γ0, so (s.x, x) = (x, s.x)−1 ∈ Γ0, and so there is t ∈ S0

such that s.x(t∗t) = 1 and t.(s.x) = ts.x = x. Therefore, x ∈ Xts.
Finally, let s, t ∈ S0 and [s] ∩ [st] 6= ∅. Choose any x ∈ [s] ∩ [st]. Then
(x, t.x), (t.x, s.(t.x)) ∈ Γ0, hence (x, st.x) ∈ Γ0, that is, st.x = u.x for
some u ∈ S0 with x(u∗u) = 1.

Conversely, assume that S0 is θ-invariant. For each x ∈ X, there

is s ∈ S0 such that x ∈ Xs. Therefore, (x, x) ∈ Γ0, so Γ
(0)
0 = X.

Next, let (x, s.x) ∈ Γ0. Then x ∈ [s]. Take t ∈ S0 such that x ∈ Xts.
Then t.(s.x) = ts.x = x and s.x(t∗t) = x((ts)∗(ts)) = 1, so (s.x, x) =
(s.x, t.(s.x)) ∈ Γ0. Finally, let (x, t.x), (y, s.y) ∈ S0 with y = t.x. Then
x ∈ [t] ∩ [st]. Choose u ∈ S0 as in (iii) and then (x, s.y) = (x, st.x) =
(x, u.x) ∈ Γ0.

Before we define a hyperfinite inverse semigroup, one should note that
there is a slight error in the definition of hyperfinite groupoid in [1,
Definition 5.3.41]. The correct statement (in the notations of [1]) is
that (R,µ) is hyperfinite if there is an increasing sequence of bounded
Borel subequivalence relations Rn such that ∪nRn is co-null with respect
to µ ◦ λ.

Definition 3.9. S is called hyperfinite if there exists a sequence {Sn}
of θ-invariant subsets of S such that

(i) For each x ∈ X, supn≥1 |{s.x : s ∈ Sn, x(s∗s) = 1}| <∞.
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(ii) For each θ-invariant measure µ on X,∫
X

|{s.x : s /∈ ∪nSn, x(s∗s) = 1}| dµ(x) = 0.

Proposition 3.10. The following are equivalent:

(i) S is hyperfinite.
(ii) ΓS is measurewise amenable.

Proof: If S is hyperfinite, let {Sn} be the corresponding sequence of
θ-invariant subsets of S and put

Γn := {(x, s.x) ∈ X ×X : s ∈ Sn, x ∈ X, x(s∗s) = 1} (n ≥ 1).

By Lemma 3.8, Γn is a subgroupoid of ΓS with the same unit space.
Now let α be the Haar system of ΓS so that α ◦ µ is the pseudo-image
of λ ◦ µ. Then conditions (i) and (ii) of Definition 3.9 translate into
supn≥1 αx((Γn)x) < ∞ (x ∈ X) and α ◦ µ((ΓS\(∪nΓn))) = 0. This
means that ΓS is hyperfinite as a discrete equivalence relation on X [1,
Definition 5.3.41] and so (ΓS , α, µ) is amenable by the Connes–Feldman–
Weiss Theorem [5], [1, Theorem 5.3.42]. This being true for each quasi-
invariant measure µ, ΓS is measurewise amenable.

Conversely if ΓS is measurewise amenable, then for each θ-invariant
measure µ, (ΓS , α, µ) is amenable and so hyperfinite [1, Theorem 5.3.42].
Again Lemma 3.8 shows that S is hyperfinite.

Example 3.11. The bicyclic semigroup C is hyperfinite.

Proof: Recall that the bicyclic semigroup is the finitely presented monoid
with two generators p and q and one relation pq = 1. It is easy to see that
each discrete hyperfinite equivalence relation Γ has finite orbits. Now one
can readily check that EC = (N,max) and X = ÊC = (N ∪ {∞},max).
Hence (x, y) ∈ ΓC if and only if x, y ∈ N or x = y = ∞. Therefore,
ΓC has two orbits: (ΓC)∞ = {(∞,∞)} and (ΓC)x = N × N (x ∈ N). In
particular, ΓC is hyperfinite. This shows that C is hyperfinite.

Now we are ready to prove our main result. Recall that a mean on a
discrete semigroup S is a state on `∞(S), which is called left (right, bi-)
invariant if it is invariant under the left (right, left, and right) translation
action(s) of S on `∞(S). The semigroup S is left (right) amenable if there
exists a left (right) invariant mean on S, and amenable if there is a bi-
invariant mean. We show that the amenability of the universal groupoid
of an inverse semigroup S is equivalent to hyperfiniteness of S plus (left)
amenability of a class of subsemigroups of S indexed by the compact
space X = ÊS . When S is a (discrete) group, this family is a singleton
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consisting of S itself, and S is automatically hyperfinite, as we can take
Sn = S, n ≥ 1 and the supremum in Definition 3.9(i) is always 1.

Theorem 3.12. Let S be an inverse semigroup and GS be its universal
groupoid. Then the following are equivalent:

(i) GS is measurewise amenable.
(ii) GS is topologically amenable.

(iii) S is hyperfinite and for each x ∈ X = ÊS, the subsemigroup Sx is
(left) amenable.

Proof: The equivalence of (i) and (ii) follows from [1, Theorem 3.3.7
and Remark 3.3.9] and the fact that GS is r-discrete (étale) [10]. The
equivalence of (i) and (iii) follows from Lemmas 3.3, 2.1, and Proposi-
tion 3.10.

It is asked in [14] if amenability of all maximal subgroups See , e ∈ ES ,
implies the nuclearity of C∗r (S). The following example (suggested to the
authors by David Cowan) answers this question negatively.

Example 3.13. All the maximal subgroups of the free inverse semi-
group S on two generators are amenable, but C∗r (S) is not nuclear.

Proof: Let S be the free inverse semigroup on two generators. Then

G
(0)
S =ES ∪ {1}, where 1 is the characteristic function of E (acting as a

multiplicative linear functional on `1(S)). It is clear that for each e ∈ ES ,
See is the trivial group [16, Proposition VIII.1.14]. Also clearly S1

1 =
F2, the free group on two generators. Now if C∗r (S) is nuclear, then so
is C∗r (GS). Hence by [1, Corollary 6.2.14] GS is measurewise amenable.
Therefore, the above theorem implies that all the isotropy groups of GS
must be amenable. But the isotropy group at x = 1 is F2 which is non
amenable. Note that V N(S) is injective in this case [14, Theorem 4.5.2].

Corollary 3.14. Let S be a hyperfinite inverse semigroup. Consider the
following statements:

(i) The subsemigroup Sx is (left) amenable for each x ∈ ÊS.

(ii) V N((GS)xx) is injective for each x ∈ G(0)
S .

(iii) C∗r ((GS)xx) is nuclear for each x ∈ G(0)
S .

(iv) C∗r (S) is nuclear.

(v) V N(S) is injective.

Then (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇒ (v).
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Proof: (i) implies (ii) by the above theorem and [14, Theorem 4.5.2].
The proof of the converse is included in the proof of the above theorem.
The equivalence of (i), (ii), and (iii) is well-known, as each (GS)xx is
a discrete group and the (left) amenability of each Sx is equivalent to
the amenability of its maximal group homomorphic image (GS)xx. If
C∗r (S) is nuclear, then its enveloping von Neumann algebra V N(S) is
injective, so (iv) implies (v). If (i) holds, then by the above theorem GS
is measurewise amenable, so by [1, Corollary 6.2.14] C∗r (GS) is nuclear,
and so by Proposition 3.1, C∗r (S) is nuclear. Finally, if C∗r (S) is nuclear,
then so is C∗r (GS). Also by Lemma 3.2, GS has a continuous Haar
system and discrete isotropy, and thus GS is measurewise amenable [1,
Corollary 6.2.14]. Hence (i) holds by the above theorem.

Example 3.15. The Cuntz–Renault semigroup Sn satisfies the equiva-
lent conditions of the above theorem.

Proof: It is well known that Sn has amenable universal groupoid [17].
Indeed its universal groupoid is a graph groupoid and these are amenable
in general [15]. An alternative way of seeing this is to observe that
C∗r (Sn) is nuclear and use the above corollary. It is well known that
C∗r (Sn) ' An × C, where An is the Cuntz–Toeplitz algebra (an exten-
sion of the Cuntz algebra On by the algebra of compact operators K(`2))
[14, p. 209].

Corollary 3.16. If S is hyperfinite and every subsemigroup Sx, x ∈ ÊS,
is amenable, then C∗(S) and C∗r (S) are ∗-isomorphic.

Proof: If the hypothesis holds, then by the above theorem GS is mea-
surewise amenable, so by Lemma 3.2 and [1, Proposition 6.1.8], C∗(GS)
and C∗r (GS) are ∗-isomorphic. Therefore, by Proposition 3.1, C∗(S) and
C∗r (S) are ∗-isomorphic.

More generally assume that S acts on a C∗-algebra A by endomor-
phisms (see for instance [11, Definition 5.1 and Example 5.2(b)]). Then
we have

Corollary 3.17. If S is hyperfinite and all subsemigroups Sx, x ∈ ÊS,
are amenable and α is an action of S on a C∗-algebra A by endomor-
phisms, then the full and reduced crossed products Aoα S and Aoα,r S
are ∗-isomorphic. In particular, A oα ES and A oα,r ES are always
∗-isomorphic.

Proof: By [11, Theorem 6.5] there is a natural action of GS on AoαES ,
and AoαS and Aoα,rS are ∗-isomorphic, respectively with (AoαES)o
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GS and (AoαES)orGS . It is easy to see that AoαES could be regarded
as a continuous G-bundle of C∗-algebras in the sense of [1] indexed

by X = G
(0)
S . Therefore, by [1, Proposition 6.1.10] (Aoα ES)oGS and

(Aoα,r ES) or GS are ∗-isomorphic.

References

[1] C. Anantharaman-Delaroche and J. Renault, “Amenable Groupoids”, With
a foreword by G. Skandalis and Appendix B by E. Germain, Monographies
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