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THE RUELLE OPERATOR FOR SYMMETRIC β-SHIFTS

Artur O. Lopes and Victor Vargas

Abstract: Consider m ∈ N and β ∈ (1,m + 1]. Assume that a ∈ R can be rep-
resented in base β using a development in series a =

∑∞
n=1 x(n)β−n, where the

sequence x = (x(n))n∈N takes values in the alphabet Am := {0, . . . ,m}. The above

expression is called the β-expansion of a and it is not necessarily unique. We are inter-
ested in sequences x = (x(n))n∈N ∈ AN

m which are associated to all possible values a

which have a unique expansion. We denote the set of such x (with some more tech-

nical restrictions) by Xm,β ⊂ AN
m. The space Xm,β is called the symmetric β-shift

associated to the pair (m,β). It is invariant by the shift map but in general it is not

a subshift of finite type. Given a Hölder continuous potential A : Xm,β → R, we con-

sider the Ruelle operator LA and we show the existence of a positive eigenfunction ψA
and an eigenmeasure ρA for some values of m and β. We also consider a variational

principle of pressure. Moreover, we prove that the family of entropies (h(µtA))t>0

converges, when t→∞, to the maximal value among the set of all possible values of
entropy of all A-maximizing probabilities.

2010 Mathematics Subject Classification: 11A63, 28Dxx, 37A35, 37D35.

Key words: β-expansions, equilibrium states, Gibbs states, Ruelle operator, sym-

metric β-shifts.

1. Introduction

Statistical Mechanics and Thermodynamic Formalism are branches of
mathematics which are interested in the study of properties of systems
of particles defined on lattices whose interactions are defined from po-
tentials taking real values. Usually it is assumed that the potential is
at least continuous. One of the main topics of interest is the study of
Gibbs states and equilibrium states. There are several papers concern-
ing the existence and uniqueness of equilibrium probabilities in the case
the potential is Hölder continuous. In the most part of these works the
important ergodic properties are derived from properties of the eigen-
probabilities and eigenfunctions of the Ruelle operator associated to A.

The first author has been partially supported by CNPq. The second author has been

supported by PNPD-CAPES grant.
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The seminal work using this approach was presented by Ruelle in [25]
as an instrument for the study of thermodynamic properties of systems
defined on uni-dimensional lattices. From this paper several important
results were derived. Bowen, Sinai, Parry, and Pollicott made important
contributions for compact finite type subshifts (see [23] for a nice pre-
sentation of the theory) and they also got interesting results in number
theory. In more general cases, such as the case of symbolic spaces with
a countable number of spins, Mauldin and Urbański in [20] and Sarig
in [26] made some very important contributions in the non-compact
countable setting (see also [6], [7], and [12]). On the other hand, [19],
[8], and [1] presented advances regarding Thermodynamic Formalism
and problems of selection at zero temperature in the classical XY -model
(the case where the set of spins is not countable) in a compact setting.

Consider m ∈ N and β ∈ (1,m + 1]. We are interested in repre-
senting a real number a in base β using a development in series of the
form a =

∑∞
n=1 x(n)β−n, where the sequence x = (x(n))n∈N takes values

in the alphabet Am := {0, . . . ,m}. The above expression is called the
β-expansion of a which is obviously not necessarily unique (see [10]).

From now on, we denote by Um the set of real numbers β belonging to
the interval (1,m+1] for which the number 1 has a unique β-expansion –
this set is known as the set of univoque bases.

We are going to use the notation Um,β to denote the set of numbers in
the interval

[
0, m

β−1
]

that have a unique β-expansion with β ∈ (1,m+1].

In general terms, for a fixed value of β ∈ Um, we are interested here in
the strings x = (x(n))n∈N ∈ AN

m which are obtained from values a which
have a unique β expansion (we will be more precise in a moment). We
will consider the action of the shift on the set of such strings x and the
corresponding ergodic properties of shift invariant probabilities.

The dynamical systems which we consider here are widely known in
the literature as the symmetric β-shifts. They were introduced by Sidorov
in [14] as a generalization of the classical β-shifts (see [27] and [28]) for
the case β ∈ (1, 2).

The topic of the β-expansions of real numbers is one of the main
themes of interest in number theory (classical contributions were pre-
sented by Erdős, Parry, and Rényi in [11], [22], and [24]).

In [2] the topological properties of symmetric β-shifts when β ∈ (1, 2)
are studied. In the mentioned work topological properties of these sub-
shifts are presented, characterizing them from the behavior of the β-
expansions. In a more recent work ([3]) Alcaraz et al. extended these
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results to a more generalized context, namely when β ∈ (1,m + 1] for
some arbitrary natural number m.

Our aim here is to understand the Thermodynamic Formalism for
this model. A special analysis (see Section 2) will be required in order
to show that the Ruelle operator is well defined (we have to take care
of the preimages of a given point x on the shift space in order to get a
local homeomorphism).

More precisely, we are interested in studying the following properties
of the Ruelle operator defined in the context of symmetric β-shifts: exis-
tence and uniqueness of Gibbs states associated to a Hölder continuous
potential.

First, we will present the definition of the shift space (it is not a shift
of finite type) which will be the main focus of our paper.

Given m, the generalized golden ratio is defined as

G(m) =

k + 1, m = 2k,

k+1+
√
k2+6k+5
2 , m = 2k + 1.

This number satisfies Um,β 6= ∅ for any β ∈ (G(m),m+1] and Um,β = ∅
for each β ∈ (1,G(m)) (see for instance [4]).

We will define the symmetric β-shifts from the sets Um and Um,β (with
some extra conditions) for values β ∈ (G(m),m + 1]. This setting was
introduced in [16] in a work mainly interested in the study of topological
properties of univoque sets.

Set Xm := (Am)N equipped with the usual lexicographic order ≺
which is defined as: x ≺ y if and only if there exists n ∈ N such that
x(j) = y(j) for all j < n and x(n) < y(n).

Set σ : Xm → Xm the shift map defined by σ((x(n))n∈N) = (x(n +

1))n∈N. Henceforth, we will denote by x = (x(n))n∈N its corresponding

reflection, that is, x(n) = m − x(n) for each n ∈ N. Besides that, for
any finite word ω = ω(1) . . . ω(l) we will define its reflection as ω =
(m−ω(1)) . . . (m−ω(l)). We will also use the following notation: ω+ =
ω(1) . . . (ω(l) + 1) and, finally, ω∞ for the periodic sequence (x(n))n∈N
satisfying x(kl + i) = ω(i) for each k ∈ N ∪ {0} and any i ∈ {1, . . . , l}.

Note that the definition of ω+ just makes sense in the case that ω(l) 6=
m, and the definition of ω− just makes sense in the case that ω(l) 6= 0.

We will say that a sequence x is infinite if it has not a tail of the
form 0∞. Otherwise, we will say that the sequence x is finite.

We name greedy (resp. lazy) β-expansion of a number a ∈
[
0, m

β−1
]

to

the largest (resp. smallest) sequence, regarding the lexicographic order,
in the set of all possible β-expansions of a, which can be either a finite
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or an infinite sequence. Observe that both of these sequences, lazy and
greedy, agree if and only if the real number a has a unique β-expansion.

We are going to name quasi-greedy (resp. quasi-lazy) β-expansion of a
number a ∈

[
0, m

β−1
]

to the largest (resp. smallest) infinite sequence, with

respect to the lexicographic order, in the set of all possible β-expansions
of a. Note that when the greedy (resp. lazy) β-expansion of a number a
is infinite, it agrees with the quasi-greedy (resp. quasi-lazy) β-expansion
of the number a.

A typical example of the above definitions is the following. Taking

β = 1+
√
5

2 , we have that the lazy β-expansion of 1 is x = 01∞ and
the greedy β-expansion of 1 is x = 110∞. Furthermore, in this example
the quasi-lazy β-expansion of 1 coincides with the lazy β-expansion of 1
because it is infinite and the quasi-greedy β-expansion of 1 is x = (10)∞.

Set xm,β the quasi-greedy β-expansion of 1. From the greedy al-

gorithm, it is easy to verify that xm,β is the quasi-lazy β-expansion
of m

β−1 − 1 when β ∈
(
m
2 + 1,m+ 1

]
.

Fixing β ∈ (G(m),m + 1], we define the set Wm,β = Um,β ∩
(
m
β−1 −

1, 1
)
, and πm,β : Xm →

[
0, m

β−1
]

as the map assigning the real num-

ber
∑∞
n=1 x(n)β−n to each sequence (x(n))n∈N ∈ Xm. It is also easy to

verify that

π−1m,β(Wm,β) = {x ∈ Xm : xm,β ≺ σkx ≺ xm,β , ∀k ∈ N ∪ {0}}.
From the above, we can define the symmetric β-shift associated to

the pair (m,β) as the σ-invariant set

(1) Xm,β = {x ∈ Xm : xm,β � σkx � xm,β , ∀k ∈ N ∪ {0}}.
A more detailed analysis of these dynamical systems can be found

in [2] and [16]. Throughout this paper we are going to use the following
metric on Xm,β :

d(x, y) = 2−min{n∈N:x(n) 6=y(n)}+1.

It is easy to check that for any m ∈ N and each β ∈ (G(m),m+ 1] the
metric space (Xm,β , d) is a bounded metric space.

Moreover, it was proved in [16] that Xm,β is a compact σ-invariant
subset of Xm.

From now on, we will denote σ = σ|Xm,β . Observe that (Xm,β , σ) is
a compact subshift.

In [3], the set of irreducible sequences was defined, that is, the set of
sequences (x(n))n∈N ∈ Xm,β satisfying

(2) x(1) . . . x(j)(x(1) . . . x(j)
+

)∞ ≺ (x(n))n∈N, ∀j ∈ N.
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Besides that, we define βT as the unique number belonging to the
interval (1,m + 1] satisfying that the quasi-greedy βT -expansion of 1 is
given by

xm,βT :=

{
(k + 1)k∞, m = 2k,

(k + 1)((k + 1)k)∞, m = 2k + 1.

One of the main results in [3] claims that for any β ∈ (G(m),m+ 1]∩
Um, the symmetric β-shift Xm,β is a topologically transitive subshift if
and only if the quasi-greedy β-expansion of 1 is an irreducible sequence,
or β = βT .

The so called transitivity condition will be necessary to guarantee
existence of a strictly positive eigenfunction and an eigenmeasure as-
sociated to the Ruelle operator. Henceforth, we are going to assume
that either β ∈ (G(m),m + 1] ∩ Um, with xm,β an irreducible sequence,
or β = βT .

We denote by Mσ(Xm,β) the set of σ-invariant probabilities for the
shift acting on Xm,β , that is, the set of probability measures satisfying
µ(E) = µ(σ−1(E)) for any Borelian set E ⊂ Xm,β .

Our first result provides conditions to guarantee the existence of Gibbs
states for Hölder potentials defined on the symmetric β-shift Xm,β asso-
ciated to certain values of m ∈ N and β ∈ (G(m),m+ 1]. The statement
of the main result is the following:

Theorem 1. Consider Xm,β a symmetric β-shift satisfying the tran-
sitivity condition. Let A : Xm,β → R be a Hölder continuous potential.
There exists a class of possible values of m and β such that there ex-
ist λA > 0 and ψA : Xm,β → R, a strictly positive Hölder continuous
function, such that LA(ψA) = λAψA.

The eigenvalue λA is simple and is the maximal possible eigenvalue.
Moreover, there exists a unique Radon probability measure ρA, defined
on the Borelian sets of Xm,β, such that L∗A(ρA) = λAρA.

The invariant probability measure µA = ψA dρA is the unique fixed
point of L∗

A
, where A is the normalization of A. Furthermore, for any

Hölder continuous potential ψ : Xm,β → R, the following uniform limit
is satisfied:

lim
n∈N

λ−nA L
n
A(ψ) = ψA

∫
Xm,β

ψ dρA.

We will present explicit conditions for values of m and β such that all
the claims are valid. For instance, for m > 2 and β ∈

[
m
2 + 2,m+ 1

]
.
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Theorem 1 assures that Ruelle’s Perron–Frobenius Theorem can be
proved for some parameters m and β of the symmetric β-shift, which
implies that given a Hölder continuous function A, the value λA, the
eigenfunction ψA, and the eigenprobability ρA are well defined. The de-
termination of these parameters is the main result of this paper. The
proofs of the other results we present here are in some way analogous
to the proof of other known results (but there are some technical differ-
ences).

Recall that Mσ(Xm,β) denotes the set of invariant probabilities for
the shift acting on Xm,β .

We define a suitable definition of entropy on Section 3 and we show a
variational principle of pressure. In Proposition 1 we will show that the
probability ψA ρA maximizes pressure.

Hereafter, we will use the notationm(A)=supµ∈Mσ(Xm,β)

{∫
Xm,β

Adµ
}

,

and we will denote by Mmax(A) the set of A-maximizing probability
measures, that is, the set of σ-invariant probability measures that at-
tain m(A). It is easy to check thatMmax(A) is a compact non-empty set.

Theorem 1 and the variational principle described in Proposition 1
will ensure the existence of a family of equilibrium states (µtA)t>0 de-
pending of the real parameter t (and a suitable expression for the family
of entropies (h(µtA))t>0).

Moreover, it follows from the compactness of the set of shift-invariant
probabilities on Xm,β that the family (µtA)t>0 has accumulation points
when t→∞.

These accumulation points are sometimes called ground states. The
parameter t is usually identified with the inverse of the temperature for
the system of particles in the lattice under the action of the potential A.
The limit of µtA, when t→∞, is called the limit at zero temperature. It
is known that the ground state probabilities are maximizing probabilities
for the potential A (see [5], [19], or [17]).

One interesting question is what can be said about the behavior of
the entropies associated to the ground states from the entropies of the
family (h(µtA))t>0 when t→∞.

One of the first works in this direction is due to Contreras et al. in [9].
They show some properties of the limit of this family of entropies at
zero temperature for potentials of class C1+α defined on S1. In the non-
compact case, Morris proved in [21] the existence of the zero temperature
limit (see also [15]). All these results were extended recently in [12] by
Freire and Vargas beyond the finitely primitive case.

Although these type of problems have been widely studied in finite
type subshifts, in both the compact and the non-compact setting, they
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have not been studied in a non-Markovian setting yet. Our second result
guarantees the existence of the zero temperature limit for entropies in
the symmetric β-shifts model. The statement of the result is as follows:

Theorem 2. Consider m > 2 and β ∈
[
m
2 + 2,m + 1

]
such that Xm,β

satisfies the transitivity condition. Let A : Xm,β → R be a Hölder con-
tinuous potential. Then the family (h(µtA))t>0 is continuous at infinity
and

lim
t→∞

h(µtA) = max
µ∈Mmax(A)

h(µ).

The paper is organized as follows.
In Section 2 we present some preliminaries and we introduce the Ruelle

operator on symmetric β-shifts. We prove that it is well defined and
preserves the set of Hölder continuous functions. At the end of the section
we introduce some more notation that will be used throughout the paper.

The proof of Theorem 1 is given In Appendix A (and is similar to the
one in [23]).

In Section 3 we present a suitable definition of entropy. We also con-
sider a variational principle of pressure. We use the results above to show
that the Gibbs state found in the Ruelle–Perron–Frobenius Theorem is
an equilibrium state.

Finally, in Section 4 we present the proof of Theorem 2.

2. The Ruelle operator: existence of eigenfunctions
and eigenprobabilities

In this section we give the definition of the Ruelle operator and we
show that it is well defined for certain values of the parameters m and β.

By the characterization of symmetric β-shifts that appears in (1) we
get that for any pair of numbers m ∈ N and β ∈ (1,m + 1], it is true
that Xm,β = XFm,β , with Fm,β the collection of forbidden words of the
shift Xm,β (see [18]), given by

Fm,β =
⋃
n∈N

(Fm,β(n) ∪ Fm,β(n)),

with Fm,β(n) = {ω=ω(1) . . . ω(n) : xm,β(1) . . . xm,β(n) ≺ ω(1) . . . ω(n)}
and Fm,β(n)={ω = ω(1) . . . ω(n) : ω(1) . . . ω(n) ≺ xm,β(1) . . . xm,β(n)}.

From the characterization of symmetric β-shifts in (1), we can define
the cylinder associated to the word ω = ω(1) . . . ω(l) as the set

[ω] = {x ∈ Xm,β : x(1) = ω(1), . . . , x(l) = ω(l)}.
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Observe that [ω] 6= ∅ if and only if xm,β(i) � ω(i+k) � xm,β(i) for all
i ∈ {1, . . . , l} and each 1 ≤ k ≤ l − i. Moreover, the topology generated
by cylinders coincides with the product topology on the set Xm,β and
P = {[0], . . . , [m]} is a generating partition of the Borel sigma algebra.

It is easy to check that Xm,β is a completely disconnected set. Indeed,
if U is a non-empty connected open set satisfying U ⊂ Xm,β and U 6=
{x}, we can choose x ∈ U and ε > 0 such that B(x, ε) ⊂ U . Therefore,

for each y ∈ B(x, ε) we have xm,β � σky � xm,β for all k ∈ N ∪ {0}.
In other words, σk(B(x, ε)) ⊂ Xm,β for all k ∈ N ∪ {0}, which is a
contradiction. This is so because for each y0 ∈ B(x, ε)) \ {x}, there

exists k0 ∈ N such that d(σk0(x), σk0(y0)) = 2k0ε > d(xm,β , xm,β).
We will be interested only in the case of symmetric β-shifts Xm,β ,

with m ∈ N and values of β ∈ (G(m),m+ 1] ∩ Um.
Hereafter, we will denote by Hα(Xm,β) the set of Hölder continuous

functions from Xm,β into R with coefficient α, i.e. the set of functions
ψ : Xm,β → R satisfying for someK ≥ 0 and all x, y ∈ Xm,β the following
inequality

(3) |ψ(x)− ψ(y)| ≤ Kd(x, y)α.

Further, for any ψ ∈ Hα(Xm,β) we will use the notation Holψ for the

Hölder constant of ψ, which is defined by Holψ = supx6=y
|ψ(x)−ψ(y)|
d(x,y)α .

Thus, given ψ ∈ Hα(Xm,β), its norm is defined as ‖ψ‖α = ‖ψ‖∞+Holψ.
It is simple to check that (Hα(Xm,β), ‖ · ‖) is a Banach space.

We will denote by C(Xm,β) the set of continuous functions from Xm,β

into R. Taking a potential A ∈ C(Xm,β), we define the Ruelle operator
associated to A as the function that assigns, to each continuous func-
tion ϕ, the function

(4) LA(ϕ)(x) :=
∑

σ(y)=x

eA(y)ϕ(y).

In the following lemma we will provide values for m and β such that
LA(ϕ) is well defined on the set Xm,β .

Lemma 1. Consider m > 2 and β ∈
[
m
2 + 2,m+ 1

]
. Then for any x ∈

Xm,β we have σ−1({x}) 6= ∅. Moreover, in this case #(σ−1({x})) ≥ 2.

Proof: We use the notation ax for the sequence (a, x(1), x(2), . . . ) ∈ AN
m.

From the above, we define for each x ∈ Xm,β the set Am(x) as

Am(x) := {a ∈ Am : ax ∈ Xm,β}
= {a ∈ Am : ax(1) . . . x(n) /∈ Fm,β , ∀n ∈ N}.

Moreover, each a ∈ Am(x) satisfies the following conditions:
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(i) m
β−1 − 1 < a

β < 1;

(ii) m
β−1 − 1 < a

β + 1
β

∑n
k=1 x(k)β−k < 1 for each n ∈ N.

Note that by the above definition, it follows immediately that

#(σ−1({x})) = #(Am(x)).

Besides that, each point x ∈ Xm,β satisfies the following inequalities

(5)
m

β − 1
− 1 <

n∑
k=1

x(k)β−k < 1 ∀n ∈ N.

Now, we want to prove that, under the hypothesis of this lemma, we
have

(6)

(
β

β − 1
(m− β + 1), β − 1

)
∩ N ⊂ Am(x).

Indeed, taking

a ∈
(

β

β − 1
(m− β + 1), β − 1

)
∩ N,

by the right hand side of (5), we obtain that for all n ∈ N

a

β
+

1

β

n∑
k=1

x(k)β−k <
a

β
+

1

β
<
β − 1

β
+

1

β
= 1.

On the other hand, by the left hand side of (5), for all n ∈ N we have

a

β
+

1

β

n∑
k=1

x(k)β−k >
m− β + 1

β − 1
+

m

β(β − 1)
− 1

β

>
m− β + 1

β
+

m

β(β − 1)
− 1

β

=
(m− β + 1)(β − 1) +m− (β − 1)

β(β − 1)

=
mβ − β2 + β −m+ β − 1 +m− β + 1

β(β − 1)

=
m− β + 1

β − 1

=
m

β − 1
− 1.
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Therefore,

(7)
m

β − 1
− 1 <

a

β
+

1

β

n∑
k=1

x(k)β−k < 1 ∀n ∈ N.

Further, as a < β − 1 we get

a

β
<
β − 1

β
< 1,

and using the fact that a > β
β−1 (m− β + 1), it follows that

a

β
>
m− β + 1

β − 1
=

m

β − 1
− 1.

That is,
m

β − 1
− 1 <

a

β
< 1.

By the above and (7), it follows that a ∈ Am(x), which proves (6).
Moreover, taking β = m

2 + 2, it follows that(
β

β − 1
(m− β + 1), β − 1

)
=

(
m2/4 +m/2− 2

m/2 + 1
,
m

2
+ 1

)
,

and for all m > 2 we have

#

((
m2/4 +m/2− 2

m/2 + 1
,
m

2
+ 1

)
∩ N

)
≥ 2.

In addition, we have
(m2/4+m/2−2

m/2+1 , m2 + 1
)
⊆
(

β
β−1 (m− β+ 1), β− 1

)
for all β ∈

[
m
2 + 2,m+ 1

]
.

Therefore, it follows that #(σ−1({x})) = #(Am(x)) ≥ 2 for all β ∈[
m
2 + 2,m+ 1

]
.

We will check that the Ruelle operator is well defined i.e. we will
guarantee that the map σ : Xm,β → Xm,β is a local homeomorphism.

Lemma 2. Consider x ∈ Xm,β such that Am(x) 6= ∅. Then, for any
point x′ ∈ Xm,β which is close enough to x, we get Am(x) = Am(x′).

Proof: For a fixed x ∈ Xm,β and a ∈ Am(x), it is easy to verify that

βm

β − 1
− β − a ≤

∑
n∈N

x(n)β−n ≤ β − a.
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The analysis of the above inequalities can be decomposed in the anal-
ysis of the following cases:

Case 1:
βm

β − 1
− β − a <

∑
n∈N

x(n)β−n < β − a.

Take N ∈ N large enough such that

m
∑
n>N

β−n<min

{
β − a−

∑
n∈N

x(n)β−n,
∑
n∈N

x(n)β−n− βm

β − 1
+ β + a

}
.

It follows that for any x′ ∈ Xm,β with d(x, x′) < 2−N , we have

βm

β − 1
− β − a < −m

∑
n>N

β−n +
∑
n∈N

x(n)β−n ≤
∑
n∈N

x′(n)β−n

and ∑
n∈N

x′(n)β−n ≤
∑
n∈N

x(n)β−n +m
∑
n>N

β−n < β − a.

The reasoning above implies ax′ ∈Xm,β , which is equivalent to a ∈
Am(x′).

Case 2: ∑
n∈N

x(n)β−n = β − a.

In this case we choose N ∈ N large enough such that

m
∑
n>N

β−n <
∑
n∈N

x(n)β−n − βm

β − 1
+ β + a.

Therefore, for any x′ ∈ Xm,β satisfying x′ � x and d(x, x′) < 2−N we
have

βm

β − 1
− β − a < −m

∑
n>N

β−n +
∑
n∈N

x(n)β−n ≤
∑
n∈N

x′(n)β−n

and ∑
n∈N

x′(n)β−n ≤
∑
n∈N

x(n)β−n = β − a.

By the above, ax′ ∈ Xm,β . Then we can conclude that a ∈ Am(x′).

Case 3:
βm

β − 1
− β − a =

∑
n∈N

x(n)β−n.
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In this case, we choose N ∈ N large enough such that

m
∑
n>N

β−n < β − a−
∑
n∈N

x(n)β−n.

Thus, for any x′ ∈ Xm,β satisfying x � x′ and d(x, x′) < 2−N we get

βm

β − 1
− β − a =

∑
n∈N

x(n)β−n ≤
∑
n∈N

x′(n)β−n

and ∑
n∈N

x′(n)β−n ≤
∑
n∈N

x(n)β−n +m
∑
n>N

β−n < β − a.

By the above, ax′ ∈ Xm,β . That is, a ∈ Am(x′).
Note that in all the cases studied above Am(x) = Am(x′) when x

and x′ are close enough. The foregoing implies that the map σ : Xm,β →
Xm,β is a local homeomorphism and thus LA(ϕ) is well defined when
A,ϕ ∈ C(Xm,β).

There are parameters m and β (for instance, when m > 2 and β ∈[
m
2 + 2,m + 1

]
) such that the shift is transitive and also satisfies the

conditions of Lemma 1. We assume these conditions in the proof of the
Ruelle Theorem.

The main conclusion is: if A,ϕ ∈ Hα(Xm,β) and x, x′ ∈ Xm,β are
close enough, we get that Am(x) = Am(x′). It follows that

|LA(ϕ)(x)− LA(ϕ)(x′)| ≤
∑

a∈Am(x)

|eA(ax)ϕ(ax)− eA(ax′)ϕ(ax′)|

≤ (m+ 1)

2α
(e‖A‖∞ Holϕ +‖ϕ‖∞HoleA) d(x, x′)α.

By the above, LA(ϕ) is locally Hölder continuous. Thus, by compact-
ness of Xm,β , it follows that LA(ϕ) ∈ Hα(Xm,β).

It follows that for each n ∈ N, the n-th iterate of the Ruelle operator
defined by

LnA(ϕ)(x) =
∑

σn(y)=x

eSnA(y)ϕ(y),

where SnA(y) =
∑n−1
j=0 A(σj(y)), satisfies the same properties mentioned

above. This is an immediate consequence of the fact that LnA(ϕ) =

LA(Ln−1A (ϕ)).
Given two Banach spaces X and Y we denote by l(X,Y ) the Banach

space of linear continuous operators from X into Y . We will use the
notation l(X) for the Banach space of linear continuous operators fromX
into itself.
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Note that ‖LA(ϕ)‖α<K<∞ for any ϕ ∈ Hα(Xm,β) with ‖ϕ‖α ≤ 1.
Therefore, ‖LA‖ <∞. In other words, LA ∈ l(Hα(Xm,β)).

Using the properties of the dual space of a Banach space, we can
define the dual of the Ruelle operator L∗A on the set of Radon measures
as the operator that satisfies for any ϕ ∈ C(Xm,β) the following equation∫

Xm,β

ϕd(L∗A(ν)) =

∫
Xm,β

LA(ϕ) dν.

From the above equation, for each n ∈ N we can express the n-th
iterate of the dual Ruelle operator by∫

Xm,β

ϕd(L∗,nA (ν)) =

∫
Xm,β

LnA(ϕ) dν.

From now on, we will denote by R(Xm,β) the set of Radon measures
on the symmetric β-shift Xm,β and we will use the notation M(Xm,β)
for the set of Radon probability measures on Xm,β . Moreover, we will
denote by Mσ(Xm,β) the set of σ-invariant Radon probability mea-
sures defined on Xm,β . Observe that by Banach–Alaoglu’s Theorem both
sets M(Xm,β) and Mσ(Xm,β) are compact subsets of R(Xm,β).

Theorem 1 claims that if A : Xm,β → R is a Hölder continuous poten-
tial, then there exists λA > 0 and

(i) A unique Radon probability measure ρA defined on the Borelian
sets of Xm,β such that L∗A(ρA) = λAρA.

(ii) A function ψA : Xm,β → R which is a strictly positive Hölder con-
tinuous function and such that LA(ψA) = λAψA. Assuming that∫
ψA dρa = 1, the normalized eigenfunction ψA is uniquely deter-

mined (because the probability ρA was uniquely determined).
(iii) The probability measure µA = ψA dρA, where we take the uniquely

determined function ψA from item (ii), is invariant for the shift and
also uniquely determined.

Hereafter, we will assume that ρA, ψA, and µA denote the uniquely
determined elements described in (i), (ii), and (iii) (and in this order of
determination).

In the proof of Theorem 1 we use a similar procedure as the one that
appears in [23] for the case of compact subshifts. One can show that
the same reasoning can be applied in our setting (we have to check all
details for a specific proof that works in our setting). For the sake of
completeness we will present a sketch of the proof in Appendix A.
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3. The variational principle of pressure

In this section we are going to define the entropy associated to a
σ-invariant probability measure. Furthermore, we are going to show
that this definition satisfies a variational principle. Indeed, given µ ∈
Mσ(Xm,β) we define the entropy of µ (see [19]) as

(8) h(µ) = inf
u∈C+(Xm,β)

{∫
Xm,β

log

(
L0(u)

u

)
dµ

}
.

We assume that the parameters m and β satisfy the conditions re-
quired in the last section. That is, m > 2 and β ∈ [m/2 + 2,m+ 1].

Given the potential A ∈ Hα(Xm,β), the normalization of A is defined
as

(9) A := A+ log(ψA)− log(ψA ◦ σ)− log(λA).

The above definition will be used in the proof of the variational prin-
ciple that appears in Proposition 1 and also in the proof of Theorem 1
that appears in Appendix A.

If µ is a fixed point of the Ruelle operator associated to some Hölder
continuous potential (see [19]), the following lemma shows us that en-
tropy (given by the above definition) can be expressed in an integral
form.

Lemma 3. Consider A ∈ Hα(Xm,β) and µA the unique fixed point of
the dual Ruelle operator L∗

A
. Then

h(µA) = −
∫
Xm,β

AdµA.

Proof: Set u0 = eA, so u0 ∈ C+(Xmβ). Since L∗A(µA) = µA, it follows
that

−
∫
Xm,β

AdµA =

∫
Xm,β

log

(
LA(1)

u0

)
dµA =

∫
Xm,β

log

(
L0(u0)

u0

)
dµA.

On the other hand, for any ũ ∈ C+(Xmβ), we have that u = ũe−A ∈
C+(Xmβ) and L0(ũ) = LA(u). Therefore,

log

(
L0(ũ)

ũ

)
= log

(
LA(u)

u

)
−A.

From the above, integrating with respect to µA, we get∫
Xm,β

log

(
L0(ũ)

ũ

)
dµA =

∫
Xm,β

log

(
LA(u)

u

)
dµA −

∫
Xm,β

AdµA.
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Since A is a normalized potential, from Jensen’s inequality it follows
that 0 ≥

∫
Xm,β

log(LA(u)) dµA −
∫
Xm,β

log(u) dµA. Therefore,∫
Xm,β

log

(
L0(ũ)

ũ

)
dµA ≥ −

∫
Xm,β

AdµA.

In other words, we have

−
∫
Xm,β

AdµA= inf
u∈C+(Xm,β)

{∫
Xm,β

log

(
L0(u)

u

)
dµA

}
=h(µA).

The next proposition shows that the Gibbs state found in Theorem 1
satisfies the variational principle. Note that the above implies that any
Gibbs state µA associated to some Hölder continuous potential A (de-
fined on the symmetric β-shift) is in fact an equilibrium state.

Proposition 1. Given A ∈ Hα(X), the topological pressure P (A) of the
potential A is defined by

P (A) = sup
µ∈Mσ(Xm,β)

{
h(µ) +

∫
Xm,β

Adµ

}
.

Then P (A) = log(λA), where λA is the eigenvalue of the Ruelle oper-
ator.

The probability that attains the maximal value is µA, where A is asso-
ciated to A via the expression (9). It is also true that µA = µA = ψA dρA
(see (iii) at the end of Section 2).

Proof: By Lemma 3 we have

P (A) = log(λA) = h(µA) +

∫
Xm,β

AdµA.

Moreover, for any µ ∈Mσ(Xm,β) we have

h(µ) = inf
u∈C+(Xm,β)

{∫
Xm,β

log

(
L0(u)

u

)
dµ

}

≤
∫
Xm,β

log

(
L0(eA)

eA

)
dµ

= −
∫
Xm,β

Adµ

= −
∫
Xm,β

Adµ+ log(λA).
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4. Zero temperature limits for entropies

In Section 3 we presented a notion of entropy for σ-invariant proba-
bility measures defined on symmetric β-shifts. Besides that, we showed
that a variational principle is satisfied and the supremum of the varia-
tional equation of pressure is attained at the Gibbs state associated to the
potential A, which assures that any Gibbs state is an equilibrium state
as well. In this section we are going to present the proof of Theorem 2
using the variational principle considered in Proposition 1. This theorem
guarantees that the function assigning to each t > 0 the value h(µtA) is
continuous at infinity, which is known as zero temperature limit for the
entropies of the equilibrium states.

General results on maximizing probabilities can be found in [9], [13],
and [5].

Proof of Theorem 2: Note that any accumulation point of the family
(µtA)t>0 in the weak∗ topology is an A-maximizing probability measure.
Indeed, for any µ ∈Mσ(Xm,β) and each t > 0 we have

(10)
1

t
h(µtA) +

∫
Xm,β

AdµtA ≥
1

t
h(µ) +

∫
Xm,β

Adµ.

Let µ∞ be an accumulation point at ∞ of the family (µtA)t>0. Then
there exists an increasing sequence of positive real numbers (tn)n∈N such
that limn∈N tn = +∞ and limn∈N µtnA = µ∞ in the weak∗ topology.
Then, taking the limit when n → ∞ in (10) and using the fact that
h(µtnA) ≤ h(Xm,β) <∞ for all n ∈ N, we get that∫

Xm,β

Adµ∞ = lim
n∈N

(
1

tn
h(µtnA) +

∫
Xm,β

AdµtnA

)

≥ lim
n∈N

(
1

tn
h(µ) +

∫
Xm,β

Adµ

)

=

∫
Xm,β

Adµ.

The above implies that m(A) =
∫
Xm,β

Adµ∞. On the other hand,

since for each cylinder [i] with i ∈ Am we have ∂[i] = ∅, then the
map µ 7→ h(µ) is upper semicontinuous. Thus, by compactness of Xm,β

we obtain thatMmax(A) is a compact set as well. Therefore, there exists
µ̂ ∈Mσ(Xm,β) such that h(µ) ≤ h(µ̂) for all µ ∈Mσ(Xm,β).

Note that (10) implies

P (tA) = tm(A) + h(Xm,β) + o(t).
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That is, the topological pressure has an asymptote that depends
of m(A). This implies

h(µ̂) ≤ h(Xm,β) + o(t).

On the other hand, by Proposition 1 we have

h(Xm,β) + o(t) = P (tA)− tm(A) ≤ h(µtA).

Therefore,

h(µ̂) ≤ lim sup
t→∞

(h(Xm,β) + o(t)) ≤ lim sup
t→∞

h(µtA) ≤ h(µ∞) ≤ h(µ̂).

Using again Proposition 1, we obtain

h(µtA) ≥ P (tA)− tm(A) ≥ h(µ̂).

The foregoing implies that, for any n ∈ N, the following inequality
holds:

inf
t≥tn

h(µtnA) ≥ h(µ̂).

Then, taking the limit when n→∞, we get

lim inf
t→∞

h(µtA) ≥ h(µ̂) = lim sup
t→∞

h(µtA).

Appendix A. The proof of the
Ruelle’s Perron–Frobenius Theorem

Proof of Theorem 1: In order to prove Theorem 1 we will analyze first
some properties of the following collection of functions

Γ := {ψ ∈ C(Xm,β) : 0 ≤ ψ ≤ 1, log(ψ) ∈ Hα(Xm,β)}.

We will show first the existence of the eigenfunction. We assume that
the parameters m and β are such that the action of the shift is transitive
and the Ruelle operator is well defined. The proof is quite similar to the
one in [23]. We just outline some of the steps.

Note that Γ above is convex, because ψ(x) ≤ ψ(y)eHolA d(x,y)
α

for
all ψ ∈ Γ. Moreover, the above inequality implies that

|ψ(x)− ψ(y)| ≤ ‖ψ‖∞(eHolA d(x,y)
α

− 1)

≤ ‖ψ‖∞HolA d(x, y)αeHolA d(x,y)
α

≤ ‖ψ‖∞HolA e
HolAd(x, y)α.

Therefore, Γ is contained in Hα(Xm,β) and the same inequality im-
plies that Γ is an equicontinuous and uniformly bounded collection of
functions, which implies that Γ is uniformly compact by Arzela–Ascoli’s
Theorem.
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Now, for each k ∈ N we define the operator Lk from Γ into Γ by the
following expression

Lk(ψ) =
LA(ψ + 1/k)

‖LA(ψ + 1/k)‖∞
.

Since all the constant functions taking values in [0, 1] belong to the
set Γ, by linearity of the Ruelle operator we get that Lk(ψ) ∈ Γ for any
ψ ∈ Γ. Besides that, ‖Lk(ψ)‖∞ = 1 for all k ∈ N. Thus, using convexity
and uniformly compactness of Γ, the existence of a fixed point ψk for Lk
is guaranteed by Schauder–Tychonoff’s Theorem. Thus,

LA(ψk + 1/k) = ψk‖LA(ψk + 1/k)‖∞.

Using again that Γ is uniformly compact, we obtain that the se-
quence (ψk)k∈N has an accumulation point ψA in the uniform norm.
Then, by continuity of LA we have

LA(ψA) = ψA‖LA(ψA)‖∞.

Hereafter, the last term in the right hand side of the equation will be
denoted by λA. Observe that λk = ‖LA(ψk+1/k)‖∞ satisfies limk∈N λk =
λA. Moreover,

λkψk =
∑

σ(y)=x

eA(y)(ψk(y) + 1/k) ≥ ( inf
k∈N

(ψk) + 1/k)e−‖A‖∞ .

By the above, we obtain λk infk∈N(ψk) ≥ (infk∈N(ψk) + 1/k)e−‖A‖∞ .
Therefore, we can conclude that λk > e−‖A‖∞ for all k ∈ N, which
implies that λA > 0.

On the other hand, if there exists some point x ∈ Xm,β such that
ψA(x) = 0, then we have

(11) 0 = λnAψA(x) = LnA(ψA)(x) =
∑

σn(y)=x

eSnA(y)ψA(y).

In other words, ψA(y) = 0 for all y ∈ σ−n({x}). Since the quasi-greedy
β-expansion of 1 satisfies (2), it follows that Xm,β is topologically tran-
sitive, which implies that the set {y : y ∈ σ−n({x})} is dense in Xm,β .
Then, by continuity of ψA, we can conclude that ψA ≡ 0, which is a
contradiction taking into account that λA > 0.

The proofs that the eigenvalue is simple and the other properties are
similar to the ones in [23].
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