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RELATING SECOND ORDER GEOMETRY OF

MANIFOLDS THROUGH PROJECTIONS AND

NORMAL SECTIONS

P. Benedini Riul and R. Oset Sinha

Abstract: We use normal sections to relate the curvature locus of regular (resp. sin-

gular corank 1) 3-manifolds in R6 (resp. R5) with regular (resp. singular corank 1)
surfaces in R5 (resp. R4). For example, we show how to generate a Roman surface by

a family of ellipses different to Steiner’s way. We also study the relations between the

regular and singular cases through projections. We show that there is a commutative
diagram of projections and normal sections which relates the curvature loci of the

different types of manifolds, and therefore, that the second order geometry of all of

them is related. In particular, we define asymptotic directions for singular corank 1
3-manifolds in R5 and relate them to asymptotic directions of regular 3-manifolds

in R6 and singular corank 1 surfaces in R4.
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1. Introduction

The study of second order geometry of manifolds in Euclidean spaces
dates as far back as Gauss. By second order geometry we refer to any
geometrical aspects which can be captured by the second fundamental
form or, in modern terminology, by the 2-jet of a parametrisation of the
manifold. Concepts such as elliptic/parabolic/hyperbolic points, normal
curvature, asymptotic directions, and some aspects of the contacts with
hyperplanes and spheres are included in the study of second order ge-
ometry.

In his seminal paper [15], Little studied second order geometry of
immersed manifolds in Euclidean spaces of dimensions greater than 3.
In particular, special attention was given to immersed surfaces in R4.
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Little defined the second fundamental form and the curvature locus,
which is an ellipse in this case. The curvature locus is the image in the
normal space by the second fundamental form of the unitary tangent
vectors. It can also be seen as the curvature vectors of normal hyperplane
sections of the surface. The curvature ellipse is not an affine invariant
but its topological type and its position with respect to the origin is an
affine invariant. Besides, all the second order geometry is captured by
this object.

The introduction of Singularity Theory techniques to study the dif-
ferential geometry of manifolds in Euclidean spaces has given a great
impulse to this subject in the last twenty years. There are many papers
devoted to regular surfaces in R4 such as [9, 10, 13, 17, 18, 22, 23, 24],
amongst others. For surfaces in R5, [11, 20, 25] are good examples. In
fact, there is a recent book which covers these topics ([14]). The study
of regular 3-manifolds in R6 is also very recent. Here, the curvature locus
is a Veronese surface with many different topological types (see [7, 8]).

The interest, however, both for singularists and differential geometers
has turned to the study of singular manifolds ([26]). In this paper we deal
with manifolds in Euclidean spaces with corank 1 singularities, i.e. the
corank of the differential of the parametrisation at any point is at most 1.
For singular corank 1 surfaces in RN , N = 3, 4, we can cite [3, 4, 5, 16],
and for singular corank 1 3-manifolds in R5, [6]. Here, the curvature locus
is a parabola or a parabolic version of a Veronese surface. Curvature loci
in general have been studied in [21], for example.

Our results are mostly local, so we consider germs of manifolds at a
point p, that is, a k-manifold in RN is parametrised by f : (Rk, 0) →
(RN , p).

The aim of this paper is to relate the geometry of all these objects
which have traditionally been studied separately. There is a natural rela-
tionship between regular and singular objects. When projecting orthog-
onally along a tangent direction a regular k-manifold in RN one obtains
a singular k-manifold in RN−1. On the other hand, taking normal hy-
perplane sections of the k-manifold gives a family of (k − 1)-manifolds
in one dimension less. In Section 4 we establish a commutative diagram
using projections and normal sections which induces a commutative di-
agram amongst the curvature loci with immersions and blow-ups. As a
result of this we prove our main result, that the second order geometry of
all these objects is related. This justifies known relations for projections
when k = 2 and N = 4, for example, and motivates to look for further
relations between the geometries of different manifolds, both regular and
singular, in different Euclidean spaces.
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Section 2 is devoted to preliminary results on the geometry of all the
different objects appearing throughout the paper. In Section 3 we study
normal sections of 3-manifolds, both for the regular and singular cases,
and show that the curvature locus of a 3-manifold can be generated by
the curvature loci of the surfaces obtained by normal sections. In partic-
ular, we show how a Roman Steiner surface or a cross-cap surface can be
generated by ellipses. In [2] it is shown how using these normal sections
some geometry of the 3-manifold can be recovered by the topological
types of the curvature loci of the sections.

In Section 5, inspired by the commutative diagram of Section 4, we
define asymptotic directions for singular 3-manifolds in R5 and relate
them to asymptotic directions of regular 3-manifolds in R6 and singular
surfaces in R4. We prove that if the direction of projection is asymptotic,
then it becomes a null tangent direction in the singular projection and
so justify the existence of infinite asymptotic directions in the singular
case, which was not fully understood until now.

Acknowledgements. The authors would like to thank M. A. S. Ruas
for useful conversations and constant encouragement and the referees for
a careful reading of the manuscript and invaluable suggestions.

2. The geometry of regular and singular corank 1
manifolds in Euclidean spaces

Given a smooth k-dimensional manifold Mk
reg ⊂ RN , N > k, and

f : U → RN a local parametrisation of Mk
reg with U ⊂ Rk an open subset,

let {e1, . . . , eN} be an orthonormal frame of RN such that at any u ∈ U ,
{e1(u), . . . , ek(u)} is a basis for TpM

k
reg and {ek+1(u), . . . , eN (u)} is a

basis for NpM
k
reg at p = f(u).

The second fundamental form of Mk
reg at a point p is a symmetric

bilinear map IIp : TpM
k
reg × TpM

k
reg → NpM

k
reg, given by IIp(v, w) =

π2(d2f(v, w)), where π2 : TpRN → NpM
k
reg is the canonical projection.

Furthermore, the second fundamental form of Mk
reg at p along a nor-

mal vector field ν is the bilinear map IIνp : TpM
k
reg × TpMk

reg → R, given
by IIνp (v, w) = 〈ν, IIp(v, w)〉.

For singular k-dimensional manifolds with corank 1 singularities, we
shall need the following construction, that can be found in [16]. A sin-
gular manifold Mk

sing ⊂ RN at p is given by the image of a smooth

map g : M̃ → RN , where M̃ is a smooth regular k-dimensional man-
ifold and q ∈ M̃ is a corank 1 point of g such that g(q) = p. Also,
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consider φ : U → Rk a local coordinate system defined in an open neigh-
bourhood U of q at M̃ . Hence, we may consider a local parametrisa-
tion f = g ◦ φ−1 of Mk

sing at p (see the diagram below).

Rk
f

66
U ⊂ M̃

g //φoo Mk
sing ⊂ RN .

The (k−1)-dimensional tangent space of Mk
sing at p, TpM

k
sing, is given

by Im dgq, where dgq : TqM̃ → TpRN is the differential map of g at q.
Thus, the (N − k+ 1)-dimensional normal space of Mk

sing at p, NpM
k
sing,

is the subspace orthogonal to TpM
k
sing satisfying TpM

k
sing ⊕ NpMk

sing =

TpRN .

The first fundamental form of Mk
sing at p, I : TqM̃ × TqM̃ → R, is

given by

I(u, v) = 〈dgq(u), dgq(v)〉 ∀ u, v ∈ TqM̃.

Since g has corank 1 at q, one can find 0 6= u ∈ TqM̃ such that
dgq(u) = 0 and I(u, u) = 0. Therefore the first fundamental form is not a

Riemannian metric on TqM̃ , but a pseudometric instead. Let (x1, . . . , xk)
be the Cartesian coordinate system in Rk. Taking the frame B={∂x1, . . . ,
∂xk} of TqM̃ , the coefficients of the first fundamental form of Mk

sing at p

with respect to φ are given by Exixj (q) = I(∂xi , ∂xj ) = 〈fxi , fxj 〉(φ(q)),

1 ≤ i, j ≤ k, where fxi
= ∂f

∂xi
.

Following [16], consider the orthogonal projection π2:TpRN→NpMk
sing.

The second fundamental form of Mk
sing at p, II : TqM̃×TqM̃ → NpM

k
sing,

in the basis B of TqM̃ , is given by II(∂xi
, ∂xj

) = π2(fxixj
(φ(q))), 1 ≤

i, j ≤ k, and we extend it to the whole space in a unique way as a
symmetric bilinear map. Given a normal vector ν ∈ NpMk

sing, we define

the second fundamental form along ν, IIν : TqM̃ × TqM̃ → R, given by

IIν(u, v) = 〈II(u, v), ν〉 for all u, v ∈ TqM̃ .

2.1. The curvature loci. Given a k-dimensional manifold Mk ⊂ RN ,
N > k, the curvature locus at a point p ∈ Mk is the set {IIp(u, u) :

u ∈ TpMk, I(u, u)
1
2 = 1} ⊂ NpM

k. The curvature locus of a manifold
contains all its second order geometry. Any isometric scalar invariant of
the curvature locus is an isometric scalar invariant of the manifold, since
rotations in TpM

k leave invariant the locus and rotations in NpM
k rotate

the locus. The contact geometry of the manifold is affine invariant. The
curvature locus is not affine invariant, but the position with respect to
the origin and, in some cases, the topological type are affine invariant.
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Regular case. For a regular manifold Mk
reg ⊂ RN , the curvature locus

is also the image of the map η : Sk−1 ⊂ TpMk
reg → NpM

k
reg, where η(u) =

IIp(u, u).
When k = 2, the curvature locus is an ellipse denoted by ∆e that may

degenerate into a segment or a point. Taking u = (cos θ)e1 + (sin θ)e2 ∈
S1, ∆e can be parametrised by

η(θ) =

N−2∑
i=1

(li cos2 θ + 2mi cos θ sin θ + ni sin2 θ)e2+i,

where li=〈fxx, e2+i〉, mi=〈fxy, e2+i〉, and ni=〈fyy, e2+i〉, i=1, . . . , N−
2, are the coefficients of the second fundamental form, and (x, y) are the
local coordinates of R2.

For the case where k = 3 and N = 6, the curvature locus is denoted
by ∆v. The authors show in [7] that taking spherical coordinates in S2 ⊂
TpM

3
reg, one can parametrise the curvature locus of M3

reg at p by η : S2 ⊂
TpM

3
reg → NpM

3
reg, (θ, φ) 7→ η(θ, φ), where

η(θ, φ) = H + (1 + 3 cos(2φ))B1 + cos(2θ) sin2 θB2

+ sin(2θ) sin2 φB3 + cosθ sin(2φ)B4 + sin θ sin(2φ)B5

with

H =
1

3
(fxx + fyy + fzz), B1 =

1

12
(−fxx − fyy + 2fzz),

B2 =
1

2
(fxx − fyy), B3 = fxy, B4 = fxz, B5 = fyz.

The first normal space is N1
pM

3
reg = 〈H,B1, B2, B3, B4, B5〉(p). The

affine hull of the curvature locus is denoted by Affp and the linear sub-
space of N1

pM
3
reg parallel to Affp by Ep. The curvature locus of a regular

3-manifold in RN can be seen as the image of the classical Veronese sur-
face of order 2 via a convenient linear map.

In [7] it is shown that the curvature locus at a point p where
dim(N1

pM
3
reg) = 3 in a 3-manifold M3

reg ⊂ R6 has one of the follow-
ing shapes: a Roman Steiner surface (Figure 1), a cross-cap surface
(Figure 2), a Steiner surface of type 5 (Figure 3), a cross-cup surface
(Figure 4), an ellipsoid, a (compact) cone, or a planar region.
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Figure 1. Roman Steiner surface. Figure 2. Cross-cap surface.

Figure 3. Steiner surface of type 5. Figure 4. Cross-cup surface.

Singular case. The curvature locus at a singular corank 1 point p of a
k-dimensional manifold Mk

sing ⊂ RN , N > k, is also given by the image

of the map η : Cq → NpM defined by η(u) = II(u, u), where Cq ⊂ TqM̃
is the subset of unit tangent vectors (i.e. vectors u ∈ TqM̃ such that

I(u, u)
1
2 = 1).

When k = 2, the curvature locus denoted by ∆p is a parabola that
may degenerate into a half-line, a line, or a point. In the same way as
the curvature ellipse does for regular surfaces, it contains information
about the second order geometry of the surface. For N = 3, the normal
space is a plane. However, if N > 3, the normal space has higher di-
mension and the plane that contains ∆p must be defined, specially when
∆p is degenerate. The minimal affine space that contains the curvature
parabola is denoted by Affp. The plane denoted by Ep is the vector
space: parallel to Affp when ∆p is a non degenerate parabola, the plane
through p that contains Affp when ∆p is a non radial half-line or a non
radial line, and any plane through p that contains Affp when ∆p is a
radial half-line, a radial line, or a point.

When k = 3, the curvature locus is denoted by ∆cv. Some examples
of topological types of ∆cv can be found in [6].

It is possible to take a coordinate system φ and make rotations in the
target in order to obtain a local parametrisation for Mk

sing at p given by

f(x1, . . . , xk) = (x1, . . . , xk−1, fk(x1, . . . , xk), . . . , fN (x1, . . . , xk)),

where ∂fi
∂xj

(φ(q)) = 0 for i = k, . . . , N and 1 ≤ j ≤ k. Hence, the subset

of unit tangent vectors Cq ∈ TqM̃ is the cylinder given by {(a1, . . . , ak) ∈
TqM̃ : a21+· · ·+a2k−1 =1}. Taking an orthonormal frame {ν1, . . . , νN−k+1}
of NpM

k
sing, the curvature locus ∆p can be parametrised by:
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(i) If k = 2, Cq = {(a, b) ∈ TqM̃ : a2 = 1}, and the parametrisation is

η(b) =

N−1∑
i=1

(lνi + 2mνib+ nνib
2)νi,

where lνi(q)=〈π2(fxx), νi〉(φ(q)), mνi(q)=〈π2(fxy), νi〉(φ(q)), and
nνi(q)=〈π2(fyy), νi〉(φ(q)), 1 ≤ i ≤ N−1, are the coefficients of the
second fundamental form, (x, y) are local coordinates of R2, and
the parameter b ∈ R corresponds to a unit tangent direction u =
∂x + b∂y = (1, b) ∈ Cq.

(ii) If k = 3, Cq = {(a, b, c) ∈ TqM̃ : a2 + b2 = 1}, and the parametri-
sation is

η(a, b, c) =

N−2∑
i=1

(a2lνi + 2abmνi + b2nνi + c2pνi + 2acqνi + 2bcrνi)νi,

where a2 + b2 = 1,

lν(q) = 〈π2(fxx), ν〉, mν(q) = 〈π2(fxy), ν〉, nν(q) = 〈π2(fyy), ν〉,
pν(q) = 〈π2(fzz), ν〉, qν(q) = 〈π2(fxz), ν〉, rν(q) = 〈π2(fyz), ν〉,

are the coefficients of the second fundamental form with all the
partial derivatives evaluated at φ(q), and (x, y, z) are local coordi-
nates of R3.

For singular corank 1 surfaces, k = 2, a non zero direction u ∈ TqM̃ is
called asymptotic if there is a non zero vector ν ∈ NpMk

sing (for N = 3)

or ν ∈Ep (for N = 4) such that IIν(u, v) = 〈II(u, v), ν〉 = 0 for all v ∈
TqM̃ . Moreover, in such case, we say that ν is a binormal direction.

For the case N = 4, the normal directions ν ∈ NpM2
sing which are not

in the plane Ep, but also satisfy the condition IIν(u, v) = 〈II(u, v), ν〉 =
0, are called degenerate directions. The subset of degenerate directions
in NpM

2
sing is a cone and the binormal directions are those in the inter-

section of this cone with Ep.

3. Normal sections

Consider M3
reg ⊂ R3+k, k ≥ 1, a regular 3-manifold (resp. M3

sing ⊂ R5

a singular corank 1 3-manifold). Let u be a tangent direction in TpM
3
reg

(resp. TpM
3
sing) and {u = 0} the hyperplane in R3+k (resp. R5) or-

thogonal to u. The normal section of M3
reg along u is a regular sur-

face M2
reg = M3

reg ∩ {u = 0} contained in R3+k ∩ {u = 0} ∼= R2+k

(resp. the normal section M2
sing along u is a singular corank 1 sur-

face M2
sing = M3

sing ∩ {u = 0} contained in R5 ∩ {u = 0} ∼= R4).
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There is a relation between the curvature locus of M3
reg ⊂R3+k at p

and the curvature ellipse of M2
reg at p (resp. the curvature locus of

M3
sing ⊂ R5 at p and the curvature parabola of M2

sing at the same point).

Theorem 3.1. Let M3
reg ⊂ R3+k, k ≥ 1, be a regular 3-manifold and

p ∈M3
reg. The curvature locus of M3

reg at p is generated by the union of

the curvature ellipses at p of the regular surfaces in R2+k given by the
normal sections along the tangent directions of M3

reg.

Proof: A normal section induces a hyperplane section of TpM
3
reg. This

hyperplane section intersects the 2-sphere of unit tangent vectors in
an S1. The second fundamental form restricted to this S1 coincides with
the second fundamental form of the surface M2

reg obtained as a normal
section. Therefore, the curvature ellipses of the normal sections generate
the curvature locus of M3

reg at p.

Example 3.2. (i) Let M3
reg ⊂ R6 be given by f : (R3, 0)→ (R6, 0),

f(x, y, z) =

(
x, y, z,

√
2

2
xy,

√
2

2
xz,

√
2

2
yz

)
.

At the origin p, its curvature locus is a Roman Steiner surface. Taking
coordinates (X,Y, Z,W, T, S) in the target, the normal sections given
by {X = 0}, {Y = 0}, and {Z = 0} are regular surfaces whose curvature
ellipses at p are, respectively:

ηX(θ) = (0, 0,
√

2 sin θ cos θ), ηY (θ) = (0,
√

2 sin θ cos θ, 0),

ηZ(θ) = (
√

2 sin θ cos θ, 0, 0),

where θ ∈ [0, 2π]. These curvature ellipses are segments which correspond
to the double point curves of the Roman Steiner surface. The normal
sections {X = Y }, {X = Z}, and {Y = Z}, after changes of coordinates
in the source and rotations in the tangent spaces of the surfaces in R5,
yield the following curvature ellipses:

ηXY (θ) =

(√
2

2
sin2 θ, sin θ cos θ, sin θ cos θ

)
,

ηXZ(θ) =

(
sin θ cos θ,

√
2

2
sin2 θ, sin θ cos θ

)
,

ηY Z(θ) =

(
sin θ cos θ, sin θ cos θ,

√
2

2
sin2 θ

)
,

where θ ∈ [0, 2π]. These three curves are non degenerate ellipses. Fig-
ure 5 shows the curvature ellipses on the Roman Steiner surface. It ap-
pears Steiner himself already knew how to generate the Roman surface by
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ellipses (see [1]). However, all his ellipses pass through a “pole” whereas
all of the ellipses obtained here pass through the triple point.

0.5

−0.5

0.0

0.5

0.0

−0.5
0.5

0.0

−0.5

Figure 5. Curvature ellipses on the Roman Steiner surface.

(ii) Let M3
reg ⊂ R5 be given by f(x, y, z) = (x, y, z, x2 + z2, xy). Tak-

ing coordinates (X,Y, Z,W, T ) in R5, its curvature locus at the origin p
is an elliptic region contained in the normal plane {W,T}, with center
at (1, 0) and radius 1. Table 1 shows some curvature ellipses of regular
surfaces given by normal sections. Here, θ ∈ [0, 2π]. Figure 6 shows the
curves in Table 1.

Normal section Parametrisation of the curvature ellipse Type

{X = 0} (2 sin2 θ, 0) segment

{Y = 0} (2, 0) point

{Z = 0} (2 sin2 θ, 2 sin θ cos θ) circle

{X = Z}
(
2 sin2 θ, 2√

2
sin θ cos θ

)
ellipse

{Y = Z}
(
2 sin2 θ + cos2 θ, 2√

2
sin θ cos θ

)
ellipse

{X = Y } (sin2 θ + 2 cos2 θ, sin2 θ) segment

Table 1.

0.5

−0.5

1.0

−1.0

1.50.5 1.0 2.0

Figure 6. Curvature ellipses on the elliptic region.
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Although it was known that the Roman Steiner surface could be gen-
erated by ellipses, geometrically speaking this is not so obvious for the
cross-cap, the Steiner type 5, or the cross-cup surfaces.

Theorem 3.3. Let M3
sing ⊂ R5 be a singular corank 1 3-manifold. The

curvature locus of M3
sing at p is generated by the union of the curvature

parabolas at p of the singular surfaces in R4 given by the normal sections
along the tangent directions of M3

sing.

Proof: The proof follows as in the regular case. The only different con-
sideration is that TpM

3
sing is a plane and if w ∈ TpM3

sing is a non zero

vector, then (dgq)
−1(w) ⊂ TqM̃ is a plane which contains the sub-

set ker(dgq), where g is the corank 1 map at q used in the initial con-
struction and g(q) = p.

Hence, the subset C ′q = (dgq)
−1(w) ∩ Cq is a pair of lines contained

in the unit cylinder Cq and such that ηq(C
′
q) is the curvature parabola

at p of the singular surface contained in the 4-space given by the normal
section {w = 0}. Figure 7 shows the previous construction.

(dgq)
−1(w)

ker(dgq)

Cq

q

TqM̃

dgq

TpM
3
sing

p
w

Figure 7. Theorem 3.3.

Example 3.4. Let M3
sing ⊂ R5 be the singular 3-manifold at the origin p

locally given by f(x, y, z) = (x, y, x2 − 2yz, y2 − 2xz, z2 − 2xy), whose
curvature locus ∆cv at p is

{(2α2 − 4βγ, 2β2 − 4αγ, 2γ2 − 4αβ) ∈ NpM3
sing : α2 + β2 = 1};
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Figure 8. Side and top views of ∆cv .

see Figure 8. The normal section given by {Y = 0} is parametrised by

f̃(x, z) = (x, x2,−2xz, z2) and its curvature parabola is a non degenerate
parabola, η̃(z) = (2,−4z, 2z2). Taking the normal section {X+aY = 0},
a ∈ R, after changes of coordinates at the source and isometries at the
target, we obtain the singular surface given by(
0, y,

a2
√
a2+1y2−2(a2+1)yz

(a2 + 1)3/2
,

√
a2+1y2+2a(a2+1)yz

(a2 + 1)3/2
,
(a2+1)z2+2 ay2

a2 + 1

)
,

and ∆cv is parametrised by

ηa(z)

=

(
2a2
√
a2+1−4(a2+1)z

(a2 + 1)3/2
,

2
√
a2+1+4a(a2+1)z

(a2 + 1)3/2
,

4a+2(a2+1)z2

a2 + 1

)
,

a non degenerate parabola for a ∈ R. Figure 9 shows some of the curva-
ture parabolas in the curvature locus.

Figure 9. Curvature parabolas.

4. Relating second order geometry through projections
and normal sections

When projecting a regular k-manifold in RN along a tangent direction
we obtain a singular k-manifold in RN−1. It is natural to expect certain
relations between the curvature loci in each case. For example, in [3] we
showed the relation between the curvature ellipse of M2

reg ⊂ R4 and the

curvature parabola of the projection M2
sing ⊂ R3 and obtained some re-

lations between their second order geometry. It is also known that in the
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previous case, the tangent direction is asymptotic if and only if the singu-
larity of the projection is worse than a cross-cap ([9, 19]). Similarly, for
projections from M2

reg ⊂ R5 to M2
sing ⊂ R4, the direction is asymptotic

if and only if the singularity is worse than an I1-singularity ([25]).
In the previous section, geometrical relations between manifolds are

obtained by normal sections. The following result justifies why relations
through projections and normal sections are possible.

Theorem 4.1. Let M3
reg ⊂ R6 be a regular 3-manifold, v ∈ TpM3

reg, and
πv the projection along the direction v. Consider a normal section Σ such
that it contains v. Let i1, i2 be the immersions of the normal sections
in R6 and R5, respectively. Let v′ = i−11∗

(v) ∈ Ti−1
1 (p)M

2
reg. We have a

commutative diagram

M3
reg ⊂ R6 πv−−−−→ M3

sing ⊂ R5

i1

x xi2
M2

reg ⊂ R5 −−−−→
πv′

M2
sing ⊂ R4

where M2
reg = M3

reg ∩Σ and M3
sing, M2

sing are the corresponding singular
projections, which induces a commutative diagram amongst the curvature
loci of the four manifolds.

Proof: For simplicity, we take M3
reg given in Monge form by

(x, y, z) 7→ (x, y, z, f1(x, y, z), f2(x, y, z), f3(x, y, z)),

and fix the direction of projection v=(0, 0, 1) and the normal section Σ =
{Y = 0}. In this setting v′ = (0, 1). Consider (X,Y, Z,W, T, S) to be
the coordinates of R6. Then i1 and i2 are given by i1(X,Z,W, T, S) =
(X, 0, Z,W, T, S) and i2(X,W, T, S) = (X, 0,W, T, S). We have that
M2

reg is given by (x, z, f1(x, 0, z), f2(x, 0, z), f3(x, 0, z)) and clearly πv ◦
i1(M2

reg) = i2 ◦ πv′(M2
reg).

Now, the curvature locus of M3
reg is the image by II of the unit

tangent vectors in TpM
3
reg. We can parametrise the sphere S2 of unit

tangent vectors in spherical coordinates by (θ, φ), where θ ∈ [0, 2π]
is the azimuth (i.e. the angle from the X-axis in a plane of constant
height) and φ ∈ [0, π] is the polar angle (i.e. the angle from the Z-axis).
When projecting along the tangent direction v = (0, 0, 1) we obtain

a singular 3-manifold. The unit tangent vectors in Tπv(p)M̃
3
sing form a

cylinder C which is obtained by blowing up the north and south poles
of S2. There is a natural map from S2 to C which takes the spher-
ical coordinates (sinφ cos θ, sinφ sin θ, cosφ) to the cylindrical coordi-

nates
(
cos θ, sin θ, cosφsinφ

)
by dividing each component by sinφ (i.e. it maps
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the point of intersection with S2 of a ray from the origin to the point
of intersection with C, the north and south poles go to infinity). This
map induces a relation between the parametrisations of the curvature
locus of M3

reg and M3
sing. In fact, since the loci are the image of II and

the coefficients of these second fundamental forms are the same in the
regular and singular cases, the fact of II being a quadratic homogeneous
map means that if ηe(θ, φ) is the parametrisation of the curvature locus
of M3

reg, then

ηp(θ, φ) =
1

sin2 φ
ηe(θ, φ)

is the parametrisation of the curvature locus of M3
sing.

On the other hand, the section {Y = 0} induces a section in TpM
3
reg.

In spherical coordinates, this gives the section {θ = 0} of S2. So, by
Theorem 3.1 the curvature ellipse of M2

reg is given by ηe(0, φ). Similarly,

by Theorem 3.3 the curvature parabola of M2
sing is given by ηp(0, φ).

It remains to see that to pass from the curvature ellipse to the cur-
vature parabola we must divide each component of the parametrisation
by sin2 φ. This follows from the geometrical interpretation of cotφ =
cosφ
sinφ , which again shows that we must divide the components (sinφ, cosφ)

of S1 by sinφ to get the components of the unit tangent vectors in TpM̃
2
sing,

and the fact that the second fundamental form is a homogeneous qua-
dratic map.

Example 4.2. Consider M3
reg given by f(x, y, z) =

(
x, y, z, x2+ 1

2z
2, xz,

yz
)
. The projection along the tangent vector (0, 0, 1) is M3

sing, given by(
x, y, x2 + 1

2z
2, xz, yz

)
, and the normal section {Y = 0} gives the regular

surfaceM2
reg by

(
x, z, x2+ 1

2z
2, xz, 0

)
. The normal section ofM3

sing, which

coincides with the projection of M2
reg along the tangent vector (0, 1), is

given by
(
x, x2 + 1

2z
2, xz, 0

)
. The curvature locus of M3

reg is a Roman
Steiner surface parametrised by

ηe(θ, φ) = (1 + sin2 φ cos(2θ), cos θ sin(2φ), sin θ sin(2φ)),

and the curvature locus of M3
sing is a surface given by

ηp(θ, φ) =
1

sin2 φ
(1 + sin2 φ cos(2θ), cos θ sin(2φ), sin θ sin(2φ))

= (2a2 + c2, 2ac, 2bc),

where a = cos θ, b = sin θ, and c = cosφ
sinφ , so a2 + b2 = 1. The normal

section of M3
sing is given by {θ = 0} = {a = 1, b = 0}, so we get a

curvature parabola (2 + c2, 2c, 0).
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On the other hand, the curvature ellipse of M2
reg is parametrised by

(1+sin2 φ, sin(2φ), 0). Dividing by sin2 φ and changing cosφ
sinφ = c we again

obtain the curvature parabola (2 + c2, 2c, 0).

Remark 4.3. Since the curvature locus contains all the second order
geometry of the manifold, the previous theorem proves that the second
order geometries of M3

reg ⊂ R6, M2
reg ⊂ R5, M3

sing ⊂ R5, and M2
sing ⊂ R4

are all related with one another.

5. Asymptotic directions of singular 3-manifolds in R5

Let M be a corank 1 singular 3-manifold in R5, p ∈ M , and take
M as the image of a smooth map g : M̃ → R5, where M̃ is a regular
3-manifold and q ∈ M̃ is a corank 1 point of g such that g(q) = p.

Definition 5.1. A direction u ∈ TqM̃ is called an asymptotic direction
of M at p if there is a non zero vector ν ∈ NpM such that

IIν(u, v) = 〈II(u, v), ν〉 = 0 ∀ v ∈ TqM̃.

Moreover, in this case, we say that ν is a binormal direction.

In Theorem 2.2 of [12] several equivalent notions are given to define
asymptotic directions in the regular case. We will prove a similar re-
sult for the singular case, but before proving this we need the following
definition due to Dreibelbis (adapted to the singular case here).

Definition 5.2. Let {e1, e2, e3} be a basis for TqM̃ and {n1, n2, n3} be a

basis for NpM . For any vector u ∈ TqM̃ , define A(u) as the 3×3 matrix
with A(u)ij = IIni

(ej , u) = 〈II(ej , u), ni〉.
Given a unit direction ν ∈ S4, the height function of M ⊂ R5 along ν

is given by hν : M → R, hν(p) = 〈p, ν〉.
Proposition 5.3. Given u ∈ TqM̃ , the following are equivalent:

(1) u is an asymptotic direction.
(2) detA(u) = 0.
(3) There exists ν ∈ NpM such that the height function hν has a de-

generate singularity and u ∈ ker Hesshν .

Proof: Let u = α∂x + β∂y + γ∂z, v = ᾱ∂x + β̄∂y + γ̄∂z, and ν = ν1n1 +

ν2n2 + ν3n3. If u ∈ TqM̃ is an asymptotic direction we have

IIν(u, v)= ᾱ

[
3∑
i=1

νi(αlni +βmni + γqni)

]
+β̄

[
3∑
i=1

νi(αmni +βnni +γrni)

]

+γ̄

[
3∑
i=1

νi(αpni
+ βqni

+ γrni
)

]
= 0.
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This must be satisfied for all v = (ᾱ, β̄, γ̄) ∈ TqM̃ , so we get a homoge-
neous system of three equations in variables ν1, ν2, ν3 whose coefficient
matrix is precisely A(u). This proves the first equivalence.

Rewriting this system we can see that u ∈ ker Hesshν and that
det Hesshν must be 0, which proves the second equivalence.

Let M3
sing ⊂ R5 be the projection under a tangent direction of M3

reg ⊂
R6 and p′ ∈M3

reg the point which is projected to p. Since the coefficients
of the second fundamental form are the same for both manifolds, the
height functions are the same. Therefore, by (3) in Proposition 5.3 and
its regular counterpart (Theorem 2.2 in [12]), the binormal directions

are the same and u ∈ Tp′M3
reg is asymptotic if and only if u ∈ TqM̃ is

asymptotic.
On the other hand, by direct calculation of the coefficients of the

first fundamental form for the singular projection in terms of the coeffi-
cients of the first fundamental form for the regular manifold, we can see
that the direction of projection u becomes the null tangent direction of
the singular projection (this explains the concept of infinite asymptotic
directions appearing in [16] or [5]).

By the above discussion we get the following:

Theorem 5.4. Let M3
sing ⊂ R5 be the projection under a tangent direc-

tion of M3
reg ⊂ R6. The direction of projection is asymptotic for M3

reg ⊂
R6 if and only if the null tangent direction is asymptotic for M3

sing ⊂ R5.

Definition 5.5. When the null tangent direction u ∈ TpMn
sing is asymp-

totic we call it infinite asymptotic direction and denote it by u∞.

The idea of an infinite asymptotic direction is as follows. Any singular
manifold can be seen as the projection of a regular manifold along a tan-
gent direction. A singular manifold with an infinite asymptotic direction
necessarily comes from a regular manifold projected along an asymptotic
direction (which has become the infinite asymptotic direction).

In the case of M2
reg ⊂ R4 projected to M2

sing ⊂ R3 the following are
equivalent:

(i) The direction of projection is an asymptotic direction.
(ii) M2

sing ⊂ R3 has a singularity worse than a cross-cap.

(iii) The curvature parabola ∆p of M2
sing ⊂ R3 is degenerate.

(The equivalence between (i) and (ii) can be found in [19, 9] and
the equivalence between (ii) and (iii) is shown in [16].) Therefore, by
Theorem 5.4 adapted to these dimensions (the proof is the same), for
M2

sing ⊂ R3 there is an infinite asymptotic direction only if ∆p is degen-
erate.
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For M3
reg ⊂ R6 projected to M3

sing ⊂ R5, an analogous result to the

equivalence between (i) and (ii) can be proved using results from [6].
However, the equivalence between (i) and (iii) for 3-manifolds is not
true in general (see [6] for a partial result):

Example 5.6. LetM3
reg⊂R6 be given by (x, y, z, x2+z2, xy+xz, y2). The

direction u=(0, 0, 1) ∈ ker Hesshν for the binormal direction ν=(0, 0, 1),
so u is an asymptotic direction. Projection along u yields (x, y, x2 +
z2, xy + xz, y2) and the curvature locus is given by(

cos2 θ +
cos2 φ

sin2 φ
, cos θ sin θ + cos θ

cosφ

sinφ
, sin2 θ

)
which is not contained in a plane, i.e. it is not a degenerate curvature
locus.

The previous example shows that in some cases a non-degenerate
curvature locus has an infinite asymptotic direction, so we must define
the image of u∞ and its tangent space for some M3

sing ⊂ R5 with non-
degenerate curvature locus.

Definition 5.7. Let η(θ, φ) denote the parametrisation of the curvature
locus ∆cv of M3

sing. For each topological type of the curvature locus we

must define η(u∞):

(i) If ∆cv is a point r, then η(u∞) = r and ∂η
∂θ (u∞) = ∂η

∂φ (u∞) = 0.

(ii) If ∆cv is a line or a half-line, then η(u∞) = ∂η
∂θ (u∞) = ∂η

∂φ (u∞) =
η′(t)
|η′(t)| for any t such that η′(t) 6= 0, where t is the parameter of the

line.
(iii) If ∆cv is a planar region or a plane, then η(u∞) = ∂η

∂θ (u∞) = ∂η
∂θ (v)

for any v such that η(v) does not lie in the boundary of ∆cv and
∂η
∂φ (u∞) =

(
∂η
∂θ (v)

)⊥
.

(iv) If ∆cv is non-degenerate such that u∞ is an asymptotic direction

of M3
reg, then η(u∞) = ∂η

∂θ (u∞) = ∂η
∂φ (u∞) = limφ→0

η(θ,φ)
|η(θ,φ)| .

We can now add an equivalence to Proposition 5.3:

Theorem 5.8. Let u ∈ Cq ∪ {u∞}. Then u is asymptotic if and only if

(4) The vector η(u) is tangent to η(Cq∪{u∞}) at η(u) or ∆cv = η(Cq)
is singular at u.

Proof: Suppose first that u is not the null tangent direction. In this case
we proceed as in [12]. Let Cq be parametrised by (θ, φ) in cylindrical

coordinates and let u = u(θ, φ). Then ∂η(u)
∂θ = II(u, u)θ = 2II(u, uθ)
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and ∂η(u)
∂φ = II(u, u)φ = 2II(u, uφ). Since {u, uθ, uφ} are linearly in-

dependent, having the tangency or a singularity means that {II(u, u),
II(u, u)θ, II(u, u)φ} = {II(u, u), 2II(u, uθ), 2II(u, uφ)} is linearly de-
pendent, and this happens if and only if there exists a unit tangent vec-
tor w ∈ Cq such that II(u,w) = 0. Consider now g = II(u, ·) : TqM̃ →
NpM . Since w ∈ ker g, the image of g is contained in a plane in NpM
and so, what we have is equivalent to the fact that there exists ν ∈ NpM
such that IIν(u, v) = 0 for all v ∈ TqM̃ , i.e. u is asymptotic.

For u∞ the tangency occurs by construction of ∂η
∂θ (u∞) and ∂η

∂φ (u∞).

Theorem 5.9. Let M2
sing ⊂ R4 be a normal section given by M3

sing,

p ∈ M3
sing, and suppose that Affi−1

2 (p) = Ei−1
2 (p). Then u ∈ TqM̃ is an

asymptotic direction of M3
sing if and only if (i2∗)

−1(u) is an asymptotic

direction of M2
sing.

Proof: Lemma 4.10 in [5] is the equivalent result to Theorem 5.8 for sin-
gular surfaces in R4. Taking a normal section is taking a hyperplane U
in TqM̃ . This induces an intersection of ∆cv with the plane II(U). A di-

rection u ∈ TqM̃ is asymptotic if η(u) is tangent to η(Cq∪{u∞}) or η(Cq)
is singular at u. The curvature parabola of M2

sing ⊂ R4 is given by ∆cv ∩
II(U) and here η(u) is tangent to ∆cv ∩ II(U) if and only if II(U) is
a plane that passes through the origin, i.e. Affi−1

2 (p) = Ei−1
2 (p). Hence,

η|U∩Cq
((i2∗)

−1(u)) ∈ Ei−1
2 (p) and is also parallel to η′|U∩Cq

((i2∗)
−1(u)),

that is, (i2∗)
−1(u) is an asymptotic direction of the normal section.

Example 5.10. Consider the singular 3-manifold given by (x, y, x2 −
2yz, y2 − 2xz, z2 − 2xy). Its curvature locus is given by(

2 cos2 θ − 4 sin θ
cosφ

sinφ
, 2 sin2 θ − 4 cos θ

cosφ

sinφ
, 2

cos2 φ

sin2 φ
− 4 cos θ sin θ

)
.

We have that (0, 1,−1) is an asymptotic direction associated to the binor-
mal direction (−1, 1, 1). Consider now the normal section given by {X =
0} and parametrised by (y,−2yz, y2, z2). The curvature parabola is given
by (−4y, 2, 2y2). Here (−1, 1, 1) is a degenerate direction, but it is not
binormal since it is not in Ep, and therefore (1,−1) is not an asymptotic
direction of the singular surface.

Remark 5.11. Proposition 5.3 and Theorem 5.8 can be generalised to
other dimensions. The setting in this section works well for Mk

reg ⊂ R2k

projected to Mk
sing ⊂ R2k−1 and taking normal sections of the singular

manifold to get Mk−1
sing ⊂ R2(k−1).
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