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1. Introduction

Iwasawa theory studies the mysterious relationship between pure arithmetic ob-
jects and special values of complex L-functions. Its precise statement is usually called
the “main conjecture” and provides an equality between a quantity measuring Selmer
groups and a p-adic L-function (interpolating the special values of a complex L-func-
tion). Its proof is usually divided into two parts, one part proving one divisibility by
Ribet’s method, and the other proving the converse divisibility by Euler systems.

In [1] Bertolini and Darmon proved one divisibility of the Iwasawa main conjec-
ture for elliptic curves over Q in the anticyclotomic setting. Note that Bertolini and
Darmon assumed a p-isolated condition among other technical conditions. The p-iso-
lated condition was removed by Pollack and Weston [16]. In [5] Chida and Hsieh
generalized this divisibility to elliptic modular forms of even weights < p − 1. Their
results were generalized to the setting of Hilbert modular forms by Longo [13] for
parallel weight 2, and by Wang [18] for even parallel weights < p−1. There are other
generalizations obtained by Fouquet [8] and Nekovář [15].

One of the crucial ingredients for the Euler system argument in [1] is Ihara’s lemma
for Shimura curves. In the case of elliptic modular forms, the required Ihara’s lemma
is Theorem 12 in [7]. In the totally real case, [7, Theorem 12] is partially generalized
by Jarvis [11]. It seems that in the unpublished paper [4] Ihara’s lemma was proved
under the conditions that the base totally real number field F is sufficiently small, i.e.
[F : Q] < p, and that the level of the Hilbert modular form in question is sufficiently
large. In [14] Manning and Shotton proved Ihara’s lemma under the hypothesis that
the image of ρ̄f (a modulo p representation defined in our text) contains a subgroup
isomorphic to SL2(Fp). Thus under this strong hypothesis Longo’s and Wang’s results
are unconditional.

In this paper we remove the condition of Ihara’s lemma, and thus obtain an un-
conditional result for all totally real number fields. We need to preserve technical
conditions in [13, 18] other than Ihara’s lemma. Instead of proving Ihara’s lemma,
we take an approach of avoiding it.
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Let F be a totally real number field and p a place of F above p. Let K be a

totally imaginary quadratic extension of F . We form the anticyclotomic Z[Fp:Qp]
p -ex-

tension K∞ of K. Put Γ = Gal(K∞/K).
Let f be a new Hilbert cusp form of parallel weight k ≥ 2. Let us write the level n

of f in the form n = n+n−, where n+ is only divisible by prime ideals that split
in K, and n− is only divisible by prime ideals that do not split in K. We assume
that n− is the product of different prime ideals whose cardinal number has the same
parity as [F : Q]. This condition ensures that f comes from a modular form on a
definite quaternion algebra with discriminant n−. We also assume p - nDK/F and f is
ordinary at p. Specifically, one of the two Hecke eigenvalues of f at each place of F
above p is a p-adic unit.

Let ρf : GF → GL2(Ef ) be the p-adic Galois representation attached to f (see [19,
17] among other references), where Ef is the defining field of ρf . Then det ρf = εk−1,

where ε is the p-adic cyclotomic character of GF = Gal(F/F ). We consider the self-

dual twist of ρf , namely ρ∗f = ρf ⊗ ε
2−k

2 . Let Vf be the underlying representation

space for ρ∗f . Fix a GF -stable lattice Tf of Vf , and put Af = Vf/Tf .

Let Sel(K∞, Af ) be the minimal Selmer group of Af . Put Λ = Of [[Γ]], where Of is
the ring of integers in Ef . Then Sel(K∞, Af ) and its Pontryagin dual Sel(K∞, Af )∨

are Λ-modules.
On the other hand, one can attach to f an anticyclotomic p-adic L-function

Lp(K∞, f) ∈ Λ that interpolates the special values L(f/K, χ, k/2) of the L-function
attached to f (where χ runs over anticyclotomic characters).

Conjecture 1.1 (Iwasawa main conjecture). The Λ-module Sel(K∞, Af ) is a cofinitely
generated cotorsion module, and its characteristic ideal charΛ Sel(K∞, Af )∨ ∈ Λ sat-
isfies

charΛ Sel(K∞, Af )∨ = (Lp(K∞, f)).

Our main result is the following:

Theorem 1.2. Assume that f satisfies the conditions (CR+), (PO), and (n+-DT)
given in [18]. Then Sel(K∞, Af ) is a cofinitely generated cotorsion Λ-module, and

charΛ Sel(K∞, Af )∨ | (Lp(K∞, f)).

As applications of Theorem 1.2, we have the following consequences.

Corollary 1.3. Let A be a modular elliptic curve (or more generally a modular
abelian variety of GL2-type) over F . Assume that Fp = Qp and that the modular
form attached to A satisfies the assumption in Theorem 1.2. Then A(K∞) is finitely
generated.

In [10] Hung proved the vanishing of the analytic µ-invariant, generalizing the
result of Chida and Hsieh [6]. Combining Theorem 1.2 and Hung’s result, we obtain
the following:

Corollary 1.4. Keep the assumption of Theorem 1.2. Then the algebraic µ-invariant
of the Λ-module Sel(K∞, Af )∨ is zero.

Corollaries 1.3 and 1.4 were already obtained by Longo [13] and Wang [18] respec-
tively, under the assumption of Ihara’s lemma.

The strategy for the proof of Theorem 1.2 is to use the Euler system of Heegner
points {κD(l)m}l to bound the Selmer groups. In [18] these Heegner points were
shown to satisfy two properties called the First Reciprocity Law and the Second
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Reciprocity Law. The Second Reciprocity Law requires Ihara’s lemma. Our input is
to prove a weaker form of the Second Reciprocity Law without Ihara’s lemma. Our
weaker version is sufficient for us to run through Bertolini and Darmon’s Euler system
argument to prove Theorem 1.2. This is done in Section 5. See Proposition 4.6 and
Corollary 4.14 for the precise statements of the First Reciprocity Law and the weaker
version of the Second Reciprocity Law.

Both the original Second Reciprocity Law

(1.1) vl2(κD(l1)m) = vl1(κD(l2)m)

(with l1 and l2 being different n-admissible primes) and our weaker version are based
on an analysis of the specialization modulo ω (= the uniformizing element of O ⊃
Of ) of Heegner points to supersingular points. Starting from an (N,n)-admissible
form (∆, g) (Definition 2.4), using this specialization we obtain a map

γ : B′′×\B̂′′×/Y U′′ −→ On
(see Subsection 4.2 for the meanings of the notations), which is expected to define a
new (N,n)-admissible form. In [18], N is taken to coincide with n. Our (N,n)-ad-
missible form is called n-admissible form in loc. cit.

In [18] Ihara’s lemma is used to show that γ is nonzero modulo ω, i.e. the order
of γ is zero, so that γ really defines an (N,n)-admissible form denoted by g′′ in our
text. Wang ([18]) showed that

(1.2) vl2(κD(l1)m) = θm(g′′).

With l1 and l2 exchanged one obtains another n-admissible form h′′ such that

vl1(κD(l2)m) = θm(h′′).

Then the multiplicity one result g′′ = h′′ yields (1.1).
Both (1.1) and (1.2) are needed in Bertolini and Darmon’s (inductive) Euler system

argument. We sketch the Euler system argument as follows. The reader may consult
the text for notations.

Let ϕ : O[[Γ]] → O′ be a homomorphism. Enlarging O if necessary one may as-
sume O = O′. One needs to show that the length of

Sel∆(K∞, An)∨ ⊗ϕ O
is bounded by 2 ordϕ(θ(g)). For this we consider the following two exact sequences:

Ĥ1
sing(K∞,l1 , Tn)⊕ Ĥ1

sing(K∞,l2 , Tn)
ηs // Sel∆(K∞, An)∨ // S∨l1,l2

// 0

and

Ĥ1
fin(K∞,l1 , Tn)⊕ Ĥ1

fin(K∞,l2 , Tn)
ηf
// Sel∆l1l2(K∞, An)∨ // S∨l1,l2

// 0.

Let el be the (global) order of ϕ(κD(l)). There exists

κ′(l) ∈ Sel∆l(K∞, Tn)⊗ϕ O
such that

ϕ(κD(l)) = ωelκ′(l).

Furthermore, (∂l1κ
′(l1), 0) and (0, ∂l2κ

′(l2)) are annihilated by ηϕs , while (vl1κ
′(l2), 0)

and (0, vl2κ
′(l1)) are annihilated by ηϕf .

The First Reciprocity Law implies that the order of ∂lκ
′(l) is ordϕ(θ(g))−el. From

this one obtains that the length of the image of ηϕs is at most

2 ordϕ(θ(g))− (el1 + el2).
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So by the first exact sequence it suffices to control S∨l1,l2 ⊗ϕ O, which also lies in the
second exact sequence.

To apply the second exact sequence one needs to make a good choice of l1 and l2
to force ηϕf = 0 so that

Sel∆l1l2(K∞, An)∨ ⊗ϕ O ∼= S∨l1,l2 ⊗ϕ O.
One chooses l1 such that el1 is minimal. Then one chooses l2 such that

ordϕ(vl2κD(l1)) = el1

or the same ord vl2κ
′(l1) = 0, which implies that Ĥ1

fin(K∞,l2 , Tn)⊗ϕ O is annihilated
by ηϕf . When Ihara’s lemma holds, by the Second Reciprocity Law (1.1) we get

ordϕ(vl2κD(l1)) = ordϕ(vl1κD(l2)).

Combining this with the trivial fact el2 ≤ ordϕ(vl1κD(l2)) and the minimality of el1 ,
one obtains

ordϕ(vl1κD(l2)) = el2 .

Thus Ĥ1
fin(K∞,l1 , Tn)⊗ϕ O is annihilated by ηϕf as well.

Then one uses (1.2) to finish the inductive argument.
In our approach, we deal with (1.1) and (1.2) separately.
Instead of Ihara’s lemma, we use the global Tate pairing to prove a weaker version

of (1.1). We show that vl2(κD(l1)) and vl1(κD(l2)) coincide with each other after
multiplying by θ(g). Indeed, by relations like∑

v

〈κD(l1)m, κD(l2)m〉v = 0

provided by the global Tate pairing between H1(Km, Tf,n) and itself (noting that
Tf,n ∼= Af,n) we obtain

θ(g) · vl2(κD(l1)) = θ(g) · vl1(κD(l2))

up to multiplication by a unit in On[[Γ]]. Note that this holds for any m-admissi-
ble l1 6= l2. For the good choice of l1 and l2 made above, we have

ϕ(θ(g) · vl2(κD(l1))) 6= 0

in On,1 from which we deduce

(1.3) ϕ(vl2(κD(l1))) = ϕ(vl1(κD(l2)))

up to multiplication by a unit in On. So, without Ihara’s lemma we again obtain
ηϕf = 0.

The reader should note that we show (1.3) only for carefully chosen pairs (l1, l2),
rather than random pairs.

For (1.2), without Ihara’s lemma, the order of γ, denoted by n0 in our Proposi-
tion 4.15, may be nonzero. Fortunately, we can bound n0 by vl2(κD(l1)). Especially, for
our good choice of l1 and l2 we have n0 < n. Then we obtain from γ an (N,n−n0)-ad-
missible form denoted by g′′ such that

(1.4) vl2(κD(l1)) = ωn0θ(g′′).

Thus we have a weaker version of (1.2). In the (inductive) Euler system argument,
(1.2) is used to show that 2 ordϕ(vl2(κD(l1))) bounds Sel∆l1l2(K∞, An)∨⊗ϕO, since
this module is bounded by 2 ordϕ(θ(g′′)) by the inductive assumption. Clearly, our
weaker version (1.4) is sufficient for this purpose.

1This requires a further technical condition which is clear in our text.
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Notations. Let DK/F denote the relative difference of K with respect to F . Fix a
prime number p - nDK/F and a prime ideal p of OF above p.

Let K̃m be the ring class field over K of conductor pm and put Gm = Gal(K̃m/K).

Set K̃∞ =
⋃
m K̃m.

Let K∞ be the unique subfield of K̃∞ such that Γ := Gal(K∞/K) ' Z[Fp:Qp]
p . Put

Km = K̃m ∩K∞ and Γm = Gal(Km/K).
Let ε denote the p-adic cyclotomic character of GF = Gal(F/F ).
We will fix an isomorphism  : C ∼= Cp.

2. Automorphic forms and Galois representations

2.1. Galois representation attached to f . Throughout this paper we will fix a
Hilbert cusp newform f of parallel weight k ≥ 2 and trivial central character. Let n be
the conductor of f , and we decompose n into n = n+n−, where n+ is the product of
primes split in K, and n− is the product of primes inert or ramified in K. We assume
that n is coprime to p.

We assume that n− satisfies the following two conditions:

(sq-fr) n− is square-free, that is, n− is the product of different primes.
(card) The cardinal number of prime factors of n− has the same parity as [F : Q].

By [19, 17] (among other references) up to isomorphisms there exists a unique
p-adic Galois representation

ρf : GF −→ GL2(Cp)
that satisfies the following two properties.

• ρf is unramified outside pn.
• If l is a prime of OF not dividing pn, then for the geometric Frobenius Frobl

at l, the characteristic polynomial of ρf (Frobl) is x2 − al(f)x+ N(l)k−1. Here,
al(f) is the Hecke eigenvalue of f at l.

Here we view al(f) as an element of Cp via . Let Ef be the defining field of ρf , which
contains all al(f). Let Of be the ring of integers in Ef .

A consequence of the latter property is

det ρf = εk−1.

The reader may consult [19, 17] for the construction of ρf and more properties of ρf .
Let

ρ∗f = ρf ⊗ ε
2−k

2

be the self-dual twist of ρf , and Vf the underlying representation space for ρ∗f . The
representation ρ∗f has the following properties.

• ρ∗f is unramified outside pn.

• ρ∗f |GFv =
(
χ−1
v ε

k
2 ∗

0 χvε
2−k

2

)
for each v|p. Here χv is the unramified character such

that χv(Frobv) = av(f).
• ρ∗f |GFl

=
(±ε ∗

0 ±1

)
for each l dividing n exactly once.
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Fix a GF -stable lattice Tf of Vf . We use ρ̄f to denote the residual Galois repre-
sentation of Tf .

We state the conditions (CR+), (PO), and (n+-DT) in Theorem 1.2.

Hypothesis (CR+). (1) p > k + 1 and (#(OF /p)×)k−1 > 5.

(2) The restriction of ρ̄f to GF (
√
p∗) is irreducible, where p∗ = (−1)

p−1
2 p.

(3) ρ̄f is ramified at l if l|n− and N(l)2 ≡ 1 (mod p).
(4) If nρ̄ denotes the Artin conductor of ρ̄f , then n/nρ̄ is coprime to nρ̄.

Hypothesis (PO). a2
v(f) 6≡ 1 (mod p) for all v|p if k = 2.

Hypothesis (n+-DT). If l||n+ and N(l) ≡ 1 (mod p), then ρ̄f is ramified at l.

We also need an auxiliary condition (n+-min).

Hypothesis (n+-min). If l|n+, then ρ̄f is ramified at l.

Throughout this paper, we fix a finite extension E of Ef , and let O be the ring of
integers in E. So Of ⊂ O. Let ω be a uniformizer of O. For each positive integer n we
put On = O/ωn. Consider E, O, and On as coefficient rings, and let GF act trivially
on them.

Set TO = Tf ⊗Of O, VE = Vf ⊗Ef E, and A = VE/TO. For each n we put

Tn = (TO)/ωn = Tf ⊗Of On

and

An = ker(A
ωn // A).

They are all GF -modules.

Remark 2.1. By assumption (2) in (CR+), ρ̄f is itself irreducible. So, the GF -stable
lattice Tf of Vf is unique up to isomorphisms. Hence, up to isomorphisms Tn and An
are independent of the choice of Tf .

Lemma 2.2. Suppose that assumption (4) in (CR+) holds. If l|n+ and ρ̄f is ramified
at l, then H0(F nr

l , A) is divisible.

Proof: By [17], and via the local Langlands correspondence, the Frobenius-simplifi-
cation of the Weil–Deligne representation attached to ρf,l is the Weil–Deligne repre-
sentation attached to πf,l. Thus the Artin conductor of ρf,l is equal to the conductor
of πf,l [9]. As ε is unramified at l, the Artin conductor of ρ∗f,l is equal to that of ρf,l.

When ρ̄f is ramified at l, assumption (4) in (CR+) ensures that the conductor
of πf,l is equal to the Artin conductor of ρ̄f,l. Therefore, the Artin conductor of ρ∗f,l
is equal to that of ρ̄f,l. Our assertion follows.

Definition 2.3 ([18, Definition 2.2.1]). A prime ideal l of OF is said to be n-admis-
sible for f if the following conditions hold.

(a) l - pn.
(b) l is inert in K.
(c) N(l)2 − 1 is not divisible by p.

(d) ωn divides N(l)
k
2 + N(l)

k−2
2 − εlal(f), where εl = ±1.
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2.2. (N,n)-admissible form. In this subsection we recall the definition of n-ad-
missible forms [18].

Let B∆ be a quaternion algebra over F with discriminant ∆. Suppose ∆ is coprime
to p. For each v - ∆ we fix an isomorphism (B∆)v ∼= M2(Fv).

Let n+ be an ideal of OF coprime to p∆, and let Rn+ ⊂ B∆ be an Eichler order of
level n+. Then for each v|n+ with vt||n+,

(Rn+)v =
{(

a b
c d

)
∈M2(OFv ) : c ∈ πtvOFv

}
,

where πv is a uniformizing element of Fv.
For a fixed positive integer N we put

U = Un+,pN =
{
x ∈ R̂×n+ : xp ≡ ( a b0 a ) (mod pN ), a, b ∈ OFp

}
.

Let T∆(n+, pN ) be the (commutative) Hecke algebra generated by

{Tv, Sv : v - pn+∆} ∪ {Uv : v|pn+∆} ∪ {〈a〉 : a ∈ O×F,p}.

Here, as usual, for v - pn+∆

Tv =
[
U
(
πv 0
0 1

)
U
]
, Sv =

[
U
(
πv 0
0 πv

)
U
]

;

for v|pn+,

Uv =
[
U
(
πv 0
0 1

)
U
]

;

for v|∆, we choose an element π′v of (B∆)v whose norm is a uniformizing element
of Fv, and put

Uv = [Uπ′vU] ;

for v = p

〈a〉 = [U ( a 0
0 1 )U] .

To define n-admissible forms we need the notion of algebraic modular forms with
values in p-adic rings.

Let Φ be a finite extension of Qp that contains images of all embeddings σ : F ↪→
Qp. Let Ω be the maximal ideal of OQp . Then pσ := σ−1(Ω) is a maximal ideal of OF
lying above p. We extend σ continuously to Fpσ . Let A be an OΦ-algebra. Then we
have a decomposition

A⊗Z OF ∼=
⊕
σ

A, a⊗ b 7→ (aσ(b))σ,

where σ runs over all embeddings F ↪→ Φ.
For each embedding σ let

Lk,σ(A) = A[Xσ, Yσ]k−2

be the space of homogenous polynomials of degree k − 2 with two variables over A;
we have an action of M2(OFpσ

) on Lk(A) by

ρ̂k,σ(g)P (Xσ, Yσ) = P ((Xσ, Yσ)g).

We use ρk,σ to denote the action det
2−k

2 ·ρ̂k,σ|GL2(OFpσ
) of GL2(OFpσ

). Put

Lk(A) =
⊗
σ

Lk,σ(A) ∼=
⊗
q|p

⊗
σ:pσ=q

Lk,σ(A).

Then we consider Lk(A) as a GL2(OFp)-module by the action

ρk(up) =
⊗
q|p

⊗
σ:pσ=q

ρk,σ(σ(uq)).
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Similarly, we consider Lk(A) as a M2(OFp)-module by the action

ρ̂k(up) =
⊗
q|p

⊗
σ:pσ=q

ρ̂k,σ(σ(uq)).

Note that ρk is self-dual; this means that there is a ρk-invariant pairing 〈·, ·〉k on
Lk(A)× Lk(A).

Now, let B∆ be definite. One defines the space SB∆

k (U, A) of algebraic modular
forms of level U and weight k by

SB∆

k (U, A) = {f : B×∆\B̂
×
∆ −→ Lk(A) | f(bu) = ρk(up)

−1f(b) ∀u ∈ U}.

It is equipped with a natural TB∆
(n+, pN )-action, as follows: for any [UxU]∈TB∆

(n+, pN ),
if xp = ( a 0

0 1 ) with a ∈ O×Fp
, one defines

[UxU]f(b) =
∑

u∈U/U∩xUx−1

ρk(upxp)f(bux);

if xp =
(
πp 0
0 1

)
, one defines

[UxU]f(b) =
∑

u∈U/U∩xUx−1

ρk(up)ρ̂k(xp)f(bux).

When k = 2, SB∆
2 (U, A) can be naturally identified with A[B×∆\B̂

×
∆/U]; it is com-

patible with Hecke actions if we define the Hecke action on the divisor group of the

Shimura set B×∆\B̂
×
∆/U via Picard functoriality.

Set Y = F̂×. Then there is an action of Y on SB∆

k (U, A).
Let f be the Hilbert modular form of level n and weight k as in the introduction.

In particular, f is ordinary at p. Put

T∆(n+, pN )O = T∆(n+, pN )⊗O.

One can attach to f a Hecke character

λf,N : T∆(n+, pN )O −→ O

as follows. As in Subsection 2.1, let {av(f)}v be the system of Hecke eigenvalues
attached to f . Set

αv(f) =

{
the unit root of x2 − av(f)x+ N(v)k−1 if v|p,
av(f)N(v)

2−k
2 if v - p.

Then we define λf,N by

λf,N (Tv) = av(f),

λf,N (Sv) = 1 for v - pn,
λf,N (Uv) = αv(f) for v|pn,

λf,N (〈a〉) = a
2−k

2 for a ∈ O×Fp
.

Definition 2.4 ([18, Definition 5.1.1]). Let N and n be two positive integers. By an
(N,n)-admissible form we mean a pair D = (∆, g) such that

(a) ∆ is a square-free product of prime ideals (in OF ) inert or ramified in K, n−|∆,
∆/n− is a product of n-admissible prime ideals, and the cardinal number of
prime factors of ∆/n− is even;
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(b) g ∈ SB∆
2 (Un+,pN ,On)Y such that

g (mod ω) 6= 0

and

λg ≡ λf,N (mod ωn).

Let Ig be the kernel of λg.

When n = N , (N,n)-admissible forms are just n-admissible forms defined by [18,
Definition 5.1.1].

Let τN ∈ B̂×∆ be the Atkin–Lehner element given by

τN,v =
(

0 1

ωordv(pNn+)
v 0

)
.

Then τN normalizes Un+,pN and gives an involution, called the Atkin–Lehner involu-

tion, on B×∆\B̂
×
∆/Un+,pN . We define a perfect pairing

〈·, ·〉N : SB∆
2 (Un+,pN , A)Y × SB∆

2 (Un+,pN , A)Y −→ A

by

〈f, g〉N =
∑
b

f(b)g(bτN )](B×∆ ∩ bUn+,pN b
−1/F×)−1,

where b runs over the Shimura set B×∆\B̂
×
∆/Un+,pN . We have that the action of

T∆(n+, pN )O is self-adjoint with respect to this pairing.

For each g ∈ SB∆
2 (Un+,pN ,On)Y we define the map

ψg : SB∆
2 (Un+,pN ,O)Y −→ On, h 7−→ 〈g, h〉Un+,pN

.

Via the identity

SB∆
2 (Un+,pN ,O)Y ∼= O[B×∆\B̂

×
∆/Y Un+,pN ],

we have

(2.1) ψg(x τN ) = g(x).

Proposition 2.5 ([18, Proposition 5.1.2]). Assume (CR+) and (n+-DT). If n ≤ N ,
and if (∆, g) is an (N,n)-admissible form, then we have an isomorphism

ψg : SB∆
2 (Un+,pN ,O)Y /Ig

∼ // On.

Proof: When n = N , this is [18, Proposition 5.1.2]. For the general case n ≤ N ,
we only need to slightly adjust the proof of [18, Proposition 5.1.2]. Let Pk be the

ideal {〈a〉−a k−1
2 : a ∈ O×Fp

} which is clearly contained in Ig, and let m be the maximal

ideal containing Ig. In loc. cit. it is shown that

SB∆
2 (Un+,pN ,O)Ym/(Pk, ω

N ) ' SB∆

k (Un+ ,O)Ym/(ω
N ).

Since n ≤ N , it follows that

SB∆
2 (Un+,pN ,O)Ym/(Pk, ω

n) ' SB∆

k (Un+ ,O)Ym/(ω
n).

By [18, Theorem 9.2.4] SB∆

k (Un+ ,O)Ym is a cyclic T∆(n+)O-module. Thus

SB∆
2 (Un+,pN ,O)Y /Ig is generated by some h as a T∆(n+, pN )O-module. Since ψg

is surjective, ψg(h) ∈ O×n . Now our assertion follows from the fact that T∆(n+, pN )O
is self-adjoint with respect to 〈·, ·〉N .
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2.3. Gross points and Theta elements. We define Gross points and Theta ele-
ments following [18].

If ∆ in Subsection 2.2 is a product of primes inert or ramified in K, then K can
be embedded into B∆. We choose a basis of B∆ = K ⊕KJ over K such that

• J2 = β ∈ F× is totally negative, and Jt = t̄J for t ∈ K;
• β ∈ (O×Fv )2 for all v|pn+ and β ∈ O×Fv for all v|DK/F .

To define Gross points we need to choose a precise isomorphism∏
v-∆

iv : B̂
(∆)
∆ −→M2(F̂ (∆)).

For this we fix a CM type Σ of K. Choose an element ϑ such that

• Im(σ(ϑ)) > 0 for all σ ∈ Σ;
• {1, ϑv} is a basis of OKv over OFv for all v|DK/F pn;
• ϑ is a local uniformizer at each prime v that is ramified in K.

Then we require that for each v|pn+, iv is given by

iv(ϑ) =
(
T (ϑ) −N(ϑ)

1 0

)
, iv(J) =

√
β
(−1 T (ϑ)

0 1

)
,

where T (ϑ) = ϑ+ ϑ̄ and N(ϑ) = ϑϑ̄; for v - pn+∆, iv(OKv ) ⊂M2(OFv ).
Now we define Gross points. For v|n+ we put ζv = (ϑ− ϑ̄)−1

(
ϑ ϑ̄
1 1

)
∈ GL2(Kw) =

GL2(Fv) if v = ww̄ in K. If m is a positive integer, we put

ζ
(m)
p =


(
ϑ −1
1 0

) (
ωmp 0

0 1

)
∈ GL2(KP) = GL2(Fp) if p = PP,(

0 1
−1 0

) (
ωmp 0

0 1

)
if p is inert.

Set ζ(m) = ζ
(m)
p

∏
v|n+ ζv ∈ B̂×∆.

Let Rm be the order OF +pmOK of K. If m ≥ N , then (ζ(m))−1R̂×mζ
(m) ⊂ Un+,pN .

Thus we have a map

xm : K×\K̂×/Y R̂×m −→ B×∆\B̂
×
∆/Y Un+,pN

a 7−→ [aζ(m)].

If D = (∆, g) is an (N,n)-admissible form (n ≤ N), for each m ≥ N we define

Θm(g) =
1

αmp

∑
[a]m∈Gm

g(xm(a))[a]m ∈ On[Gm],

where a 7→ [a]m is the map induced by the normalized geometrical reciprocity law.
These elements Θm(g) are compatible in the sense that πm+1,m(Θm+1(g)) = Θm(g).
Here, πm+1,m is the quotient map On[Gm+1]→ On[Gm].

Let πm : Gm → Γm be the natural map, and put

θm(g) = πm(Θm(g)) ∈ On[Γm].

Then θm(g) (m ≥ 1) are compatible and thus define an element θ(g) of On[[Γ]].

Now we restrict to the case ∆ = n−, and put B = Bn− . Let R̂n+ be an Eichler
order in B of level n+.

By the Jacquet–Langlands correspondence we find a Cp-automorphic representa-
tion π′ for the group G = ResF/QB

× corresponding to f (more precisely (f)) and

an eigenform fB ∈ SBk (R̂×n+ ,Cp) with the property TvfB = av(f)fB for v - n and
UvfB = αv(f)fB for v|n. Put

ϕB(x) = 〈ρk,∞(x∞)v0, fB(x∞)〉k,
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where v0 = X
k−2

2 Y
k−2

2 . Then ϕB is in the π′-part of the space of Cp-automorphic
forms for G. We normalize fB such that ϕB takes values in O (enlarging E if neces-
sary) and is nonzero modulo ω.

Define the p-stabilization ϕ†B of ϕB as

ϕ†B = ϕB −
1

αp
π′
((

1 0
0 ωp

))
ϕB .

Then we define

Θm(f) =
1

αmp

∑
[a]m∈Gm

ϕ†B(xm(a))[a]m ∈ O[Gm].

These elements Θm(f) are compatible, meaning πm+1,m(Θm+1(f)) = Θm(f). Then
we define θm(f) and θ(f) as above.

Finally we define the p-adic L-adic function Lp(K∞, f) by Lp(K∞, f) = θ(f)2.
Hung ([10]) proved an interpolation formula for Lp(K∞, f). We do not state it here,
since we will not use it.

Proposition 2.6 ([10, Theorem 6.9]). We have that the analytic µ-invariant of
Lp(K∞, f) is zero, i.e. Lp(K∞, f) 6≡ 0 (mod ω). In particular, Lp(K∞, f) 6= 0.

Proposition 2.7 ([18, Proposition 7.4.2]). If ∆ = n−, there exists an (N,N)-admis-

sible form DN = (n−, f†N ) such that

θm(DN ) ≡ θm(f) (mod ωN )

for each m ≥ N . In particular

θ(DN ) ≡ θ(f) (mod ωN ).

3. Selmer groups

For the convenience of readers, we recall the definition of Selmer groups. See [1, 5,
13, 18] for more details.

3.1. Basic properties of Selmer groups. Let L be a finite extension of F . For
each place l of F and each discrete GF -module M , we put

H1(Ll,M) =
⊕
λ|l

H1(Lλ,M), H1(ILl
,M) =

⊕
λ|l

H1(ILλ ,M),

where λ runs through all places of L above l. Denote by

resl : H
1(L,M) −→ H1(Ll,M)

the restriction map at l.
We define the finite part H1(Ll,M) as

H1
fin(Ll,M) = ker(H1(Ll,M) −→ H1(ILl

,M))

and the singular quotient as

H1
sing(Ll,M) = H1(Ll,M)/H1

fin(Ll,M).

One has the following exact sequence:⊕
λ|lH

1(GLλ/ILλ ,M
ILλ ) // H1(Ll,M)

∂l //
⊕

λ|lH
1(ILλ ,M)GLλ/ILλ .

Then H1
fin(Ll,M) coincides with the image of the map⊕

λ|l

H1(GLλ/ILλ ,M
ILλ ) −→ H1(Ll,M),
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and H1
sing(Ll,M) is naturally isomorphic to the image of ∂l. By abuse of notation, the

composition map ∂l ◦ resl is also denoted by ∂l. If an element s ∈ H1(GL,M) satisfies
∂l(s) = 0, then resl(s) is in H1

fin(Ll,M) and we will denote it as vl(s).
If l|n−, if l is n-admissible, or if l|p, then the restriction ρ∗f |GFl

of An to GFl
sits

in a GFl
-equivariant short exact sequence of free Of,n-modules

0 // F+
l An

// An // F−l An
// 0,

where GFl
acts on F+

l An by ±ε (resp. χ−1εk/2) if l|n− or l is n-admissible (resp. l|p).
Here, when l|p, χ is the unramified character of GFl

such that χ(Frob) = αl, where
αl is the unit root of the Hecke polynomial x2 − al(f)x + N(l)k−1. Then we define
the ordinary part of H1

ord(Ll, An) to be the image of

H1(GLl
, F+

l An) −→ H1(GLl
, An).

We define H1
ord(Ll, Tn) similarly.

Let ∆ (n−|∆) be a square-free product of prime ideals in OF such that ∆/n− is a
product of n-admissible prime ideals. Let S be a finite (maybe empty) set of places
of F that are coprime to p∆n.

Definition 3.1. We define the Selmer group SelS∆(GL,M), where M = An or Tn, to
be the group of elements s ∈ H1(GL,M) such that

(a) resl(s) ∈ H1
fin(Ll,M) if l - p∆ and l /∈ S;

(b) resl(s) ∈ H1
ord(Ll,M) for all l|p∆;

(c) resl(s) is arbitrary if l ∈ S.

The group Gal(Km/F ) acts on H1(Km, Tn) and H1(Km, An).

Lemma 3.2. Gal(Km/F ) preserves SelS∆(GKm , Tn) and SelS∆(GKm , An).

Proof: If l - p∆ and if l /∈ S, then for each place λ ofKm above l, the largest unramified
extension of Km,λ is Galois over Fl. Thus Gal(Km/F ) acts on⊕

λ|l

H1(GKm,λ/IKm,λ , T
IKm,λ
n )

and thus preserves H1
fin(Km,l, Tn).

If l|p∆, then Gal(Km/F ) preserves H1
ord(Km,l, Tn). This follows from the fact that

GFl
preserves the subspace F+

l Tn of Tn used to define the ordinary part.

Proposition 3.3 ([13, Proposition 7.5], [18, Theorem 7.1.2]). Assume (CR+) holds.
Let t ≤ n be positive integers. Let κ be a nonzero element in H1(K,Tt). Then there
exist infinitely many n-admissible primes l such that ∂l(κ) = 0 and the map

vl : 〈κ〉 −→ H1
fin(Kl, Tt)

is injective, where 〈κ〉 denotes the O-submodule of H1(K,Tt) generated by κ.

We put

H1(K∞, An) = lim−→
r

H1(Kr, An), Ĥ1(K∞, Tn) = lim←−
m

H1(Km, Tn),

H1(K∞,l, An) = lim−→
m

H1(Km,l, An), and Ĥ1(K∞,l, Tn) = lim←−
m

H1(Km,l, Tn).

The finite parts and the singular quotients H1
? (K∞,l, An) and Ĥ1

? (K∞,l, Tn) for ? ∈
{fin, sing} are defined similarly.

For each l we have the local Tate pairing

〈·, ·〉l : Ĥ1(K∞,l, Tn)×H1(K∞,l, An) −→ E/O.
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Proposition 3.4. (a) If l splits in K, then H1
fin(K∞,l, An)=0 and Ĥ1

sing(K∞,l, Tn)=
0.

(b) If l is inert in K, then Ĥ1
sing(K∞,l, Tn) ∼= H1

sing(Kl, Tn)⊗O O[[Γ]].

(c) If l - p, then H1
fin(K∞,l, An) and Ĥ1

fin(K∞,l, Tn) are orthogonal to each other
under the pairing 〈·, ·〉l.

(d) If l is n-admissible, then Ĥ1
fin(K∞,l, Tn), Ĥ1

sing(K∞,l, Tn), and Ĥ1
ord(K∞,l, Tn)

are free of rank 1 over O[[Γ]]/(ωn).
(e) Assume (CR+)and (PO) hold. If l is n-admissible or if l|pn−, then H1

ord(K∞,l,An)

and Ĥ1
ord(K∞,l, Tn) are orthogonal to each other under the pairing 〈·, ·〉l.

Proof: This is [18, Proposition 2.4.1, Lemma 2.4.2, Proposition 2.4.4].

We define

SelS∆(K∞, An) = lim−→
m

SelS∆(Km, An), Ŝel
S

∆(K∞, Tn) = lim←−
m

SelS∆(Km, Tn).

If S is empty, we drop S from the above notations. When S = ∅ and ∆ = n−, we
drop both S and ∆ from the notations; the Selmer group in Theorem 1.2 is in this
case.

3.2. Control theorems.

Lemma 3.5. Assume (CR+) holds. Let L/K be a finite extension contained in K∞.

(a) The restriction maps

H1(K,An) −→ H1(L,An)Gal(L/K)

and

SelS∆(K,An) −→ SelS∆(L,An)Gal(L/K)

are isomorphisms.
(b) If S contains all prime q|n+ with ρ̄f,q unramified, then

(3.1) SelSn−(L,An) = SelSn−(L,A)[ωn].

In particular, if further (n+-min) holds, then for any set S of primes, (3.1) holds.
(c) If S contains all prime q|n+ with ρ̄f,q unramified, then for any m ≤ n

(3.2) SelS∆(L,Am) = SelS∆(L,An)[ωm].

In particular, if further (n+-min) holds, then for any set S of primes, (3.2) holds.

Proof: Assertion (a) is [18, Proposition 2.5.1(1)]. Next we prove (b).

Since L/K is abelian, by (CR+) we have AGL1 = 0. Then AGLm = 0 for every m,
and thus AGL = 0. So from the exact sequence

0 // An // A
ωn // A // 0

we obtain the isomorphism H1(GL, An) ∼= H1(GL, A)[ωn] and the injectivity of

SelS∆(L,An) ↪→SelS∆(L,A)[ωn]. To prove the surjectivity of SelS∆(L,An) ↪→SelS∆(L,A)[ωn],
it suffices to prove

(i) H1(Lur
l , An)→ H1(Lur

l , A) is injective for l - p∆ and l /∈ S.
(ii) H1(Ll, An/F

+
l An)→ H1(Ll, A/F

+
l A) is injective for l|pn−.
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For (i) if l - n+, the action of IL,l is trivial and the claim follows immediately.
If l|n+, then by Lemma 2.2, H0(F nr

l , A) is divisible. The claim again follows.
For (ii) if l|n−, the actions of GLl

on An/F
+
l An and A/F+

l A are trivial, and the

claim is clear. If l|p, then GLl
acts on Am/F

+
l Am by χlε

1− k2 , where χl is an unramified

character. Thus H0(Ll, Am/F
+
l Am) = 0 for each m. Then H0(Ll, A/F

+
l A) = 0. The

claim follows.
The proof of (c) is similar to that of (b). One only needs to note that, for each l|∆,

the action of GLl
on An/F

+
l An is trivial.

Theorem 3.6 ([18, Proposition 7.2.3]). Assume the conditions (CR+), (PO), and
(n+-min) hold. For each positive integer n there exists a finite set S of n-admissible

prime ideals such that Ŝel
S

∆(K∞, Tn) is free over On[[Γ]].

Theorem 3.7. If Seln−(K∞, A) is O[[Γ]]-cotorsion and the algebraic µ-invariant of
Seln−(K∞, A)∨ vanishes, then for any finite set S of n-admissible primes that do not

divide pn∆, Ŝel
S

∆(K∞, Tn) is free over On[[Γ]].

Proof: This was essentially proved by Wang [18, Chapter 10] following Kim, Pollack,
and Weston’s idea [12]. However, the assertion in the above form is not clearly stated
in loc. cit., so we give a sketch of the proof.

Let

Φn : {cofinitely generated O[[Γ]]-modules} −→ {finitely generated Λ/ωn-modules}

be the functor defined by Φ(M) = lim←−
m

M [ωn]Γm . It follows from Lemma 3.5(a) that

Φn(Seln
+S

n− (K∞, A)) ∼= lim←−
m

Seln
+S

n− (K∞, A)[ωn]Γm

= lim←−
m

Seln
+S

n− (Km, An) ∼= Ŝel
n+S

n− (K∞, Tn).

The functor Φn satisfies the following properties.

• If A and B are pseudo-isomorphic cofinitely generated O[[Γ]]-modules, then
Φn(A) = Φn(B).
• If Y is a finitely cotorsion O[[Γ]]-module with vanishing (algebraic) µ-invariant,

then Φn(Y ) = 0.
• If Y = O[[Γ]]/ωt with t ≥ n, then Φn(Y ∨) = O[[Γ]]/ωn.

Wang ([18, Lemma 10.1.2]) showed that for any finite set S away from pn∆,

SelSn
+

n− (K∞, A) sits in the exact sequence

0 // Seln
+

n−(K∞, A) // Seln
+S

n− (K∞, A) //
∏
v∈S Hv // 0,

where Hv = lim−→
m

∏
w|vH

1(Km,w, A). When v ∈ S is n-admissible, Hv ∼= (O[[Γ]]/ωtv )∨

for some tv ≥ n [18, Lemma 10.1.3]. Thus Seln
+S

n− (K∞, A)∨ is pseudo-isomorphic to(⊕
v∈S
O[[Γ]]/ωtv

)
× Y,

where Y is a torsion O[[Γ]]-module with µ(Y ) = 0. Hence, by the above properties

of Φn, Ŝel
Sn+

n− (K∞, Tn) is free of rank ]S over O[[Γ]]/ωn.
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For l ∈ ∆ we have the following exact sequence:

0 // Ŝel
n+S

ln− (K∞, Tn) // Ŝel
ln+S

n− (K∞, Tn) // Ĥ1
fin(K∞,l, Tn) // 0.

So, the freeness of Ŝel
ln+S

n− (K∞, Tn) and Ĥ1
fin(K∞,l, Tn) implies the freeness of

Ŝel
n+S

ln− (K∞, Tn). Repeating this several times we obtain the freeness of Ŝel
n+S

∆ (K∞, Tn).

By Proposition 3.4(a), we have Ŝel
S

∆(K∞, Tn) = Ŝel
n+S

∆ (K∞, Tn).

4. Euler system of Heegner points

Fix N ≥ n ≥ 1. Let D = (∆, g), n−|∆, be an (N,n)-admissible form.

4.1. Shimura curves. In this subsection we collect necessary results on Shimura
curves [13, 18].

Let l - ∆ be an n-admissible prime ideal of f with εlαl = N(l) + 1 (mod ωn). One
defines the character of Hecke algebra

λ[l]
g : T∆(ln+, pN )O −→ On

by λ
[l]
g (Ul) = εl, and let I [l]

g be the kernel of λ
[l]
g .

Let B′ be the quaternion algebra with discriminant ∆l that splits at exactly one

real place. Then we have an isomorphism φ : B̂
(l)
∆
∼= B̂′(l). Let OB′l be the maximal

order of B′l. Put

U′ = U′n+,pN = φ((Un+,pN )(l))O×B′l .

With U′ instead of U = Un+,pN we have a Hecke algebra T∆l(n
+, pN ).

Associated to (B′, Y U′) there is a Shimura curve M
[l]
N with complex points

M
[l]
N (C) = B′×\(P1(C)−P1(R))× B̂′×/Y U′;

M
[l]
N is smooth and projective over F . We write [z, b′]N for the point in M

[l]
N corre-

sponding to z ∈ P1(C)−P1(R) and b′ ∈ B̂′×.

Let Fl2 be the unramified extension of Fl of degree 2. The Shimura curve M
[l]
N

admits a regular semistable model over OFl2
such that all irreducible components of

its special fiber are smooth. One associates a graph G to the special fiber as follows.

The set of vertices in G which correspond to irreducible components of M
[l]
N is

identified with
V(G) = B×∆\B̂

×
∆/Y Un+,pN × Z/2Z.

The set of oriented edges which correspond to ordered singular points on the special
fiber is identified with

~E(G) = B×∆\B̂
×
∆/Y U ln+,pN × Z/2Z.

We choose an orientation of ~E(G) such that the source and target maps s, t : E(G)→
V(G) are given by

s : E(G) = B×∆\B̂
×
∆/Y U ln+,pN −→ V(G) = B×∆\B̂

×
∆/Y Un+,pN × Z/2Z

B×∆b Y Uln+,pN 7−→ (B×∆b Y Un+,pN , 0)

and

t : E(G) = B×∆\B̂
×
∆/Y Uln+,pN −→ V(G) = B×∆\B̂

×
∆/Y Un+,pN × Z/2Z

B×∆b Y Uln+,pN 7−→ (B×∆b Y Un+,pN , 1).
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Let J
[l]
N be the Jacobian of M

[l]
N , and let Φ[l] be the component group of the Néron

model of J
[l]
N over Fl2 . Let rl : J

[l]
N → Φ[l] be the reduction map.

There is a natural action of T∆l(n
+, pN ) on J

[l]
N via Picard functoriality. Note that

T(l)
∆ (ln+, pN ) ' T(l)

∆l(n
+, pN ).

We extend it to a homomorphism

ϕ∗ : T∆(ln+, pN ) −→ T∆l(n
+, pN )

which sends Ul =
[
U
(
πl 0
0 1

)
U
]

to Ul =[U′π′lU
′]. Via ϕ∗ we obtain an action of T∆(ln+, pN )

on J
[l]
N . It induces an action of T∆(ln+, pN ) on Φ[l].

We need the relation between Φ[l] and G.
Let

d∗ = t∗ − s∗ : Z[E(G)] −→ Z[V(G)]

be the boundary map, and

d∗ : t∗ − s∗ : Z[V(G)] −→ Z[E(G)]

its dual. Put Z[V(G)]0 = im(d∗). By [2, Section 9.6, Theorem 1] there exists a natural
identification

Φ[l] ' Z[V(G)]0/d∗d
∗.

One can identify Z[V(G)] with (SB∆
2 (U,Z)Y )⊕2, and identify Z[V(G)]0 with a

submodule (SB∆
2 (U,Z)Y )⊕2

0 of (SB∆
2 (U,Z)Y )⊕2. Define an action of T∆(ln+, pN ) on

(SB∆
2 (U,Z)Y )⊕2 by

t(x, y) = (t(x), t(y)), t ∈ T(l)
∆ (ln+, pN ),

and

Ũl(x, y) = (−N(l)y, x+ Tl(y)).

Here, in the event of confusion with the diagonal action we use the notation Ũl instead
of Ul.

Proposition 4.1 ([18, Proposition 4.4.1]). We have the following T∆(ln+, pN )-mod-
ule isomorphism:

Φ[l] ' (SB∆
2 (U,Z)Y )⊕2

0 /(Ũ2
l − 1).

Write

Φ
[l]
O = Φ[l] ⊗Z O.

Corollary 4.2. We have an isomorphism

Φ
[l]
O/I

[l]
g ' SB∆

2 (U,O)Y /Ig
ψg
// On.

When n = N , this is [18, Theorem 5.1.3].

Proof: Let m[l] be the maximal ideal of T∆(ln+, pN )O containing I [l]
g .

Note that (SB∆
2 (U,O)Y )⊕2/(SB∆

2 (U,O)Y )⊕2
0 is Eisenstein, while m[l] is not Eisen-

stein. Thus

(SB∆
2 (U,O)Y )⊕2

0m[l] = (SB∆
2 (U,O)Y )⊕2

m[l] .

By Proposition 4.1 we obtain

(Φ
[l]
O )m[l] ' (SB∆

2 (U,O)Y )⊕2
m[l]/(Ũ

2
l − 1) ' (SB∆

2 (U,O)Y )⊕2
m[l]/(Ũl − εl).
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Hence,

Φ
[l]
O/I

[l]
g ' ((SB∆

2 (U,O)Y )⊕2/(Ũl − εl))⊗ T∆(ln+, pN )/I [l]
g

' (SB∆
2 (U,O)Y /(εlTl −N(l)− 1))⊗ T∆(n+, pN )/Ig

' SB∆
2 (U,O)Y /Ig.

By Proposition 2.5, ψg is an isomorphism.

Let Tp(J
[l]
N ) be the p-adic Tate module of J

[l]
N . Then Tp(J

[l]
N ) is a T∆(ln+, pN )-mod-

ule.

Proposition 4.3. We have an isomorphism of GF -modules

Tp(J
[l]
N )O/I [l]

g ' Tn.

When n = N , this is [18, Theorem 5.1.4].

Proof: Let m[l] be the maximal ideal of T∆(ln+, pN )O containing I [l]
g . In the proof of

[18, Theorem 5.1.4] it is shown that Tp(J
[l]
N )O/m

[l] ' T1. By irreducibility of T1, to

finish the proof one only needs to show that the exponent of Tp(J
[l]
N )O/I [l]

g is ωn. On
one hand, its exponent is at most ωn. On the other hand, when n′ is sufficiently large,

J
[l]
N [pn

′
]O/I [l]

g maps onto Φ
[l]
O/I

[l]
g , together with Corollary 4.2, which implies that the

exponent is at least ωn.

Let
Kum: J

[l]
N (Km)O −→ H1(Km, Tp(J

[l]
N )O)

be the Kummer map.

Proposition 4.4 ([18, Theorem 5.2.2]). We have the following commutative diagram:

J
[l]
N (Km)O/I [l]

g
Kum //

rl

��

H1(Km, Tn)

∂l

��

Φ
[l]
O

ψg

'
// H1

sing(Km,l, Tn) .

4.2. First and Second Reciprocity Laws. We choose an auxiliary prime q0 - ∆n+

such that 1 + N(q0)− αq0
(f) ∈ O×.

The inclusion t′(K×) ⊂ B′× ⊂ GL2(R) gives an action of K× on P1(C)−P1(R).
This action has two fixed points; we choose one of them and denote it by z′.

For m ≥ N and a ∈ K̂× we define the Heegner point

Pm(a) = [z′, φ(a(l)ζ(m)τN )]N ∈M [l]
N (C).

See Subsections 2.2 and 2.3 for the notations ζ(m) and τN . By the theory of complex

multiplication Pm(a) is defined over the ring class field K̃m.
We define a map

ξq0 : Div(M
[l]
N (K̃m)) −→ J

[l]
N (K̃m)O

P 7−→ 1

1 + N(q0)− αq0
(f)

cl((1 + N(q0)− Tq0
)P ).

Put

Dm =
∑

σ∈Gal(K̃m/Km)

ξq0
(Pm(1)σ) =

∑
[a]m∈Gal(K̃m/Km)

ξq0
(Pm(a)) ∈ J [l]

N (Km)O.
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We define the cohomology class κD(l)m by

κD(l)m :=
1

αmp
Kum(Dm) (mod I [l]

g ) ∈ H1(Km, Tp(J
[l]
N )O/I [l]

g ) = H1(Km, Tn).

When m varies, these κD(l)m are compatible for the corestriction maps [18, Lem-

ma 5.4.1], and thus give rise to an element κD(l) of Ĥ1(K∞, Tn).

Proposition 4.5 ([13, Lemma 7.16], [18, Proposition 5.4.2]). κD(l) belongs to

Ŝel∆l(K∞, Tn).

By Proposition 3.4(d), Ĥ1
sing(K∞,l, Tn) is free of rank 1 over O[[Γ]]/(ωn). Choosing

a base of Ĥ1
sing(K∞,l, Tn) we may identify Ĥ1

sing(K∞,l, Tn) with O[[Γ]]/(ωn).

Proposition 4.6 (First Reciprocity Law [18, Theorem 6.1.2]). Let m ≥ N ≥ n. For
each (N,n)-admissible form D = (∆, g) and each n-admissible prime l - q0∆, we have

∂l(κD(l)m) = θm(g) ∈ On[Γm]

up to multiplication by a unit of On[Γm].

Proof: By Proposition 4.4 one has

∂l(κD(l)) =
∑
σ∈Γm

ψg(rl(D
σ
m))σ.

But

ψg(rl(D
σ
m)) =

∑
[b]m∈Gal(K̃m/Km)

〈g, xm(ab)τN 〉 =
∑

[b]m∈Gal(K̃m/Km)

g(xm(ab)),

where a ∈ K̂× satisfies πm([a]m) = σ. Thus

∂l(κD(l)m) =
∑

[a]m∈Gm

g(xm(a))πm([a]m),

as desired.

We fix two different n-admissible prime ideals l1 and l2 (l1, l2 - q0∆). Then l1 and

l2 are inert in K. We fix a place l′2 of Km above l2, and a place l̃′2 of K̃m above l′2.
We have already seen that the image of the map

J
[l1]
N (Kl2)O/I [l1]

g −→ H1(Kl2 , Tn)

is contained in H1
fin(Kl2 , Tn) ∼= On, and that the reduction map

J
[l1]
N (Kl2)O/I [l1]

g −→ J [l1](kl2)/I [l1]
g

is an isomorphism, where kl2 is the residue field of Kl2 .
Let B′′ be the definite quaternion algebra with discriminant ∆l1l2. Then there is

an isomorphism

ψ : B̂′′(l2) ∼= B̂′(l2).

Let OB′′l1 and OB′′l2 be the maximal orders of B′′l1 and B′′l2 respectively. Put

U′′ = ψ((U′n+,pN )(l2))O×B′′l1
O×B′′l2

.

By [20, Section 5.4] we have an isomorphism

ι : B′′×\B̂′′×/Y U′′ ∼= Sl2 ,

where Sl2 is the set of supersingular points in J
[l1]
N (kl2). Let T∆(l1n

+, pN ) act on
Div(Sl2) via Picard functoriality.
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The reduction redl̃′2
(Pm(a)) of the CM point Pm(a) modulo l̃′2 is in Sl2 . We choose ι

such that

red̃l′2
([z′, b′]) = ι(ψ−1(b′(l2))).

In particular we have

redl̃′2
(Pm(a)) = ι(xm(a)τN ).

So, restricting the isomorphism

J
[l1]
N (kl2)O/I [l1]

g −→ On
to Sl2 we obtain a map

γ : Div(Sl2) −→ On.

Write T for the image of T ∈ T∆(l1n
+, pn)O in T∆(l1n

+, pn)O/I [l1]
g .

Proposition 4.7 ([13, Lemma 7.17]). For x ∈ Div(Sl2) the following relations hold:

(a) For q - ∆n+l1, one has γ(Tqx) = T qγ(x).

(b) For q|∆n+l1, one has γ(Uqx) = Uqγ(x).

(c) γ(Tl2x) = T l2γ(x).
(d) γ(Frobl2(x)) = εl2γ(x), where Frobl2 is the Frobenius of F at l2.

The relation between γ and the system {κD(l1)m : m ≥ N} is given by the follow-
ing.

Proposition 4.8. If (∆, g) is an (N,n)-admissible form, and if m ≥ N , then

vl2(κD(l1)m) =
1

αmp

∑
[a]m∈Gm

γ ◦ ι(xm(a)τN )πm([a]m)

in On[Γm].

Proposition 4.8 is more or less contained in [13, 18], but it is not stated in the
above form.

Proof: All primes of Km above l2 are {σl′2 : σ ∈ Γm}. So

vl2(κD(l1)m) =
∑
σ∈Γm

vσl′2(κD(l1)m)

=
∑
σ∈Γm

vl′2(κD(l1)σ
−1

m )σ

=
1

αmp

∑
[a]m∈Gm

ṽl′2
(Pm(a))πm([a]m).

Note that the reduction of Pm(a) modulo l̃′2 lies in Sl2 . Thus

ṽl′2
(Pm(a)) = γ(redl̃′2

(Pm(a))) = γ ◦ ι(xm(a)τN ),

as wanted.

Corollary 4.9. If there exists m such that vl2(κD(l1)m) 6= 0, then γ 6= 0.

Proposition 4.10 ([13, Lemma 7.20]). If Ihara’s lemma holds, then γ is surjective.

By Proposition 3.4(d), Ĥ1
fin(K∞,l1 , Tn) and Ĥ1

fin(K∞,l2 , Tn) are free of rank 1

over O[[Γ]]/(ωr). We may identify both Ĥ1
fin(K∞,l1 , Tn) and Ĥ1

fin(K∞,l2 , Tn) with
O[[Γ]]/(ωn).
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Proposition 4.11 (Second Reciprocity Law [18, Theorem 6.6]). If Ihara’s lemma
holds, then

vl2(κD(l1)m) = vl1(κD(l2)m)

up to multiplication by a unit of On[Γm].

4.3. A weaker version of the Second Reciprocity Law. One expects to show
that

vl2(κD(l1)m) = vl1(κD(l2)m)

without using Ihara’s lemma. But we can only prove a weaker result. We will deduce
from the First Reciprocity Law and Tate duality that they coincide with each other
after multiplying by θm(g).

Let τ be a complex conjugation which depends on a choice of embedding of the
algebraic closure of F in C. For each σ ∈ Γm we have τσ = σ−1τ . The homomorphism
σ 7→ σ−1 of Γm induces an involution ι on On[Γm]. Then τ acts on On[Γm] as ι.

For each i ∈ {1, 2}, as li splits completely in Km [18, Lemma 2.4.2], the number of
places ofKm above li are [Km : K]. Fix a place l′i ofKm above li. Then all places ofKm

above li are {σl′i : σ ∈ Gal(Km/K)}. Note that τ permutes {σl′i : σ ∈ Gal(Km/K)}.
Note that

H1
fin(Km,li , Tn) ∼= H1

fin(Km,τ l′i
, Tn)⊗O O[Γm]

and

H1
sing(Km,li , Tn) ∼= H1

sing(Km,l′i
, Tn)⊗O O[Γm].

Both H1
fin(Km,τ l′i

, Tn) and H1
sing(Km,l′i

, Tn) are isomorphic to On. We choose gener-

ators cτ l′i and dl′i of H1
fin(Km,τ l′i

, Tn) and H1
sing(Km,l′i

, Tn) such that 〈cτ l′1 , τdl′1〉τ l′1 = 1

and 〈τcτ l′2 , dl′2〉l′2 = 1.

Lemma 4.12. For each σ ∈ Γm we have

〈σcτ l′1 , στdl′1〉στ l′1 = 〈στcτ l′2 , σdl′2〉σl′2 = 1.

Proof: Let Res :H1(Kl1 , Tn)→H1(Km,l1 , Tn) and Cores :H1(Km,l1 , Tn)→H1(Kl1 , Tn)
be the restriction map and the corestriction map respectively.

As
∑

γ∈Γm

γτdl′1 is fixed by Γm, we have
∑

γ∈Γm

γτdl′1 =Res(x) for some x∈H1(Kl1 , Tn).

Then

〈σcτ l′1 , στdl′1〉στ l′1 =

〈
σcτ l′1 ,

∑
γ∈Γm

γστdl′1

〉
l1

= 〈σcτ l′1 ,Res(x)〉l1 = 〈Cores(σcτ l′1), x〉l1 .

As Cores(σcτ l′1) = Cores(cτ l′1), we obtain

〈σcτ l′1 , στdl′1〉στ l′1 = 〈cτ l′1 , τdl′1〉τ l′1 = 1.

The proof of

〈στcτ l′2 , σdl′2〉σl′2 = 1

is similar.

Proposition 4.6 says that there exist two units u1 and u2 in On[Γm] such that

∂li(κD(li)m) = uiθm(g) · dl′i .

Let θ1 and θ2 be the elements in On[Γm] such that

vl2(κD(l1)m) = θ1cτ l′2 and vl1(κD(l2)m) = θ2cτ l′1 .
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Theorem 4.13. We have

(4.1) θm(g)(u2θ1 + u1θ2) = 0

in Of,n[Γm].

Proof: Note that Tn is self-dual, so we can form the local Tate pairing 〈·, ·〉v on
H1(Km,v, Tn) for each place v of Km.

For any c1, c2 ∈ H1(Km, Tn) and each place v of Km we write 〈c1, c2〉v =
〈resv(c1), resv(c2)〉v. Then

∑
v〈c1, c2〉v = 0. We apply this to c1 = τκD(l1)m and

c2 = γκD(l2)m with γ ∈ Γm.
By Lemma 3.2, c1 ∈ Sel∆l1(Km, Tn), and c2 ∈ Sel∆l2(Km, Tn). So, when v is not

above l1 or l2 we have

〈τκD(l1), γκD(l2)〉v = 0.

Hence, ∑
σ∈Γm

(〈τκD(l1), γκD(l2)〉σl′1 + 〈τκD(l1), γκD(l2)〉σl′2) = 0.

We write

uiθm(g) =
∑
σ∈Γm

ai,σσ, ai,σ ∈ On,

and

θi =
∑
σ∈Γm

bi,σσ, bi,σ ∈ On.

Then

∂l1(τκD(l1)) = ι(u1θm(g))τdl′1 =
∑
σ∈Γm

a1,σ−1στdl′1

and

vl1(γκD(l2)) = γθ2cτ l′1 =
∑
σ∈Γm

b2,σγ−1σcτ l′1 .

By Lemma 4.12 we have

〈τκD(l1), γκD(l2)〉στ l′1 = 〈∂l1(τκD(l1)), vl1(γκD(l2))〉στ l′1
= 〈a1,σ−1στdl′1 , b2,σγ−1σcτ l′1〉στ l′1 = a1,σ−1b2,σγ−1 .

Hence,∑
σ∈Γm

〈τκD(l1), γκD(l2)〉σl′1 =
∑
σ∈Γm

〈τκD(l1), γκD(l2)〉στ l′1 =
∑
σ∈Γm

a1,σ−1b2,σγ−1 .

Similarly, ∑
σ∈Γm

〈τκD(l1), γκD(l2)〉σl′2 =
∑
σ∈Γm

b1,σ−1a2,σγ−1 .

Therefore, ∑
σ∈Γm

(a1,σ−1b2,σγ−1 + b1,σ−1a2,σγ−1) = 0.

This sum is just the coefficient of γ−1 on the left-hand side of (4.1). This proves (4.1).

Each element a of On can be written as a = uωs with u a unit in On, and s ∈
{0, 1, . . . , n}; we put ord(a) = s.

Let ϕ : On[Γm]→ On be a homomorphism. For each θ ∈ On[Γm] we put ordϕ(θ) :=
ord(ϕ(θ)).
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For each element x of H1(K∞, Tn) we write ϕ(x) for its image in

H1(K∞, Tn)⊗ϕ On ∼= On,

and put

ordϕ(x) = ord(ϕ(x)).

Then we have

ordϕ(vl2(κD(l1)m)) = ordϕ(θ1)

and

ordϕ(vl1(κD(l2)m)) = ordϕ(θ2).

Corollary 4.14. If ϕ : On[Γm]→ On is a homomorphism such that

ordϕ(∂l1(κD(l1)m)) + ordϕ(vl2(κD(l1)m)) < n,

then

ordϕ(vl2(κD(l1)m)) = ordϕ(vl1(κD(l2)m)).

Proof: By Theorem 4.13 we have

ϕ(θm(g))(ϕ(u2)ϕ(θ1) + ϕ(u1)ϕ(θ2)) = 0.

Note that ϕ(u1) and ϕ(u2) are units of On.
We write

ϕ(θm(g)) = vωr, ϕ(θ1) = v1ω
s1 , and ϕ(θ2) = v2ω

s2 ,

where v, v1, and v2 are units of On, and r, s1, s2 ∈ {0, 1, . . . , n}. By our assumption,
r + s1 < n. What we need to show is s1 = s2.

If s1 > s2, then

ϕ(u2)vv1ω
s1−s2 + ϕ(u1)vv2 = ϕ(u1)vv2(1 + (ϕ(u1)vv2)−1 · ϕ(u2)vv1 · ωs1−s2)

is a unit. Indeed,

(ϕ(u2)vv1ω
s1−s2 + ϕ(u1)vv2)

·
(

(ϕ(u1)vv2)−1 ·
n−1∑
i=0

((ϕ(u1)vv2)−1 · ϕ(u2)vv1 · ωs1−s2)i
)

= 1.

It follows that

ϕ(θm(g))(ϕ(u2)ϕ(θ1) + ϕ(u1)ϕ(θ2)) = ωr+s2(ϕ(u2)vv1ω
s1−s2 + ϕ(u1)vv2) 6= 0

since r + s2 < r + s1 < n, and ϕ(u2)vv1ω
s1−s2 + ϕ(u1)vv2 is a unit.

If s1 < s2, we again have

ϕ(θm(g))(ϕ(u2)ϕ(θ1) + ϕ(u1)ϕ(θ2)) = ωr+s1(ϕ(u2)vv1 + ϕ(u1)vv2ω
s2−s1) 6= 0,

since r + s1 < n, and ϕ(u2)vv1 + ϕ(u1)vv2ω
s2−s1 is a unit.

Thus we must have s1 = s2.
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4.4. Admissible form.

Proposition 4.15. Let (∆, g) be an (N,n)-admissible form. If l1 and l2 (l1, l2 - q0∆)
are two different n-admissible prime ideals, and if m ≥ N is an integer such that
vl2(κD(l1)m) 6= 0, then there exists a nonnegative integer n0 < n and an (N,n− n0)-
admissible form (∆l1l2, g

′′) satisfying the following.

(a) For any homomorphism ϕ : On[Γm]→ On we have

n0 ≤ ordϕ(vl2(κD(l1)m)).

(b) We have

vl2(κD(l1)m) = ωn0θm(g′′) ∈ On[Γm]

up to multiplication by a unit of On[Γm].

Here, θm(g′′) is in On−n0
[Γm]. The homomorphism

On[Γm]
×ωn0

−−−−→ On[Γm]∑
σ∈Γm

aσσ 7−−−−→
∑
σ∈Γm

ωn0aσσ

annihilates ωn−n0On[Γm], and thus induces a homomorphism

On−n0
[Γm]

×ωn0

−−−−→ On[Γm].

Proof: Let n0 be the largest integer such that Im(γ) ∈ ωn0On. By Proposition 4.8 we
have

vl2(κD(l1)m) ∈ ωn0On[Γm].

Thus for any homomorphism ϕ : On[Γ]→ On we have

ϕ(vl2(κD(l1)m)) ∈ ωn0On

yielding

ordϕ(vl2(κD(l1)m)) ≥ n0.

Let γ̃ be a map

γ̃ : Div(Sl2) −→ On
such that γ = ωn0 γ̃. Let γ′ be the composition

Div(Sl2)
γ̃
// On // On−n0

,

where On → On−n0 is the natural quotient map.
If q - ∆l1l2n

+, from γ(Tqx)− T qγ(x) = 0, we get

γ̃(Tqx)− T qγ̃(x) ∈ ωn−n0On.

It follows that

γ′(Tqx)− T qγ
′(x) = 0.

The same argument shows that, if q|∆n+l1, then

γ′(Uqx) = Uqγ
′(x).
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In particular, γ′(Ul1x) = εl1γ
′(x). Similarly, γ′(Frobl2(x)) = εl2γ

′(x). By [3, Section 9]
we have Ul2 = Frobl2 on Div(Sl2). Hence,

γ′(Ul2x) = γ′(Frobl2 x) = εl2γ
′(x).

Let

g′′ ∈ SB
′′

2 (U′′,On−n0
)Y

be the function such that ψg′′ = γ′. Since γ′ is Hecke equivariant, (∆l1l2, g
′′) is an

(N,n− n0)-admissible form. By (2.1) we have

g′′(xm(a)) = γ′(xm(a)τN ).

By Proposition 4.8 we have

vl2(κD(l1)m) =
1

αmp

∑
[a]m∈Gm

γ(xm(a)τN )πm([a]m)

=
1

αmp

∑
[a]m∈Gm

ωn0γ′(xm(a)τN )πm([a]m)

=
ωn0

αmp

∑
[a]m∈Gm

g′′(xm(a))πm([a]m) = ωn0θm(g′′),

as desired.

Remark 4.16. Proposition 4.10 says that, if Ihara’s lemma holds, then n0 = 0.

We can strengthen the statement of Corollary 4.14. Though it will not be used in
the next section, we give it below for its own interest.

Theorem 4.17. Assume (CR+) and (n+-DT) hold. If there exists a homomorphism

ϕ : On[Γm] −→ On
such that

(4.2) ordϕ(∂l1(κD(l1)m)) + ordϕ(vl2(κD(l1)m)) < n,

then

vl2(κD(l1)m) = vl1(κD(l2)m)

up to multiplication by a unit of On[Γm].

Proof: By Corollary 4.14 it follows from (4.2) that

ordϕ(vl1(κD(l2))) = ordϕ(vl2(κD(l1))) < n.

Let n0 and g′′ be as in Proposition 4.15. Then

n0 ≤ ordϕ(vl2(κD(l1)))

and

vl2(κD(l1)) = ωn0θ(g′′) ∈ On[[Γ]]

up to multiplication by a unit of On[[Γ]]. Exchanging l1 and l2, by Proposition 4.15
there exists a nonnegative integer

n′0 ≤ ordϕ(vl1(κD(l2)))

and an (N,n− n′0)-admissible form (∆l1l2, h
′′) such that

vl1(κD(l2)) = ωn
′
0θ(h′′) ∈ On[[Γ]]

up to multiplication by a unit of On[[Γ]].
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Without loss of generality we may assume that n0≤n′0. When (CR+) and (n+-DT)
hold, the multiplicity one theorem holds [18, Theorem 9.1.1], from which we obtain

h′′ ≡ g′′ (mod ωn−n
′
0).

So
ωn
′
0θm(h′′) = ωn

′
0θm(g′′)

in On[Γm]. It follows that

ordϕ(vl1(κD(l2))) = n′0 + ordϕ(θm(h′′))

= (n′0 − n0) + (n0 + ordϕ θm(g′′))

= (n′0 − n0) + ordϕ(vl2(κD(l1))).

Since
ordϕ(vl1(κD(l2))) = ordϕ(vl2(κD(l1))) < n,

we obtain n′0 = n0, yielding our conclusion.

5. Proof of Theorem 1.2

Let ϕ : O[[Γ]]→ O be a homomorphism. For each positive integer r, let ϕr be the
composition

O[[Γ]]
ϕ
// O // Or = O/(ωr).

We write ord for the valuation of O whose value on ω is 1.

Theorem 5.1. Let N ≥ r be two positive integers, and D = (∆, g) be an (N, r)-ad-
missible form. Assume that ϕr(θ(g)) 6= 0. If tϕ,g := ord(ϕr(θ(g))) satisfies 2tϕ,g ≤ r,
then for each positive integer n ≤ r − tϕ,g we have

(5.1) lengthO(Sel∆(K∞, An)∨ ⊗ϕ O) ≤ 2tϕ,g.

We fix an integer m ≥ N such that ϕN factors through ON [Γm]. Then ϕr factors
through Or[Γm]. So ϕr(θ(g)) = ϕr(θm(g)) and tϕ,g = ord(ϕr(θm(g))).

We prove (5.1) by induction on tϕ,g.

First we assume (CR+), (PO), and (n+-min) hold. By Theorem 3.6 there exists a fi-

nite set S of r-admissible prime ideals such that Ŝel
S

∆(K∞, Tr)⊗ϕO is free over Or. We
fix such a set S. Let

s1, . . . , sd (d = rankOr Ŝel
S

∆(K∞, Tr)⊗ϕ O)

be a basis of Ŝel
S

∆(K∞, Tr)⊗ϕO overOr. For every element
∑
iaisi in Ŝel

S

∆(K∞, Tr)⊗ϕ
O we define

ord

(∑
i

aisi

)
:= min{ord(ai) : i = 1, . . . , d} ∈ {0, 1, . . . , r}.

Note that this does not depend on the choice of the basis {si : i = 1, . . . , d}.
For each r-admissible prime ideal l /∈ S, considering κϕ(l) = ϕ(κD(l)) as an element

of Ŝel
S

∆(K∞, Tr)⊗ϕ O, we put el = ordκϕ(l). By Proposition 4.6, we have el ≤ tϕ,g.
Then there exists

κ̃′(l) ∈ Ŝel
S

∆(K∞, Tr)⊗ϕ O
such that ωel κ̃′(l) = κϕ(l).

The quotient map Tr → Tn induces a homomorphism

Ŝel
S

∆(K∞, Tr)⊗ϕ O −→ Ĥ1(K∞, Tn)⊗ϕ O.
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Lemma 5.2. Let κ′(l) be the image of κ̃′(l) in Ĥ1(K∞, Tn)⊗ϕ O.

(a) ordκ′(l) = 0.

(b) ord ∂lκ
′(l) = tϕ,g − el.

(c) ∂qκ
′(l) = 0 for q - ∆lp.

(d) resq κ
′(l) ∈ Ĥ1

ord(K∞,q, Tn)⊗ϕ O for q|∆lp.

Proof: Assertions (a) and (b) follow from the definition of κ′(l) and the First
Reciprocity Law. The latter two assertions for q /∈ S follow from the fact κ̃′(l) ∈
Ŝel

S

∆(K∞, Tr)⊗ϕ O.
We assume that q ∈ S and q - ∆lp. As q is r-admissible, by Proposition 3.4(d)

we have that Ĥ1(K∞,q, Tr) ⊗ϕ O is free over O[Γ] ⊗ϕ O. Thus there exists s ∈
Ĥ1

fin(K∞,q, Tr) such that ωels = resq κϕ(l). This means ωel(s − resq κ̃
′(l)) = 0. As

el ≤ tϕ,g ≤ r − n, from the freeness of Ĥ1(K∞,q, Tr)⊗ϕ O we obtain s− resq κ̃
′(l) ∈

ωnĤ1(K∞,q, Tr) ⊗ϕ O. Hence the images of s and resq κ
′(l) in Ĥ1(K∞,q, Tn) ⊗ϕ O

coincide with each other, which shows (c) for q ∈ S.
By the same argument we can prove (d) for q ∈ S.

Lemma 5.3 ([18, Lemma 7.3.4]). Let

ηl : Ĥ
1
sing(K∞,l, Tn)⊗ϕ O −→ Sel∆(K∞, Tn)∨ ⊗ϕ O

be the map defined by
ηl(c)(x) = 〈c, resl(x)〉l

for x ∈ Sel∆(K∞, An)[ker(ϕ)] and c ∈ Ĥ1
sing(K∞,l, Tn). Then ηl(∂l(κ

′(l))) = 0.

Proof: By the global class field theory we have
∑

q〈resq κ
′(l), resq x〉q = 0. When

q 6= l, both resq κ
′(l) and resq x lie in the finite part or the ordinary part. Thus by

Proposition 3.4(c) and (e), 〈resq κ
′(l), resq x〉q = 0 for q 6= l. So 〈∂lκ′(l), resl x〉l =

〈resl κ
′(l), resl x〉l = 0.

Choose an r-admissible prime ideal l1 /∈ S such that

el1 = min
l/∈S∪{q0}:
r-admissible

el,

where q0 is the prime chosen in Subsection 4.2.

Lemma 5.4 ([18, Lemmas 7.3.5 and 7.3.6]).

(a) If tϕ,g = 0, then Sel∆(K∞, An)∨ ⊗ϕ O is trivial.
(b) If tϕ,g > 0, then el1 < tϕ,g.

Proof: Assume that Sel∆(K∞, An)∨ ⊗ϕ O 6= 0. Then by Nakayama’s lemma

(Sel∆(K∞, An)∨ ⊗ϕ O)/(ω) = (Sel∆(K∞, An)[m])∨ ⊗ϕ O
is nonzero. Here, m is the maximal ideal of O[[Γ]]. Let x be a nonzero element in
Sel∆(K∞, An)[m]. By Lemma 3.5(a) and (c) we have

Sel∆(K∞, An)[m] = Sel∆(K,A1).

So, by Proposition 3.3 there exists an r-admissible prime l /∈ S such that vl(x) 6= 0.
We show that el < tϕ,g for this l. Indeed, if el = tϕ,g, then by Lemma 5.2(b),

∂lκ
′(l) is indivisible, hence a generator of H1

sing(K∞,l, Tn)⊗ϕO. By Proposition 3.4(b)

and (d) the image of ∂lκ
′(l) in H1

sing(Kl, T1) is a generator. As 〈·, ·〉l induces a perfect

pairing between Ĥ1
sing(Kl, T1) and H1

fin(Kl, A1), we have 〈Resl κ
′(l),Resl x〉l 6= 0. But

this implies ηl(κ
′(l)) 6= 0, which contradicts Lemma 5.3.

By Lemma 5.4(a), (5.1) holds when tϕ,g = 0. So we assume that tϕ,g > 0.
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Lemma 5.5. We have
el1 = min

l′
ord(vl′κϕ(l1)),

where l′ runs over all r-admissible prime ideals that do not divide l1q0∆ and are not
in S.

Proof: What we need to prove is

min
l′

ord(vl′ κ̃
′(l1)) = 0.

Let κ1 denote the image of κ̃′(l1) in

Ŝel
S

∆(K∞, Tr)⊗ϕ O1 = Ŝel
S

∆(K∞, Tr)/m⊗ϕ O ↪−→ H1(K,T1).

By Lemma 5.2, κ1 6= 0. If ord(vl′ κ̃
′(l1)) > 0 for each r-admissible prime ideal l′ /∈ S

that does not divide l1q0∆, then vl′(κ1) = 0 for each l′, as above. This contradicts
Proposition 3.3.

Let l2 (l2 - l1q0∆ and l2 /∈ S) be an r-admissible prime ideal such that
ord vl2(κϕ(l1)) = el1 . In particular, vl2(κD(l1)m) 6= 0. By the choice of l2 and the
minimality of el1 we have

(5.2) ord vl2(κϕ(l1)) = el1 ≤ el2 ≤ ord vl1(κϕ(l2)).

As

ordϕ vl2(κD(l1)m) + ordϕ ∂l1(κD(l1)m) = ordϕ vl2(κD(l1)) + ordϕ ∂l1(κD(l1))

= el1 + tϕ,g < 2tϕ,g ≤ r,
by Corollary 4.14 we have

(5.3) ord vl2(κϕ(l1)) = ordϕ vl2(κD(l1)m) = ordϕ vl1(κD(l2)m) = ord vl1(κϕ(l2)).

Combining (5.2) and (5.3) we obtain

ord vl2(κϕ(l1)) = el1 = el2 = ord vl1(κϕ(l2)).

It follows that

(5.4) ord vl1(κ′(l2)) = ord vl2(κ′(l1)) = 0.

Since vl2(κD(l1)m) 6= 0, by Proposition 4.15 there exists an integer r0 < r and an
(N, r − r0)-admissible form (∆l1l2, g

′′) such that

r0 ≤ ordϕ vl2(κD(l1)m) = el1

and
vl2(κD(l1)m) = ωr0θm(g′′) ∈ Or[Γm]

up to multiplication by a unit of Or[Γm]. It follows that

r0 + tϕ,g′′ = ordϕ vl2(κD(l1)m) = el1 .

Let Sl1,l2 be the subgroup of Sel∆(K∞, An) consisting of elements that are locally
trivial at the prime ideals dividing l1 or l2. By the definition of Selmer groups, we
have the following two exact sequences:

Ĥ1
sing(K∞,l1 , Tn)⊕ Ĥ1

sing(K∞,l2 , Tn)
ηs // Sel∆(K∞, An)∨ // S∨l1,l2

// 0

and

Ĥ1
fin(K∞,l1 , Tn)⊕ Ĥ1

fin(K∞,l2 , Tn)
ηf
// Sel∆l1l2(K∞, An)∨ // S∨l1,l2

// 0,

where ηs and ηf are induced by the local Tate pairing 〈·, ·〉l1 ⊕ 〈·, ·〉l2 .
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Lemma 5.6. We have ηϕf = 0.

Proof: From (5.4) we see(
Ĥ1

fin(K∞,l1 , Tn)⊕ Ĥ1
fin(K∞,l2 , Tn)

)
⊗ϕ O

is generated by (vl1(κ′(l2)), 0) and (0, vl2(κ′(l1))).
Let s be in Sel∆l1l2(K∞, An). By Lemma 5.2(c), for each q - ∆l1l2p,

〈κ′(l1), s〉q = 〈∂qκ′(l1), s〉q = 0.

By Lemma 5.2(d), for each q|∆l1p,

〈κ′(l1), s〉q = 0.

Thus by the global Tate pairing we have 〈vl2(κ′(l1)), s〉l2 = 〈κ′(l1), s〉l2 = 0. The same
argument shows that 〈vl1(κ′(l2)), s〉l1 = 0.

By Lemma 5.6 we obtain

S∨l1,l2 ⊗ϕ O ∼= Sel∆l1l2(K∞, An)∨ ⊗ϕ O.

As

r0 + 2tϕ,g′′ ≤ 2r0 + 2tϕ,g′′ = 2el1 < 2tϕ,g ≤ r,

we have

2tϕ,g′′ ≤ r − r0.

We also have

n ≤ r − tϕ,g < r − el1 = (r − r0)− tϕ,g′′ .

Hence, (∆l1l2, g
′′) is an (N, r − r0)-admissible form, 2tϕ,g′′ ≤ r − r0, and n ≤

(r − r0)− tϕ,g′′ . As tϕ,g′′ < tϕ,g, by the inductive assumption we have

lengthO S
∨
l1,l2 ⊗ϕ O = lengthO Sel∆l1l2(K∞, An)∨ ⊗ϕ O ≤ 2tϕ,g′′ .

By Lemma 5.3, ηϕs factors through the quotient

O/((∂l1κ′(l1))⊕O/(∂l2κ′(l2)).

Thus

lengthO Sel∆(K∞, An)∨ ⊗ϕ O ≤ ord ∂l1(κ′(l1)) + ord ∂l2(κ′(l2)) + lengthO S
∨
l1,l2⊗ϕ O

≤ (tϕ,g − el1) + (tϕ,g − el2) + 2tϕ,g′′

= 2tϕ,g − 2r0 ≤ 2tϕ,g.

This finishes the inductive argument of the proof of Theorem 5.1 in the case of
(n+-min).

Proof of Theorem 1.2 in the case of (n+-min). Let ϕ : O[[Γ]] → O′ be a homomor-
phism from O[[Γ]] to the ring of integers in a finite extension of E. Enlarging E if
necessary we may assume that O = O′.

If ϕ(Lp(K∞, f)) = 0, then obviously

ϕ(Lp(K∞, f)) ∈ FittO(Seln−(K∞, A)∨ ⊗ϕ O).

So, we may assume that ϕ(Lp(K∞, f)) 6= 0. Choose t∗ larger than ordϕ(Lp(K∞, f)).
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Let n be a nonnegative integer. We consider the (n + t∗, n + t∗)-admissible form

Dn+t∗ = (n−, f†n+t∗) provided by Proposition 2.7. That is, we take N = r = n + t∗

and g = f†n+t∗ in Theorem 5.1.
Since ordϕ(Lp(K∞, f)) < r,

ϕr(θ(f
†
n+t∗))

2 = ϕr(Lp(K∞, f)) = ϕ(Lp(K∞, f)) (mod ωr)

is nonzero in Or, and we have

2tϕ,f†
n+t∗

= 2 ordϕr(θ(f
†
n+t∗)) = ordϕr(Lp(K∞, f)) = ordϕ(Lp(K∞, f)) < t∗ ≤ r.

On the other hand,

n = r − t∗ < r − ordϕ(Lp(K∞, f)) ≤ r − ordϕr(θ(f
†
n+t∗)) = r − tϕ,f†

n+t∗
.

Thus by Theorem 5.1 we have

lengthO(Seln−(K∞, An)∨ ⊗ϕ O) ≤ 2tϕ,f†
n+t∗

= ordϕ(Lp(K∞, f)).

So, ϕ(Lp(K∞, f)) belongs to FittO(Seln−(K∞, An)∨ ⊗ϕ O).
Hence, ϕ(Lp(K∞, f)) belongs to

FittO(Seln−(K∞, A)∨ ⊗ϕ O) =
⋂
n

FittO(Seln−(K∞, An)∨ ⊗ϕ O).

Now, by [5, Lemma 6.11] we have

Lp(K∞, f) ∈ FittO(Seln−(K∞, A)∨).

As Lp(K∞, f) 6= 0 by Proposition 2.6, Seln−(K∞, A) is O[[Γ]]-cotorsion. Taking
O = Of we obtain the precise statement in Theorem 1.2.

Next, we relax the condition (n+-min) to (n+-DT).

Lemma 5.7. There exists a Hilbert modular form f ′ congruence to f modulo ω that
satisfies (CR+), (PO), and (n+-min).

Proof: We need to show that, if l| nnρ̄ , then there exists a Hilbert modular form f ′ of

level dividing n
l congruence to f . In the case where πl is special or supercuspidal, this

follows directly from Jarvis’s level lowering result [11, Theorem 0.1]. Note that our
condition (n+-DT) ensures that f satisfies conditions of [11, Theorem 0.1].

Now, let πl = Ind
GL2(Fl)
B (χ ⊗ χ−1) be a principal series representation, where χ

is a character of F×l , and B is the Borel subgroup of GL2(Fl) consisting of upper-
triangular invertible matrices. When the conductor nχ of χ is l, f again satisfies the
condition of [11, Theorem 0.1], and so we can apply Jarvis’s result. It remains to show
that, either if nχ is OFl

, or if nχ is divisible by l2, then l - n
nρ̄

. In the former case there

is nothing to prove. In the latter case, observe that the conductor of χ = χ (mod ω)
is equal to that of χ. It follows that the conductor of ρ̄f,l is equal to that of ρf,l, since
ρf,l ∼= χ⊕ χ−1 when it is restricted to the inertia subgroup of GFl

[17].

Proposition 5.8. Assume that (CR+), (PO), and (n+-DT) hold. Then Seln
+

n−(K∞, A)

is O[[Γ]]-cotorsion and Seln
+

n−(K∞, A)∨ has vanishing µ-invariant.

Proof: Let f ′ be as in Lemma 5.7. We write A′ and A′i for A and Ai attached to f ′.
We have already shown that Theorem 1.2 holds for f ′. Combining this with Propo-

sition 2.6 we obtain that Seln
+

n−(K∞, A
′)∨ has vanishing µ-invariant. In other words,

Seln
+

n−(K∞, A
′)[ω] is finite.
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By Lemma 3.5(b), taking S = n+, we get

Seln
+

n−(K∞, A)[ω] = Seln
+

n−(K∞, A1) = Seln
+

n−(K∞, A
′
1) = Seln

+

n−(K∞, A
′)[ω].

Thus Seln
+

n−(K∞, A)[ω] is finite, and Seln
+

n−(K∞, A)∨ has vanishing µ-invariant.

Since Seln
+

n−(K∞, A)∨ has vanishing µ-invariant, by Theorem 3.7, Ŝel∆(K∞, TN ) is
free over ON [[Γ]]. Now repeating the argument for the case of (n+-min) we finish the
proof of Theorem 1.2. The only place we need to revise the argument is the proof
of Lemma 5.4. Assume that Sel∆(K∞, An) is nonzero. In general, we may not have
Sel∆(K∞, An)[m] = Sel∆(K,A1) now. But by Lemma 3.5(a) and (c) we have

Sel∆(K∞, An)[m] ⊆ Seln
+

∆ (K∞, An)[m] = Seln
+

∆ (K,A1).

Consider the nonzero element x in Sel∆(K∞, An)[m] as an element in Seln
+

∆ (K,A1).
If el = tϕ,g, we again obtain 〈Resl κ

′(l),Resl x〉l 6= 0 and ηl(κ
′(l)) 6= 0, contradicting

Lemma 5.3.
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