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∞-OPERADS AS SYMMETRIC MONOIDAL ∞-CATEGORIES

Rune Haugseng and Joachim Kock

Abstract: We use Lurie’s symmetric monoidal envelope functor to give two new descriptions of
∞-operads: as certain symmetric monoidal ∞-categories whose underlying symmetric monoidal

∞-groupoids are free, and as certain symmetric monoidal ∞-categories equipped with a symmetric
monoidal functor to finite sets (with disjoint union as tensor product). The latter leads to a third

description of∞-operads, as a localization of a presheaf∞-category, and we use this to give a simple

proof of the equivalence between Lurie’s and Barwick’s models for ∞-operads.
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1. Introduction

The close relationship between symmetric monoidal categories and (symmetric) op-
erads goes back to the birth of operad theory in algebraic topology: both operads [23]
and PROPs [21], which are a special class of symmetric monoidal categories, were
introduced to describe homotopy-coherent algebraic structures on topological spaces,
and it was quickly realized that operads could be viewed as a special kind of PROP
(see for instance the discussion in Adams’s book [1, §2.3], or [18, §7]). The relation-
ship has also been analysed in the context of logic and computer science, notably by
Hermida [13].

In the setting of∞-categories, the relationship between∞-operads and symmetric
monoidal ∞-categories is more pronounced, since in the approach of Lurie [20] both
notions are defined as certain functors to the category F∗ of finite pointed sets;1

for operads this corresponds to the construction of categories of operators of May–
Thomason [24]. There is then an evident forgetful functor

U : SMCat∞ Opd∞,

where Opd∞ is the ∞-category of ∞-operads and SMCat∞ is that of symmetric
monoidal ∞-categories. Lurie ([20, §2.2.4]) established an adjunction

Opd∞ SMCat∞,
Env

U

where the left adjoint Env is given by an explicit construction, the symmetric monoidal
envelope of an ∞-operad. Neither of the two functors is fully faithful, though, and so
does not immediately exhibit one notion as a special case of the other.2
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1Also known as Segal’s category Γop.
2For U , this is because morphisms between symmetric monoidal ∞-categories in Opd∞ corrrespond

to lax symmetric monoidal functors.
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In the present contribution, we exploit this adjunction to establish new conceptu-
ally simple characterizations of∞-operads, leading to an easy proof of the equivalence
between Lurie’s and Barwick’s notions of ∞-operads.

1.1. Overview. We start out by tweaking the adjunction in two ways, so as to give
two new characterizations of∞-operads in terms of symmetric monoidal∞-categories:

Theorem 1.1.1 (cf. Propositions 2.4.6 and 2.4.16). The symmetric monoidal enve-
lope gives an equivalence between ∞-operads in the sense of Lurie [20] and

(1) symmetric monoidal∞-categories C⊗ with a symmetric monoidal functor to Fq,
the category of finite sets with disjoint union as tensor product, such that
(a) every object of C is equivalent to a tensor product of objects that lie over

the terminal object 1 in F,
(b) condition (∗) below holds for any objects x1, . . . , xn and y1, . . . , ym that lie

over 1;
(2) symmetric monoidal ∞-categories C⊗ with a map of ∞-groupoids X → C' such

that
(a) the underlying symmetric monoidal ∞-groupoid of C⊗ is free on X, i.e. the

induced morphism Sym(X) '
∐∞
n=0X

×n
hΣn
→ C' is an equivalence,

(b) condition (∗) below holds for any objects x1, . . . , xn and y1, . . . , ym in X.
(∗) The morphism

∐
φ∈Map

F
(n,m)

m∏
i=1

MapC

( ⊗
j∈φ−1(i)

xj , yi

)
MapC

(
n⊗
j=1

xj ,

m⊗
i=1

yi

)
,

given by tensoring maps together, is an equivalence.

Remark 1.1.2. The condition (∗) appearing in both characterizations can be traced
back to the class of PROPs singled out by Boardman and Vogt in [6, Lemma 2.43].
More recently, it has been studied in different guises in the 1-categorical literature
under the name of the hereditary condition (cf. [22, 7, 17, 4]; see also [25]). From
that perspective, characterization (2) can be seen as the ∞-categorical version of the
equivalence of [4, 8] between the Feynman categories of Kaufmann and Ward [17]
and coloured operads.

Remark 1.1.3. We are not aware of any direct precursor to characterization (1), but it
fits well with Weber’s 2-categorical approach to operad theory [28], where operads are
essentially monads cartesian over the symmetric monoidal category monad. Perhaps
it should also be mentioned that in the theory of operadic categories of Batanin
and Markl [5], which can be seen as a generalization of Barwick’s idea of operator
categories [3], it is an essential feature that everything lives over the category of finite
sets.

Using the first characterization, we proceed to give a third: viewing∞-categories as
complete Segal spaces, we can describe symmetric monoidal ∞-categories over Fq as
functors F → S satisfying completeness and Segal conditions for a certain category F ,
giving an equivalence

SMCat∞/Fq ' CSegF (S) ⊆ Fun(F ,S).

We can then identify ∞-operads as those complete Segal F-spaces that satisfy some
further conditions:
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Theorem 1.1.4 (Theorem 3.4.5). There is an equivalence

Opd∞ CSeg′F (S),∼

where CSeg′F (S) is a certain full subcategory of CSegF (S).

Since CSeg′F (S) is by definition an accessible localization of a presheaf∞-category,
this result implies in particular that Opd∞ is a presentable ∞-category, without ap-
pealing to a presentation of Opd∞ by a model category. Our main motivation for this
characterization, however, is that it is a key ingredient in the final result of the paper:
via an obvious comparison functor between F and Barwick’s category �op

F
, we obtain

with very little work an equivalence between CSeg′F (S) and Barwick’s definition of
∞-operads as presheaves on �F satisfying Segal and completeness conditions. Thus
we get a simple proof of the equivalence between Lurie’s and Barwick’s approaches
to ∞-operads:

Corollary 1.1.5. There is an equivalence of ∞-categories

Opd∞ ' CSeg
�

op
F

(S)

between Lurie’s and Barwick’s models for ∞-operads.

This theorem was already proved by Barwick [3] by a rather different method
(which involves studying the nerve adjunction for a functor �F → Opd∞). Note
that Barwick’s result is substantially more general than ours, giving an equivalence
between two definitions of ∞-operads over any perfect operator category, where the
explicit description of the monoidal envelope required for our proof typically fails.3

1.2. Some basic notation. This paper is written in the language of ∞-categories,
and all terms such as (co)limits and commutative diagrams should be understood in
their fully homotopy-coherent/∞-categorical sense.

• F is (a skeleton of) the category of finite sets, with objects n = {1, . . . , n}
(n = 0, 1, . . . ).
• S is the ∞-category of (small) ∞-groupoids/spaces/homotopy types.
• Cat∞ is the ∞-category of (small) ∞-categories.

• If C is an ∞-category, CatL
∞/C denotes the full subcategory of the overcategory

Cat∞/C spanned by the left fibrations to C.
• If C is an ∞-category, Catcoc

∞/C denotes the subcategory of the overcate-
gory Cat∞/C with objects the cocartesian fibrations to C and morphisms the
functors over C that preserve cocartesian morphisms.
• If C is an ∞-category, we write C' for its underlying ∞-groupoid, i.e. the sub-

category containing only equivalences.

2. From Lurie’s ∞-operads to symmetric monoidal ∞-categories

In this section we first review the basic notions of commutative monoids in ∞-cat-
egories (and in particular symmetric monoidal ∞-categories) in Subsection 2.1 and
∞-operads (in the sense of [20]) in Subsection 2.2. Then we recall the symmetric
monoidal envelope of an ∞-operad in Subsection 2.3 before we study its image and
prove Theorem 1.1.1 in Subsection 2.4.

3Our approach does also work in the particular case of non-symmetric (or planar) ∞-operads,
however.
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2.1. Commutative monoids and symmetric monoidal ∞-categories. We now
recall the ∞-categorical notion of commutative monoids, originally introduced by
Segal [27]. As a special case, this also gives the definition of symmetric monoidal
∞-categories.

Notation 2.1.1. We write F∗ for (a skeleton of) the category of finite pointed sets. We
will make use of two equivalent descriptions of this category:

(1) The objects of F∗ are the pointed sets 〈n〉 = ({0, 1, . . . , n}, 0) (n = 0, 1, . . . ) and
the morphisms 〈n〉 → 〈m〉 are the functions that preserve the base point.

(2) The objects of F∗ are the sets n = {1, . . . , n} (n = 0, 1, . . . ), and morphisms
from n to m are isomorphism classes4 of spans

n x m,

where the backwards map is injective. Spans are composed by taking pullbacks.

To pass between these two descriptions, note that giving a pointed map 〈n〉 → 〈m〉
is the same thing as giving a map of sets I →m, where I is the subset of 〈n〉 that is
not mapped to the base point. (Up to unique isomorphism, I can be replaced by an
object in the chosen skeleton.)

Definition 2.1.2. A morphism φ : 〈n〉 → 〈m〉 in F∗ is active if φ−1(0) = {0} and inert
if φ|〈n〉\φ−1(0) is an isomorphism. The inert and active morphisms form a factorization
system on F∗; in particular, every morphism factors uniquely up to isomorphism as
an inert morphism followed by an active morphism.

Remark 2.1.3. In terms of the second description of F∗, a span

n k m

is active if the inclusion n←↩ k is an isomorphism, and inert if the map k→m is an
isomorphism.

Notation 2.1.4. For 〈n〉 ∈ F∗ and i = 1, . . . , n, we write ρi : 〈n〉 → 〈1〉 for the inert
map given by

ρi(j) =

{
0, i 6= j,

1, i = j.

Alternatively, this is the span

n {i} 1.=

Definition 2.1.5. Let C be an ∞-category with finite products. A commutative
monoid in C is a functor M : F∗ → C such that for every 〈n〉 ∈ F∗ the natural
morphism

M(〈n〉)
n∏
i=1

M(〈1〉),

determined by the maps ρi, is an equivalence. We write CMon(C) for the full subcat-
egory of Fun(F∗, C) spanned by the commutative monoids.

Definition 2.1.6. A symmetric monoidal ∞-category is a commutative monoid in
the ∞-category Cat∞ of ∞-categories.

4In fact the groupoid of such spans is discrete, so from an ∞-categorical viewpoint taking isomor-
phism classes does nothing.
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Remark 2.1.7. Equivalently, using the straightening equivalence between functors
to Cat∞ and cocartesian fibrations, we can view a symmetric monoidal ∞-category
as a cocartesian fibration over F∗.

Notation 2.1.8. We write SMCat∞ for the ∞-category of symmetric monoidal
∞-categories. This can be viewed as a full subcategory of either Fun(F∗,Cat∞)
or Catcoc

∞/F∗ .

2.2. Lurie’s ∞-operads. Here we recall Lurie’s definition of ∞-operads from [20,
§2.1.1] and its relation to symmetric monoidal ∞-categories.

Definition 2.2.1. An ∞-operad is a functor π : O → F∗ such that:

(1) O has π-cocartesian morphisms over inert morphisms in F∗.
(2) For every 〈n〉 ∈ F∗, the functor

O〈n〉
∏
i=1

O〈1〉,

given by cocartesian transport along the maps ρi : 〈n〉 → 〈1〉, is an equivalence.
(3) For X ∈ O〈n〉, if ρi : X → Xi is a cocartesian morphism over ρi (i = 1, . . . , n),

for any Y ∈ O〈m〉 the commutative square

MapO(Y,X)

n∏
i=1

MapO(Y,Xi)

Map
F∗

(〈m〉, 〈n〉)
n∏
i=1

Map(〈m〉, 〈1〉)

(ρi,∗)

(ρi,∗)

is a pullback square.

Remark 2.2.2. It is not hard to see that a symmetric monoidal ∞-category, viewed
as a cocartesian fibration over F∗, is precisely an ∞-operad that is also a cocartesian
fibration.

Definition 2.2.3. If π : O → F∗ is an ∞-operad, we say a morphism in O is inert if
it is a cocartesian morphism over an inert morphism in F∗, and active if it lies over an
active morphism in F∗. By [20, Proposition 2.1.2.5], the inert and active morphisms
form a factorization system on O.

Definition 2.2.4. If p : O → F∗ and q : P → F∗ are ∞-operads, then a morphism of
∞-operads from O to P is a commutative triangle

O P

F∗

f

p q

such that f preserves inert morphisms. We write Opd∞ for the subcategory of Cat∞/F∗
whose objects are the ∞-operads and whose morphisms are the morphisms of ∞-op-
erads.

Remark 2.2.5. By Remark 2.2.2, if we view symmetric monoidal ∞-categories as co-
cartesian fibrations, then the subcategory of Cat∞/F∗ corresponding to SMCat∞ is
contained in Opd∞, so that we have a forgetful functor U : SMCat∞ → Opd∞. Note
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that this is not fully faithful: a morphism in SMCat∞ is required to preserve all co-
cartesian morphisms and corresponds to a symmetric monoidal functor, while a mor-
phism in Opd∞ is only required to preserve the cocartesian morphisms that lie over
inert maps in F∗. Such a morphism can be interpreted as a lax symmetric monoidal
functor.

Definition 2.2.6. Suppose O is an ∞-operad. Given a full subcategory C of O〈1〉,
the full subcategory of O spanned by the objects that lie in C×n ⊆ O×n〈1〉 under the

equivalence O×n〈1〉 ' O〈n〉, for all n, is again an ∞-operad. We refer to this as the full

suboperad of O spanned by the objects in C.

2.3. Symmetric monoidal envelopes. In this subsection we recall the construc-
tion of symmetric monoidal envelopes from [20, §2.2.4].

Notation 2.3.1. Let Act(F∗) denote the full subcategory of the arrow category F
[1]
∗

whose objects are the active morphisms. We write s, t : Act(F∗) → F∗ for the source
and target projections. If i : F∗ → Act(F∗) denotes the functor that assigns to each
object its identity map, then si = ti = idF∗ .

Definition 2.3.2. For O an ∞-operad, we write Env(O) → F∗ for the fibre prod-
uct O ×F∗ Act(F∗) along s, with the map to F∗ induced by t. This gives a functor
Env : Opd∞ → Cat∞/F∗ .

Lemma 2.3.3. There is a natural pullback square

(2.1)

O Env(O)

F∗ Act(F∗) .

iO

i

Proof: By definition we have a commutative diagram

Env(O) O

F∗ Act(F∗) F∗ ,

id

i s

where the square is a pullback square. The pullback along i is therefore indeed given
by O → F∗.

Remark 2.3.4. Since ti = id, we can view iO as a natural map O → Env(O) over F∗.

Theorem 2.3.5 ([20, Propositions 2.2.4.4 and 2.2.4.9]). The construction Env gives a
functor Opd∞→SMCat∞, which is left adjoint to the forgetful functor U : SMCat∞→
Opd∞, with unit transformation given by the natural maps i(–).

Remark 2.3.6. If π : O → F∗ is an ∞-operad, an object of Env(O) over 〈n〉 is given
by an object X ∈ O together with an active morphism α : π(X) → 〈n〉 in F∗. A
morphism (X,α)→ (Y, β) in Env(O) is given by a morphism φ : X → Y in O and a
commutative square

π(X) π(Y )

〈n〉 〈m〉 .

π(φ)

α β

ψ
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If the underlying map ψ is active, then the uniqueness of factorizations forces φ to
be an active map in O. In particular, since every object of F∗ has a unique active
map to 〈1〉, the underlying ∞-category Env(O)〈1〉 can be identified with the subcate-
gory Oact containing only the active maps in O. Given a morphism ψ : 〈n〉 → 〈m〉, the
cocartesian morphism (X,α)→ ψ!(X,α) can be described as follows: the inert-active
factorization of ψ ◦ α gives a commutative square

(2.2)

π(X) 〈k〉

〈n〉 〈m〉 ,

α

i

a

ψ

where i is inert and a is active. Since O is an ∞-operad there is a cocartesian mor-
phism X → i!X in O, and ψ!(X,α) is given by (i!X, a) with the cocartesian morphism
in O together with the commutative square (2.2). In particular, if we think of ob-
jects of Env(O)〈1〉 ' Oact as sequences of objects in O〈1〉, then their tensor product

is given by concatenation. Given a morphism of ∞-operads F : O → C⊗, where C⊗
is a symmetric monoidal ∞-category, the canonical extension of F to a symmetric
monoidal functor Env(O)→ C⊗ takes (X,α) to the codomain α!F (X) of the cocarte-
sian morphism from F (X) over α.

Remark 2.3.7. For the terminal ∞-operad F∗ we can describe Env(F∗) even more
explicitly: we can identify the underlying category Env(F∗)〈1〉 ' F

act
∗ with the cat-

egory F of finite sets, and under this identification the “concatenation” symmetric
monoidal structure corresponds to disjoint union. In other words, the symmetric
monoidal ∞-category Env(F∗) is equivalent to the coproduct symmetric monoidal
structure on F, that is to say,

Env(F∗) ' Fq.

2.4. Two descriptions of ∞-operads via envelopes. In this section we will use
the symmetric monoidal envelope functor to give two descriptions of ∞-operads in
terms of symmetric monoidal ∞-categories and thus prove Theorem 1.1.1.

For the first description we want to consider symmetric monoidal ∞-categories
equipped with a map to Fq. Since we saw in Remark 2.3.7 that Env takes the terminal
∞-operad F∗ to Fq, we have a functor

Env′ : Opd∞ SMCat∞/Fq

that just applies Env to the unique map to the terminal object in Opd∞.

Lemma 2.4.1. The functor Env′ has a right adjoint

U ′ : SMCat∞/Fq Opd∞,

given by applying the forgetful functor U and then pulling back along the unit map F∗→
F
q.

Proof: This is a special case of [19, Proposition 5.2.5.1].

Remark 2.4.2. In other words, if C⊗ is a symmetric monoidal ∞-category over F∗,
then we have a pullback square

U ′(C⊗) C⊗

F∗ F
q .i
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Proposition 2.4.3. The functor Env′ : Opd∞ → SMCat∞/Fq is fully faithful.

Proof: It suffices to show that the unit transformation id→ U ′ Env′ is an equivalence,
which follows from the pullback square (2.1) in Lemma 2.3.3.

Notation 2.4.4. For a symmetric monoidal functor C⊗ → F
q, we write

C⊗(1) := U ′C⊗

for the pullback along F∗ → F
q, and C(1) := (C⊗(1))〈1〉 for the fibre of C over 1 ∈ F. Note

that since 1 has no endomorphisms in F, the inclusion C(1) → C exhibits C(1) as a full

subcategory, and thus C⊗(1) is the full suboperad of C⊗ spanned by objects of C that

lie over 1.

Corollary 2.4.5. The category Opd∞ is equivalent to the full subcategory of
SMCat∞/Fq consisting of symmetric monoidal ∞-categories C⊗ over Fq such that
the counit map

(2.3) Env(C⊗(1)) C⊗

is an equivalence.

We will now describe this full subcategory more explicitly:

Proposition 2.4.6. For C⊗ ∈ SMCat∞/Fq , the counit map (2.3) is an equivalence
if and only if the two following conditions hold:

(1) Every object in C is equivalent to a tensor product x1 ⊗ · · · ⊗ xn with xi ∈ C(1).
(2) Given objects x1, . . . , xn and y1, . . . , ym in C(1), the morphism

∐
φ∈Map

F
(n,m)

m∏
i=1

MapC

( ⊗
j∈φ−1(i)

xj , yi

)
MapC

(
n⊗
j=1

xj ,

m⊗
i=1

yi

)
,

given by tensoring maps together, is an equivalence.

Remark 2.4.7. Condition (2) is the so-called “hereditary condition” considered in [22,
7, 25, 17, 4].

Proof: A morphism in SMCat∞/Fq is an equivalence if and only if the functor of
underlying∞-categories is an equivalence. It therefore suffices to show that the given
conditions are equivalent to the functor

ε : (C⊗(1))
act ' Env(C⊗(1))〈1〉 C

being an equivalence.
An object of (C⊗(1))

act can be described as a list (x1, . . . , xn), where each xi is an

object of C(1), and ε(x1, . . . , xn) is the tensor product x1 ⊗ · · · ⊗ xn. Condition (1)
therefore corresponds precisely to ε being essentially surjective.

A morphism in (C⊗(1))
act from (x1, . . . , xn) to (y1, . . . , ym) is given by a map φ : n→

m in F together with a morphism fi :
⊗

j∈φ−1(i) xj → yi lying over the unique

map φ−1(i)→ 1, for every i = 1, . . . ,m. The functor ε takes this to the morphism

m⊗
i=1

fi :

n⊗
j=1

xj

m⊗
i=1

( ⊗
j∈φ−1(i)

xj

)
m⊗
i=1

yi
∼
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in C. (The unnamed equivalence is explicit: it is given by permutation of tensor factors

according to the bijection σφ : n
∼−→ n obtained by factoring φ = λφ ◦ σφ, where λφ is

monotone and σφ is a bijection monotone on fibres. For the present purposes, these
permutations do not play any significant role.) In other words, there is an equivalence

Map(C⊗
(1)

)act((x1, . . . , xn), (y1, . . . , ym)) '
∐

φ∈Map
F
(n,m)

m∏
i=1

MapC

( ⊗
j∈φ−1(i)

xj , yi

)
,

and the map to MapC
(⊗n

j=1 xj ,
⊗m

i=1 yi
)

is given by tensoring maps together (after

appropriately permuting tensor factors). Condition (2) therefore corresponds precisely
to ε being fully faithful.

Remark 2.4.8. Using the functor C → F, the morphism in (2) fits into a commutative
triangle ∐

φ∈Map
F
(n,m)

m∏
i=1

MapC

( ⊗
j∈φ−1(i)

xj , yi

)
MapC

(
n⊗
j=1

xj ,

m⊗
i=1

yi

)

Map
F
(n,m) ,

so that passing to fibres we can equivalently phrase (2) as:

(2′) For every morphism φ : n→m in F, the map

m∏
i=1

MapC

( ⊗
j∈φ−1(i)

xj , yi

)
MapC

(
n⊗
j=1

xj ,

m⊗
i=1

yi

)
φ

,

given by tensoring morphisms, is an equivalence.

In particular, taking φ to be idn we have equivalences

n∏
i=1

MapC(1)(xi, yi) MapC

(
n⊗
i=1

xi,

n⊗
i=1

yi

)
idn

' MapC(n)

(
n⊗
i=1

xi,

n⊗
i=1

yi

)
,∼

where C(n) is the fibre of C → F at n. This says precisely that the functor C×n(1) → C(n) is

fully faithful. On the other hand, condition (1) amounts to requiring the same functors
to be essentially surjective. In the presence of condition (2) (or equivalently (2′)) we
can therefore replace (1) by

(1′) For every n, the functor C×n(1) → C(n), induced by the tensor product, is an

equivalence.

Alternatively, since the full faithfulness of this functor is also part of (2), we can
replace (1) with

(1′′) For every n, the map of spaces (C'(1))
×n → C'(n), induced by the tensor product,

is an equivalence.

Finally, note that we can reformulate (2′) for all objects at once as:

(2′′) For every morphism φ : n→m in F, the map

m∏
i=1

Map(∆1, C)ni→1 Map(∆1, C)φ,

given by tensoring morphisms, is an equivalence.
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This is equivalent to (2′) since we have a commutative square

m∏
i=1

Map(∆1, C)ni→1 Map(∆1, C)φ

m∏
i=1

C'(ni)
× C'(1) C'(n) × C

'
(m) ,

∼

where the bottom horizontal map is an equivalence by (1′′), and the maps on fibres
are those in (2′).

Now we turn to the second description:

Definition 2.4.9. The forgetful functor CMon(S)→ S has a left adjoint Sym: S →
CMon(S). Since the underlying∞-groupoid functor (–)' : Cat∞ → S preserves prod-
ucts, it induces a functor CMon(Cat∞) → CMon(S), and we define PROP∞ as the
pullback

PROP∞ CMon(Cat∞)

S CMon(S) .

(–)'

Sym

An object of PROP∞ is thus a symmetric monoidal ∞-category C together with an
∞-groupoid X and an equivalence of symmetric monoidal∞-groupoids SymX ' C'.

Remark 2.4.10. As the name suggests, we think of the objects of PROP∞ as a good
∞-categorical analogue of the classical notion of PROPs, but we will not try to justify
this here. Note, however, that PROPs are usually defined to be symmetric monoidal
categories whose underlying set of objects is a free commutative monoid, while our
definition corresponds for ordinary categories to having a free underlying symmetric
monoidal groupoid. This condition does have the advantage of being invariant under
equivalence, whereas with the more traditional definition every symmetric monoidal
category is equivalent to a PROP (since every commutative monoid in sets admits a
surjective map from a free one). On the other hand, this probably means that our
∞-category PROP∞ does not correspond to the Quillen model structure on simplicial
PROPs of Hackney and Robertson [11].

Proposition 2.4.11. For any ∞-operad O, the functor iO : O → Env(O) restricts
to a morphism of ∞-groupoids O'〈1〉 → Env(O)'〈1〉 that is adjoint to an equivalence of

commutative monoids

Sym(O'〈1〉) Env(O)'〈1〉.
∼

Proof: Consider the subcategory Oint of O containing only the inert morphisms. This
is also an ∞-operad, and for any ∞-operad P we have equivalences

MapOpd∞
(Oint,P) ' MapCatcoc

∞/Fint∗
(Oint,P ×F∗ Fint

∗ ) ' MapCat∞(O'〈1〉,P〈1〉),

where the first equivalence is obtained by pulling back along Fint
∗ → F∗ and the second

holds because Oint and P ×F∗ Fint
∗ are the cocartesian fibrations over Fint

∗ for the right
Kan extensions of O'〈1〉 and P〈1〉 along the inclusion {〈1〉} ↪→ F∗, respectively.
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It follows that for a symmetric monoidal ∞-category C⊗ we have a natural equiv-
alence

MapSMCat∞(Env(Oint), C⊗) ' Map(O'〈1〉, C).

Thus Env(Oint) has the universal property of the free symmetric monoidal∞-category
on O'〈1〉 (which is also the free symmetric monoidal ∞-groupoid).

On the other hand, from the construction of Env we see that the symmetric
monoidal functor Env(Oint)→ Env(O) induced by the inclusion of Oint is an equiva-
lence on underlying symmetric monoidal ∞-groupoids. This shows that the inclusion
of O'〈1〉 exhibits the underlying symmetric monoidal ∞-groupoid of Env(O) as free,

which is what we wanted to prove.

Corollary 2.4.12. The functor Env: Opd∞ → SMCat∞ ' CMon(Cat∞) fits into a
commutative square

Opd∞ CMon(Cat∞)

S CMon(S) ,

Env

(–)'〈1〉 (–)'

Sym

and so the functor Env factors uniquely through a functor Env′′ : Opd∞ → PROP∞
over S.

Lemma 2.4.13. The functor Env′′ : Opd∞ → PROP∞ has a right adjoint U ′′,
which takes (C⊗,Sym(X) ' C') to the full suboperad of C⊗ on the objects in the
subspace X ⊆ Sym(X) ' C'.

Proof: Given O ∈ Opd∞ and (C⊗, α : Sym(X) ' C') ∈ PROP∞ we have a natural
pullback square

MapPROP∞(Env′′(O), (C⊗, α)) MapSMCat∞(Env(O), C⊗)

MapS(O'〈1〉, X) MapCMon(S)(Env(O)'〈1〉, C
') .

We can rewrite the right-hand part of this square using the adjunction Env a U as
well as the free-forgetful adjunction for commutative monoids as

MapPROP∞(Env′′(O), (C⊗, α)) MapOpd∞
(O, UC⊗)

MapS(O'〈1〉, X) MapS(O'〈1〉, C
') ,

where the bottom horizontal map is now the inclusion of those maps that factor
through X ↪→ Sym(X) ' C'. The pullback is then precisely the space of ∞-operad
maps O → UC⊗ that factor through the full suboperad U ′′C⊗ on the objects in X,
so that we have a natural equivalence

MapPROP∞(Env′′(O), (C⊗, α)) ' MapOpd∞
(O, U ′′(C⊗, α)),

as required.

Proposition 2.4.14. The functor Env′′ : Opd∞ → PROP∞ is fully faithful.
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Proof: It suffices to show that the unit transformation id → U ′′ Env′′ is an equiv-
alence, which follows from the pullback square (2.1) in Lemma 2.3.3, since this ex-
hibits O as the full suboperad of Env′′(O) spanned by objects that lie over 1 in F,
which are precisely the objects that lie in O'〈1〉 under the equivalence SymO'〈1〉 '
Env′′(O)'〈1〉.

Corollary 2.4.15. The category Opd∞ is equivalent to the full subcategory of PROP∞
consisting of pairs (C⊗, α : Sym(X) ' C') such that the counit map

(2.4) Env(U ′′(C⊗, α)) C⊗

is an equivalence.

We can also give an explicit description of this subcategory:

Proposition 2.4.16. For (C⊗, α : Sym(X) ' C') in PROP∞, the counit map (2.4)
is an equivalence if and only if the following “hereditary” condition holds:

(∗) Given objects x1, . . . , xn and y1, . . . , ym in X ⊆ C', the morphism

∐
φ∈Map

F
(n,m)

m∏
i=1

MapC

( ⊗
j∈φ−1(i)

xj , yi

)
MapC

(
n⊗
j=1

xj ,

m⊗
i=1

yi

)
,

given by tensoring maps together, is an equivalence.

Remark 2.4.17. The PROP structure together with the hereditary condition can be
seen as an∞-categorical version of what Kaufmann and Ward call Feynman categories
([17, Definition 1.1]; see also [4, 3.2] for a version closer to ours). Corollary 2.4.15
and Proposition 2.4.16 together are then an ∞-categorical version of the equivalence
established in [4, 5.16] between Feynman categories and operads.

Proof of Proposition 2.4.16: A morphism in PROP∞ is an equivalence if and only if it
projects to an equivalence in both S and SMCat∞. By construction the counit maps to
an equivalence in S, and the forgetful functor from SMCat∞ to Cat∞ is conservative,
so it suffices to show that the given condition is equivalent to the functor

ε : Env(U ′′C)〈1〉 C

being an equivalence.
From Proposition 2.4.11 we see that the underlying map of symmetric monoidal

∞-groupoids of ε is an equivalence, so that ε is in particular essentially surjective. This
means we only need to show that the given condition is equivalent to ε being fully
faithful. That in turn follows from identifying the mapping spaces in Env(U ′′C)〈1〉 '
(U ′′C)act as in the proof of Proposition 2.4.6.

3. From symmetric monoidal ∞-categories to presheaves

Our goal in this section is to use the description of∞-operads as a full subcategory
of SMCat∞/Fq from Proposition 2.4.6 to give a presentation of ∞-operads as a lo-
calization of a presheaf ∞-category. We first recall the description of ∞-categories as
complete Segal spaces, and the more general notion of SegalO-spaces over an algebraic
pattern O, in Subsection 3.1. Then we prove in Subsection 3.2 that overcategories in
Segal O-spaces can be described as Segal spaces for another algebraic pattern. We
apply this to symmetric monoidal∞-categories in Subsection 3.3, which in particular
gives a presentation of SMCat∞/Fq , and then finally apply this to describe∞-operads
in Subsection 3.4.
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3.1. Segal spaces. Here we briefly recall Rezk’s definition of ∞-categories as com-
plete Segal spaces. As we will consider several similar structures, it is convenient to
do so using some terminology from [9]:

Definition 3.1.1. An algebraic pattern is an ∞-category O equipped with a factor-
ization system (whereby every morphism factors as an inert morphism followed by
an active morphism) and a collection of elementary objects. We write Oint and Oact

for the subcategories containing only the inert and active maps, respectively, and
Oel ⊆ Oint for the full subcategory of elementary objects and inert maps between
them.

The purpose of algebraic patterns is to be an abstract general setting for Segal
conditions, as we proceed to explain. A basic example is the category�op (as explained
in Example 3.1.8 below).

Notation 3.1.2. If O is an algebraic pattern, then for X ∈ O we write

Oel
X/ := Oel ×Oint Oint

X/

for the ∞-category of inert maps from X to elementary objects.

Definition 3.1.3. Let O be an algebraic pattern and C an ∞-category with limits
of shape Oel

X/ for all X ∈ O. Then a Segal O-object in C is a functor F : O → C such

that for all X ∈ O the natural map

F (X) lim
E∈Oel

X/

F (E)

is an equivalence. We call a Segal O-object in the ∞-category S a Segal O-space.

Remark 3.1.4. Equivalently, a Segal O-object is a functor F : O → C such that the
restriction F |Oint is a right Kan extension of F |Oel .

Notation 3.1.5. If O is an algebraic pattern, we write SegO(C) for the full subcate-
gory of Fun(O, C) spanned by the Segal O-objects.

Example 3.1.6. We consider the category F∗ as an algebraic pattern using the factor-
ization system of Definition 2.1.2 and with 〈1〉 as the unique elementary object. Then
a Segal F∗-object in an ∞-category C is precisely a commutative monoid in the sense
of Definition 2.1.5.

Notation 3.1.7. We write � for the simplex category, i.e. the category of ordered
sets [n] := {0 < 1 < · · · < n} (n = 0, 1, . . . ) and order-preserving maps between
them. A morphism φ : [n] → [m] in � is called inert if it is a subinterval inclusion,
i.e. φ(i) = φ(0) + i for all i, and active if it preserves the end points, i.e. φ(0) = 0 and
φ(n) = m. The active and inert morphisms form a factorization system on �. For
0 ≤ i ≤ j ≤ n, we write ιij : [j− i] ↪→ [n] for the inert map in � given by ιij(t) = i+ t,
i.e. the inclusion of {i, i+ 1, . . . , j}.

Example 3.1.8. We view �
op as an algebraic pattern using this inert-active factor-

ization system, with [0] and [1] as the elementary objects. A Segal �op-object in an
∞-category C is then a simplicial object F : �op → C such that the natural map

F ([n]) F ([1])×F ([0]) · · · ×F ([0]) F ([1])

determined by the inert maps [0], [1] ↪→ [n] in � (i.e. the maps ιii and ιi(i+1)) is an
equivalence. In particular, a Segal �op-space is precisely a Segal space in the sense of
Rezk [26].
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Notation 3.1.9. Let E1 ∈ Seg
�op(S) denote the nerve of the generic equivalence,

i.e. the category with two objects and a unique morphism between any pair of ob-
jects. (Equivalently, this is the simplicial set with n-simplices E1

n = {0, 1}n.)

Definition 3.1.10. For X ∈ Seg
�op(S), an equivalence in X is a morphism E1 → X.

We write Xeq := MapSeg
�op (S)(E

1, X) for the space of equivalences in X. The Segal

space X is complete if the map X0 → Xeq given by composition with E1 → ∆0

is an equivalence. (In other words, X is complete if it is local with respect to this
morphism.) We write CSeg

�op(S) ⊆ Seg
�op(S) for the full subcategory spanned by

the complete Segal spaces.

Theorem 3.1.11 (Joyal–Tierney [16]). The restricted Yoneda embedding

Cat∞ Fun(�op,S)

along the functor �→ Cat∞ given by viewing the partially ordered sets [n] as (∞-)cat-
egories induces an equivalence

Cat∞ CSeg
�op(S).∼

3.2. Slices via Segal conditions. In this subsection we prove that if B is a Segal
O-space, then we can describe the overcategory SegO(S)/B as the∞-category of Segal
B-spaces, where B → O is the left fibration corresponding to B.

The starting point is the following observation:

Proposition 3.2.1 ([10, Corollary 9.8]). Let B be an ∞-category and let π : E → B
be a left fibration. Then the functor

π! : Fun(E ,S) Fun(B,S),

given by left Kan extension along π, induces an equivalence

(3.1) Fun(E ,S) Fun(B,S)/E ,
∼

where the value of π! at the terminal object is the functor E : B → S corresponding to
the left fibration π.

Remark 3.2.2. Under the straightening equivalence between Fun(B,S) and CatL
∞/B,

the functor π! is given by composition with π, and the equivalence (3.1) boils down
to the observation that if we have a commutative triangle

X E

B ,

f

π

then f is a left fibration if and only if πf is a left fibration.

Definition 3.2.3. Let O be an algebraic pattern, and suppose π : B → O is a left
fibration. Then B inherits a factorization system where the inert and active morphisms
are simply those that lie over inert and active morphisms in O. If the functor B : O →
S corresponding to π is a Segal O-space, we view B as an algebraic pattern via this
factorization system and with all objects that lie over elementary objects in O as its
elementary objects.
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Remark 3.2.4. Suppose O is an algebraic pattern and B → O is the left fibration
corresponding to a Segal O-space. Then for every object X in B lying over X in O
the functor π induces an equivalence

Bel
X/

Oel
X/,

∼

since there is a unique (cocartesian) morphism over every (inert) morphism X → E
in O. This means that a functor F : B → S is a Segal B-space if and only if for
every X ∈ B lying over X ∈ O the natural map

F (X) lim
E∈Oel

X/

F (E)

is an equivalence, where X → E is the cocartesian morphism lying over X → E.

Proposition 3.2.5. Let O be an algebraic pattern, and suppose π : B → O is a
left fibration corresponding to a Segal O-space B. Then the equivalence (3.1) from
Proposition 3.2.1 restricts to an equivalence

π! : SegB(S) SegO(S)/B .
∼

Proof: Since we know from Proposition 3.2.1 that π! gives an equivalence

Fun(B,S) Fun(O,S)/B ,
∼

it suffices to show that the full subcategories of Segal objects are identified under this
equivalence. For F : B → S and X ∈ O, we have a commutative square

π!F (X) lim
E∈Oel

X/

π!F (E)

B(X) lim
E∈Oel

X/

B(E) .∼

The functor π!F is a Segal O-space if and only if the top horizontal morphism is
an equivalence in every such square. Since B is a Segal O-space, we know that the
bottom horizontal morphism is an equivalence, and hence this condition is equivalent
to all these squares being pullbacks. This in turn is equivalent to the map on fibres
over every point of B(X) being an equivalence for every X ∈ O.

Since limits commute, we can identify the map on fibres over p ∈ B(X) as

(3.2) π!F (X)p lim
E∈Oel

X/

π!F (E)pE ,

where pE is the image of p in B(E) under the map corresponding to X → E in O.
Since the functor π is a left fibration, the left Kan extension π! is computed fibre-

wise, i.e.

π!F (X) ' colim
p∈B(X)

F (p).

For a space T , the straightening equivalence Fun(T,S)
∼−→ S/T is given by taking

colimits, with inverse given by taking fibres. Hence we have a natural identification
of π!F (X)p with F (p), under which the map (3.2) corresponds to the Segal map

F (p) lim
E∈Oel

X/

F (pE).
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As we saw in Remark 3.2.4, asking for this to be an equivalence for all X ∈ O
and p ∈ B(X) is precisely asking for F to be a Segal B-space.

In the special case where O is �op, we can use Proposition 3.2.5 to get a description
of the overcategory Cat∞/C in terms of complete Segal conditions; this description
can also be found in [2] and [15].

Remark 3.2.6. Let π : B → �
op be a left fibration corresponding to a Segal spaceB. An

object b ∈ B over [n] ∈ �
op corresponds to a morphism between left fibrations

ib : �op
/[n] → B over �op. For b ∈ B0, composition with ib then restricts to a functor

i∗b : SegB(S) Seg
�op(S),

since through the equivalence of Proposition 3.2.5 the functor i∗b corresponds to base
change along ib, which preserves the Segal condition since limits commute.

Definition 3.2.7. Let π : B → �
op be a left fibration corresponding to a Segal

space B. We say a Segal B-space F is complete if the Segal spaces i∗bF are complete
for all b ∈ B0, or equivalently the fibres (π!F )b are all complete. We write CSegB(S) ⊆
SegB(S) for the full subcategory of complete Segal B-spaces.

Proposition 3.2.8. Let π : B → �
op be a left fibration corresponding to a simplicial

space B. If B is a complete Segal space, then the functor π! restricts to an equivalence

CSegB(S) CSeg
�op(S)/B .

∼

Proof: Suppose X is a Segal space over B. We then have a commutative square

X0 Xeq

B0 Beq ,∼

where the bottom horizontal morphism is an equivalence since B is complete. The
Segal space X is therefore complete if and only if this square of spaces is a pullback,
which is equivalent to the map on fibres over each b ∈ B0 being an equivalence. Thus
X is complete if and only if for each b ∈ B0 the map on fibres Xb,0 → (Xeq)b is an
equivalence. Since Map(E1, –) preserves limits, we can also identify the fibre (Xeq)b
with (Xb)

eq, so this condition says precisely that the Segal spaces Xb are complete
for all b ∈ B0.

Combining this observation with Theorem 3.1.11, we get:

Corollary 3.2.9. For C an ∞-category, let

�/C := �×Cat∞ Cat∞/C �

be the right fibration corresponding to C viewed as a complete Segal space. Then the
restricted Yoneda embedding along �/C → Cat∞/C induces an equivalence

Cat∞/C CSeg
�

op
/C

(S).∼
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3.3. Slices of symmetric monoidal ∞-categories. We now specialize the results
of the previous section to describe the overcategories of SMCat∞ in terms of Segal
and completeness conditions. We first observe that SMCat∞ itself admits such a
description:

Definition 3.3.1. We view the product F∗ × �op as an algebraic pattern with the
inert and active morphisms given by those that are inert and active in each coordi-
nate, and with (〈1〉, [0]) and (〈1〉, [1]) as the elementary objects. We say that a Segal
(F∗ × �op)-space F is complete if the Segal space F (〈1〉, –) is complete. We write
CSeg

F∗×�op(S) ⊆ Seg
F∗×�op(S) for the full subcategory of complete Segal (F∗×�op)-

spaces.

Proposition 3.3.2. The restricted Yoneda embedding along � → Cat∞ induces an
equivalence

SMCat∞ CSeg
F∗×�op(S).∼

Proof: It follows immediately from the definitions that the equivalence

Fun(F∗,Fun(�op,S)) ' Fun(F∗ ×�op,S)

restricts to an equivalence

Seg
F∗

(Seg
�op(S)) ' Seg

F∗×�op(S).

Moreover, since complete Segal spaces are closed under limits, this restricts further
to an equivalence

Seg
F∗

(CSeg
�op(S)) ' CSeg

F∗×�op(S).

In other words, complete Segal (F∗ × �
op)-spaces are commutative monoids in

CSeg
�op(S). Combining this with the equivalence of Theorem 3.1.11 now gives the

result.

Remark 3.3.3. Let M→ F∗ ×�op be a left fibration corresponding to a Segal (F∗ ×
�

op)-space M . Then a functor F : M→ S is a SegalM-space if and only if for X ∈M
lying over (〈k〉, [n]) in F∗ ×�op the natural map

F (X)

k∏
i=1

F (Xi,01)×F (Xi,1) · · · ×F (Xi,n−1) F (Xi,(n−1)n)

induced by the (cocartesian) maps X → Xi,j over ρi×ιjj and X → Xi,(j−1)j over ρi×
ι(j−1)j is an equivalence. This condition can conveniently be split into three parts:

(1) F (X)
∼−→ F (X01)×F (X1) · · · ×F (Xn−1) F (X(n−1)n), where X lies over [n] ∈ �op

and the maps X → Xj and X → X(j−1)j are cocartesian over ιjj and ι(j−1)j ,
respectively.

(2) F (X)
∼−→
∏k
i=1 F (Xi), where X lies over (〈k〉, [1]) and X → Xi is cocartesian

over ρi.

(3) F (X)
∼−→
∏k
i=1 F (Xi), where X lies over (〈k〉, [0]) and X → Xi is cocartesian

over ρi.

As a special case of Proposition 3.2.5 we have:

Corollary 3.3.4. Let π : M→ F∗ ×�op be a left fibration corresponding to a Segal
(F∗×�op)-space M . Then the functor π! given by left Kan extension along π restricts
to an equivalence

SegM(S) Seg
F∗×�op(S)/M .

∼
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We now want to incorporate completeness into this description:

Definition 3.3.5. Let π : M→ F∗×�op be a left fibration corresponding to a Segal
(F∗ ×�op)-space M , and let M〈1〉 → �

op be the fibre at 〈1〉 ∈ F∗, corresponding to
the underlying Segal space M(〈1〉, –). Let uM : M〈1〉 → M denote the inclusion of
this fibre; composition with uM restricts to a functor SegM(S) → SegM〈1〉(S). We

say a SegalM-space F is complete if u∗MF is complete in the sense of Definition 3.2.7,
and write CSegM(S) ⊆ SegM(S) for the full subcategory spanned by the complete
objects.

Proposition 3.3.6. Let π : M→ F∗×�op be a left fibration corresponding to a Segal
(F∗×�op)-space M . If M is complete, then the functor π! restricts to an equivalence

CSegM(S) CSeg
F∗×�op(S)/M .

∼

Proof: Since left Kan extensions along the left fibration π are given by taking colimits
fibrewise, we have a commutative square

SegM(S) SegM〈1〉(S)

Seg
F∗×�op(S)/M Seg

�op(S)/M(〈1〉,–) ,

π!

u∗M

π〈1〉,!

where the vertical maps are equivalences. Combining this observation with Propo-
sition 3.2.8 now completes the proof, since CSegM(S) and CSeg

F∗×�op(S)/M are
defined as the preimages in this diagram of CSegM〈1〉(S) and CSeg

�op(S)/M(〈1〉,–),

respectively.

Corollary 3.3.7. Suppose C⊗ is a symmetric monoidal ∞-category, and let M →
F∗ × �op be the left fibration corresponding to C⊗ viewed as a commutative monoid
in complete Segal spaces. Then there is an equivalence of ∞-categories

SMCat∞/C⊗ ' CSegM(S).

Proof: Combine Proposition 3.3.6 with Proposition 3.3.2.

3.4. Application to ∞-operads. Our next goal is to combine the results of the
previous subsection with those of Subsection 2.4 to obtain a new description of Opd∞
in terms of Segal and completeness conditions.

Definition 3.4.1. Let π : F → F∗ × �
op be the left fibration corresponding to

the symmetric monoidal category F
q viewed as a commutative monoid in Segal

spaces. Unwinding the definitions, the category F has the following explicit descrip-
tion (where it is convenient to use the description of F∗ in terms of spans of finite
sets): the objects of F are sequences of maps in F

a0 · · · am

n ,
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where this object lives over (n, [m]) in F∗×�op. A (necessarily cocartesian) morphism

over (n←↩ x→ n′, [m′]
φ−→ [m]) with this object as source is given by a commutative

diagram

b0 aφ(0)

· · · · · ·

bm′ aφ(m′)

x n

n′ ,

where the squares

bi aφ(i)

x n

are all pullback squares. (In other words, we restrict along φ, pull back along x ↪→ n,
and compose with the map x→ n′.)

Remark 3.4.2. With this description of F , the requirements for a functor Φ: F →
S to be a Segal F-space from Remark 3.3.3 amount to the following maps being
equivalences:

(3.3) Φ

a0 · · · am

n

 Φ

a0 a1

n

×
Φ

a1

n

 · · ·

×
Φ

am−1

n

Φ

am−1 am

n

 ,

(3.4) Φ

a b

n

 n∏
i=1

Φ

ai bi

1

 ,

(3.5) Φ

 a

n

 n∏
i=1

Φ

ai

1

 .

From Corollary 3.3.7 we then get the following:

Corollary 3.4.3. There is an equivalence

SMCat∞/Fq CSegF (S),∼

where the right-hand side is the full subcategory of Fun(F ,S) spanned by functors Φ
satisfying conditions (3.3) to (3.5) and for which the Segal space Φ〈1〉,a is complete
for every a ∈ F.
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Definition 3.4.4. We write Fun′(F ,S) for the full subcategory of Fun(F ,S) spanned
by functors Φ such that for every object

a0 · · · am

n

in F and every map n→ n′ in F, the map

(3.6) Φ

a0 · · · am

n

 Φ

a0 · · · am

n′


lying over n

=←− n → n′ is an equivalence. We then write Seg′F (S) and CSeg′F (S)
for the intersections of Fun′(F ,S) with the full subcategories SegF (S) and CSegF (S)
in Fun(F ,S), respectively.

Our goal is now to prove the following:

Theorem 3.4.5. The equivalence of Corollary 3.4.3 restricts along the fully faithful
inclusion Env′ : Opd∞ ↪→ SMCat∞/Fq from Proposition 2.4.3 to an equivalence

Opd∞ CSeg′F (S).∼

We begin by simplifying the definition of Seg′F (S) a bit:

Lemma 3.4.6. Suppose Φ is in SegF (S). Then Φ lies in Seg′F (S) if and only if the
two following conditions hold:

(1) For every object n in F, the map

Φ

n

n

 Φ

n

1


over n

=←− n→ 1 is an equivalence.
(2) For every morphism n→m in F, the map

Φ

n m

m

 Φ

n m

1


over m

=←−m→ 1 is an equivalence.

Proof: Clearly (1) and (2) are special cases of (3.6), so we need to prove that these
special cases suffice. We first observe that condition (3.3) for SegF (S) implies that
Φ lies in Seg′F (S) if and only if condition (3.6) holds for m = 0 and m = 1. Now we
claim that (1) and (2) are equivalent to these two cases, respectively; we will prove
the case where m = 1, the proof for m = 0 being similar.

For any morphism n→ n′ in F, consider the maps

Φ

a b

n

 Φ

a b

n′

 Φ

a b

1

 ,

where the first map lies over n
=←− n→ n′ and the second lies over n′

=←− n′ → 1. Then
the composite lies over n

=←− n → 1, so that by the 2-of-3 property of equivalences,
condition (3.6) holds for all maps if and only if it holds for maps of the form n→ 1.
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Next, consider for any map b→ n in F the maps

Φ

a b

b

 Φ

a b

n

 Φ

a b

1

 .

Here assumption (2) implies that the composite map is an equivalence, so that the sec-
ond map is an equivalence if and only if the first one is. But the first map decomposes
using the Segal conditions as

n∏
i=1

Φ

ai bi

bi

 n∏
i=1

Φ

ai bi

1

 ,

which is also an equivalence under assumption (2). Thus the Segal conditions and (2)
imply that (3.6) holds in the case m = 1, as required.

Proof of Theorem 3.4.5: We must show that under the equivalence of Corollary 3.4.3
the two conditions from Proposition 2.4.6 correspond precisely to (3.6). Equivalently,
we can check that the alternative conditions (1′′) and (2′′) from Remark 2.4.8 cor-
respond to those from Lemma 3.4.6. To this end, let C⊗ → F

q be an object of
SMCat∞/Fq and Φ the corresponding object in CSegF (S). Unwinding the definitions,
we have equivalences

Φ

n

1

 ' C'(n), Φ

n m

1

φ
 ' Map(∆1, C)φ,

under which the tensoring maps

(C'(1))
×n C'(n),

m∏
i=1

Map(∆1, C)ni→1 Map(∆1, C)φ

from conditions (1′′) and (2′′) correspond to

n∏
i=1

Φ

1

1

 Φ∼

n

n

 Φ

n

1


and ∏

i=1

Φ

ni 1

1

φ
 Φ∼

n m

m

φ
 Φ

n m

1

φ
 ,

respectively. Here we have exactly the same maps as in Lemma 3.4.6, so that the
conditions there precisely correspond to those of Remark 2.4.8, as required.

Theorem 3.4.5 has the following immediate corollary:

Corollary 3.4.7. The ∞-category Opd∞ is presentable.

The following observation will be useful later:

Lemma 3.4.8. An object Φ ∈ Seg′F (S) lies in CSeg′F (S) if and only if the Segal
space Φ〈1〉,1 is complete.
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Proof: For n ∈ F we have a natural zig-zag of simplicial spaces

n∏
i=1

Φ

1 · · · 1

1

 Φ

n · · · n

n

 Φ

n · · · n

1

 ,

where both maps are equivalences for Φ in Seg′F (S). Thus we have an equivalence
between the Segal spaces Φ×n〈1〉,1 and Φ〈1〉,n. Since complete Segal spaces are closed

under limits, this implies that if Φ〈1〉,1 is complete, then so is Φ〈1〉,n, and hence by

definition Φ lies in CSeg′F (S).

4. From Barwick’s ∞-operads to symmetric monoidal
∞-categories

In this section we first review Barwick’s model of∞-operads in Subsection 4.1. Then
in Subsection 4.2 we use our work in the previous section to give a new proof of the
equivalence between Barwick’s and Lurie’s models by passing through the equivalence
of Theorem 3.4.5.

4.1. Barwick’s ∞-operads. Here we recall Barwick’s definition of∞-operads from
[3] (there called complete Segal operads). This definition can be phrased as complete
Segal spaces for a certain algebraic pattern, which we introduce first:

Definition 4.1.1. The category �F has as objects pairs ([n] ∈ �, f : [n]→ F) inter-
preted as chains (of length n) of composable arrows in F, and morphisms ([n], f) →
([m], g) are given by morphisms φ : [n] → [m] in � together with a natural transfor-
mation η : f → g ◦ φ such that

(1) for every i ∈ [n], the map ηi : f(i)→ g(i) is an injection,
(2) for every i, j in [n] with i ≤ j, the commutative square

f(i) f(j)

g(i) g(j)

ηi ηj

is a pullback.

For small values of n, we shall also write out an object ([n], f) as a chain

f(0) · · · f(n).

Note that the projection �F → � is a cartesian fibration. We can lift the active-
inert factorization system on � to one on �F by declaring a map (φ, η) : ([n], f) →
([m], g) to be

• active if φ is active in � and ηi : f(i)→ g(i) is an isomorphism for all i,
• inert if φ is inert in �.

This gives a factorization system on �F compatible with that on �.

Remark 4.1.2. Given (φ, η) : ([n], f)→ ([m], g), where φ : [n]→ [m] factors as [n]
a−→

[k]
i−→ [m] with a active and i inert, to find the active-inert factorization in �F we

first take a factorization of (φ, η) as

([n], f) ([k], gi) ([m], g)
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with the second morphism cartesian, and then a factorization of ([n], f) → ([k], gi)
as ([n], f) → ([k], g′) → ([k], gi), where g′ is given by taking pullbacks along f(n) →
gi(a(n)) = gi(k).

Definition 4.1.3. We give �op
F

the structure of an algebraic pattern using the inert-
active factorization system we have just defined, and with the elementary objects
being the 1-chains n→ 1 for all n in F as well as the 0-chain 1.

Remark 4.1.4. A functor F : �op
F
→ S is a Segal �op

F
-space if and only if the following

three conditions hold:

(1) F ([n], f)
∼−→ F ([1], f01)×F (f(1)) · · · ×F (f(n−1)) F ([1], f(n−1)n),

(2) F (a→ b)
∼−→
∏
i∈b F (ai → 1),

(3) F (b)
∼−→
∏
i∈b F (1).

Remark 4.1.5. Segal �op
F

-objects describe the algebraic structure of ∞-operads:

(1) F (1) is the space of objects,
(2) F (n→ 1) is the space of n-ary operations, with the map

F (n→ 1) F (1)×n × F (1)

coming from the n+ 1 inclusions (1)→ (n→ 1) assigning to each operation its
sources and target,

(3) F (n → m → 1) decomposes under the Segal condition as the space of ni-ary
operations that can be composed with an m-ary operation,

(4) the map F (n→m→ 1)→ F (n→ 1) induced by the inner face map d1 encodes
composition,

(5) and the remaining data encodes the homotopy-coherent associativity and uni-
tality of this composition operation.

To complete the definition we also need to add a completeness condition:

Definition 4.1.6. Let u : �op → �
op
F

be the functor given by

[n] ([n],1 1 · · · 1).= = =

Composition with u gives a functor u∗ : Seg
�

op
F

(S) → Seg
�op(S), and we say F ∈

Seg
�

op
F

(S) is complete if u∗F is a complete Segal space. We write CSeg
�

op
F

(S) for the

full subcategory of Seg
�

op
F

(S) spanned by the complete Segal objects.

4.2. Comparison. Our goal is now to show that CSeg
�

op
F

(S) is equivalent to the

∞-category CSeg′F (S) considered in the previous section, where π : F → F∗ ×�op is
the left fibration corresponding to the symmetric monoidal category Fq viewed as a
commutative monoid in Segal spaces. As a first step, we see that there is a functor
relating F to �op

F
:

Definition 4.2.1. We define P : F → �
op
F

on the object

a0 · · · am

n ,

by forgetting the “augmentation” to n, so that P takes this object to a0 → · · · → am.
Comparing the definitions of the morphisms in F and �op

F
, we see that a morphism

in F restricts to a morphism in �op
F

when we forget the augmentations, which gives
the action of P on morphisms.
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Remark 4.2.2. The functor P fits into a commutative triangle

F �
op
F

�
op ,

P

where both maps to �op are cocartesian fibrations. From the definitions of the co-
cartesian morphisms we also see that P preserves these.

The key observation is the following:

Proposition 4.2.3. The functor P : F → �
op
F

is a localization, and composition with
it gives an equivalence

Fun(�op
F
,S) Fun′(F ,S).∼

We begin by looking at P on each fibre over �op:

Definition 4.2.4. For [m] ∈ �, let Sm : �op
F,[m] → F[m] be the functor given by taking

the object a0 → · · · → am to

a0 · · · am

am ,

and a morphism (a0 → · · · → am)→ (b0 → · · · → bm) in �F given by η : a(–) → b(–)

to the morphism in F given by pulling back along am ↪→ bm.

Lemma 4.2.5. Let Pm be the restriction of P to the fibre over [m] ∈ �op.

(1) The functor Sm is left adjoint to Pm.
(2) Pm is a localization.

Proof: We have PmSm = id by inspection. We can define a natural transformation
α : SmPm → idF given at the object

a0 · · · am

n ,

by the map from

a0 · · · am

am

lying over am
=←− am → n (given by composing with am → n). Then αSm and Pmα

are clearly both the respective identity transformations, so this indeed exhibits Sm
as the left adjoint of Pm. This proves (1). Moreover, since Pmα is the identity we see
that α becomes a natural isomorphism after we invert the morphisms in F[m] that
are taken to isomorphisms by Pm. This means that after localizing, Sm is an inverse
of Pm, which proves (2).

To prove Proposition 4.2.3 we use the following criterion:
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Proposition 4.2.6 (Hinich). Suppose we have a commutative triangle

E E ′

B ,
p

f

p′

where p and p′ are cocartesian fibrations and f preserves cocartesian morphisms. If
for every b ∈ B the functor on fibres fb : Eb → E ′b is a localization, then so is f .

Proof: Let Wb denote the collection of morphisms in Eb that are taken to equivalences
by pb; since f preserves cocartesian morphisms we have for every map β : b → b′ a
commutative square

Eb Eb′

E ′b E ′b′ ,

β!

β!

from which it is immediate that β!Wb ⊆ Wb′ . Unstraightening, we see that f corre-
sponds to the natural localization maps Eb → Eb[W−1

b ]. It follows from Hinich’s work
on localizations of fibrations in [14] that E ′ is then the localization of E at the union
of the Wb’s, which is to say at the maps that f takes to equivalences. (More precisely,
we apply [14, Proposition 2.1.4] in the form [12, Proposition 4.2.5].)

Proof of Proposition 4.2.3: We saw in Remark 4.2.2 that P preserves cocartesian mor-
phisms over �op and in Lemma 4.2.5 that fibrewise Pm is a localization for every
[m] ∈ �op. Proposition 4.2.6 then implies that P is also a localization. If W denotes
the collection of morphisms in F that are taken to isomorphisms in �

op
F

, then it
follows that composition with P gives a fully faithful functor

P ∗ : Fun(�op
F
,S) Fun(F ,S)

whose image is spanned by the functors F → S that take the morphisms in W to
equivalences in S. We can identify the morphisms in W as those morphisms in F
that lie over an identity in �op and over a map of the form n

=←− n → n′′ in F∗. By
definition, Fun′(F ,S) is the full subcategory of functors that take these morphisms
to equivalences, and so it is precisely the image of P ∗, as required.

Corollary 4.2.7. Composition with P induces equivalences

P ∗ : Seg
�

op
F

(S) Seg′F (S),∼

P ∗ : CSeg
�

op
F

(S) CSeg′F (S).∼

Proof: We want to show that these subcategories correspond to each other under
the equivalence of Proposition 4.2.3. In other words, we must show that a functor
Φ: �op

F
→ S lies in Seg

�
op
F

(S) if and only if P ∗Φ lies in Seg′F (S), and similarly for com-

pleteness. For the Segal conditions this is clear since the conditions in Remark 3.4.2
applied to P ∗Φ give precisely the Segal conditions in Remark 4.1.4, while for com-
pleteness this follows similarly using the simplified condition from Lemma 3.4.8.

Combining Corollary 4.2.7 with Theorem 3.4.5 we have a zig-zag of equivalences

Opd∞ CSeg′F (S) CSeg
�

op
F

(S),∼ ∼

which gives:
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Corollary 4.2.8. There is an equivalence of ∞-categories

Opd∞ ' CSeg
�

op
F

(S)

between Lurie’s and Barwick’s models for ∞-operads.
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2008, pp. 247–308. DOI: 10.1007/978-3-7643-8608-5 4.

[8] G. Caviglia, The Dwyer–Kan model structure for enriched coloured PROPs, Preprint (2015).

arXiv:1510.01289.
[9] H. Chu and R. Haugseng, Homotopy-coherent algebra via Segal conditions, Adv. Math. 385

(2021), Paper no. 107733, 95 pp. DOI: 10.1016/j.aim.2021.107733.

[10] D. Gepner, R. Haugseng, and T. Nikolaus, Lax colimits and free fibrations in ∞-categories,
Doc. Math. 22 (2017), 1225–1266. DOI: 10.4171/dm/593.

[11] P. Hackney and M. Robertson, The homotopy theory of simplicial props, Israel J. Math.

219(2) (2017), 835–902. DOI: 10.1007/s11856-017-1500-4.
[12] R. Haugseng, F. Hebestreit, S. Linskens, and J. Nuiten, Lax monoidal adjunctions, two-

variable fibrations and the calculus of mates, Proc. Lond. Math. Soc., published online. DOI: 10.

1112/plms.12548.
[13] C. Hermida, Representable multicategories, Adv. Math. 151(2) (2000), 164–225. DOI: 10.1006/

aima.1999.1877.

[14] V. Hinich, Dwyer–Kan localization revisited, Homology Homotopy Appl. 18(1) (2016), 27–48.
DOI: 10.4310/HHA.2016.v18.n1.a3.

[15] V. Hinich, Yoneda lemma for enriched ∞-categories, Adv. Math. 367 (2020), 107129, 119 pp.
DOI: 10.1016/j.aim.2020.107129.

[16] A. Joyal and M. Tierney, Quasi-categories vs Segal spaces, in: Categories in Algebra, Geom-

etry and Mathematical Physics, Contemp. Math. 431, American Mathematical Society, Provi-
dence, RI, 2007, pp. 277–326. DOI: 10.1090/conm/431/08278.

[17] R. M. Kaufmann and B. C. Ward, Feynman categories, Astérisque 387 (2017), 161 pp.
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