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UNIQUENESS PROPERTY FOR 2-DIMENSIONAL
MINIMAL CONES IN R3

XIANGYU LIANG

Abstract: In this article we treat two closely related problems: 1) the upper semi-
continuity property for Almgren minimal sets in regions with regular boundary; and
2) the uniqueness property for all the 2-dimensional minimal cones in R3.

Given an open set 2 C R™, a closed set E C € is said to be Almgren minimal
of dimension d in € if it minimizes the d-Hausdorff measure among all its Lipschitz
deformations in 2. We say that a d-dimensional minimal set FE in an open set §2
admits upper semi-continuity if, whenever {fn(E)}» is a sequence of deformations
of E in Q that converges to a set I, then we have HY(F) > limsup,, H(fn(E)).
This guarantees in particular that £ minimizes the d-Hausdorff measure, not only
among all its deformations, but also among limits of its deformations.

As proved in [19], when several 2-dimensional minimal cones are all translational
and sliding stable, and admit the uniqueness property, then their almost orthogonal
union stays minimal. As a consequence, the uniqueness property obtained in the
present paper, together with the translational and sliding stability properties proved
in [18] and [20] permit us to use all known 2-dimensional minimal cones in R™ to
generate new families of minimal cones by taking their almost orthogonal unions.

The upper semi-continuity property is also helpful in various circumstances: when
we have to carry on arguments using Hausdorff limits and some properties do not
pass to the limit, the upper semi-continuity can serve as a link. As an example, it
plays a very important role throughout [19].
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1. Introduction

The notion of minimal sets in the sense of Almgren [2] and Reifen-
berg [25] (see David [6] and Liang [15] for other variants) is a way to
try to solve Plateau’s problem in the setting of sets. Plateau’s prob-
lem, as one of the main interests in geometric measure theory, aims at
understanding the existence, regularity, and local structure of physical
objects that minimize the area while spanning a given boundary, such
as soap films. The result of this article is closely linked to two important
aspects of this problem: the local behavior and the local uniqueness of
solutions. Here, the local uniqueness means that in a small ball with
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given Dirichlet value on the boundary of the ball, the solution to the
problem is unique.

It is known (cf. Almgren [2], David and Semmes [8]) that a d-di-
mensional minimal set E admits a unique tangent plane at almost every
point z. In this case the local structure around such a point is very clear:
the set E is locally a minimal surface (and hence a real analytic surface)
around the point, due to the famous regularity result of Allard [1].

So we are mostly interested in what happens around points that admit
no tangent plane, namely, the singular points.

In [6] David proved that the blow-up limits (“tangent objects”) of
d-dimensional minimal sets at a point are d-dimensional minimal cones
(minimal sets that are cones in the means time). Blow-up limits of a
set at a point reflect the asymptotic behavior of the set at infinitesimal
scales around this point. As a consequence, a first step to study the local
structures of minimal sets is to classify all possible types of singularities
— that is to say, minimal cones.

1.1. Local behavior and classification of singularities. The plan
for the list of d-dimensional minimal cones in R™ is very far from clear.
Even for d = 2, we know very little, except for the case in R?, where
J. Taylor ([26]) gave a complete classification in 1976, and the list was
in fact already known a century ago in other circumstances (see [12]
and [11]). They are, modulo isomorphism: a plane, a Y set (the union
of three half planes that meet along a straight line where they make
angles of 120°), and a T set (the cone over the 1-skeleton of a regular
tetrahedron centered at the origin). See Figure 1.

A Y set A T set

FIGURE 1

Based on the above, a natural way to find new types of singularities
is by taking unions and products of known minimal cones.

Concerning unions, the minimality of the union of two orthogonal
minimal sets of dimension d can be obtained easily from a well known
geometric lemma (cf. for example Lemma 5.2 of [22]). Thus one suspects
that if the angle between two minimal sets is not far from orthogonal,
the union of them might also be minimal.
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In the case of planes, the author proved in [14] and [17] that the
almost orthogonal union of several d-dimensional planes is Almgren and
topologically minimal. When the number of planes is two, this is part of
Morgan’s conjecture in [23] on the angle condition under which a union
of two planes is minimal.

As for minimal cones other than unions of planes, since they are all
with non isolated singularities (after the structure Theorem 2.25), the
situation is much more complicated, as briefly stated in the introduction
of [19]. Up to now we are able to treat a big part of 2-dimensional cases:
in [19] we prove that the almost orthogonal union of several 2-dimen-
sional minimal cones (in any ambient dimension) is minimal, provided
that all these minimal cones satisfy the following properties: the trans-
lational and sliding stabilities and the local uniqueness property. (The
theorem is stated separately in the Almgren case and topological case
in [19].) Moreover, this union still satisfies the translational and sliding
stabilities, and the local uniqueness property. This enables us to con-
tinue obtaining infinitely many new families of minimal cones by taking
a finite number of iterations of almost orthogonal unions.

Here, the uniqueness property of a minimal cone is that in any ball B
containing the origin, it is the only minimal set with the given Dirichlet
value on OB. See Section 2 for the precise definitions. The translational
and sliding stabilities of a minimal cone will not be discussed in this
paper; see [19, 18, 20] for the precise definitions.

The above result of [19] makes good sense, because due to the fol-
lowing group of papers (of which the present paper is a part), almost all
known 2-dimensional minimal cones satisfy the above mentioned proper-
ties (i.e., the translational and sliding stabilities, and the local uniqueness

property):

e In the present paper we prove the uniqueness property in R?: all
2-dimensional minimal cones in R? are topological and Almgren
unique (Theorems 5.1, 5.2, and 5.6).

e In [18] we treat the stability properties: all 2-dimensional mini-
mal cones in R™ (for any n > 3) are translational stable, and all
2-dimensional minimal cones in R? satisfy the sliding stability.

e For 2-dimensional minimal cones in R™ for n > 3, by Theorem 10.1
and Remark 10.5 of [19], the almost orthogonal unions of several
planes in R™ are also topological sliding and Almgren sliding stable.

e Besides unions of planes, the only known 2-dimensional minimal
cone not contained in R3 is the set Y x Y, the product of two 1-di-
mensional Y sets. The proof of its sliding stability and uniqueness
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property are much more involved, so we will treat it in a separate
paper [20].

After the results of the above papers, together with [19], we are able to
conclude that if we take a finite number of known 2-dimensional minimal
cones, their almost orthogonal union is minimal.

As a small remark, compared to the unions, the case of product is
much more mysterious. It is not known in general whether the product
of two non trivial minimal cones stays minimal. We even do not know
whether the product of a minimal cone with a line stays minimal. More-
over, if we consider the product of two concrete minimal cones (other
than planes) one by one, up to now the only known result is the mini-
mality of the product of two 1-dimensional Y sets (cf. [16]). Among all
singular minimal cones, 1-dimensional Y sets are of simplest structure,
but still, the proof of the minimality of their product is surprisingly hard.

1.2. About uniqueness of solutions. As mentioned before, we are
going to discuss the uniqueness property for 2-dimensional minimal cones
in R3. Roughly speaking, the local uniqueness property for a minimal
set is that in a small ball B, it is the unique minimal set with the given
Dirichlet value on 0B. (For cones, we can forget about the word “local”.)

Another natural question about Plateau’s problem is the uniqueness
of solutions.

It is well known that solutions for Plateau’s problem are in general not
unique, even in codimension 1. The simplest example is the following.
Given the union of two parallel circles in R3, it can be the boundary
of at least three types of minimal sets: the union of two disks bounded
by the two circles respectively, the part of catenoid, and the third type
— a “catenoid” with a central disk. See Figure 2. They admit different
topologies and they all exist in soap film experiments.

D G

A catenoid A catenoid with a central disk
FIGURE 2

On the other hand, we know that around a regular point = of a min-
imal set, the solution is locally unique, because the soap film is locally
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a minimal graph on a convex part of the tangent plane at x and the
uniqueness comes from calibrations for minimal graphs.

The advantage of considering local uniqueness is that we do not have
to worry about topology. One can then ask whether this local uniqueness
also holds for singular points. Since blow-up limits at singular points are
minimal cones, a first step is to study whether each minimal cone is the
unique solution, at least under a given topology.

Due to the lack of information on the structure for minimal cones
of dimension greater than or equal to 3, we are still far from a general
conclusion. However, from the very little information we have, we can
still give a positive answer for almost all known 2-dimensional minimal
cones. See the account in the last subsection.

1.3. Upper semi-continuity and the organization of the paper.
Besides the main results about uniqueness, an indispensable intermedi-
ate step in the discussion for the uniqueness property is the upper semi-
continuity property for minimal sets with reasonable boundary regularity
(Theorem 4.13). It consists of saying that in many cases, when its bound-
ary is not too wild, a minimal set minimizes also the measure in the class
of limits of deformations, which is much larger than the class of defor-
mations. This property is helpful in various circumstances. For example,
when we have to carry on arguments using Hausdorff limits and some
properties do not pass to the limit, the upper semi-continuity can serve
as a link. As an example, it plays a very important role throughout [19].

The organization of the rest of the article is the following.

In Section 2 we introduce basic definitions and preliminaries for min-
imal sets, and properties concerning 2-dimensional minimal cones.

The definitions of uniqueness and some related useful properties are
given in Section 3.

In Section 4 we prove the upper semi-continuity property for minimal
sets with relatively regular boundaries (Theorems 4.1, 4.11, and 4.13).
These theorems guarantee in particular that the definition of uniqueness
makes good sense for minimal cones and many other minimal sets. It is
also useful in many other circumstances; see [19] for example.

We prove topological and Almgren uniqueness for each 2-dimensional
minimal cone in R? in Section 5.

Acknowledgements. This work is supported by China’s Recruitement
Program of Global Experts, School of Mathematics and Systems Science,
Beihang University, and National Natural Science Foundation of China
(Grant No. 11871090).
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2. Definitions and preliminaries

2.1. Some useful notation. [a,b] is the line segment with endpoints a
and b.
% is the vector b — a.

R, denotes the half line starting from the point a and passing
through b.

B(x,r) is the open ball with radius r and centered on z.

B(z,7) is the closed ball with radius r and center z.

For any (affine) subspace @ of R™ and = € Q, r > 0, Bg(x,r) stands
for B(z,r) N Q, the open ball in Q.

For any subset E of R™, E° denotes the interior of E, E denotes the
closure of E, and E¢ = R"\E. And for any m < n and any m-dimen-
sional dyadic cube @ in R™, Q° denotes its m-dimensional interior.

For any subset F of R, xg denotes the characteristic function of E.

For any subset E of R” and any r > 0, we call B(E,r) := {z € R" :
dist(z, E') < r} the r neighborhood of E.

H? is the Hausdorff measure of dimension d.

dy(E,F) = max{sup{d(y, F) : y € E}, sup{d(y, F) : y € F}} is the
Hausdorff distance between two sets £ and F.

For any subset K C R", the local Hausdorff distance in K dx between
two sets E, F is defined as dg(F,F) = max{sup{d(y,F) : y € EN
K}, sup{d(y,E):ye FNK}}.

For any open subset U C R™, let {E,, },,, F' be closed sets in U, we say
that F is the Hausdorff limit of {E, },, if for any compact subset K C U,
lim, d (E,, F) = 0.

dg.r: the relative distance with respect to the ball B(x,r) is defined
by

1
dyr(E,F) = —max{sup{d(y, F) 1y € ENB(z,r)},
r
sup{d(y, E) :y € FN B(xz,r)}}.
For any polyhedral complex S in R™, let |S| denote the support of S,

that is, |S| = J,es 0. And for any 0 < m < n, let S,,, denote the set of
all m-faces in S. Then |S,,| is the m-skeleton of S.

Definition 2.1 (Hausdorff limit in an open set). Let U be an open
subset in R™. Let {Ex}, E be relatively closed subsets of U. We say
that E is the Hausdorff limit of Fj in U if for all compact sets K C U,
di (Ey, E) — 0. We also say that E}, converges to E under the Hausdorff
limit, and denote this by

E, Y E
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Definition 2.2 (Approximate tangent plane, cf. [21, Definition 15.17]).
Let A C R™ a € R", and V an m-dimensional linear subspace of R".
We say that V' is an m-dimensional approximate tangent plane for A
at a if *™(A,a) > 0, and for all 0 < s < 1,

lim r =" H™ (AN B(a,r)\X (a,V,s)) = 0.

r—0
Here 0*™ = limsup,_,, r~"H™ (AN B(a,r)) is the m-upper density of A
at a, and X(a,V,s) ={y e R": d(z — a,V) < s|z — al}.

If F is a d-rectifiable set, denote by T, FE the approximate tangent
plane (if it exists and is unique) of F at z.

Remark 2.3. We say that V' is a true tangent plane of A at a if it is
tangent to A at a in the classical sense, that is, for any 0 < s < 1, there
exists r > 0, so that

AN B(a,r)\X(a,V,s) = 0.

2.2. Basic definitions and notations about minimal sets. In the
next definitions, fix integers 0 < d < n. We first give a general definition
for minimal sets. Briefly, a minimal set is a closed set which minimizes
the Hausdorff measure among a certain class of competitors. Different
choices of classes of competitors give different kinds of minimal sets.

Definition 2.4 (Minimal sets). Let 0 < d < n be integers. Let U C R"
be an open set. A relative closed set E C U is said to be minimal
of dimension d in U with respect to the competitor class .# (which
contains E) if

(2.1) HY(E N B) < oo for every compact ball B C U
and
(2.2) HYE\F) < HYF\E)

for any competitor F' € .F.

Definition 2.5 (Almgren competitor (Al competitor for short)). Let E
be relatively closed in an open subset U of R™. An Almgren competitor
for F is a relatively closed set F' C U that can be written as F' = ¢;(E),
where ¢;: U — U, t € [0,1], is a family of continuous mappings such
that

(2.3) wo(z) =z for x € U,
(2.4)  the mapping (t,x) — @:(x) of [0,1] x U to U is continuous;
(2.5) 1 is Lipschitz,
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and if we set Wy = {a € U; ¢i(x) # 2z} and W= Utepo.1)[We U o (W),
then

(2.6) W is relatively compact in U.

Such a ¢, is called a deformation in U and F is also called a defor-
mation of £ in U.

For future convenience, we also have the following more general defi-
nition:

Definition 2.6. Let U C R™ be an open set and let £ C R™ be a closed
set (not necessarily contained in U). We say that E is minimal in U if
ENU is minimal in U. A closed set F' C R" is called a deformation of
inUif F=(E\U)Ug1(ENU), where ¢ is a deformation in U.

Now let E C R™ be closed and denote by F(E,U) the class of all
deformations of E in U as in Definition 2.6. We need to use Haus-
dorff limits of sequences in F(E,U). However, if we regard elements of
F(E,U) as sets in R™ and take the Hausdorff limit, the limit may have
positive measure on QU\E. In other words, sets in F(FE,U) may con-
verge to the boundary. We do not like this. Hence we let F(FE,U) be the
class of Hausdorff limits in R™ of sequences in F(E,U) that essentially
do not converge to the boundary. That is, we set

(2.7) F(E,U) ={F closed : I{Ex}r C F(E,U)
such that Ej, — F and H4(F NoU\E) = 0}.

It is easy to see that both classes F(E,U) and F(E,U) are stable
with respect to Lipschitz deformations in U.

Definition 2.7 (Almgren minimal sets). Let 0 < d < n be integers, and
let U be an open set of R”. An Almgren minimal set F in U is a minimal
set defined in Definition 2.4 while taking the competitor class % to be
the class of all Almgren competitors for E.

For our future arguments, we also have the following definition:

Definition 2.8. Let 0 < d < n be integers, let U be an open set of R™.
A closed set E C R"™ is said to be Almgren minimal in U if ENU is
Almgren minimal in U.

Next, let us define another type of competitors and minimizers.
Let k < n. Two subsets A and B of R™ are said to be k-essentially
disjoint if H¥(A N B) = 0.
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Let U be an open subset of R™. Since it is a smooth n-manifold, it
admits smooth triangulations (cf. [27, Chapter IV, §14B, Theorem 12]).
As a result, the singular homology and the simplicial homology on U are
isomorphic.

For any smooth triangulation K of U and any k-simplicial G-chain "
of IC, we call I a k-simplicial G-chain in U for short.

For any Euclidean k-sphere S C U, a k-simplicial G-chain T' is said
to be induced by S if I' = i, 0,,, where o, are k-simplices in a
triangulation I of U and S is the k-essentially disjoint union of o,
1<i<m.

Now for any Euclidean k-sphere S C U, the element represented by S
in the simplicial homology group H, kA(U ;) is the element represented
by any k-simplicial G-chain I" induced by S.

Note that this definition is independent of the choice of smooth trian-
gulation K, since the singular homology on U and the simplicial homol-
ogy on K are isomorphic and the singular homology on U is independent
of the smooth triangulation.

Definition 2.9 (Topological competitors). Let G be an abelian group.
Let E be a relatively closed set in an open set U of R™. We say that
a relatively closed set F' is a G-topological competitor of dimension d
(d < n) of E in U if there exists an open convex set B such that B C U
and
(i) F\B = E\B.
(ii) For all Euclidean (n—d—1)-sphere S C U\(BUE), if S represents a
nonzero element in the simplicial homology group H* , | (U\E;G),
then it is also nonzero in H2 , | (U\F;G).
We also say that F' is a G-topological competitor of dimension d of F
with respect to B.
When G = Z, we usually omit Z, and say directly that F' is topological
competitor of dimension d.

Remark 2.10. Since the singular homology and the simplicial homology
are isomorphic both on U\E and on U\F, in the above Definition 2.9,
it is equivalent to replace condition (ii) by
(ii") For each Euclidean (n—d—1)-sphere S CU\(BUE), if S represents a
nonzero element in the singular homology group H,,—q4—1(U\E; G),
then it is also nonzero in H,_q_1(U\F;G).

Definition 2.4 gives the definition of G-topological minimizers of di-
mension d in an open set U when we take the competitor class to be the
class of G-topological competitors of dimension d of E.

The simplest example of a G-topological minimal set is a d-dimen-
sional plane in R™.
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Proposition 2.11 (cf. [15, Proposition 3.7 and Corollary 3.17]).

(i) Let E C R™ be closed. Then for any d < n and any open convex
set B, B’ such that B' C B°, every Almgren competitor of E in B’
is a G-topological competitor of E with respect to B of dimension d.
(ii) All G-topological minimal sets are Almgren minimal in R™.

Remark 2.12. (1) One can see directly from the definition that we have
the following transitivity: given a relatively closed set F in an
open set U C R", a deformation of a deformation of £ in U is a
deformation of E in U, and for any bounded convex open set B
so that B C U, a G-topological competitor with respect to B of a
G-topological competitor of ¥ with respect to B is a G-topological
competitor of ¥ with respect to B of the same dimension.

(2) The class of G-topological competitors of dimension d for a set E
is closed under taking supersets. More precisely, given a relatively
closed set E in an open set U C R", if F' is a G-topological com-
petitor of E of dimension d in U with respect to B, and F C F’
where F is relatively closed, then for any bounded convex open
set B’ so that B C B’ C U and such that F'\B' = E\B’, F is
a G-topological competitor of E of dimension d in U with respect
to B’. In fact, take any (n — d — 1)-sphere S C U\(B' U E), it is
contained in S C U\(B'UF), and since F is a G-topological com-
petitor of E of dimension d with respect to B, if S represents a
nonzero element in H,_4_1(U\E, G), then it represents a nonzero
element in H,,_4_1(U\F,G), and thus it represents a nonzero ele-
ment in H,_4_1(U\F’,G) because F C F’.

(3) The notion of (Almgren or G-topological) minimal sets does not
depend much on the ambient dimension. One can easily check that
E C U is d-dimensional Almgren minimal in U C R if and only if
E is Almgren minimal in U x R™ C R™"" for any integer m. The
case of G-topological minimality is proved in [15, Proposition 3.18].

Proposition 2.13 (Topological competitors pass to the limit). Let E
be a closed set in an open set U of R™ and let B’ be a open convex set
such that B' C U. If {F,} is a sequence of d-dimensional G-topological
competitors of E with respect to B’, and F,, converge to F' in Hausdorff
distance, then for any open conver set B such that B' ¢ B ¢ B C U,
F is a G-topological competitor of dimension d of E with respect to B.

Proof: Let us verify the two conditions in Definition 2.9. B
Since F; converge to F' and F;\B' = E\B', we have F\B' = E\B'.
Since B’ C B, we know that (i) holds.
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Now take any (n — d — 1)-sphere S C U\(B U E) that represents
a nonzero element in H2 , ,(U\E;G). Since B’ C B, we know that
S C U\(B'UE). We know that each Fj is a G-topological competitor of
dimension d for F with respect to B, hence S also represents a nonzero
element in H2 , | (U\F};G).

For (ii), suppose it does not hold. That is, S represents a zero element
in H2 , (U\F;G). As aresult, there exists a simplicial n—d-G-chain o
in U\F, and a simplicial n — d — 1-G-chain S induced by S such that
do = S. Then the support |o| of o is compact in U\F. Since U\F
is open, there exists e > 0 such that the e-neighborhood B(|o|,€) C
U\F. As a result, since F; — F, we know that for j large enough,
F;nlo| = 0. Hence o is also a simplicial G-chain in U\ F); for j large. Then
9o = S implies that S represents a zero element in H,_q_1(U\F};G) for
j large. This contradicts the fact that S represents a nonzero element in
H,_q-1(U\F};G) for all j.

Hence (ii) holds. O

Definition 2.14 (Reduced set). Let U C R™ be an open set. For every
closed subset F of U, denote by

(2.8) E*={zc E:HYFENB(z,r)) >0 for all » > 0}

the closed support (in U) of the restriction of #? to E. We say that E is
reduced if £ = E*.

It is easy to see that
(2.9) HUE\E*) = 0.

In fact, we can cover E\ E* by countably many balls B; such that HAEN
B;) =0.

Remark 2.15. Tt is not hard to see that if E is Almgren minimal (resp. G-
topologically minimal), then E* is also Almgren minimal (resp. G-topo-
logically minimal). As a result, it is enough to study reduced minimal
sets. An advantage of reduced minimal sets is that they are locally
Ahlfors regular (cf. Proposition 4.1 in [8]). Hence any approximate tan-
gent plane of them is a true tangent plane (as in Remark 2.3). Since
minimal sets are rectifiable (cf. [8, Theorem 2.11] for example), reduced
minimal sets admit true tangent d-planes almost everywhere.

If we regard two sets to be equivalent if they are equal modulo H%null
sets, then a reduced set is always considered to be a good (in the sense
of regularity) representative of its equivalence class.

In the rest of the article we only consider reduced sets.
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Remark 2.16. (1) One can see directly from the definition that we have
the following transitivity: given a relatively closed set E in an
open set U C R™, a deformation of a deformation of E in U is a
deformation of E in U, and for any bounded convex open set B
so that B C U, a G-topological competitor with respect to B of a
G-topological competitor of E with respect to B is a G-topological
competitor of E with respect to B of the same dimension.

(2) The class of G-topological competitors for a set E is closed under
taking supersets. More precisely, given a relatively closed set E
in an open set U C R™, if F' is a G-topological competitor of £
of dimension d in U with respect to B, and F C F’ where F’ is
relatively closed, then for any bounded convex open set B’ so that
B C B’ C U and such that F'\B' = E\B’, F is a G-topological
competitor of E of dimension d in U with respect to B’. In fact,
take any (n —d — 1)-sphere S C U\(B’ U E). Then it is contained
in § C U\(B'UF), and since F is a G-topological competitor
of E of dimension d with respect to B, if S represents a nonzero
element in H,_q4—1(U\E, G), then it represents a nonzero element
in H,_q-1(U\F,G), and thus it represents a nonzero element in
H,_4-1(U\F',G) because F' C F'.

(3) The notion of Almgren or G-topological minimal sets does not
depend much on the ambient dimension. One can easily check that
E C U is d-dimensional Almgren minimal in U C R" if and only if
E is Almgren minimal in U x R™ C R™*" for any integer m. The
case of G-topological minimality is proved in [15, Proposition 3.18].

2.3. Regularity results for minimal sets. We now begin to give
regularity results for minimal sets. They are in fact regularity results for
Almgren minimal sets, but they also hold for all G-topological minimiz-
ers, after Proposition 2.11. By Remark 2.15, from now on all minimal
sets are supposed to be reduced.

Definition 2.17 (Blow-up limit). Let U C R™ be an open set, let E be a
relatively closed set in U, and let € E. Denote by E(r,z) = r~1(E—xz).
A set C is said to be a blow-up limit of E at x if there exists a sequence of
numbers r,,, with lim,_, . 7, = 0, such that the sequence of sets E(r,,, z)
converges to C' for the local Hausdorff distance in any compact set of R™.

Remark 2.18. (1) A set E might have more than one blow-up limit at
a point x. However, it is not known yet whether this can happen
to minimal sets.

When a set E' admits a unique blow-up limit at a point x € E,
denote this blow-up limit by C,F.
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(2) Let @ C R™ be any subspace and denote by mg the orthogonal
projection from R™ to . Then it is easy to see that if £ C R",
x € E, and C is any blow-up limit of E at z, then mo(C) is
contained in a blow-up limit of mg(E) at mo(x).

Proposition 2.19 (c.f. [6, Proposition 7.31]). Let E be a reduced Alm-
gren minimal set in an open set U of R™ and let © € E. Then every
blow-up limit of E at x is a reduced Almgren minimal cone F' centered at

the origin, and H(F N B(0,1)) = 0(x) := lim,_,o r “HY(E N B(x,r)).

An Almgren minimal cone is just a cone which is also Almgren min-
imal. We will call them minimal cones throughout this paper, since we
will not talk about any other type of minimal cones.

Remark 2.20. (1) The existence of the density 6(x) is due to the mono-
tonicity of the density function 6(z,r) := r~*H*(E N B(x,r)) at
any given point z for minimal sets. See for example [6, Proposi-
tion 5.16].

(2) After the above proposition, the set ©(n, d) of all possible densities
for points in a d-dimension minimal set in R™ coincides with the
set of all possible densities for d-dimensional minimal cones in R".
When d = 2, this is a very small set. For example, we know that
7 is the density for a plane, %ﬂ' is the density for a Y set, and for
any n and any other type of 2-dimensional minimal cone in R",
its density should be no less than some dr = dp(n) > %w, by [6,
Lemma 14.12].

(3) Obviously, a cone in R™ is minimal if and only if it is minimal in the
unit ball, if and only if it is minimal in any open subset containing
the origin.

(4) For future convenience, we also set the following notation: let U C
R™ be a open convex set containing the origin. A set C' C U is
called a cone in U if it is the intersection of a cone with U.

We now state some regularity results on 2-dimensional Almgren min-
imal sets.

Definition 2.21 (Bi-Hoélder ball for closed sets). Let E be a closed set
of Hausdorff dimension 2 in R™. We say that B(0, 1) is a bi-Hélder ball
for E with constant 7 € (0,1) if we can find a 2-dimensional minimal
cone Z in R™ centered at 0, and f: B(0,2) — R™ with the following
properties:

(i) f(0) =0 and |f(z) —z| < 7 for x € B(0,2);

(i) (L=m)|z—y["*7 < [f(2)=f(y)| < A+7)|z—y|' "7 for z,y € B(0,2);
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(i) B(0,2— 1) C f(B(0,2));
(iv) ENB(0,2— 1) C f(ZNB(0,2)) C E.
We also say that B(0,1) is of type Z for E.

We say that B(z,r) is a bi-Hélder ball for E of type Z (with the same
parameters) when B(0,1) is a bi-Holder ball of type Z for r~}(E — ).

Theorem 2.22 (Bi-Holder regularity for 2-dimensional Almgren mini-
mal sets, c.f. [6, Theorem 16.1]). Let U be an open set in R™ and E a
reduced Almgren minimal set in U. Then for each o € E and every
choice of 7 € (0,1), there is an ro > 0 and a minimal cone Z such that
B(xo,10) is a bi-Hélder ball of type Z for E with constant 7. Moreover,
Z is a blow-up limit of E at x.

Definition 2.23 (Point of type Z). (i) In the above theorem, we say
that zq is a point of type Z (or Z point for short) of the minimal
set E. The set of all points of type Z in E is denoted by E.

(ii) In particular, we denote by Ep the set of regular points of E and
Ey the set of Y points of E. Any 2-dimensional minimal cone
other than planes and Y sets are called T type cone, and any point
which admits a T type cone as a blow-up is called a T type point.
Set Er = E\(Ey U Ep) the set of all T type points of E. Set
Egs := E\Ep the set of all singular points in F.

Remark 2.24. Again, since we might have more than one blow-up limit
for a minimal set E at a point x¢ € E, the point x¢ might be of more than
one type (but all the blow-up limits at a point are bi-Holder equivalent).
However, if one of the blow-up limits of F at g admits the “full length”
property (see Remark 2.26), then in fact E admits a unique blow-up
limit at the point zy. Moreover, we have the following C1%-regularity
around the point xg.

Theorem 2.25 (C1*regularity for 2-dimensional minimal sets, c.f. [7,
Theorem 1.15]). Let E be a 2-dimensional reduced minimal set in the
open set U C R™. Let x € E be given. Suppose in addition that some
blow-up limit of E at x is a full length minimal cone (see Remark 2.26).
Then there is a unique blow-up limit X of E at x, and x + X is tangent
to E at x. In addition, there is a radius ro >0 such that, for 0 < r <
ro, there is a CY* diffeomorphism (for some a > 0) ®: B(0,2r) —
®(B(0,2r)) such that ®(0) = z and |®(y) —x — y| < 1072r for y €
B(0,2r) and EN B(z,r) = ®(X) N B(z, 7).

We can also ask that D®(0) = Id. We call B(x,r) a C' ball for E of
type X.
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Remark 2.26 (Full length, union of two full length cones X; U X5). We
are not going to give the precise definition of the full length property.
Instead, we just give some information here which is enough for the
proofs in this paper.
(1) The three types of 2-dimensional minimal cones in R?, i.e. the
planes, the Y sets, and the T sets, all verify the full length property
(cf. [7, Lemmas 14.4, 14.6, and 14.27]). Hence all 2-dimensional
minimal sets E in an open set U C R3 admits the local Ce-
regularity at every point € E. But this was known from [26].
(2) Let n > 3. Note that the planes, the Y sets, and the T sets are
also minimal cones in R™. Denote by € the set of all planes, Y sets,
and T sets in R". Let X = (J;<;<, Xi € R" be a minimal cone,
where X; € €, 1 <i <n, and for any i # j, X; N X; = {0}. Then
X also verifies the full length property (cf. [7, Remark 14.40]).

Theorem 2.27 (Structure of 2-dimensional minimal cones in R™, cf. [6,
Proposition 14.1]). Let K be a reduced 2-dimensional minimal cone in R"
and let X = KN9B(0,1). Then X is a finite union of great circles and
arcs of great circles Cj, j € J. The C; can only meet at their endpoints,
and each endpoint is a common endpoint of exactly three C;, which meet
with 120° angles. In addition, the length of each Cj; is at least 1o, where
no > 0 depends only on the ambient dimension n.

An immediate corollary of the above theorem is the following;:

Corollary 2.28. (i) If C is a minimal cone of dimension 2, then for
the set of reqular points Cp of C, each of its connected components
is a planar sector (the cone centered at 0 over an arc of great circle
centered at Q).

(ii) Let E be a 2-dimensional minimal set in U C R™. Then Ey = Eg.
(iii) The set Es\Ey is composed of isolated points.

As a consequence of the C'-regularity for regular points and Y points,
and Corollary 2.28, we have

Corollary 2.29. Let E be an 2-dimensional Almgren minimal set in an
open set U C R™. Then
(i) The set Ep is open in E.
(ii) The set Ey is a countable union of C' curves. The endpoints of
these curves are either in Ex := Eg\Ey, or lie in OU.

We also have a similar quantified version of the C'!**-regularity (cf.
[6, Corollary 12.25]). In particular, we can use the distance between
a minimal set and a P or a Y cone to control the constants of the
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C1® parametrization. As a direct corollary, we have the following neigh-
borhood deformation retract property for regular and Y points:

Corollary 2.30. There exists 2 = ea(n) > 0 such that the following

holds: let E be an 2-dimensional Almgren minimal set in an open set U C
R"™. Then

(i) For any x € Ep and any codimension 1 submanifold M C U which
contains x, such that M is transversal to the tangent plane T, E+x,
if r > 0 satisfies that dy.(E,z+T,E) < €3, then H*(B(z,r)NMN
E) < o0, and B(z,7r) N M N E is a Lipschitz deformation retract
of B(x,r)N M.

(ii) For any x € Ey and any codimension 1 submanifold M C U which
contains x, such that M is transversal to the tangent cone C, E+x
and its spine, if v > 0 satisfies that dy,(E,x + C,E) < €3, then
HY(B(z,r) N M NE) < oo, and B(x,r) N M N E is a Lipschitz
deformation retract of B(xz,r) N M.

As for the regularity for minimal sets of higher dimensions, we know
much less. But for points which admit a tangent plane (i.e. some blow-up
limit on the point is a plane), we still have the C''-regularity.

Theorem 2.31 (cf. [14, Proposition 6.4]). For 2 < d < n < oo, there
exists €1 = e1(n,d) > 0 such that if E is a d-dimensional reduced minimal
set in an open set U C R™, with B(0,2) C U and 0 € E. Then if E
is €1 near a d-plane P in B(0,1), then E coincides with the graph of a
C' map f: P — P+ in B(0,3). Moreover, ||V |l < 1.

Remark 2.32. (1) This proposition is a direct corollary of Allard’s fa-
mous regularity theorem for stationary varifolds. See [1].
(2) After this proposition, a blow-up limit of a reduced minimal set F
at a point x € E is a plane if and only if the plane is the unique
approximate tangent plane of F at x.

After Remark 2.32, for any reduced minimal set E of dimension d, and
for any x € E at which an approximate tangent d-plane exists (which is
true for a.e. z € F), T, E also denotes the tangent plane of F at x and
the blow-up limit of F at x.

3. Uniqueness: definitions and properties

Definition 3.1. Let U C R™ be a bounded open set. Let C C R™ be a
reduced set so that C N U is d-dimensional Almgren minimal in U. We
say that
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(i) C is Almgren unique in U if H}(C NU) = inf oz HUFNU)
and

(3.1) Vreduced set E € F(C,U), HYENU)= inf HUFNU)
FeF(C,U)

= E = C (or, equivalently, ENU = CNU).

(ii) C is G-topologically unique in U if CNU is d-dimensional G-topo-
logical minimal in U, and

(3.2) For any reduced d-dimensional G-topological competitor E
of CNU in U, HYE) = HYC NU) implies E = CNU.

(iii) We say that a d-dimensional Almgren minimal set C' in R™ is Alm-
gren (resp. G-topologically) unique if it is Almgren (resp. G-topo-
logically) unique in every bounded open set U C R™.

When G = Z, we usually omit Z, and say directly topologically
unique.

For minimal cones, we immediately have:

Proposition 3.2 (Unique minimal cones). Let K be a d-dimensional
Almgren minimal cone in R™. Then it is Almgren (resp. G-topologically)
unique if and only if it is Almgren (resp. G-topologically) unique in some
bounded open convex set U that contains the origin.

Proof: By definition, the only if part is trivial. So let us prove the con-
verse.

Suppose that K is a d-dimensional Almgren minimal cone in R™ and is
Almgren (resp. G-topologically) unique in a bounded convex open set U
that contains the origin. Then since K is a cone centered at the origin,
K is Almgren (resp. G-topologically) unique in rU for all » > 0. Now,
for any other bounded open set U’, there exists r such that U’ C rU,
hence K is Almgren (resp. G-topologically) unique in U’. O

Let us make some important remarks:

Remark 3.3. (1) Note that for an arbitrary d-dimensional reduced
set C' C R™ which is Almgren minimal in U, by definition, C' only
minimizes the measure in the class F(C, U). Hence we do not nec-
essarily have that

(3.3) HY(CNU)= inf HYFND).

FeF(C,U)
On the other hand, by Theorem 4.13, this holds if U is a convex
open set and C' N AU is relatively regular.
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(2) Unlike the definition of Almgren uniqueness, in the definition for
topological uniqueness we do not consider limits of G-topological
competitors.

(3) As a corollary of the above term (1) and Proposition 3.2, we know
that if K is a d-dimensional minimal cone in R™, then (3.3) holds
automatically.

(4) The condition HY(E NU) = infz =00 HYF NU) in (3.1) al-
ready implies that E is itself Almgren minimal in U, because
the class F(C,U) is stable under deformations in U and hence
F(E,U) c F(C,U) (cf. Remark 2.16). Also notice that H¢(E N

U) = infz 0. HA(FNU) is equivalent to the condition H¢(EN
U) < inf =0 HUFNU) since E € F(C,U).

(5) Similarly, when U is a convex open set, since the condition H%(EN
U) =HYCNU) in (3.2) implies that £ minimizes measure among
all d-dimensional G-topological competitors of C' in U, and all d-di-
mensional G-topological competitors of E in U are d-dimensional
G-topological competitors of C' in U (cf. Remark 2.16), we have
that E is G-topological minimal of dimension d in U.

(6) If C is an Almgren unique minimal set in U, V' C U is an open set,
then C' is also Almgren unique minimal in V.

Proposition 3.4 (Independence of ambient dimension). Let K C R™
be a d-dimensional Almgren minimal cone in R™. If K is Almgren
(resp. G-topologically) unique, then for all n > m, K is also Almgren
(resp. G-topologically) unique in R™ while regarded as a subset of R™ in
the natural sense.

Proof: Fix any n > m. Write R® = R™ x R"~™ and suppose, without
loss of generality, that K is contained in R™ x {0}.

Suppose that K is Almgren unique in R”. We want to prove that
K is Almgren unique in R™. Let B, denote the unit ball in R™. Then
by Proposition 3.2, it is enough to prove that K N B, is Almgren unique
in B,,. So let F € F(K, B,,) be reduced, such that

(3.4) HYFNB,) = _inf HYENB,).
EcF(K,B,)

By Remark 3.3 (5), condition (3.4) implies that F is Almgren minimal
in B,,. As a result, by the convex hull property of minimal sets, a reduced
minimal set must be contained in the convex hull of its boundary, hence
we know that F' must be included in the convex hull of FF N 0B, =
KNdB, = KNJdB,, C B,.
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As aresult, F € F(K, B,,). Since F(K, B,,) C F(K, By,), hence

(3.5) inf  HYENB, < _inf HYENB,).
EeF(K,By) EcF(K,Bm)

Combined with (3.4), we obtain

(3.6) HYFNB,)=HYFNB, < _inf HYENB,).
E€F(K,Bm)

By (3.6), and the Almgren uniqueness of K in R™, we know that F'
must be KN B,,, = KNBKB,.

The proof for the case of G-topological uniqueness is similar and we
leave it to the reader. O

The next proposition shows that for relatively regular d-dimensional
minimal cones, G-topological uniqueness implies Almgren uniqueness:

Proposition 3.5. Let K C R" be a G-topologically unique minimal cone
of dimension d. Then it is also Almgren unique of dimension d.

Proof: Let K be a G-topologically unique minimal cone of dimension d
in R™. By Proposition 3.2, it is enough to prove that K is Almgren
unique of dimension d in the unit ball B = B(0,1).

Let F' € F(K, B) be reduced such that
(3.7) HYFNB)= inf HYENB).

EcF(K,B)

Note that by Propositions 2.11 and 2.13, we know that F' is a G-topo-
logical competitor of dimension d for K in R™ with respect to 2B. Since
K is topologically minimal of dimension d,

(3.8) HYFN2B) > HYK N2B).
Note that F\B = K\B, hence
(3.9) HYFNB)>HYKND).

But K € F(K, B). Combined with (3.7), we get
(3.10) HYFNB)>HYKNB)> inf HYENB)=HY(FNB),

EcF(K,B)
hence
(3.11) HYF N B)=HYKNB).
Again because F\B = K\B, we get that
(3.12) HYFN2B) = HYK N2B).

Now since K is a G-topologically unique minimal cone of dimension d,
it is topologically unique of dimension d in 2B. Since F' is a G-topological
competitor of dimension d for K in R™ with respect to 2B, (3.12) implies
that FF = K. O
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4. Upper semi-continuity

In this section we prove the upper semi-continuity property for min-
imal sets with reasonable boundary regularity. This consists of saying
that in many cases, when its boundary is not too wild, a minimal set
minimizes also the measure in the class of limits of deformations. This
serves as an indispensable part in the definition of uniqueness, as we
have already seen in the last section (Remark 3.3). This property also
plays a very important role in [19].

For each k € N, let Ay denote the family of (closed) dyadic cubes of
side-length 27%. For j < n, let Ay ; denote the set of all j-dimensional
faces of elements in Ag. For each cube @, denote by A;(Q) the set of
all j-faces of Q. Set [Agj| = Usea, , o the j-skeleton of Ag.

Theorem 4.1. Let 0 < d < n, letU C R" be a bounded convex open set,
and E be a closed set with finite d-Hausdorff measure such that E C U.
Let C denote the convex hull of E. Suppose that

(4.1) CNoU =EnNoU
and
(4.2) ENJU C |Ak,,d4—1]| for some ky € N,

where Qo denotes the unit cube [0,1)". Then
(i) inf ooz g ) H(F) = infper(m,v) H(F).
(ii) If E is a d-dimensional minimal set in U, then
(4.3) HYE)= inf HYF).
FEF(B,U)
Proof of Theorem 4.1: (i) Since F(E,U) C F(E,U), we have automati-
cally inf ..z g 1) HUF) < inf perp,v) HY(F). So let us prove the con-
verse. ’
Set 0E = ENJU.
Now we need the following theorem.

Theorem 4.2 (Existence of minimal sets; c.f. [10, Théoréme. 6.1.7]).
Let U C R™ be an open set, 0 < d < n, and let § be a class of non-
empty sets relatively closed in U and satisfying (2.1), which is stable by
deformations in U. Suppose that

4.4 inf HYF )
(4.4) PL%S’H(KOO

Then there exists M > 0 (depending only on d and n), a sequence (F},)
of elements of §, and a set E of dimension d relatively closed in U that
verifies (2.1) such that:
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(i) For all compact subsets K of U,
(4.5) lim dy(Fy N K,ENK)=0.

k—o0
(ii) For all open sets V such that V is relatively compact in U, there
exists ko € N such that for all k > kg,

(4.6) Fy, is (M, +00)-quasiminimal in V.

(See [8] for a precise definition.)
(iii) HY(E) < infpeg HY(F).
(iv) E is minimal in U.

Remark 4.3. Note that in general, the local Hausdorff distance di (E, F')
between two sets F and F' are not the same as dy(E N K, F' N K), but
it is easy to see that for any compact set K, and any two sets E and F,
dig(E,F) <dy(ENK,FNK). In particular, (i) implies that

(4.7) A E

We get back to the proof of Theorem 4.1. B
Since U is bounded, there exists R > 0 so that U C B(0, R). Set
V = B(0, R)\OE. Then V is an open set that contains U and U\OE C V.

Proposition 4.4. Let n, d, E, U, and C be as in the statement of
Theorem 4.1, so that (4.1) holds. Let V be as defined above. Then there
ezists {Grlren € F(E,U) and Go € F(E,U) such that the following
holds:

(i) Go is minimal in V, Go C C, and GoNoU = CNOU = IE;

(ii) limg 00 du(Gr, Go) = 0;

(iii) HY(Go) < inf oz ) HAUF).

Proof: Let § = {F € F(E,V): F satisfy (2.1)}. Then § is stable by
deformations in V.

We apply Theorem 4.2 to the class § and get a sequence Fj, € § and
a set Fy such that F{ is minimal in V, with

(4.8) J oA o8

and

4. Y Fy) < inf HYF).
(4.9) H(o)_gé&?l()

Since HY(OE) = 0 and V = B(0, R)\OE, we may suppose OE C Fy.
Otherwise, we just replace Fy by Fy UOFE and still satisfies all the above
properties.
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Note that each F} belongs to F(E, V), hence for each k there exists

a sequence {F/}; € F(E,V) so that F] L Fy. Note that B(0,2R) is a
compact subset in R™. Hence we have

(4.10) dp0.2r)(FL, Fi) = 0, j = oo.

But the Fi and F/ are subsets of B(0,R), hence du(FJ,Fy) — 0,
j — o0. Thus, modulo extracting a subsequence, we may suppose that
dH(Fg, Fp) < %, V4, k. As a result, since Fy, AR Fy, we know that F}¥ YR
as well.

Now let ¢ denote the nearest point projection from R™ to C. Then
7 is 1-Lipschitz (cf. [4, Proposition 5.3]). Set Gg = m¢(Fp). Then Gy C
C and

(4.11) HY(Go) = H (me(Fo)) < HI(Fp).

We would like to construct the sequence Gy from F, ,f, so that Gy LA
Gp.

Since F,f is a deformation of E in V', by definition of deformations
in V, there exists a deformation ¥ in V such that Ff = @ (E).

For each k, let 6, € (0, + diam C') be such that ¢* = id on B(OF, 6).
This is possible because E C OV and ¢ is a deformation in V.

Let Dy denote the convex hull of C\B(JF, d;). Then we know that
C C B(C\B(OE, d),6y), and hence Dy, C C C B(Dy, dy,) for all k € N.

We also have that Dy, is a compact subset of U. In fact, since E C U
and ENOU = 0F, we have d(E\B(JF, d),0U) > 0. Since U is convex,
the map d(-,0U): U — R is convex. Hence d(E\B(OE,dx),0U) > 0
implies that d(Dy,0U) > 0.

Let 7 be the nearest point projection to the convex set Dy. Then 7y
is 1-Lipschitz (cf. [4, Proposition 5.3]).

Let us prove that

(4.12) sup | (z) — mo(z)| < 4ROy
eV

Take any € V and let y = w (). Then since C' is convex, we know
that

(4.13) (z—y,x—y) <0, VzeC.

Now let z = mp(x). Then z € Dy, C C. Since Dy, C C C B(Dy, %), we
have d(z,C) < d(z, Dy) < d(z,C) + J, that is,

(4.14) ly — 2| < |z — 2| < |y — x| + .
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By the cosine formula and (4.13), we know that
e —al =l -y + |z -y — 2z —y,z — )|z —yllz — y]

4.15)
( > |z —yl? + |z -yl
hence
2 2 2
z— <lz—x|"— | —
(4.16) |z —yl” <| |“ =z —yl

= (lz = 2|+ |z —yN(|z — 2| = |z — y[) < 4Rd,

because z,y,z € V C B(0, R).
Now we define ¢;,: E — (E N B(OF,d0;)) U Dy:

() = x, r € ENB(OE, ),
T ko o* (), @ € E\B(OE,by).

By definition, 1, is Lipschitz both on ENB(JFE, 6;) and E\B(JE, &).
On their intersection ENAB(JFE, 6;,), by definition we know that ¢ (z) =
z, and since ENJB(JE, §;) C CNOB(OE, b)) C Dy, we know that
(4.18) T 0 oF (x) = m(z) = 2,

hence vy, is well defined and Lipschitz.

Set €, = d(Dy,0U). Let Cy = B(Dk,%ek). Then C} is a compact
convex subset of U, and we set ¢y (z) = x for © € U\Cy, and then
extend 1y to a Lipschitz map U — U. Then Wy, := {a € U : ¢y (z) # x}
is compact in U, and hence ¢ (Wj) U Wy, is compact. Therefore, ¢y, is
a deformation in U.

We claim that

(4.17)

(4.19) du(me(FF), ¢r(E)) < 26y.
Let us first prove
(4.20) Ur(E) C B(mi(FF), 26y).

Take any y € ¥, (E). Then there exists x € E so that y = ¢, (x). By
definition, if z € E\B(OF, i), then y = 7y, o ¥ (x) € . (FF), because
©*(E) = FF; if 2 € EN B(OE, ), then ¢(x) = x, and hence 1 (x) C
B(OE, §x). But note that OF C Ff and OE C B(Dy, ), hence E C
B(m(0E),8k) C B(mi(FF),01). As a result, ¥(x) € B(mp(FF),26).
Altogether we have (4.20).

Next, we prove that

(121) m(FE) C BUk(E), 261).

Take any y € 7 (FF). Then there exists z € E so that y = 7 o p¥(x).
By definition, if x € E\B(JE,d;), then y = 74 o ¢*(z) = ¥y (z), and
hence y € Yp(E); if v € EN B(OE, &), then y = m, 0 ¢¥(x) = w4 ().
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Since d(mi(z),0F) < d(mp(x),z) + d(z,0F) < 0 + 0 = 2J), we know
that y € B(OE,2dx) C B(¥r(E),20k). Altogether we have (4.21). And

(4.20) and (4.21) yield Claim (4.19).

By (4.12), we know that
(4.22) du(me(FF), 7o (FF)) < 4R6y,.
Combined with (4.19), we get
(4.23) dn(n(B), mo(FE)) < (AR + 28,
and hence
(4.24) lim dy (i (B). 7e(F)) = 0.

Set Gy = ¢x(E) € F(E,U). Then, since Ff % Fy, we know that
7o (FF) 5 70 (Fy) =Go. By (4.24) we have ¢ (E) - Go, that is, Gy, -
Go.

Let us now prove (ii). Fix any € > 0. Let K = U\B(OE,¢). Then K
is a compact subset of V. So there exists ky > 0 so that for each k > kg,
dx (G, Go) < e.

Now for any = € G\B(9FE,¢), since dg (G, Gp) < € and G, C K,
we get © € B(Gy,¢€); for x € G, N B(OE,¢€), since OE C Gy, we have
again x € B(Gy,¢€). Hence Gy, C B(Gy,€). By symmetry we have also
Go C B(Gg,e€). Hence dy(Gg, Gy) < € for any k > ko.

The above holds for any € > 0, hence we have (ii).

Note that Go C C, and hence Go N QU\OE = 0. By (4.11), we know
that (2.1) holds for Gy. Since G € F(E,U), by (ii) and the definition
of F(E,U), we have Gy € F(E,U).

Let us now prove (i) and (iii). We already know that Gy C C, so let
us prove that G is minimal in U. In fact, (4.9) yields
(4.25) HI(Fp) < inf  HUF),

FeF(E,V)
because for any set E € F(FE,V)\§, £ must have infinite H? measure,
and hence H4(E) > H4(Fy).

As a result, by (4.11), we know that H(Go) < inf o7 g vy HAUF) <
infp %z 5 1) H4(F), which yields (iii). But we know that F(FE,V) is sta-
ble under deformations in V and Gy € F(E,U) C F(E, V), hence Gy is
minimal in V. Finally, we know that O0F C Fy and OE C C, hence
OF = 7¢(0F) C we(Fp) = Go. On the other hand, since Gy C C, we
have GoNoU € CNOU = JE. Hence GoNIU = OF = CNOU. Thus
we get all claims in (i). O
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Our idea of proving Theorem 4.1 is that, when Gy, is sufficiently close
to G, by the local regularity of the minimal set G, we can deform a big
part of G, to Gy. Note that the local regularity is for a reduced minimal
set, so we will need that the closed support G7, is sufficiently close to G
as well. Hence we need the following.

Definition 4.5. Let 0 < d < n. Let FF C R™ be closed, let W C R"™ be
an open set. Set

(4.26) F;(F, W) ={H closed: 3IM € F(F,W) and N C W
with H?(N) = 0 such that M = H U N}.

It is easy to see from the definition that Fj(F, W) is stable under
Lipschitz deformations in W and
(4.27) inf  HYK)= inf HYK).
KEeF;(F,W) KEeFa(F,W)
Proposition 4.6. Let n, d, E, U, and C be as in the statement of
Theorem 4.1, so that (4.1) holds. Let V be as above. Then there exists

{Ei}ren € Fi(E,U) and a closed set Ey C U such that the following
holds:

(i) EoNOU =90F and Ey C C;

(i) EoNU = Ey NV is a reduced minimal set in V and H(Ey) <
inf pe7 (.0 HA(F);
(iil) Ex C B(Eo,27%).

Proof: Let Gy and G, be as obtained in Proposition 4.4. We set Fy =
GEUOG,. Then G C Ey C Go C C, and (i) and (ii) hold directly for Ey.

The idea of constructing Fj is roughly the following: we fix a small
neighborhood of Ey, say W, and look at the part G\W. Note that
Go\W is compact and the measure of Go\W is zero, hence we can use a
Federer—Fleming projection 9 to project Go\W to a union of (d—1)-faces
of dyadic cubes and a part in W. Then ¢ (Gx)\W will be very close to
this union of (d—1)-faces, and hence we can use a deformation retract to
map this part to this union of (d—1)-faces. And after this deformation the
closed support of the image of G, will be contained in ¥ (Gj)\W, which
is contained in B(FEy,27%). Then we set Ej to be the closed support
of (G).

So let us do it more precisely. Fix any k.

Let Ay = Gy mB(Eo, 27k75) and Ay = Go\B(E(), 27’675). Then Gy is
the disjoint union of A; and Ay, and H%(As) = 0.

Let [ € N be such that 2! > max{10,/n}, and d(As,0U) > 2.
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Set
(4.28) S={QcApya:QCU QNDB(FEy,2 ") =¢}.
Then the support |S| of S satisfies that
(4.29) S| N B(Ey,27%72") = ¢ and d(|S|,0U) > 0.

Also by definition, since d(Az, OU)>27" and d(Ag, Ey) >27F% > 27k=1

we have

(4.30) Ay C |S|° and d(Ay,d|S]) > 27F2,
and hence
(4.31) B(Ag, 2772 C |S|°.

By definition of As, we know that
(4.32) HA(A) = 0.

Since |S| C U, hence we can find a Federer—Fleming projection ¢: U —
U so that the following holds:

(4.33) Y(z) =z for x € U\|S|%;
(4.34) Y(z) =z for x € Sq_q,
where S;_1 denotes the union of (d — 1)-faces of S;
(4.35) P(Ag) C Sq—1 UO|S];
(4.36) P(Q) C Q for every Q € S.

Note that the set {z € U : ¢(z) # =} C |S| and |S] is compact, hence
1 is a deformation in U. Moreover, (4.36) implies that

(4.37) () — x| < /n27h 4 < 27k=3L
By (4.30) and (4.37), we get

(4.38) d(¢(As),|S|9) > 2773,

and hence by (4.35),

(4.39) W(As) C Sa_1.

Let L > 1 denote the Lipschitz constant of 1.
Now modulo taking a subsequence, we suppose that

Gy C B(Go, L™127k=5h),
Then
(4.40) G) C B(Ay, L7277 U B(Ay, L™ 127F=50),
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Since v is L-Lipschitz, we have
(4.41) $(Gr) CB(H(Go), 274 C B(Ar), 27 UB(1(Az), 27,
By (4.39), we have

(442)  $(Gr) N B((4), 27" ™) € B(Sa1, 277
and
(4.43) d(’(/)(Gk) N B(w(A2), 2—k—5l)7 |8|C) < 9—k—4l

Let T ={Q € S: QN B(y(A;1),2757%) = 0}. Then |T| N B(¥ (A1),
27F=50) = (), and by (4.41) and (4.42) we have
(4.44)  (GR) N T] C¥(Gr) N B(¥(A2), 27 € B(Sg-1,27F77).
Now we will define a map from |7 to |T| that deforms % (Gy)N|T| to

S4—1U0|T|. The idea will be the same as the Federer—Fleming projection.
So we need the following lemma:

Lemma 4.7. Let d —1 < m. Let @ be an m-dimensional cube of side-
length 1(Q). For 1 < k < m, let Qi denote the union of its k-faces. Then
there exists a Lipschitz map pg: Q — Q such that

(149) ¢ (B(@u1151@) nQ) < (B Qi 51@) 1 @n ).

1
(1.46) vo (B (00 @) neQ) coe.
(4.47) (,DQ‘@Q =id.
Proof: For x € R™, we write its coordinates as © = (x1,...,%m)-
Fix any d — 1 < m. Let us first look at the cube @Q = [-1,1]™ C R™.

It is a cube of dimension m, with side-length 2.
Let o be the origin and let f: Q\{o} — 9Q be the radial projection,
that is, for any = € Q\{o}, let 6, = min;<;<y, d(z;,{—1,1}), and then
T

(4.48) @)= =5

Now suppose that @ € B(Qa—1,%) N Q. Then there exists a (d —
1)-face o of @ so that x € B(c, £). Without loss of generality, suppose

o=[-1,11"1x{1,..., 1} ={y €Q :ya =Ya41 = = Ym = 1}. Then
for any point y € Q,

(4.49)
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Thus, for the point x, we have

(4.50) d(f(z),0) = d(ﬁ,o) - f: (1 = fiéx)Q.

Since 1 — §, < 1, we have

(4.51) d(f(z),0) <

As a result, we know that

@s2)  £(B(@rt)nQ) cB(Qurt) Q.

Now we set pg: Q — Q:

f(x), d(z,0Q) < 3,
(453)  polz) =q (1 -t)f(x) +tx, dx,0Q)=3+E te(0,1],
x, d(z,0Q) > %

Then @ satisfy (4.45), (4.46), and (4.47).
Now for a general cube @', let ¥: Q — @’ be an isometry, then it is
enough to set 9o =1 0 pg ot O
Let us now construct the aforementioned Lipschitz map from |T|
to |7 that deforms ¥(G)N|T]| to Sg—1UI|T|. We will recurrently define
a sequence of maps ¢, : [Tm| UO|T| = [Tm-1| UJ|T| for d < m < mn, so
that

(4.54) em(Q) CQ, VQEeT,

(4.55) om(z) =z, Va € d|T|U|Ta-1l,

and

(4.56) @m(z)€Qq_1UI|T|, Yz€QNB (7:1 15 17)2 k= ‘”) , YQET,.

Let us first define ¢q4. Take any x € |Tg| U O|T|. Set q4(z) =z if x €
9|T|. Otherwise, there exists @ € Ty so that Q° N |Ty| = 0, and set
x = @q(z), where g is the one obtained in Lemma 4.7. Then by (4.47),
pq is well defined.

Now suppose that ¢,,_1 is already defined and satisfies (4.54)—-(4.56)
replacing m by m — 1. Let us define ¢,,.

Take any x € |T,,|UO|T|. Set o (x) =z if x € §|T|. For any Q € 7,
so that Q° N I|T| = 0, we first define fo(x) = @m—1 0 pg(x) Vo €
[B(8Q, 51(Q)) NQ]UI|T|, where ¢q is the one obtained in Lemma 4.7.
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Note that ¢,,,—1 and ¢g are both the identity on 9|7 | N Q, hence fq is
well defined. Also by definition of ¢, for each @) it is easy to see that
0o = @q for any Q, Q" € Ty, so that QN Q' # (0. Hence fgo = fo.

Then we extend fg to a map from @ — Q. And set ¢, (x) = fo(z)
for x € @ and for all Q € T,,.

Let us verify that ¢, is well defined and satisfies (4.54)—-(4.56).

Take any Q1,Q2 € T, and let £ € Q1 N Q2. Then x € dQ1 N IQs.
By definition of ¢, we know that ¢qg,(x) = ¢g,(x) = x, and hence
fo, (@) = pm—109q, () = om—1 09, (z) = fg,(x). Hence ¢,, is well
defined.

Since fo(Q) C Q, we have (4.54).

To check (4.55), we know that fq|s7| = id by definition. For z €
|Ta-1], let @ € T be such that € Q4—1. Then by definition, ,,(z) =
©m—1 0 @q(x). But pg(z) = z for z € 9Q, and p,,_1(z) = x for z €
| 7a—1| by hypothesis of induction, hence @, (x) = 2. Thus we get (4.55).

Finally, to verify (4.56), take any @ € 7T,, and any © € Q N B
(Ta-1, 7527 %), By definition, we know that ¢, (z) = fo(z) = @m-10
¢q(z). By Lemma 4.7, x € QN B(T4-1, 1—102”“41) implies that pg(x) €
aQ N B(’]}_l, %2*’“*41). Hence by hypothesis of induction for m — 1
in (4.56), we have that ¢,,—1(pg(z)) € Qq—1 UI|T]|.

By induction, we get that ¢,, satisfies (4.54)—(4.56), d < m < n.

Now we set p: U — U:

on(z), €T,
4.57 z) =
(+.57) #le) {x z € U\[T].
Note that @, (z) = x for © € J|T|. Hence ¢ is well defined, and is a

Lipschitz deformation in U.

Now set Hy, = ¢ 09(Gy). Then Hy, € F(E,U). Set E, = Hj. Then
Ey € F}(E,U). Let us now verify (iii) of Proposition 4.6.

By (4.44), ¥(Gy) N |T| € B(Sq—1,27 % N |T| C B(Ta—1,27%7%)
and |7 = ¢nl|7], hence by (4.56), we obtain
(4.58) @ o(Ge N [T]) C[Taa| UIIT].
As a result, we have
(459) HU(pow(GrN|TI)NITI?) = H (¢ o (G N|TI\IIT]) = 0.

Since

(4.60)  Hy = @op(Gi) = [po(Gr NITPIU[p o (V(G\ITI®)],
by (4.58) and (4.59), we get
(4.61)  Ep = Hj Clpod(GeN[T)NOITIUpo (b(G)\ITI?)]:
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Let us look at o) (GrN|T|)NI|T|. Take any y € potb(GrN|T|)NI|T|,
then there exists € Gy, so that y = ¢ o ¢)(x). But by definition of ¢
and v, we have

ly — =[] < [lpodp(z) — ()] + [[¢(z) — ]
S \/ﬁ2—k—4l+\/ﬁ2—k—4l <2—k—2l.
Since y € 9|T|, we get x € B(9|T|,27%2!). Now by definition of T

and S, we know that for any z € 9|T|, d(z,0U U B(Eg,27%"2l) U
B((Ay),27%5)) < 27k=21 Hence

(4.62)

(4.63) d(z,0U U B(Ey,2 "2y U B(¢(Ay),27%75)
< 27k72l + 27k72l < 2714:4'

So there are three cases:

If d(z,0U) <27%~! by definition of I, we have z & B(A3,27%?), and
by (4.40) we see that x € B(A;,27%7%"), and thus by (4.62) and the
definition of Ay,

Yy € B(Al, 27k75l 4 27k72l) C B(Eo, 27k75l 4 27kfl + 27k72l)
C B(E,27%).
If d(x, B(Ey,27"7!)) < 277!, then by (4.62)
y € B(B(Ey,27 =2 27kt 4 9=k=2
(4.65) C B(Ep, 2752 4 9 k=1 4 g=k=21)
C B(Eo,27"%).

If d(z, B((A1),27%51)) < 27k~ by definition of 1) and A1, we know
that ¥(A;) C B(Ay,27%4) C B(Ey,2 %! + 2754 and hence

z € B(B(y(Ar),277%), 27 )
(4.66) C B(yp(Ay), 2751 427k
C B(Eo, 27" 4274 o7kt gkl

(4.64)

Thus by (4.62), we have again
y€B(z, 27" 2 C B(Ey, 271427kl omk=8ly o=kl o—k=2l)
(4.67) C B(Ey,27%).
Altogether, we have
(4.68) 0oy (GyN|T])NO|T| C B(Ey,27").

Now for the set p((Gp)\|T°), take any y € o(¢¥(Gr)\|T|°). Again
there exists € Gy, so that y = ¢ o ¥(z), and (4.62) holds. Note that
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Y(x) & |T1]°, by definition of ¢, ¥(x) = ¢(¢(x)) =y. Thus y & |T]°. By
definition of T, we know that
(4.69) d(y,0U U B(Ey,2 "2y U B(1(A,),2777%h)) < 27kF=2

and hence z satisfies again (4.63), and the exact argument as above gives
that

(4.70) y € B(Eo,27").
Hence
(4.71) P(W(G\ITI?) € B(Eo,27").

Combined with (4.61) and (4.68), we have
(4.72) Ei, C B(Eo,27").

This completes the proof of Proposition 4.6. O

Now let us fix the set Ey and the sequence {Fj}r as obtained in
Proposition 4.6. We want to prove that, when Fj is sufficiently close
to Fp, we can deform Ej into the union of Ej and a set of very small
measure, so that the measure after the deformation can be arbitrarily
close to HU(Ey) = inf pe 7 (p,rr) HY(F), which yields (i) of Theorem 4.1.

The construction of such a deformation is similar to the construction
in [5]. By minimality of Fy, around each regular point = of Ey there is
a neighborhood retract to Ey in some ball centered at = with a uniform
Lipschitz constant. We use a finite number of such balls to cover a big
part of Ey and the measure of Ey which is not covered is very small.
When Ej is close enough to Ey, a big part of Ej is contained in the
union of these balls, so we can deform Ej onto Ey in each of these
balls, and then extend this deformation to the whole space with the
same Lipschitz constant. Outside these balls, since each Fy, is very close
to Ey, we expect that measures of Ej are comparable to the measure
of Fy, and so the measures of the image of Ej outside the above balls
are still small.

But in our case there is no reason why the measures of Ej should be
uniformly comparable to that of Ey at small scales. This issue results
in more works. In other words, we have to first deform {Ejy} into a new
sequence {E} } whose local measures can be controlled by that of Ey and
they are still very close to Ey for k large.

Now let us give more details:
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Set
(4.73) Q, = {QeA,:QNEy+0}
and
(4.74) Qr =1{Q € Ay : 3Q" € Q) such that Q N Q" # 0},

that is, @}, is the family of elements in Ay, that are neighbors of Ey, and
we get Qr by adding another layer of cubes in Ay to Q. Let |Qr| =
Ugeq, @ be the union of elements in Q, and for each j < n, let Q,; be
the set of all j-faces of elements in Qy, and let S ; = Useq, , 0 denote
the j-skeleton of Q.

Set 0Fy = EqgNOU, which is equal to OF by Proposition 4.6, and set
(4.75) Rp:={Q€e Ay : 3Q" € Aj, such that QNIE;#( and QNQ’ #0}.
Let |Ri| = Uger, @, and for each j < n, let R}, ; be the set of all j-faces
of elements in Ry, and let Ty, ; = UUGRM o denote the j-skeleton of Ry.

It is easy to see that

(4.76) Q% C Qr and Ry C Qy,
and hence
(4.77) |Ri| C |Qkl, Rk,j C Qk,j, and Ty ; C Sg,; for all j < n.
Let us first give some properties for the sets Si q and T q, where d is
the dimension of Ej.

Proposition 4.8. Let FE, U, and C be as in the statement of Theo-
rem 4.1, so that (4.1) holds, and so that ENOU is of finite (d—1)-Haus-
dorff measure. Let Ey and {Ey} be as obtained in Proposition 4.6. Let
Qs Qr, Qi Sk,j, R, Tr,; be as defined above. Then

(i) limg—oo H(Tk,a) — 0.
(ii) There exists M > 0 which depends only on n and d such that for
each k > ko, and each Q € Qi and Q° N |Rg_2| = 0, we have

(4.78) HY(SkaN Q) < MHY(Eo NV (Q)),

where V(Q) denotes the union of cubes that touch some cube that
touches @, that is:

(4.79) V(Q) :=U{Q" € Ay : there exists Q" € Ay,
such that Q" NQ # 0 and Q" N Q' # 0}.

Proof: (i) Since dEy = OF is of finite (d — 1)-Hausdorff measure, we
apply [9, Theorem 3.2.39] and get

(4.80) MITHOEy) = HHOE) < o0,

where M?~! stands for the (d — 1)-dimensional Minkowski content.
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By definition of Minkowski content, we know that
(4.81) Jim w < 00,
and hence, when k is large, we have
(4.82) H™(B(9Ey, 27 %)) < Cp2~kn—d+1),
We know that |Ry| C B(OEy,27%*2). Hence for k large,
H"(|Re]) < H"(B(0Eo, 27 "%))

(4.83) < 002(—k+3)(n—d+1) _ 012_k("_d+1)-

On the other hand,

(4.84) Tea)= D> HU o)< Y. Y HYo

O'ERk d QERy UGAd Q)

Now for each @ € Ry, we know that » ", ca, @) HY(0) = anq270,
where ay, g is the d-Hausdorff measure of the d-skeleton of a unit cube,
which is a constant that depends only on n and d. As a result, by (4.84),

(4.85) (Tr.a) Z an,a2 " =, 427 Ry,
QER

where Ry is the number of cubes in Ry.
Meanwhile, since the 1™ measure of each cube in Ry, is 27*" we have,
for k large,

Hn(|Rk|) - 0127k(n7d+1)

(4.86) iRy = 5 < S

— O 2kd—F

where the second inequality is by (4.83). Combined with (4.85), we get
(4.87) HYTra) < an.a2™ % x C1287% = Cra, i27% = 0, as k — oo,
which yields (i).

(ii) Fix any @ € Q. By definition, there exists Q' € Ay such that
Q' NEy # 0 and QNQ’ # (. Take y € Q' N Ey. Then by definition
of V(Q), B(y,27%) € V(Q). On the other hand, since Q° N |Ry_2| = 0,
we know that d(Q’,0Ey) > 27%+2. In particular, d(y, 0Ey) > 2 x 27,
which means B(y,2 x 27%) C V (V is as defined before Proposition 4.4).
Since Ej is a reduced minimal set in V| by Ahlfors regularity for reduced
minimal sets (cf. [8, Proposition 4.1]),

(4.88) Cyl27k < HYEyn B(y,27%)) < Cy27,
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where C5 is a constant that depends only on n and d. As a result, we
have

HY(Sp.aN Q) = an,d)27F < Cha(n, d)HY (Eo N B(y,27%))

(4.89) < Cha(n,dyHYE,NV(Q)). O

Next, let us construct the new sequence.
Proposition 4.9. Let E, U, and C be as in the statement of Theo-
rem 4.1, so that (4.1) and (4.2) hold. Let Ey and {Ey}i be obtained as
in Proposition 4.6. Let Sy ; be as defined above. Then for each € > 0,
there exist a sequence of deformations fr in R™ and up > 0 such that

(4.90) HY(E, N B(dFy, ur)) < e,
(4.91) fr =id in B(0Ey,u),
(4.92) fr(Ex) € B(Eg,/n27**1),
and for k large,

(4.93) H(fx(Ex)\Sk.a) < e

Proof: Fix any k > ko. Let Q}, Qk, Qk,;, Rk, T ; be as defined above.

Since Ej, C B(Ey,27%), Ex C |Qk|. And we know that FE}, is contained
in a deformation of E, hence E} has finite d-Hausdorff measure. As a
result, by a standard Federer—Fleming argument (cf. Section 4.2 of [9],
or Section 3 of [8]), there exists a Lipschitz map ¢y : |Qk| — |Qk| (the
Lipschitz constant Ly depends on k and Ly > 1) such that

(4.94) or(Q) CQ, YQ € Qx,
(4.95) o (Ek) C Sk,
(4.96) llow (@) — 2| < vn27F,
and

(4.97) or(z) =2, VYo € Skq.

In particular, we have ¢, (E)) C Sk,q-

We will modify ¢y, to fi so that fi satisfies (4.91).

Fix € > 0. Let u = H%| g,, then y is a finite measure. In particular,
we have

lim y(B(OEo, 7)) = p(8Eo) = H(Ex N OEy)

(4.98) r=0
< HYOEy) = HYOE) =0,

because 0Ey = OF.
Take uy, >0 such that pu(B(0Eo, 2u)) < (3Lk+2) %, that is, H(ExN
B(0Ey,2uy)) < (3Ly, + 2) 9. Also, take R > 1 so that Ey C B(0, R).
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For any = € B(0, R), set

0, x € B(an,uk)7
(4.99) t, = ¢ 4e08) 1 4 e B(OE, 2uy)\B(9Eo, u),
17 T € B(O’R)\B(6E072uk)a

and set fi(z) = (1 —ty)x + typr(z).
Then fi: B(0,R) — R™ is 2Ly + 1-Lipschitz. In fact, for any z, y,
suppose that d(x,0Eg) > d(y,0Ep). Then we get

(4.100)
I[fk(x) — fe(y)l
= [[[(1 = ta)z + tapr(z)] = [(1 = ty)y + tyer )]l
=[|[(1 —ta)(z — y) + ta(or(@) — 0u(Y)) + (tz — ) (0r(y) — Y)||
11— t2) (@ — I + [tz (@r () — er DI+ [tz — ) (Pr(y) — vl

(L= to)llz = yll + (ta) Lillz — yl| + [|(ta — ty)(0r(y) — )|
Lille = yll + [I(te — ty) (er(y) — )II-
To estimate the second term, when d(y,0Ey) > 2uk, we know that

t, = t, = 1, and this term vanishes. So suppose that d(y, 0Ey) < 2uy.
Let z € OEy be such that d(y,0Ey) = d(z,y). Then we have

(4.101) or(y) —y = wr(y) — er(z) + vr(2) — y.

Since OEy C T4, we know that ¢y, is identity on dEy, and hence ¢ (z) =

z. Therefore

llee(y) — yll = ller(y) —pr(z) + (z =yl < (1 + Li)llz =yl
= (14 Lg)d(y,0Fy) < 2(1 + L )ug.

\/\ IAIA

(4.102)

On the other hand, since d(z,0Ey) > d(y,0Ey), we have t, > t,, and

hence
o<t 1< (A02B) ) (Aw0R) )
= —|[d(x, 0Eo) — d(y, 0Ev)),
U
hence

1 1
(4.104) Itz — ty|| < —Ild(z,0Ey) — d(y, OEy)|| < — [z — y]|.
Uk Uk
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Combine (4.102) and (4.104) to obtain

1
1(tz = 1) (or(y) = W) < -l =yl X 21+ LicJus
< 2(1+ L)z —yl|-

(4.105)

Together with (4.100), we get

(4.106) k(@) = fe)I] < 3Lk + 2)||z — yl|.

We extend fi to a (3Ly + 2)-Lipschitz map in R™, so that fi = id
outside a compact set. Then fj is a deformation in R".
By definition, for x € Ej, we know that

(4.107) || f(z) =zl = |(1=ta)z+topp(x) —z|| < [|ox(x) —2|| < Vn27F,
where the last inequality is by (4.96). Hence
fx(Ex) C B(Ey,vn2™*) C B(Eo, Vn27*),

which yields (4.92).
Moreover, by definition of fi, fi(Ex\B(0Eo,2uy)) C Sk.4, and hence

H(fr(ER)\Sk.a) < H(fr(Ex N B(OEy, 2uy)))
< (3L + 2)*HYUEr N B(OEy, 2uz)) < e,
which gives (4.93). O

(4.108)

Now for k large, we will deform a big part of Ej to Ey:

Proposition 4.10. Let E, U, and C be as in the statement of Theo-
rem 4.1, so that (4.1) and (4.2) hold. Let Ey and {Ex}r be obtained as
in Proposition 4.6. Then for k large, for each € > 0, there exist s > 0
and a deformation hy, in U such that hy, = id in B(OFEy, sx) and

(4.109) HY(hy(ER)) < HY(Ep) + e

Proof: Since Ejy is a reduced and minimal in V' = B(0, R)\0Ey, the set
of regular points Egp of Ej is of full measure: H%(Eo\Eop) = 0. By
the Cl-regularity (Theorem 2.25) for regular points, for each z € Eyp,
there exists r, > 0 with B(z,2r;) C U such that for all r < r,, there
is a Lipschitz deformation retraction ¢, , from B(x,r) — Eo N B(z,7),
with Lipschitz constant no more than 2, and such that |p, . (y) — y| <
2dist(y, Ey). Note that H?(Eo\Eop) = 0.

We apply the Vitali covering theorem (cf. for example [21, Theo-
rem 2.8]) to the family B := {B(z,7) : * € Egp, 7 < 7.}, the mea-
sure 1 = H%| g, ,, and get that for any fixed € > 0, there exist a finite set
of points {z; }1<j<m C Eop and r; € (0,7,,) such that the balls B(z;, ;)
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are disjoint, B(xzj,2r;) N 0Ey = 0, and Hd(Eop\U;nzl B(zj,1;)) <
i Take t; < rjsothat HY(Eop\ ULy B(zj,t5)) < mircssor

Let r =min;r; and ¢ =min;(r;—t;). Set W={z: d(z,(Jj=,B(z;,r;)) U
Ey) >t} U B(0Ey, ). Then d(W, (Uj~, B(x;,7;))) > t. Define a Lips-
chitz map g: (2, B(z;,7;)) UW — R™ by g(z) = @u, », (z) when z €
B(z;,7;) and g(x)=x for x € W. Then g is 2-Lipschitz in each B(x;,r;)
and in W, and for any = € (JiX, B(z;,7;), we have

(4.110) lg(z) — | < 2dist(z, Ep).

For each k such that \/n27%+2 < t/2, we claim that the restriction
of g to [fe(Er) N (Ui, B(xzj,r;))] UW is 2-Lipschitz, where fj, and
uy are obtained as in Proposition 4.9 with respect to s53. So take
z,y € [fe(Er) N (U;n:1 B(xzj,r;))] UW. We know that g is 2-Lipschitz
in each B(zj,r;) and in W, hence the rest of the argument deals with
the case when x, y do not belong to the same B(x;,r;) or W.

If z, y belong to two different B(z;, ;)N fr(E%), we know that |z—y| >
t. Then by (4.110), we have

l9(z) —g(W)| < |g(z) — 2| + |z =yl + [g(y) — ¥l

4.111
(411) < 2(x, Fo) + 2d(y, Eo) + |z — yl.

But k is such that /n27 %2 <t/2, and 2,y € fr(Ex) C B(Ey, y/n2 ") C
B(Eo, i), hence

(4.112) lg(z) —g(y)| <t + ]z —y| < 2]z -y,

because |z — y| > t.
If € Wandy € B(xj,r;)N fr(E)) for some j, then we have similarly

lg(z) —g(y)| = |z — g(y)| < |z -yl + |y — 9(v)]

4113
(4.113) <o —y|+ 2d(y, o) < o — gl + /2 < 2z — ],

because d(y, Ey) < % and |z —y| > t.

Hence g is 2-Lipschitz on [ fx(Ex) N (72, B(z;,75)) ] UW. So we can
extend it to a 2-Lipschitz map g from R™ to R™.

We would like to control the measure of H¢( fi(Ej)\ (Ujzy B(zj,75))).
Since the major part of fi(E%) is included in S g, let us first estimate
H(Sk.a\(Ujer B(wj,75)))-

Take any Q € Qy and Q° N|Ry—2| = 0. Then by Proposition 4.8 (ii),
we know that for k > ko,

(4.114) HY(Ska N Q) < MH(EoNV(Q)).
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Now if k is such that 3 x \/n27% < ¢, for each @ such that
Q\(Ujx, B(zj,75)) # 0, we know that d(Q, (Uj~, B(zj,t;))) >t —
v/n27F and hence d(V(Q), (U1 B(x;,t5))) >t73><\/>2 ¥ >0, that
is V(Q) N (Ujz, B(xj,t;)) = 0. Hence we have

(4.115)

s G

< {HSean@) Qe @ @ n B =0,
) #0}
))=0)

::A{A%E:{Xvuw:cgerandva)m<LJzﬂmw ))-@}d%d

j=1

and Q\(G B(z;,75)

J

I
-

s

g}j@wyﬁEwﬂqQ»:QermquQy( Bl(zj,t;

j=1

S M { XV(Q)} d’H
mwﬂmw»%%

Note that > e, Xv(Q) < X gea, Xv(@) < 7", hence

s io ()

<M > v
(4.116) EAUZ Bt geu
g?WW/i (ﬁﬂ:7WWHdQ%\(LﬂﬂxﬁQO)
BEo\({J~, B(z;:t5)) j=1
< T'M x ‘ ‘

AM x 28 x 77 4 x 24

Next let us estimate H%(Sg,q N |Ri—2|). For each Q € Ay_s, we know
that

(4.117) Hd(Sk,d N Q) = 4n_d/Hd(Sk,27d NQ),
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hence
Hd(5k7dﬁ‘Rk_2D < Z Hd(sk,d N Q)
(4.118) Q& fi-
=4 Z HY(Sk—2,aNQ) < C54™ “HY(Th_2.4),
QERE 2

where C3 = C3(n, d) is the number of cubes @ € Ay that share a same
d-face. This is a constant that only depends on n and d.
By Proposition 4.8 (i), we know that for k large, H%(Sk,q N |Ri—2|) <

€ __
4x2d°

Recall that wu; is such that
(4.119) HY(fr(Er)\Sk,a)

hence for k large, we have
(4.120)
H(gr (fe(Er))) < H(91(Sk.a)) + H (g1 (f1(Er)\Sk.a)

<3800 (U Brsm) ) ) + Mo 00Sa 1 1B 1)
j=1

<«
4 x 247

319 (gu (e (Rl (U Bleson) ) ) ) 42000 BN
< HY(Ep)+2¢ {’Hd(sk,d N |Ry—2|)

+H (Sk,d\ (|Rk_2 |U ( [LJ B(x;, T'j)) ) ) +H (fr(Er)\Sk,a)

€ € € d 3
4% 2 4><2d+4><2d> = H(Bo) + 7e.

Note that gx o fx is the identity map in the neighborhood B(9Ey, sk)
of OFy, with s = min{uy,r}. But gi o fr might even not be a deforma-
tion in R™\QEy, because the image of gi o fi might touch OEy.

We still have to modify this sequence g o fr(Ex) to a sequence of
deformations of Fj, in U.

For this purpose, let Dy denote the convex hull of Ex\B(9Ey, si).
Then Dy, is a compact subset of U. In fact, since E, C U and Ej N
oU = JEy, we have d(E,\B(0Ey,si),0U) > 0. Since U is convex,
the map d(-,0U): U — R is convex. Hence d(Ex\B(OEy, si),0U) > 0
implies that d(Dy,0U) > 0.

< H(Ep) +2d< +
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Let 7 be the nearest point projection to the convex set Dj. Then
7 is 1-Lipschitz (cf. [4, Proposition 5.3]). We define hy: E, — (Ei N
B(0Eo, sk)) U Dy by

x, x eEkﬁB(an,sk),

(4.121) hi(z) = {ﬂk ogro fu(z), x € E,\B(JEy, si).

Note that by definition, hy, is Lipschitz both on Ey N B(OEy, s3) and
E\B(0Ey, si;). On their intersection E,NOB(9Ey, si), by definition we
know that gi o fx(z) = x, and since Ey N IB(0Ey, sx) C Dy, we know
that

(4.122) g 0 gk © fr(x) = mp(x) =z,

hence hy, is well defined and Lipschitz.

Set 8, = d(Dy,8U). Let C, = B(Dx, 30x). Then Cj is a compact
convex subset of U.

Then we set hy(z) = z for € U\C}, and then extend hy, to a Lipschitz
map U — U. Then Wy, := {x € U : hy(x) # z} is compact in U, and
hence hy (W) U Wy, is compact. Therefore, hy, is a deformation in U.

Moreover, we know that

H (e (Ey)) < H(hi(Ex\B(9Ey, s1,))) + H(hy.(Ex, N B(OEy, s1,)))
= H(m, 0 g0 fr(ER\B(0Eo, 1)) + H'(Ex N B(9Ey, s1))
(4123) H(gr o fu(Ex\B(OEq, 1)) + H (B N B(OEo, ux))
< HY(

d _

gkofk(Ek))+4x2d

3 €

< HUE, - — Y E .
_H(o)+4e+4x2d<7'l(o)+€ O

Now after Proposition 4.10, for any € > 0, take k large and hy as
obtained in Proposition 4.10 such that (4.109) holds. Then since Fj, €
Fi(E,U), so does hi(Ey). Since € is arbitrary, we have

4.124 inf  HYF) <HYUE)) < inf HYF).

( ) FeF;(B,U) (F) < 7Y 0)7F€f(E,U) (F)

Then by (4.27), we have

(4.125) inf  HYF)< inf HYF).
FeF(E,U) FeF(E,U)

On the other hand, since F(E,U) C F(E,U), we have that (i) of Theo-
rem 4.1 follows directly. And (ii) is a direct corollary of (i).
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Theorem 4.11. Let U C R"™ be a bounded convex open set and E be a
reduced closed set with finite d-Hausdorff measure such that E C U. Let
C' denote the convex hull of E. Suppose that (4.1) holds and

(4.126) there exists a bi-Lipschitz map ¢: R" — R"
such that v~ (ENAU) C |Ay.a_1| for some k € N,
where Qo denotes the unit cube [0,1)". Then
(i) inf gz oy HUEF) = inf pe om0y HAUF).
(ii) If E is a d-dimensional minimal set in U, then

(4.127) HYE)= inf HYUF).
FeF(E,U)

Remark 4.12. (1) We will see in Theorem 4.13 that condition (4.1) is
not needed.

(2) Condition (4.126) can be relaxed, with essentially the same proof,
but with more technical details. Here we only give proof under this hy-
potheses, which is enough for purpose of use.

Proof of Theorem 4.11: Note that in the proof of Theorem 4.1, we only
used condition (4.1) before Proposition 4.8. Hence we can obtain the
sequence {Ey} C F;(E,U) and Ey C U such that (i)-(iii) in Proposi-
tion 4.6 hold.

Set

(4.128) Q) ={Q € Ap: QN (Bo) # 0}

and

(4.129) Qr=1{Q € Ay : 3Q" € Q). such that Q N Q" # 0}.

Let |Qk| = Ugeo, @ and for each j < n, let Q ; be the set of all j-faces

of elements in Qy, and let Sy ; = (J,eq, ;0 denote the j-skeleton of Q.
Set

(4.130) R :={Q €Ay :Qny  (EyNU) # B}.

Let |Ri| = Uger, @, and for each j < n, let Ry, ; be the set of all j-faces
of elements in Ry, and let 7y, ; = UaeRk,j o denote the j-skeleton of Ry.

Then by the same argument as in Proposition 4.8 (which only used
the hypothesis that E N JU is of finite (d — 1)-Hausdorff measure, and
this is also guaranteed by (4.126)), we get that

(4.131) lim H*(Tx.a) =0
k—oc0
and there exists M > 0 which depends only on n and d such that, for
each k > kg, and each Q € Qy, such that Q° N |Rg—_2| = 0,
(4.132) HY(Sk,aN Q) < MH (Y™ (Eo) NV(Q)).
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Now the same argument as in Proposition 4.9 gives that, for each ¢ >
0, there exist a sequence of deformations fj in R™ and uj > 0 such that

(4.133) H (™ (B N B(OEy, up))) < €,
(4.134) fr =id in =Y (B(0Ey, uy)),
(4.135) fe(@™ (By)) € o (B(Eo, V275 ),
and for k large,

(4.136) H(fu (™ (Er))\Sk,a) < €.

We apply 9 to (4.132)—(4.136) and get that, for each € > 0, and for
k large, we have

(4.137) for each @ € Qy, such that Q° N |Rx_2| = 0,

HY(P(Ska N Q) < MHUEo Np(V(Q))),

where M only depends on n, d, and the Lipschitz constant L of v; and
there exist deformations f, = o fi in R™ and uy > 0 such that

(4.138) HY(E, N B(0Ey, ux)) < €,
(4.139) fr. =id in B(9Eo, uy),
(4.140) fi(Bx) € B(Eg, Lyn27*1),
and

(4.141) H(fi(Br)\¢(Ska)) < €

Then by exactly the same operation as in Proposition 4.10, we deform
the major part of f{(E})) to Eg by a map gy, so that H%(gy o f1.(Ex)) <
HA(Ey) + Ce, where C only depends on the Lipschitz constant L of ).
Then we similarly define the deformation hy in U as in (4.121) replac-
ing fr by f;. Then we get the same conclusion as in Proposition 4.10.
And thus Theorem 4.11 is proved. O

Finally we will get rid of condition (4.1).

Theorem 4.13 (Upper semi-continuity). Let U C R™ be a bounded con-
vex open set and E be a closed set in U with finite d-Hausdorff measure.
Let C denote the convex hull of E. Suppose that (4.126) holds. Then

(i) infpcz g0 HYUF) = inf pe 0y HO(F).

(ii) If E is a d-dimensional minimal set in U. Then

(4.142) HYE)= inf HYUF).
FeF(E,U)
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Proof: In case that U is strictly convex, then (4.1) holds directly, hence
(4.126) is enough for getting conclusions (i) and (ii) of Theorem 4.11.

Now if U is not strictly convex, modulo translation, we can suppose
that 0 € U.

Set p: R™ — [0, 00) be the Minkowski functional of U: p(z) = inf{r >
0:Z € U}. Then pis convex; p(Az) = Ap(z), YA > 0,Vz e R"; U = {z €
R™ : p(x) < 1}; and there exists M; > 0 so that p(x) < M;|z|, Vo € R”
(cf. [4, Lemma 1.2]). Since U is bounded, there exists My € (0, M7) so
that p(z) > Ms|z|, Vo € R™.

Let us prove that p is M;-Lipschitz. That is

(4.143) lp(z) —p(y)| < M|z —y|, Vr,yeR"

For any =,y € R, if p(z) = p(y), then (4.143) holds directly. Other-
wise, suppose without loss of generality that p(x) > p(y). Set z = x —y.
Then since p is convex and homogenous, we know that

(4.144) p(x) —p)| _ p@) —ply) _ ply+2) —ply) _pz) _ o

|z =y Eal K ~ ol T
which again gives (4.143).
Now for any € > 0, set p.(z) = p(z) +e|z|. Let U. = {z € R" : p.(z) <

1}. Note that U, is strictly convex. Indeed, for any z,y € OU,, we have
pe(z) = pe(y) =1, and for any « € (0, 1), we have

(4.145)  pe(azx+ (1 —a)y) = plaz + (1 — a)y) + elax + (1 — a)y|.

Since p is convex, p(ax + (1 — a)y) < ap(x) + (1 — a)p(y); and since | - |
is strictly convex, we have |ax + (1 — o)y| < az| + (1 — a)|y|. Hence

pe(oz + (1 —a)y) < ap(x) + (1 = a)p(y) + e(efz] + (1 = a)ly|)

(4.146) = ape(z) + (1 — a)pe(y).

As aresult, U, is strictly convex, 0 C U, C U, and p, is the Minkowski
functional of U.,.
Let f.: U — U.: fo(z) = 222 Then we know that

pe()”
(4.147) pe(f(z)) = pe (xi((z))) = }i(é))pe(x) = p(x).

Hence f. is a bijection.
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Let us estimate the bi-Lipschitz constant of f.. Take any z,y € U,
we have

|fs(x) - fs(y)l = |z

(4.148)

Note that

p(x) 1 1
(4.149) pe() € {1 —|—€M1 1+ GMJ

p(z)
Pe(2)

[z —yl < [z —yl < [z —yl,

1+M 1+6M2

and

p(z) ‘

p(z) +elz[  p(y) +elyl
)

p()(p(y) + €ly|) — p(y)(p(x) + €|z])
(p(z) + e[z|)(p(y) + €lyl)

— ey p(2) |yl — p(y)|=||
() + dal) (o) + ely])
lwlp(@)ljy] — |z
= €[<p<x> T efa)) (p(w) + ely])

lyllz|[p(x) — p(y)]
T o) + el (0l >+e|y|>}

:6{ : )Iyl p(z)

y) + €lyl p(x) + €|z

p(z)  py)
Pe(r)  pe(y)

\—|y|

= |y

(4.150)

|IIyI ]

L o]

p(y) + €|yl p(z) + €lz|

ol gy ol
Se-p(y)‘y |+p(y)p(fﬂ) p() p(y)l}

r 1
<e f\y—fc|+<M) M1Ix—y|}

M1+Mz}|x_ |
M2 yl-
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(4.148), (4.149), and (4.150) give

{ 1 {M1+M2H|x_y|§|f6(x)—fe(y)|

— €
1+eM M2
(4.151) M 2
<[ S e
=Tred U JJFTYE

Hence we have that f. is L¢-bi-Lipschitz, with L, — 1 as e — 0. As a
result we have

(4.152)  F(f(E),U.) = {f(F): F € F(E,U)} and
F(f(B),Ue) = {fe(F): F € F(B,U)}.

Since U, is strictly convex, we can apply Theorem 4.11 to the open
set U and the set f(E), and get

(4.153) inf  HYF) = inf  HYF),
FeF(fe(E),Ue) FeF(f(E),U.)

hence by (4.152),

4.154 inf HUf(F))= inf HYL(F)).

( ) re (fe(F)) re (fe(F))

Note that for each F' C U, since lim._,g L(e) = 1, we have
(4.155) HUF) = lim H(fe(F)),

hence (4.154) gives conclusion (i) of Theorem 4.13. Then conclusion (ii)
follows directly. O

5. Uniqueness properties for 2-dimensional minimal
cones in R3

In this section we prove the topological and Almgren uniqueness for
all 2-dimensional minimal cones in R®. Hence in the following text, Alm-
gren and G-topological uniqueness refer to Almgren and G-topological
uniqueness of dimension 2.

5.1. Planes.

Theorem 5.1. A 2-dimensional linear plane P is Almgren and G-topo-
logically unique in R™ for all n > 3 and all abelian group G.

Proof: Let P C R™ be a 2-dimensional plane containing the origin. By
Propositions 3.2 and 3.4, to prove that P is Almgren and G-topologically
unique, it is enough to prove that P is G-topologically unique in the unit
ball B.
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Suppose that E is a reduced G-topological competitor of dimension 2
for P in B, so that

(5.1) H2(ENB) =H*(PN B).

By Remark 3.3 (5), we know that E is G-topological and hence Almgren
minimal in B. By the convex hull property for Almgren minimal sets,
E N B is contained in the convex hull of £E N 9B = P N 0B, which is
PN B. Hence ENB C PN B. Then since both P and E are reduced
sets, (5.1) gives that £ = P. Hence P is G-topologically unique, and
hence Almgren unique. O

5.2. The Y sets.

Theorem 5.2. Any 2-dimensional Y set is Almgren and G-topologically
unique in R™ for all n > 3 and all abelian groups G.

Proof: By Propositions 3.4 and 3.5, it is enough to prove that Y sets are
G-topologically unique in R3.

So let Y be a 2-dimensional Y set in R®. Modulo changing the co-
ordinate system, we can suppose that the spine of Y is the vertical
line Z = {(x,y,2) € R® : * = y = 0}, and that the intersection of ¥
with the horizontal plane @ := {z = 0} is the union Y7 of the three
half lines Roq,, 1 < @ < 3, where a3 = (1,0), as = (—%,?), and
as = (—%, —?) under the coordinate in Q.

We regard @Q and Z as subspaces of R3, and write R® = Q x Z.

Then Y =Y; x Z.

By Proposition 3.2, it is enough to prove that Y is G-topologically
unique in the cylinder D := Bg(0,1) x (—1,1).

For t € (—1,1), let a! = (a;,t) € Q x (—1,1).

Let f: R® — R be given by f(z,y,2) = 2. For any set F' C R?, and
each t € R, set F; = f~1{t} N F the slice of F at level ¢.

Let aja’ denote the open minor arc of circle of 9B¢(0,1) x {t} = 0D,
between aj and a}, 1 < i # j < 3. Then these arcs belong to R3\D.

K3
—

Since afa?, 1 < ¢ < j < 3, lie in three different connected compo-
nents of R3\Y, for any 2-dimensional G-topological competitor F of Y’
with respect to D, they also lie in three different connected components
of R3\ F. In particular, they belong to three different connected compo-

nents of D\ F.

Lemma 5.3. If F is a G-topological competitor for Y of dimension 2
with respect to D, then for eacht € (—1,1), F;ND; must connect the three
points in Yy N 0D, = {al, 1 < i < 3}, i.e. the three points al, 1 <i <3
lie in the same connected component of (F; N Dy) U{al, 1 <i < 3}.
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Proof: Take any t € [—1,1].

Suppose that the three points af, 1 <14 < 3, do not belong to the same
connected component of (F;ND;)U{at, 1 <i < 3}. Suppose for example
that the connected component of (F; N D;)U{al, 1 <4 < 3} contains a}
but does not contain a} and a}. Then there exist two relatively closed
subsets Cy and Cq of (F; N Dy) U{al, 1 <i < 3}, so that Cy N Cy = 0,
C1UCy = (F;NDy)U{al, 1 <i <3}, and a} € Cy, ab,al, € Cy (cf. [24,
§37, Ex. 4]). Since (Fy N Dy) U {af, 1 < i < 3} is compact, so are Cy
and Cy. Hence there exists a curve «: [0,1] — D; with v(0),~(1) € 0D,
which separates C; and Cy. That is, im~y C D\((F; N Dy) U {at, 1 <
i < 3}), and the sets C and {a},al} belong to different connected
components of D;\ im .

As a consequence, there exist to,t3 € [0, 1] such that v(¢;) belong to

the open minor arc of circle aja’ of 9D, between af, a}, j = 2,3. As a
result, b; := 7(¢;) belong to different connected components of R3\Y,
and hence they belong to different connected components of R*\Y, since
Y=Y, xR

Since Y is a cone, b; € Y, we have the segment [b;,2b;] C R*\Y. Note
that (b;,2b;] C R3\D and Y\D = F\D, hence (b;,2b;] C R®\F. Since
bj € Di\F;, we know that b; € R3\F as well, hence [b;, 2b;] C R3\F.

Let 8 denote the curve [2bg, ba] U7y ([t2, t3])U[bs, 2b3]). Then 8 C R3\F,
and it connects 2b, and 2b3. Hence the two points 2b, and 2b3 belong to
the same connected component of R3\ F.

On the other hand, we know that b;, j = 2,3, belong to different
connected components of R®\Y. Since [bj, 2b;] C R3\Y, j = 2, 3, we have
that 2b;, 7 = 2,3, belong to different connected components of R3\Y.
This contradicts the fact that F' is a G-topological competitor for Y of
codimension 1 (which, by Remark 3.2 of [15], corresponds to Mumford—
Shah competitors, as defined in [6, Section 19]). O

Proposition 5.4. Let E C Bg(0,1) be a closed set with finite H' mea-
sure such that EN0Bg(0,1) = {a1,a2,a3}, and a;, 1 < i < 3, belong to
the same connected component of E. Then

(5.2) HY(E) > H' (Y1 N Bg(0,1)),
and equality holds if and only if E = Y1 N Bg(0,1) modulo a H'-null set.

Proof: Let B denote Bg(0,1) for short. Let E be as in the statement.
Let F be the connected component of E that contains {a1, as,as}. Then
HU(Fy) < HYE).
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If H'(E) = oo, then it is automatically true. Otherwise, it is enough
to prove that, for any € > 0,

(5.3) H(Fy) > H (Y1 N Bg(0,1)) Z?—L [0, ai])

Note that, for this purpose, it is enough to look at € € (0,||a; — az]|).

So fix € € (0,]lar — az|]). Let F = {y C Fy : 7 is connected and
closed, and {aj,as} C 7}, and let 412 C F be such that H'(y12) <
infyer 7'[1(’7) + %

Next, we will find a connected set 73 such that ag € 3, v3 U y12 is
connected, and y3 N1z is a single point.

If az € 712, we just set v3 = {as}. Otherwise, let v/ = Fo\7y12. Then
~" U712 is connected and a3 € v'. Let 44 be the connected component
of v/ that contains a3. Then we claim that 4 U 12 is connected. In
fact, if v4 = 4/, then it is clear. Otherwise, suppose that 4 U 12 is
not connected. Then, since both 4 and -1 are connected, they are the
two connected components of 4 U712, and hence there exist two disjoint
open sets U; and U, of R? such that 74 C U and 12 C Us. Similarly,
since 4 is a connected component of v/, there exist two disjoint open
sets Us and Uy of R? such that v, C Us and Y \v4+ C Uy. Then let
U=U;NUs and V =U3UUy;. Then U and V are disjoint, and v4 C U,
Fo\v4 = 712U~ \y4 C V. This contradicts the fact that Fy is connected.

Hence ~y4 U 12 is connected. As a result, 4 N y12 # (), because 12
and 74 are both closed and their union is connected.

Take p € 34 Ny. Let 73 = 74 U {p}. Then 73 is connected, contains
az, and 3 Ny12 = {p}. As a result, H'(y3) > H([p, as)).

Let v = v12 U~s. Then v C Fpy, and thus
(5.4) H'(Fo) = H'(y) = H'(y12) + H' (v3) = H' (12) + H' (p, as)).

Recall that y12 C F is such that H'(y12) < infyer H(y) + §, where
F = {y C Fy : v is connected and closed, and {aj,az2} C 7}. Since
€ < |la1 — az||, we know that at least one of a1, ap is in y12\B(p, §).
But p € 712, which is connected, hence 12 N B(p7 %) connects p to
the boundary 0B (p7 5) As a result Hl(’ylg N B(p, ;)) > 5, and thus
H! (712\B(p, g)) < inf,ex H'(v). Hence by definition of F, the closed
set y12\B (p, 5) does not contain any element in F.

Recall that at least one of ay, as is in 712\B(p, %) Without loss
of generality we suppose a; € ~v12\B (p7 %) Let 1 be the connected
component of 12\ B (p, g) that contains a;. Since 7315 is closed, v; is
also closed. Since 71 is a closed connected subset of 12\ B (p, g) which
does not contain any element in F, and a; € 71, by definition we get
as € v1. In particular, y12\y1 # 0.
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We claim that v, N 8B(p, %) # (. Otherwise, let Uy = B(p7 %)7 U, =
B(p, %)C, then Uy, i = 1,2, are disjoint open sets, and «v; C Us. On the
other hand, since 7, is a connected component of v12\ B (p, g), there exist
disjoint open sets V7 and V5 such that y; C V4 and (712\3(]97 5))\71 cV,
((’}/12\3 (p7 %))\71 might be empty, but it does not matter). Then we
have Y1 C V1 n U1 and ’)/12\’}/1 C [(’712\B(p, %))\’Yl] U [’}/12 N B(p, %)} -
Vo U Us. But we already know that as € v12\v1 # 0, hence the above
contradicts the fact that 1o is connected.

Thus v1 N aB(p, %) # 0. Let pr € y1 N aB(p, %), then [p,p1] U~ is
a connected set that contains p and a;. As a result, H'([p,p1] Uy1) >
H!([p, a1]), and hence

(5:5)  H'(n) 2 H(par) = H (ppa]) = H (o)) — 5.

For as, we have two cases:

If as € ng\B(p7 %) as well, set o be the connected component of
712\B(p, %) that contains as. Then v; N2 = @ and the exact same
argument as above gives

(5.6) H'(72) = H'([p, az]) —

N

Ifas € ’ylgﬁB(p, %), then let v5 = fylgﬁB(p, %) #* (. Then Y1MNye = 0,
and (5.6) holds automatically, because H*([p, as]) — § < 0.

Now in both cases, 7;, i = 1,2, are disjoint parts of 12, and (5.5) and
(5.6) hold. Hence we have

(5.7 H'nz) =H (n) +H () = H ([p,ar]) + H' ([p,as]) — e

Combined with (5.4), this yields

3
(58) FO Z Z pa a’L

Obviously, the point p belongs to B. And it is well known that the
quantity S22 H'([p,a;]) attains its minimum if and only if p is the
Fermat point of the triangle Ay, 4,45, Which is just the origin 0. In this
case,

3
(5.9) > HN([0,ai]) = H (YN B).

=1



52 X. LiaNnG
Together with (5.8) we have

HYE) > H (Fo) > > H([p.ai]) — €
(5.10) =

Y

ZHl([O,ai}) —e=H'(Yi1NB) —¢,

where the third inequality only holds when p = 0. Since this is true
for arbitrary € € (0, ||a; — az||), we have that (5.2) holds, and we have
equality if and only if p = 0. This leads to the conclusion of Proposi-
tion 5.4. O

Now let us return to the proof of Theorem 5.2. Let F' be a reduced
G-topological competitor of dimension 2 of Y with respect to D such
that

(5.11) H2(FND)=H*(YND),

we would like to show that FF =Y.
By Lemma 5.3, we know that F} connects the three points al, 1 <14 <
3. Then Proposition 5.4 tells that

(5.12) HY(Fyn Dy) > HY (YN Dy).

We apply the coarea formula (cf. [9, 3.2.22]) to the Lipschitz func-
tion f and the set F N D, and get

(5.13) H*(FND) 2/1 H'(Fy N Dy) 2/1 H (YiNDy) =H*(Y ND).
-1 -1

Then (5.11) tells us that

(5.14) HY(F, N Dy) =H (Y, N Dy) for ae. t € (0,1),
and hence
(5.15) F,NnDy=Y;ND, for ae. t € (0,1)

by Proposition 5.4. Hence we know that FND =Y N D modulo H2-null
sets. But F is reduced, hence FND =Y ND. Hence Y is G-topologically
unique in D, and thus Y is G-topologically unique in R? (by Proposi-
tion 3.2), and therefore also in R™ (by Proposition 3.4).

By Proposition 3.5, Y sets are also Almgren unique in R™. O

Remark 5.5. It is also possible to prove Theorem 5.2 by paired cali-
bration (cf. [13] and [3]). In fact, we will use this method to prove the
uniqueness for T sets in R3 in the next subsection, and interested readers
can easily find a similar proof for Y sets. The proof in this section is
more elementary in some sense, mainly using elementary geometry.
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5.3. The T sets.

Theorem 5.6. Any 2-dimensional T set is Almgren and (Z-)topologi-
cally unique in R™ for all n > 3.

Proof: By Propositions 3.4 and 3.5, it is enough to prove that T sets are
topologically unique in R3.

Let T be a T set centered at the origin in R3. That is, T is the cone
over the 1-skeleton of a regular tetrahedron C' centered at the origin and
inscribed in the closed unit ball B.

By Proposition 3.2, to prove that T is topologically unique in R3, it
is enough to prove that T is topologically unique in B. So suppose that
FE is a reduced topological competitor of dimension 2 for T in B such
that

(5.16) H?*(ENB) =H*(TNB).

By Remark 3.3 (5), we know that E is minimal, and thus is rectifiable.
Hence for almost all z € E, the tangent plane T, F exists.

As mentioned in the last subsection, our proof will profit from the
paired calibration, so let use first give necessary details.

Denote by a;, 1 < i < 4, the four singular points of TN JB. Let €,
1 <4 < 4, be the four equivalent connected spherical regions of dB\T,
Q; being on the opposite of «a;.

Since E is a topological competitor for 7" in B, we know that 0B\ E =
OB\T = U?:l Q;, and the four ; live in different connected components
of B\E.

For 1 < i <4, let C; be the connected component of B\F that con-
tains Q;. Let E; = 0C;\0B = 0C;\$;. Then we know that the four Cj,
1 < i <4, are disjoint and E; C E. Also note that E; N Q; C ENJB =
T N OB is of H? measure zero, hence we have the essentially disjoint
unions

(5.17) 0C; = E;UQ,;, 1<i<4.
Since C; are disjoint regions in R?, we know that for almost all z € E,
they belong to at most two of the E;’s. So for i # j, let E;; = E; N Ej.

Let E;y denote El\(UﬂéZ EZ-), the set of points x that belong only to F;.
Let F'=J1<;<4 Ei C EN B, then we have the disjoint union

(5.18) F= { U Ew} u{ U EJ}

For points & € 9C;, let n;(x) denote the normal vector pointing into
the region C;. Note that since 0C; C FUJB, it is rectifiable, and hence
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n;(x) is well defined for H?-a.e. z € OC;. Moreover, for i # j, we have
ni(x) = —n;(z) for H?-a.e. z € Ej;.
Now by Stoke’s formula, we have, for 1 <14 <4,

(5.19) 0= /(BCi (@i, ni(x)) dH"(x)
_ i, N (T 2(y a;, ni(x va
_/E< ()>dH()+/Q< (2)) dH?(x)

and hence

(5.20) /E (—as,mi(x)) dH2(x) = / (g, mi()) AH2(x) = H2 (mi(),

1 i

where 7; is the orthogonal projection from R? to the plane orthogonal
to a;, 1 < i < 4. We sum over 4, and get

(5.21) > / (—ai,ni(x) dH?(x) = > H (mi(Q
1<i<a? B 1<i<4
For the left-hand-side, by the disjoint union (5.18), we have

(5.22)
S [ o) )

1<i<4

=Z/ iy ni)) A Z/ i) () )|

- Z / al,nl d’f‘[z( )

+ Z /E“(<—ai,m(m)> + (—a;,n;(x))) dH(x)
B 1<z;'<4/E‘ @ B 1<i<j<4/E.A<nj(m)7ai — a;) dH*(z)
< l|a;|| dH? (z) \ai — a;|| dH?(x)

> f e 52 [

> lailH (Bio)+ Y Hai—aj\l?-l (Eij)-

1<i<4 1<i<j<4
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Note that ||a;|| =1, 1 < j <4, and ||a; — a;|| = 2V2 hence

V3
2v/2
azunz dH2 H2 ZO H2( )
Z/ 1;4 1<;j§4 \/3
(5.23) < &{ Z H*(Eio)+ Z HQ(Eij)}
\/§ 1<i<4 1<i<j<4

:Q\f#( F) < 2\[11

V3 V3

where the second last equality is again because of the disjoint union (5.18).
As a result, we have

2(ENB),

V3
(5.24) H>(ENB) > ﬁlé4ﬂ2(wi(ﬂi)).

On the other hand, either by chasing the condition of equality for the
inequalities of (5.22) and (5.23) (since T is a topological competitor of
dimension 2 for itself), or by a direct calculation, it is easy to see that

(5.25) H>(TNB) = Z H2(mi(Q

1<z<4

By hypothesis (5.16), we know that for the set F, equality in (5.24)
holds, and hence all the inequalities in (5.22) and (5.23) are equalities,
which implies, in particular, that

For almost all x € E;;, we have T, FE;; 1 v; —v;.
(5.26) Denote by P;; the plane perpendicular to v; — v;.
Then for almost all x € E;;, we have T, F = T, E;; = P;j;

(5.27) For all j, H*(Ejo) = 0;
4
(5.28) H? (E nB\|J Ej) =0.
j=1

Now since F is minimal, if z € Ep N B° is a regular point of £, then
by Theorem 2.25, there exists » = r(x) > 0 such that in B(z, ), E is the
graph of a C'* function from T, E to T, E+. Hence for ally € ENB(x, 1),
the tangent plane T, E exists, and the map f: ENB(z,7) = G(3,2): y —
T,E is continuous. But by (5.26), we have only six choices (which are
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isolated points in G(3,2)) for T, E, hence f is constant, and Ty E = T, F
for all y € EN B(x,r). As a result,

(5.29) EnB(z,r) = (TuF +z)N B(z,r)

is a disk parallel to one of the F;;.
Still by the C'-regularity Theorem 2.25, the set Ep N B° is a C'' man-
ifold, and is open in E. Thus we deduce that

(5.30) Each connected component of Ep N B° is part of a plane
that is parallel to one of the P;;.

Let us look at Ey. First, Ey # (): otherwise, by Corollary 2.28 (ii),
ENB° = Ep N B°, and hence is a union of planes. But £ N 9B does
not coincide with any union of planes.

Take any x € Ey, then by the C'-regularity around Y points (Theo-
rem 2.25 and Remark 2.26), there exists r =r(z) > 0 such that in B(z,r),
E is the image of a C! diffeomorphism ¢ of a Y set Y, and Y is tangent
to E at x. Denote by Ly the spine of Y and by R;, 1 < i < 3, the
three open half planes of Y. Then ¢(R;), 1 < i < 3, are connected sub-
sets I/p, hence each of them is a part of a plane parallel to one of the P;;,
1 <i< j<4. Asa consequence, p(Ly) N B(z,r) is an open segment
passing through z and parallel to one of the spines D;, 1 < j <4, of T.
Here D; is the intersection of the three Pj;, i # j.

As a result, Ey N B° is a union of open segments I, I, ..., each of
which is parallel to one of the D;, 1 < j < 4, and every endpoint is
either a point on the boundary 0B, or a point of type T. Moreover,

(5.31) For each « € Ey such that T, Ey = D;, there exists r > 0
such that, in B(z,r), E is a Y set whose spine is « + D;.

Next, since we are in dimension 3, the only other possible type of
singular point is of type T. So we are going to discuss two cases: when
there exists a T point, or there are no T points.

Case 1: There exists a point x € Er.
Lemma 5.7. If there exists a point x € Ep, then TN B° = E.

Proof: By the same argument as above, and by Theorem 2.25 and Re-
mark 2.26, the unique blow-up limit C,, E of E at  must be the set T,
and there exists r > 0 such that in B(z,r), E coincides with T'+ x. As
a result, for each segment I;, at least one of its endpoints is in the unit
sphere, because two parallel T sets cannot be connected by a Y segment.
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Hence all the segments I; touch the boundary 0B. That is,
(5.32) L\{{z}UdB) C Ey.

Denote by L;, 1 < i < 4, the four spines of T+x. Then L;NB° C Ey,
because L; N B(x,r) is part of some I; C Ey, which already has an
endpoint z that does not belong to 9B, hence the other endpoint must
lie in 0B, which yields I; = L; N B°.

Now we take a one parameter family of open balls By with radii r <
s <1, with B, = B(z,r), By = B°, such that

(i) Bs G By for all s < s';

(i) MNisess Bt = Bs and | J;oy By = Bs for all r < s < 1.

Set R =inf{s > r, (T'+z)N Bs # E}. We claim that R = 1.

Suppose this is not true. By definition of By, we know that the four
spines and the six faces of T+ x are never tangent to 0B for any r <
s < 1. Then we know that 0BgpN(T+x) C EpUEy. In fact, if y belongs
to one of the L;, then by (5.32), y € L;,NOBs C Ey. Otherwise, suppose
y does not lie in the four L;, 1 < ¢ < 4. Then y belongs to x + P;; for
some ¢ # j. As a result, for any ¢ > 0 small, we know that N B(y,t) N
Br = (x+ P;;) N B(y,t) N Bg. Note that the set (x+ P;;) N B(y,t) N Bg
is almost a half disk when t is sufficiently small, hence in particular
E N B(y,t) cannot coincide with a Y set or a T set, and thus y € Ep.

Ify € Ep, theny € z+P;; for some i # j. Then T, E = P;;. By (5.30),
and the fact that R < 1, there exists r, > 0 such that B(y,r,) C B°
and ENB(y,ry) = (P;j +y) N B(y,ry). In other words,

(5.33) there exists r, >0 such that E coincides with T+ in B(y, 7).

If y is a Y point, then it lies in one of the L;. By the same argument
as above, using (5.31), we also have (5.33).

Thus (5.33) holds for all y € dBr N (T + x). Since dBr N (T + ) is
compact, we get an r > 0 such that ENB(Bpg,r) = (T'+x)NB(Bgr,r). By
the continuous condition (ii) for the family Bj, there exists R’ € (R, 1)
such that Br C B(Bg,r). As a consequence, EN Br'=(T + ) N Bp:.
This contradicts the definition of R.

Hence R = 1, and by definition of R, we have (T +x)NB° = ENB°.
Since FN OB = T NOB and FE is closed and reduced,  must be the
origin. Thus we get the conclusion of Lemma 5.7. O

Case 2: Er = (). In this case, the same kind of argument as in Lemma 5.7
gives the following:

Lemma 5.8. Let x be a Y point in E and T, Fy = D;. Denote by Y;
the Y set whose spine is D; and whose three half planes lie in Pij, i # j.
Then (Y; +2)NB=E.



X. LiANG

But this is impossible, because £ N JB = T N 0B, which does not

contain (Y; +z) N 9B for any z and j.
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Hence we have EN B = T N B, and thus T is topologically unique
B. We thus get Theorem 5.6. O
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