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Abstract: We describe a greedy algorithm that approximates the Carleson constant of a collection

of general sets. The approximation has a logarithmic loss in a general setting, but is optimal up to

a constant with only mild geometric assumptions. The constructive nature of the algorithm gives
additional information about the almost disjoint structure of sparse collections.

As applications, we give three results for collections of axis-parallel rectangles in every dimen-
sion. The first is a constructive proof of the equivalence between Carleson and sparse collections,

first shown by Hänninen. The second is a structure theorem proving that every finite collection E
can be partitioned into O(N) sparse subfamilies, where N is the Carleson constant of E. We also
give examples showing that such a decomposition is impossible when the geometric assumptions

are dropped. The third application is a characterization of the Carleson constant involving only

L1,∞ estimates.
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1. Introduction

Consider a collection E of measurable sets in Rd with finite measure. We say that
E is η-sparse if for every R in E there exists a subset E(R) ⊆ R satisfying |E(R)| ≥
η|R| such that the family {E(R)} is pairwise disjoint. The number η quantifies how
much overlap exists in E in a scale-invariant way. In particular, the closer η is to 1
the closer E is to being pairwise disjoint. A closely related quantity is the Carleson
constant of E . For any collection F let sh(F) =

⋃
R∈F R be its shadow ; then we say

that E satisfies the Carleson condition with constant C if∑
R∈F
|R| ≤ C| sh(F)|

for all subcollections F ⊆ E . The best constant in the inequality above is usually
called the Carleson constant of E . We have specialized the definition to the case of
the Lebesgue measure, which we denote by | · |, but these notions carry over to general
measure spaces, as we will describe later in the article.

These notions have been used extensively in harmonic analysis, for example in
connection with the boundedness of maximal functions (cf. [3], [4]). In recent years
they have also gained a lot of attention for their applications to weighted inequalities;
we direct the interested reader to [10] for a nice review in this direction.

It is very easy to see that η-sparse collections satisfy the Carleson condition with
constant η−1. With more work one can show that the converse is also true when
E consists of dyadic intervals (or squares, cubes, etc.); see for example Lemma 6.3
in [8]. This can be done exploiting the strong nestedness property of dyadic intervals,
and in fact this structural property allows one to explicitly find the sets E(R) in the
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definition above. In particular, in the (one-parameter) dyadic setting the Carleson
condition becomes local, being equivalent to∑

S∈E
S⊆R

|S| ≤ C|R|

for all R in E .
This locality is sadly lacking in general, failing even in the two-parameter setting

where, instead of dyadic intervals, one works with collections consisting of axis-parallel
dyadic rectangles. This was shown in [2] with what is now known as Carleson’s coun-
terexample; see [11] or [9].

The equivalence between Carleson and sparse collections of dyadic cubes was first
shown by I. E. Verbitsky in [12]; see also [8] for a different proof. Then, T. S. Hänninen
in [7] adapted some of the ideas from [12] and from L. E. Dor’s article [5] to prove
the existence of the sets E(R) in the definition for general collections of sets (not
necessarily dyadic cubes), thus proving the equivalence in general. The proof, which
at its core uses a convexity argument together with the Hahn–Banach separation
theorem, is strikingly clean but gives no clue about how the sets {E(R)} can be
found or about their structure. A more geometric proof was later found in [1], but
this proof is also non-constructive.

The main purpose of this article is to describe a greedy algorithm that is able to
construct the sets {E(R)} for any Carleson collection E . With no geometric assump-
tions on E the algorithm has a logarithmic loss, but if one imposes some geometric
structure, then the algorithm provides sets that are optimal up to an absolute con-
stant. The constructive nature of our methods allows us to prove a structural theorem
about sparse collections with only mild geometric assumptions, for example valid for
axis-parallel rectangles in every dimension.

Before stating the main results, let us begin with some definitions. We will fre-
quently use the words collection and family to mean an unordered sequence, instead
of the usual definition of set. In particular we allow repeated elements.

We can define the Carleson constant of E with respect to a measure µ as

(1.1) ‖E‖Carleson(µ) = sup

{
1

µ(sh(F))

∑
R∈F

µ(R) : F ⊆ E

}
.

We will write just ‖E‖Carleson when µ is the Lebesgue measure. For simplicity, all of
our collections will be assumed to be finite. As a consequence, we can assume µ to be
a general measure as long as all the elements of the collections have finite measure.

For general measures, the straightforward generalization of sparse collection is not
equivalent to the Carleson condition above (one needs µ to have no point masses).
This can be readily seen with the example

E = {{1}, . . . , {1}︸ ︷︷ ︸
N times

} µ = Counting measure.

Instead, we can extend it as follows.

Definition 1. We say that E is η-sparse with respect to the measure µ if one can
find non-negative measurable functions ϕR ≥ 0 for each R in E such that∫

R

ϕR dµ ≥ ηµ(R),(1.2) ∑
R

ϕR ≤ 1.(1.3)



Greedy approximation algorithms for sparse collections 253

We call the best constant η above (over all possible ϕR) the sparse constant of E with
respect to µ, that is:

‖E‖Sparse(µ) = sup{η ≥ 0 : E is η-sparse with respect to µ}.

This is only a slight generalization of the previous definition (one can just take
ϕR = 1E(R) to recover the original). In fact, when the measure µ has no point
masses, one can use a convexity argument like Lemma 2.3 from [5] to show that the
two definitions of sparse collection are equivalent. With this notation the Carleson-
sparse equivalence from [7] becomes

‖E‖Carleson(µ)‖E‖Sparse(µ) = 1.

We will not use this equivalence but only the easy direction alluded to earlier in the
introduction, which we state here as

Lemma 1.1. Let E be a finite collection of sets with finite µ-measure; then we have

‖E‖Carleson(µ)‖E‖Sparse(µ) ≤ 1.

Proof: Suppose that E is η-sparse with respect to the measure µ. We will show that
‖E‖Carleson(µ) ≤ η−1. To this end, let F be any subcollection of E and let {ϕR} be
the functions from Definition 1. Then∑

R∈F
µ(R) ≤ η−1

∑
R∈F

∫
R

ϕR dµ

= η−1

∫
sh(F)

∑
R∈F

ϕR dµ ≤ η−1µ(sh(F)),

which is what we wanted to show.

We are now ready to describe our algorithm and main results.
Suppose one were to compute ‖E‖Carleson directly with (1.1). The definition involves

computing a certain sum for each of the subcollections F ⊆ E , so the process quickly
becomes intractable as the cardinality of E grows.

One could instead try to find functions ϕR as in Definition 1. However, this ap-
proach quickly runs into problems since the two conditions (1.2) and (1.3) are in direct
opposition. Namely, (1.2) requires that the average of each ϕR be at least η, which
together with (1.3) means that each ϕR cannot be much smaller than η on a large
portion of R. But also, (1.3) implies that the functions cannot all be larger than η at
the same place.

If E consists of only two elements {R1, R2}, then the problem becomes very easy:
one can just set ϕRi to be 1 on the symmetric difference of R1 and R2 and then equi-
tably distribute the mass in R1∩R2 among the two in proportion to their masses. This
could lead to an induction algorithm, but one easily sees that, even with simple exam-
ples, earlier choices of the functions ϕR can make the choice of the (n+1)-th function
impossible, especially when the earlier choices do not take the global situation into
account.

This suggests that we choose ϕR in a way that guarantees, independently of the
choice of ϕS for S 6= R, that the sum of all the functions remains bounded by 1.
In particular, we would like to find R so that arbitrarily solving the subproblem
for E \ {R} still leaves space to choose ϕR appropriately.

We are not able to do this in general without at least some geometric information
about E . However, we can find R so that, if we choose the following functions in
a special way (independent of the choice of ϕR), then there always exists a choice
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of ϕR that is valid up to a logarithmic factor. In particular, this strategy leads to
functions ϕR satisfying ∫

R

ϕR dµ &
η

log η−1
µ(R),

where η = ‖E‖−1
Carleson(µ).

In order to remove the logarithmic loss we can use the maximal operator associated
to E :

Mµ
Ef = sup

R∈E
1R

1

µ(R)

∫
R

|f | dµ.

The geometric condition alluded to previously is related to the restricted weak-type
boundedness of Mµ

E . In particular, if there exists an 0 < η < 1 and M > 0 such that

(1.4) µ({x :Mµ
E(1E)(x) > η}) ≤Mµ(E)

for all measurable sets E, then the strategy described above leads to an algorithm
that finds functions ϕR satisfying∫

R

ϕR dµ & ‖E‖−1
Carleson(µ)µ(R),

where the implied constant depends only on M .
The inequality (1.4) would follow from the restricted weak-type (1, 1) of Mµ

E , so
for example it holds for the Lebesgue measure when E consists of axis-parallel rect-
angles, cubes, balls, etc. One can also consider other measures; for example, in the
one-parameter dyadic case Mµ is weak-type (1, 1)-bounded for any measure µ, so
(1.4) is true whenever E consists of dyadic intervals (or squares, cubes, etc.). In two
or more parameters the weak type fails for general measures, but does hold when
dµ(x) = w(x) dx and w is a strong A∞ weight, as shown by R. Fefferman in [6].

Our algorithm finds the functions ϕR in Definition 1 assuming only that (1.4) holds,
so it immediately gives a constructive proof of the equivalence between the sparse and
Carleson conditions. Without (1.4) we can constructively prove the equivalence, but
only up to a logarithmic factor.

As another application of the algorithm we can prove the following structural
property of sparse collections.

Theorem A. Let E be a finite collection of sets and suppose (1.4) holds. Then there
exists a partition into O(‖E‖Carleson(µ)) subcollections {Ei} satisfying

‖Ei‖Carleson(µ) . 1.

This result is proved as a special case of Theorem 4.1, which is a more precise ver-
sion where we track all the constants. As an application of Theorem 4.1 we can draw
a connection with the notion of (P1) sequence introduced in [4]. In particular, we can
show that, under the same geometric hypothesis as Theorem A, every Carleson col-
lection can be split into a finite number of (P1) sequences. We will defer the definition
of (P1) sequence until Section 4, where this connection is explained in Remark 4.2.

We also show that there are situations where such a splitting is impossible in the
absence of an estimate on Mµ

E . In particular we have, if µ is the Lebesgue measure
on R:

Theorem B. For every Λ ≥ 2 and every integer N ≥ 1 there exists a collection E of
subsets of R with ‖E‖Carleson(µ) ≤ Λ such that for any partition

E = E1 ∪ · · · ∪ EN
there exists at least one i ∈ {1, . . . , N} for which ‖Ei‖Carleson(µ) & Λ.
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Even if we restrict E to consist of only dyadic rectangles, we can produce an example
similar to this last one, but for a specially designed measure µ for which (1.4) does
not hold.

Another application of the algorithms described in this article is that we can weaken
the definition of the Carleson condition to require only weak-type instead of strong
L1 estimates.

Theorem C. Suppose (1.4) holds and let M < ∞ be the constant in the inequality.
Then

‖E‖Carleson(µ) . sup

 1

µ(F)

∥∥∥∥∥∑
R∈F

1R

∥∥∥∥∥
L1,∞(µ)

: F ⊆ E

 ,

where the implied constant depends only on M .

In Section 2 we describe a general algorithm to approximate the Carleson constant
of a collection following the strategy described here.

In Section 3 we show how to modify the algorithm from the previous section to
remove the logarithmic loss, conditional on inequality (1.4). Theorem C is proved at
the end of this section.

Finally, in Section 4 we prove Theorem A by inductively constructing said partition,
and prove Theorem B as well as the dyadic version with explicit examples.

2. An algorithm for general collections

In this section µ will always denote a fixed positive measure. All sets will also
be assumed to be of finite µ-measure. For any collection E of sets define its height
function

hE =
∑
R∈E

1R.

Carleson’s condition asserts a uniform bound on the average height of all subcollec-
tions. Indeed, if we denote the average height by

Λµ(E) =
1

µ(sh(E))

∫
hE dµ,

then Carleson’s condition becomes ‖E‖Carleson(µ) = sup{Λµ(F) : F ⊆ E}.
The next lemma is the main iteration step in our algorithm.

Lemma 2.1. Let E be a collection of sets and suppose Λ := Λµ(E) <∞. Define1 for
every R in E

gR :=
1R

hE
1{x:hE(x)≤2Λ}.

Then there exists at least one R in E such that

(2.1)

∫
R

gR dµ ≥
1

2Λ
µ(R).

Proof: By definition we have

(2.2)
1

Λ

∫
hE dµ = µ(sh(E)).

Define the set G = {x ∈ sh(E) : hE(x) ≤ 2Λ} and note that with this notation we
have:

gR = 1G
1R

hE
and

∑
R∈E

gR = 1G.

1Here and throughout we will take the convention that 0
0

= 0.
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If µ(G) = µ(sh(E)), then we are done, since then if (2.1) failed for all R, we would
have

µ(sh(E)) = µ(G) =
∑
R∈E

∫
gR dµ <

1

2Λ

∑
R∈E

µ(R) =
1

2
µ(sh(E)),

which is a contradiction. So we can assume that µ(G) < µ(sh(E)).
Then, from Markov’s inequality and (2.2) we can estimate

µ(G) = µ(sh(E))− µ({x : hE > 2Λ})

> µ(sh(E))− 1

2Λ

∫
hE dµ

=
1

2
µ(sh(E)),

and hence µ(G) > 1
2µ(sh(E)).

Suppose by way of contradiction that (2.1) fails for all R. That is, for all R in E ,∫
R

gR dµ <
1

2Λ
µ(R).

Then

µ(G) =

∫
1G dµ =

∫ ∑
R∈E

gR dµ

<
∑
R∈E

1

2Λ
µ(R) =

1

2Λ

∫
hE dµ =

1

2
µ(sh(E)).

This means µ(G) < 1
2µ(sh(E)), which is a contradiction.

If we iterate this lemma, we obtain the algorithm described in the introduction.

Algorithm 1: ApproximateCarleson(E)

1 begin
2 Set A = 1.

3 end

4 while E 6= ∅ do
5 Set A = max(A,Λµ(E)).

6 Construct the functions gR as in Lemma 2.1.

7 for R ∈ E do

8 if
∫
gR dµ ≥ µ(R)

2Λµ(E) , then

9 Assign fR := gR and ΛR := Λµ(E).

10 Remove R from E .

11 Go to line 5.

12 end

13 end

14 end

Result: The constant A, the sequence {ΛR}, and the functions {fR}.

The purpose of lines 7 through 13 is to find R so that∫
gR dµ ≥

µ(R)

2Λµ(E)
.
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Lemma 2.1 shows that such an R always exists, so the algorithm removes one element
from E at a time and thus always terminates. We note here that the functions fR
found by the algorithm are not the functions ϕR in the definition of sparse collection;
those will be constructed later in Theorem 2.3.

Remark 2.2. We note that the symbols A, fR, ΛR, and E all change during the execu-
tion of the algorithm. One can rewrite the algorithm in a more traditional way by set-
ting E0 = E and A0 = 1 at the beginning. Then En+1 is obtained from En by removing
an R that satisfies the condition in line 8 and updating An+1 to max(An,Λµ(En+1)).

The following theorem shows that the approximation of ‖E‖Carleson(µ), namely A,
is correct up to a logarithm.

Theorem 2.3. Let A be the constant obtained as the result of running the algorithm
on a collection E. Then we have

A ≤ ‖E‖Carleson(µ) ≤ ‖E‖−1
Sparse(µ) . A log(e+A).

Proof: The inequality A ≤ ‖E‖Carleson(µ) is trivial since A is always one of the possible
elements in the supremum of the definition of ‖E‖Carleson(µ). The second inequality is
just Lemma 1.1, so we will focus only on showing the last inequality.

Suppose we could show

(2.3)
∑
R∈E

fR ≤ C log(e+A).

Then we could set for each R in E

ϕR :=
fR

C log(e+A)
.

Now these functions obviously satisfy
∑
R∈E ϕR ≤ 1 and∫

R

ϕR dµ =
1

C log(e+A)

∫
fR dµ

≥ 1

C log(e+A)

µ(R)

2A

for all R in E . According to Definition 1, this would make E an η-sparse collection
with

η =
1

2CA log(e+A)

and hence ‖E‖−1
Sparse(µ) ≤ 2CA log(e+A).

We now proceed to prove (2.3). For any two R,S ∈ E set R ≺ S if and only if
R was removed from E before S (in line 10). Define E≺R = {S ∈ E : S ≺ R} and
E�R = {S ∈ E : S � R}. Since ≺ is a total order, we have that E = E≺R t E�R for
each R in E . For x ∈ sh(E) set

B = {R ∈ E : x ∈ supp fR}

and let (R1, R2, R3, . . . ) be the elements of B sorted in increasing order by ≺. Observe
that the cardinality N of B satisfies on the one hand

N ≤ hE�R1
(x).
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On the other hand, if x is in supp fR1
, then hE�R1

(x) ≤ 2ΛR1
and thus N ≤ 2ΛR1

≤
2A. So ∑

R∈E
fR(x) =

N∑
n=1

fRn(x).

Note that by construction we have fRn(x) ≤ 1
1+N−n , therefore

∑
R∈E

fR(x) ≤
N∑
n=1

1

1 +N − n

. log(e+A)

and we are done.

3. An improvement with the maximal function

Recall the maximal operator associated to the family E and the measure µ from
the introduction:

Mµ
Ef = sup

R∈E

1R

µ(R)

∫
R

|f | dµ.

The measure µ will be fixed throughout this section, so we will abbreviate MEf :=
Mµ
Ef .
We will show how Algorithm 1 can be slightly modified to give an essentially

optimal approximation of ‖E‖Carleson whenever M satisfies the condition in (1.4),
which, we recall, was that for fixed 0 < η < 1 and M > 0

µ({x :ME(1E)(x) > η}) ≤Mµ(E)

uniformly over all measurable sets E. We will denote by Mη(E) the best constant in
this inequality (again, dropping the dependence on µ for simplicity).

In the proof of Theorem 2.3 we showed how the logarithmic loss appears with
Algorithm 1. In particular, dividing by hE was needed in order to get a reasonably
large value of

∫
gR, which is where the logarithm appears as we end up having to sum

the harmonic series. Dividing by a larger function would make the integral too small,
while a smaller one makes bounding

∑
R gR harder.

Here we take a different approach. The idea is that, if Mη(E) is finite, there must
be a set R in E that intersects the high level set of hE in only a small portion relative
to itself. The next lemma is the main iteration step of the improved algorithm and is
in the same spirit as Lemma 2.1.

Lemma 3.1. Suppose that Mη(E) <∞ and

(3.1) sup
λ>0

λµ({x : hE(x) > λ}) ≤ Λµ(sh(E)).

Then there must exist at least one R in E satisfying

(3.2) µ({x ∈ R : hE(x) ≤ 2ΛMη(E)}) ≥ (1− η)µ(R).

Proof: To simplify the notation we will abbreviate M := Mη(E). Suppose (3.2) does
not hold for any R, that is: for every R in E

µ({x ∈ R : hE(x) ≤ 2MΛ}) < (1− η)µ(R).

Then

µ({x ∈ R : hE(x) > 2MΛ}) = µ(R)− µ({x ∈ R : hE(x) ≤ 2MΛ}) > ηµ(R).
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Set B = {x ∈ sh(E) : hE(x) > 2MΛ}. This estimate implies

µ(B ∩R) > ηµ(R) =⇒ R ⊆ {ME(1B) > η}.
Since (3.2) does not hold for any R we in fact have sh(E) ⊆ {ME(1B) > η}.

By (3.1) we can estimate µ(B) from above as follows:

µ(B) ≤ 1

2MΛ
Λµ(sh(E)) =

µ(sh(E))

2M
.

Thus, by the finiteness of M :

µ(sh(E)) ≤ µ({ME(1B) > η})
(1.4)

≤ Mµ(B) ≤ 1

2
µ(sh(E)),

which is a contradiction.

Note that by Markov’s inequality

µ({x : hE(x) > λ}) ≤ λ−1

∫
hE dµ = λ−1Λµ(E)µ(sh(E)).

So in particular condition (3.1) holds with Λ ≤ Λµ(E).
This lemma shows that one can find a set R in E with a large subset in which R is

guaranteed to have bounded overlap with all the other sets in E , in particular, if we
set

F (R) = {x ∈ R : hE(x) ≤ 2Mη(E)Λ1,∞
µ (E)},

where Λ1,∞
µ (E) is the best constant in (3.1). Then there must exist at least one R

such that µ(F (R)) ≥ (1− η)µ(R).
We can now give the improved version of Algorithm 1:

Algorithm 2: ApproximateCarleson(E) - improved

1 begin
2 Set A = 1.

3 end

4 while E 6= ∅ do
5 Set A = max(A,Λ1,∞

µ (E)).

6 for R ∈ E do
7 if µ(F (R)) ≥ (1− η)µ(R), then
8 Assign E(R) := F (R) and ΛR := Λ1,∞

µ (E).

9 Remove R from E .

10 end

11 end

12 end

Result: The constant A, the sequence {ΛR}, and the sets {E(R)}.

As in the proof of Theorem 2.3, the order in which elements are removed from E
is important. Set R ≺ S if and only if R was removed before S by Algorithm 2. Set
also

E�R = {S ∈ E : S � R}
with the natural definition of � in terms of ≺. The important property given by this
order is the following inequality for the level sets of hE :

(3.3) µ({x ∈ R : hE�R(x) ≤ 2MΛ1,∞
µ (E�R)}) ≥ (1− η)µ(R),

where we have abbreviated M = Mη(E). Note that Λ1,∞
µ (E�R) ≤ A ≤ ‖E‖Carleson(µ).
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The next theorem shows that estimates like these imply upper bounds on the
Carleson constant of E .

Theorem 3.2. Let E be a finite collection totally ordered by some binary relation ≺.
Suppose that for some Λ > 0 and 0 < η ≤ 1 we have

(3.4) µ({x ∈ R : hE�R(x) ≤ Λ}) ≥ ηµ(R)

for all R in E. Then ‖E‖Carleson(µ) ≤ ‖E‖−1
Sparse(µ) ≤ Λη−1.

Proof: We will show that ‖E‖Sparse(µ) ≥ ηΛ−1, which will provide the second inequal-
ity in the theorem; the first one is proved in Lemma 1.1.

For each R in E let E(R) = {x ∈ R : hE�R(x) ≤ Λ} and define the functions

ϕR =
1E(R)

Λ
.

By (3.4) we have ∫
R

ϕR dµ ≥
η

Λ
µ(R),

which is (1.2) in Definition 1.
For any point x in sh(E) let B(x) = {S ∈ E : x ∈ E(S)}; then∑

R∈E
ϕR =

#(B(x))

Λ
.

So it suffices to show that B(x) has at most Λ elements as this will imply (1.3).
Let N = #(B(x)), and let R be the minimal element of B(x) with respect to ≺.

Then obviously hE�R(x) ≥ N . And since x ∈ E(R), we must have N ≤ Λ.
Thus, the functions {ϕR} satisfy the conditions of Definition 1 and we are done.

Corollary 3.3. If Mη <∞ and A is the output constant of Algorithm 2, then

A ≤ ‖E‖Carleson(µ) ≤ ‖E‖−1
Sparse(µ) ≤ 2(1− η)−1MηA.

Proof: As in the proof of Theorem 2.3, the proof of the first inequality is trivial, and
the second is just Lemma 1.1. Observe that Λ1,∞

µ (E�R) ≤ A for all R so (3.3) implies

µ({x ∈ R : hE�R(x) ≤ 2MηA}) ≥ (1− η)µ(R)

for all R ∈ E . Thus, the last inequality follows from applying Theorem 3.2.

The fact that we only really needed the weak-type bound in (3.1) allows us to prove
Theorem C:

Proof: Suppose

‖hF‖L1,∞(µ) ≤ C0µ(sh(F))

for all F ⊆ E . This means that, at each iteration in the algorithm, (3.1) holds with Λ ≤
C0, thus the constant A output as a result is at most C0 and the claim follows by
Corollary 3.3.
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4. Breaking up sparse collections

We are now ready to prove the structure theorem mentioned in the introduction.

Theorem 4.1. Let E be a finite collection of sets with finite µ-measure, and suppose
the maximal operator Mµ

E satisfies (1.4) with constant M = Mη.
Then for any 0 < γ < 1− η there exists a partition of E into at most

1 +
2M(1− η)

1− η − γ
‖E‖Carleson(µ)

subcollections {Ei} satisfying

‖Ei‖Sparse(µ) ≥ γ.

Proof: After applying Algorithm 2 and reversing the order, one obtains a total order <
on E such that

(4.1) µ({x ∈ R : hE≤R(x) > 2M‖E‖Carleson(µ)}) ≤ ηµ(R)

for all R ∈ E .
Create N empty buckets {E1, . . . , EN}, where N is a large integer to be chosen

later. These buckets will be constructed by iteratively inserting elements from E .
We start with the smallest (with respect to <) element in E , which we can insert

into an arbitrary bucket, say E1. Let R be any set in E and assume that we have
placed all the previous sets S < R in the sets {E1, . . . , EN}. We will show that there
must exist a bucket Ei such that

(4.2) µ(R ∩ sh(Ei)) ≤ (1− γ)µ(R).

Indeed, suppose (4.2) fails for all the N buckets. Then, for Ai = sh(Ei) ∩R, we have

(4.3) µ(Ai) > (1− γ)µ(R)

for all i ∈ {1, . . . , N}. Set

(4.4) α =
1− η − γ

1− η

and let U = {x ∈ R :
∑N
i=1 1Ai ≥ αN}. We will show that

µ(U) > ηµ(R).

This will contradict (4.1) if N ≥ α−12M‖E‖Carleson(µ), since we would have

{x ∈ R : hE≤R(x) > 2M‖E‖Carleson(µ)} ⊇ U.

To estimate µ(U) it is easier to bound the measure of the complement V = R \U .
If x is in fewer than αN of the subsets {Ai}, then x is in at least (1 − α)N of the
subsets {R \Ai}. Thus

µ(V ) = µ

({
x ∈ R :

N∑
i=1

1Aci
> (1− α)N

})

≤ 1

(1− α)N

∫
R

N∑
i=1

1Aci
dµ

=
1

(1− α)N

N∑
i=1

µ(R \Ai).
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By (4.3) we have µ(R \Ai) < γµ(R), so

µ(V ) <
1

(1− α)N

N∑
i=1

γµ(R)

=
γ

1− α
µ(R).

Thus, with our choice of α in (4.4):

µ(U) = µ(R)− µ(V )

> µ(R)

(
1− γ

1− α

)

= µ(R)

(
1− α− γ

1− α

)
= ηµ(R),

which is our contradiction.
Finally, it remains to choose N , but this is easy as the smallest integer N ≥

α−12M‖E‖Carleson(µ) will suffice.

Remark 4.2. We would like to note here that Theorem 4.1 proves that every finite
Carleson collection of axis-parallel rectangles (or sets for which the associated maximal
function satisfies (1.4)) can be decomposed into finitely many collections of type (P1)
in the nomenclature of [4]. Recall that a sequence {R1, R2, . . . } is of type (P1) if for
every n ≥ 1

|Rn+1 \ (R1 ∪ · · · ∪Rn)| ≥ 1

2
|Rn+1|.

Observe that, in the proof of Theorem 4.1, the buckets Ei satisfy (4.2), which is exactly
the (P1) condition when γ = 1

2 .

We now show that the structure theorem is not true in general.

Theorem 4.3. For every Λ ≥ 2 and every integer N ≥ 1 there exists a collection E
of subsets of R with ‖E‖Carleson ≤ Λ such that for any partition

E = E1 ∪ · · · ∪ EN
there exists at least one i ∈ {1, . . . , N} for which ‖Ei‖Carleson ≥ 1

2Λ.

Proof: Fix a large integer M to be chosen later. For any integer m ≥ 1 define the sets

Rm = [0, 1) ∪ [m,m+ (Λ− 1)−1).

If F is any non-empty subcollection of {R1, R2, . . . }, then

|sh(F)| = 1 + #(F)(Λ− 1)−1.

For each m ≥ 1 let E(Rm) = [m,m + (Λ − 1)−1); then the collection {E(Rm)} is
pairwise disjoint and

|E(Rm)|
|Rm|

=
(Λ− 1)−1

1 + (Λ− 1)−1
=

1

Λ
.

These two facts mean that the collection {R0, . . . , RM−1} is Λ−1-sparse, and hence
‖E‖Carleson ≤ Λ by Lemma 1.1.

Now let E1 ∪ · · · ∪ EN be any partition of E . Since #E = M , there must exist an
i ∈ {1, . . . , N} such that #Ei ≥ M

N . For this family we have

‖Ei‖Carleson ≥ Λµ(Ei) =
#Ei(1 + (Λ− 1)−1)

1 + #Ei(Λ− 1)−1
.
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When M is sufficiently large (depending only on N and Λ) we have

#Ei(1 + (Λ− 1)−1)

1 + #Ei(Λ− 1)−1
≥ 1 + (Λ− 1)−1

2(Λ− 1)−1

=
Λ

2
,

which is what we wanted.

One may wonder whether one can improve matters by imposing additional geom-
etry on the sets contained in E . For example, when E consists of dyadic rectangles
in Rd then Theorem 4.1 applies. However, if one is allowed to change the measure,
then we can construct an example that behaves like the one in Theorem 4.3.

The construction, which has essentially the same behavior as that of Theorem 4.3,
is similar to one used by R. Fefferman in [6].

Theorem 4.4. There exists a measure µ on Rd such that for any integers N ≥ 1
and Λ ≥ 2 there exists a finite collection E of dyadic rectangles with ‖E‖Carleson(µ) ≤ Λ
such that any partition into N subfamilies has at least one with Carleson constant ≥
1
2Λ.

Proof: For integers m and j consider the dyadic rectangles

Rjm = [0, 2m)× [j, j + 2−m)

and let Sj = {Rjm : m ≥ 0}. Define also

E(Rjm) = [2m−1, 2m)× [j + 2−m−1, j + 2−m).

Observe that the sets{E(Rjm)} are pairwise disjoint.
Choose any set of points {xjm} such that xjm ∈ E(Rjm) for every non-negative m

and j. Then define the measure

µ =

∞∑
j=0

(
δ(0,j) +

∞∑
m=0

(1 + j)−1δxjm

)
.

0

1

2

. . .

. . .

...

x0
0

x0
1

x0
2

x0
3

x0
4

x1
0

x1
1

x1
2

x1
3

x1
4

Figure 1. The first few rectangles {Rj
m} and points {xj

m} (not to scale).
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With this measure we have

µ(Rjm) = 1 + (1 + j)−1 and µ(E(Rjm)) = (1 + j)−1,

for all m and j. As in the proof of Theorem 4.3, for any finite collection F ⊂ Sj we
have

‖F‖Carleson(µ) ≤
1 + (1 + j)−1

(1 + j)−1
= 2 + j,(4.5)

‖F‖Carleson(µ) ≥
#(F)(1 + (1 + j)−1)

1 + #(F)(1 + j)−1
=

#(F)(2 + j)

1 + j + #(F)
.(4.6)

LetM be a large integer and take any subset E from SΛ−2 with #(E) = M . By (4.5)
we can bound the Carleson constant of E by Λ. Suppose {Ei} is any partition of E into
N subfamilies. There must exist at least one subfamily, say Ei, with #(Ei) ≥ M/N .
For this subfamily we have by (4.6)

‖Ei‖Carleson(µ) ≥
M
N Λ

Λ− 1 + M
N

=
MΛ

N(Λ− 1) +M
.

The claim follows by taking M so large that

MΛ

N(Λ− 1) +M
≥ Λ

2
.
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