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Julià Cufı́ received his Ph.D. in Mathematics from Barcelona University. He is emer-
itus professor at the Department of Mathematics of the Universitat Autònoma de
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1 Introduction
Let K be a plane compact convex set of area F with boundary a curve C = ∂K of length
L. As it is well known, the isoperimetric inequality states

F ≤ L2
/

4π,

with equality only for discs.

1The work was partially supported by grants MTM2012-36378 and MTM2012-34834 (MEC).

.

Für jede Figur K in der Ebene mit Umfang L und Fläche F gilt die isoperimetrische
Ungleichung # := L2 − 4π F ≥ 0. Gleichheit gilt genau für Kreise. Hurwitz gelang
1902 nicht nur ein eleganter Beweis der isoperimetrischen Ungleichung mit Hilfe von
Fourier-Reihen, er bewies zudem eine obere Schranke für das isoperimetrische Defizit
#, indem er die Evolute der Kurve ins Spiel brachte. 1920 fand Bonnesen eine un-
tere Schranke für #, nämtlich π(R − r)2 ≤ #, wobei R und r den Um- respektive
den Inkreisradius der Randkurve C der betrachteten Figur K bezeichnen. In der vor-
liegenden Arbeit wird eine andere untere Schranke für # bewiesen: Diese ergibt sich
aus der Differenz der von C umrandeten Fläche und der Fläche welche die Pedalkurve
von C bezüglich des Steiner-Punktes von C einschliesst. Das Resultat verbessert damit
Abschätzungen z.B. von Groemer. Es wird zudem bestimmt, für welche Kurven die
neue Abschätzung scharf ist.
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Introducing the quantity # = L2 − 4π F , called the isoperimetric deficit, the above in-
equality can be written as # ≥ 0. In some sense # measures the extend to which the
convex set is away from a disc. It is interesting to know upper and lower bounds for # in
terms of quantities associated to K .

Hurwitz, in his paper about the use of Fourier series in some geometrical problems [3],
proves the following inequality, which is a sort of reverse isoperimetric inequality and
provides an upper bound for #,

0 ≤ # ≤ π |Fe|, (1)

where Fe is the algebraic area enclosed by the evolute of C . Equality holds when C is a
circle or parallel to an astroid.
Recall that the evolute of a plane curve is the locus of its centers of curvature or, equiva-
lently, the envelope of all the normals to this curve (i.e., the tangents to the evolute are the
normals to the curve).

As for lower bounds, along the 1920s Bonnesen provided some inequalities of the type
# ≥ B , where B is a non-negative quantity associated to the convex set vanishing only for
circles. Moreover these quantities have a relevant geometrical meaning (see [4]).

In this note we prove a Bonnesen-style inequality which gives a lower bound for the
isoperimetric deficit in terms of the difference between the area enclosed by the pedal
curve of C with respect to the Steiner point of K , and the area enclosed by C .
The pedal curve of a plane curve C with respect to a fixed point O is the locus of points
X so that the line OX is perpendicular to the tangent to C passing through X . The Steiner
point of a plane convex set K , or the curvature centroid of K , is the center of mass of ∂K
with respect to the density function that assigns to each point of ∂K its curvature.

Let A be the area enclosed by the pedal curve of C = ∂K with respect to the Steiner point
of K . In Theorem 3.1 it is proved that

# ≥ 3π(A − F). (2)

So, the quantity 3π(A − F) is a lower estimate of the isoperimetric deficit. Since A ≥ F ,
this inequality implies the isoperimetric one. Moreover A = F only for circles and so
# = 0 implies C is a circle.
We point out that inequality (15) shows that Theorem 3.1 improves Theorem 4.3.1 in [2].
Moreover our lower bound has a very clear geometric significance.

For the special case of convex sets of constant width we obtain the inequality

# ≥ 32
9

π(A − F), (3)

which in turn improves inequality on page 144 of [2], as inequality (17) shows.

We also consider when equality holds in (2) and (3). In Corollaries 4.2 and 4.4 it is shown
that this is so for circles and curves which are parallel to an astroid or to an hypocycloid
of three cusps, respectively.

Finally in Propositions 5.1 and 5.3 we prove that for convex curves C parallel to an astroid
or an hypocycloid of three cusps, the evolute of C is similar, with ratio 2 or 3 respectively,
to the corresponding astroid or hypocycloid.
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2 Preliminaries
Support function

A straight line G in the plane is determined by the angle φ that the direction perpendicular
to G makes with the positive x-axis and the distance p = p(φ) of G from the origin. The
equation of G then takes the form

x cosφ + y sin φ − p = 0. (4)

Equation (4), when p = p(φ) varies with φ, is the equation of a family of lines. If we
assume that the 2π-periodic function p(φ) is differentiable, the envelope of the family is
obtained from (4) and the derivative of its left-hand side, as follows:

−x sinφ + y cosφ − p′ = 0, p′ = dp/dφ. (5)

From (4) and (5) we arrive at a parametric representation of the envelope of the lines (4):

x = p cosφ − p′ sin φ, y = p sin φ + p′ cosφ.

If the envelope is the boundary ∂K of a convex set K and the origin is an interior point
of K , then p(φ) is called the support function of K (or the support function of the convex
curve ∂K ).
Since dx = −(p + p′′) sinφ dφ and dy = (p + p′′) cosφ dφ (we here assume that the
function p is of class C2), arclength measure on ∂K is given by

ds =
√

dx2 + dy2 = |p + p′′| dφ (6)

and the radius of curvature ρ by

ρ = ds
dφ

= |p + p′′|.

It is well known (see for instance [5], page 3) that a necessary and sufficient condition for a
periodic function p to be the support function of a convex set K is that p+ p′′ > 0. Finally,
it follows from (6) that the length of a closed convex curve that has support function p of
class C2 is given by

L =
∫ 2π

0
p dφ. (7)

The area of the convex set K is expressed in terms of the support function by

F = 1
2

∫

∂K
pds = 1

2

∫ 2π

0
p(p + p′′) dφ = 1

2

∫ 2π

0
p2 dφ − 1

2

∫ 2π

0
p′2 dφ. (8)

For any curve C given by (x(φ), y(φ)), convex or not, we will say that p(φ) is the gener-
alized support function of C when

x(φ) = p(φ) cos(φ) − p′(φ) sin(φ),

y(φ) = p(φ) sin(φ) + p′(φ) cos(φ).
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Note that p(φ) is not necessarily a distance, as it happens when we define the support
function of a convex set. In fact, |p(φ)| is the distance from the origin to the tangent to C
at the point (x(φ), y(φ)).

It is easy to see that the generalized support function pe(φ) of the evolute of C = ∂K is
pe(φ) = −p′(φ+π/2), where p(φ) is the support function of C , see [1]. Hence, assuming
p(φ) is a C3-function, the algebraic area Fe enclosed by the evolute of C is given by

Fe = 1
2

∫ 2π

0
p′(p′ + p′′′) dφ = 1

2

∫ 2π

0
p′2 dφ − 1

2

∫ 2π

0
p′′2 dφ.

Steiner point

The Steiner point of a convex set K of the Euclidean plane is defined by

S(K ) = 1
π

∫ 2π

0
(cosφ, sin φ)p(φ)dφ,

where p(φ) is the support function of ∂K (see [2]).

Thus, if
p(φ) = a0 +

∑

n≥1

an cos nφ + bn sin nφ, (9)

is the Fourier series of the 2π-periodic function p(φ), the Steiner point is

S(K ) = (a1, b1).

The Steiner point of K is also known as the curvature centroid of K because under ap-
propriate smothness conditions it is the center of mass of ∂K with respect to the density
function that assigns to each point of ∂K its curvature.

The relation between the support function p(φ) of a convex set K and the support function
q(φ) of the same convex set but with respect to a new reference with origin at the point
(a, b), and axes parallel to the previous x- and y-axes, is given by

q(φ) = p(φ) − a cosφ − b sin φ.

Hence, taking the Steiner point as a new origin, we have

q(φ) = a0 +
∑

n≥2

an cos nφ + bn sin nφ.

We recall that the Steiner ball of K is the ball whose center is the Steiner point and whose
diameter is the mean width of K .
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Pedal curve

If the curve C is given in Cartesian coordinates as the envelope of the lines x cosφ +
y sin φ − p(φ) = 0, then the pedal curve P = P(φ) of C with respect to the origin, is
given by

P(φ) = (p(φ) cosφ, p(φ) sin φ),

or, in polar coordinates, by r = p(φ).

In particular, if C is closed, the area enclosed by P is

A = 1
2

∫ 2π

0
p2 dφ. (10)

If F is the area enclosed by C , we obviously have A ≥ F with equality if and only if C is
a circle.

3 A lower bound for the isoperimetric deficit

We proceed now to provide a lower bound for the isoperimetric deficit.

Theorem 3.1. Let K be a compact convex set of area F with boundary a curve C = ∂K
of class C2 and length L. Let A be the area enclosed by the pedal curve of C with respect
to the Steiner point S(K ). Then

# ≥ 3π(A − F), (11)

where # = L2 − 4π F is the isoperimetric deficit.

Proof. Let p(φ) be the support function of C , with respect to an orthonormal reference
with origin in the Steiner point, and axes parallel to the x- and y-axes.

We know that the Fourier series of p(φ), is

p(φ) = a0 +
∑

n≥2

an cos nφ + bn sin nφ.

By Parseval’s identity we have

1
2π

∫ 2π

0
p2 dφ = a2

0 + 1
2

∑

n≥2

(a2
n + b2

n), (12)

and similar expressions for p′ and p′′. Concretely we have

∫ 2π

0
p′2 dφ = π

∑

n≥2

n2(a2
n + b2

n),

∫ 2π

0
p′′2 dφ = π

∑

n≥2

n4(a2
n + b2

n). (13)
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Hence, the isoperimetric deficit # = L2 − 4π F , according to (7) and (8), is given by

# =
(∫ 2π

0
p dφ

)2

− 2π

∫ 2π

0
p2 dφ + 2π

∫ 2π

0
p′2 dφ

= 2π2
∑

n≥2

(n2 − 1)(a2
n + b2

n) ≥ 3π2

2

∑

n≥2

n2(a2
n + b2

n) = 3π

2

∫ 2π

0
p′2 dφ.

But it follows from (8) and (10) that

1
2

∫ 2π

0
p′2 dφ = 1

2

∫ 2π

0
p2 dφ − F = A − F,

and hence
# ≥ 3π(A − F). !

The above proof shows that # = 0 if and only if p(φ) = a0, that is, when C is a circle.

Although the constant 3π appearing in Theorem 3.1 cannot be improved for general con-
vex sets, it is possible to obtain a stronger inequality for special type of convex sets.

For instance, for convex sets of constant width we have the following result.

Proposition 3.2. Let K be a compact convex set of constant width in the hypothesis of
Theorem 3.1. Then

# ≥ 32
9

π(A − F).

Proof. Since constant width means p(φ) + p(φ + π) is constant and

p(φ) + p(φ + π) = 2
∞∑

0

(a2n cos 2nφ + b2n sin 2nφ)

it follows that an = bn = 0 for all even n > 0.

Introducing this in the proof of Theorem 3.1 the result follows.

Relationship with the L2 metric

Consider now the quantity δ2(K ) equal to the distance in L2(S1) between the support
function of K and the support function of the Steiner ball of K .

It is known, see [2] Theorem 4.3.1, that

# ≥ 6πδ2(K )2. (14)

We can state now the following inequality

3π(A − F) ≥ 6πδ2(K )2. (15)
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To prove this we first observe that

δ2(K )2 = π
∞∑

n=2

(a2
n + b2

n),

where an, bn are Fourier coefficients of the support function of K , p(φ), as in (9) (see page
142 of [2]). Moreover the proof of Theorem 3.1 shows that

3π(A − F) = 3π2

2

∑

n≥2

n2(a2
n + b2

n),

hence inequality (15) follows.

So we have
# ≥ 3π(A − F) ≥ 6πδ2(K )2

which improves the inequality (14).

For compact convex sets of constant width it is known that

# ≥ 16πδ2(K )2 (16)

(see page 144 of [2]).

We can state now the following inequality

32
9

π(A − F) ≥ 16πδ2(K )2. (17)

The proof is the same as for (15) taking into account that now the even coefficients vanish.

So we have

# ≥ 32
9

π(A − F) ≥ 16πδ2(K )2

which improves the inequality (16).

4 Equality of the lower bound with the isoperimetric deficit

Now we study the case of equality in Theorem 3.1. It is clear from the proof that # =
3π(A − F) if and only if

p(φ) = a0 + a2 cos 2φ + b2 sin 2φ.

In order to characterize the curves with this type of support function we recall that the
parametric equations of an astroid (a 4-cusped hypocycloid) are

x(φ) = 2a sin3(φ),

y(φ) = 2a cos3(φ),
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for some constant a ∈ R, a ̸= 0, with 0 ≤ φ ≤ 2π . From this it is easy to see that the
generalized support function p(φ) of the astroid is p(φ) = a sin(2φ), where φ is the angle
between the normal (−y ′(φ), x ′(φ)) and the positive x-axis.

This implies that the curves with generalized support function given by

q(φ) = b + p(φ) = b + a sin(2φ),

where b ∈ R, are parallel to an astroid. The distance between these curves and the astroid
is |b|.
We have the following result.

Proposition 4.1. Let

p(φ) = a0 + a2 cos(2φ) + b2 sin(2φ)

be the support function of a closed convex curve C of length L, with a2
2 + b2

2 ̸= 0. Then
the interior parallel curve to C at distance L/2π is an astroid.

Proof. We make the change of variable u = φ − φ0 + π
4 , where

tan 2φ0 = b2

a2
.

Then

sin 2u = cos 2(φ − φ0) = cos 2φ cos 2φ0 + sin 2φ sin 2φ0

= cos 2φ
a2

±
√

a2
2 + b2

2

+ sin 2φ
b2

±
√

a2
2 + b2

2

.

Hence
p(u) = a0 ± a sin 2u

where a =
√

a2
2 + b2

2. This shows that the given curve is parallel to an astroid at distance

|a0|. By the condition of convexity, p + p′′ = a0 ∓ 3a sin 2u > 0, and so a0 is positive.
Since L =

∫ 2π
0 p(φ) dφ = 2πa0, the proposition is proved.

Corollary 4.2. Equality in Theorem 3.1 holds if and only if C is a circle or a curve parallel
to an astroid.

Proof. As we have said, equality holds when

p(φ) = a0 + a2 cos 2φ + b2 sin 2φ.

If a2 = b2 = 0, p(φ) = a0 is the support function of a circle. If a2
2 + b2

2 ̸= 0, the result
follows from Proposition 4.1.
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Now we study the case of equality in Proposition 3.2.

It is clear from the proof of this proposition that equality holds if and only if

p(φ) = a0 + a3 cos 3φ + b3 sin 3φ.

In order to characterize the curves with this type of support function we recall that the
parametric equations of an hypocycloid of three cusps, with respect to a suitable orthogonal
system, are

x(t) = −2a cos t − a cos 2t

y(t) = −2a sin t + a sin 2t

with a ∈ R, a ̸= 0, t ∈ [0, 2π].
The relationship between the parameter t and the angle φ(t) between the normal vector
(−y ′(t), x ′(t)) and the positive x-axis is

φ(t) = α(t) − π

2
,

where α(t) denotes the angle between the tangent vector (x ′(t), y ′t) and the positive x-
axis.

Hence

tan φ(t) = − cotα(t) = sin t + sin 2t
cos t − cos 2t

= cot
t
2
.

Thus
t = π − 2φ(t).

On the other hand, the generalized support function p(φ) of the hypocycloid must verify
(

x(φ)
y(φ)

)
=

(
cosφ − sinφ
sin φ cosφ

) (
p(φ)
p′(φ)

)
,

so
(

p(φ)
p′(φ)

)
=

(
cosφ sin φ

− sinφ cosφ

) ( −2a cos(π − 2φ) − a cos 2(π − 2φ)
−2a sin(π − 2φ) + a sin 2(π − 2φ)

)
.

Then, using standard addition trigonometric formulas, it follows

p(φ) = a cos(3φ).

Proposition 4.3. Let
p(φ) = a3 cos 3φ + b3 sin 3φ

be the generalized support function of a closed curve C, with a2
3 + b2

3 ̸= 0. Then C is a
hypocycloid of three cusps.
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Proof. We make the change of variable given by u = φ − φ0, where

tan 3φ0 = b3

a3
.

Then, an easy computation gives

p(u) = a cos(3u),

where a = a3

cosφ0
, and the proposition follows.

Corollary 4.4. Equality in Proposition 3.2 holds if and only if C is a circle or a curve
parallel to an hypocycloid of three cusps.

Proof. We have seen that equality holds when

p(φ) = a0 + a3 cos 3φ + b3 sin 3φ.

If a3 = b3 = 0, p(φ) = a0 is the support function of a circle. If a2
3 + b2

3 ̸= 0, the result
follows from Proposition 4.3.

Remark 4.5. As it is well known (see for instance page 8 of [5]) the area Fr enclosed by
the interior parallel at distance r to a closed curve is given by

Fr = F − Lr + πr2

where L and F are respectively the length and the area corresponding to the given curve.

In particular, if r = L/2π , we get

FL/2π = F − L2

4π
,

or, equivalently
# = −4π FL/2π ,

which gives a geometrical interpretation of the isoperimetric deficit.

In particular the isoperimetric inequality # ≥ 0 is equivalent to FL/2π ≤ 0, a fact that
suggests a more geometric proof of the isoperimetric inequality, by showing that in the
process of collapsing, the curve reverses orientation. Moreover, FL/2π = 0 holds only for
circles.

Remark 4.6. Combining Theorem 3.1 with Hurwitz’ inequality (1) we have the relation

A − F ≤ 1
3
|Fe|, (18)

with equality for circles or curves parallel to an astroid.



A lower bound for the isoperimetric deficit 11

5 Parallel curves and evolutes
We have seen the role played by the convex curves parallel to an astroid or to an hypocy-
cloid of three cusps. For such curves C we show that there is a quite surprising relationship
between the parallel curve at distance L/2π to C and the evolute of C .

Proposition 5.1. Let

p(φ) = a0 + a2 cos(2φ) + b2 sin(2φ)

be the support function of a closed convex curve C of length L. Then the evolute of C and
the interior parallel curve to C at distance L/2π , are similar with ratio 2.

Proof. We shall see that there is a similarity, composition of a rotation with a homothecy,
applying the parallel curve on the evolute. We may assume, by the proof of Proposition
4.1, p(φ) = a0 + a sin(2φ). The generalized support function of the parallel curve to C at
distance L/2π = a0 is q(φ) = a sin(2φ) and the corresponding one to the evolute of C is

pe(φ) = −p′
(
φ + π

2

)
= 2a cos(2φ).

The generalized support function of the rotated 3π/4 parallel curve is

p̃(φ) = q
(

φ − 3π

4

)
= a cos(2φ).

Hence this rotated curve is homothetic, with ratio 2, to the evolute.

Remark 5.2. In particular, the area of the evolute of such a curve is four times the area
of the parallel curve at distance L/2π . The reciprocal is also true. In fact, since Hurwitz’
inequality, by Remark 4.5, is equivalent to

4|FL/2π | − |Fe| ≤ 0,

the curves for which the area of the evolute is four times the area of the parallel curve at
distance L/2π , are exactly circles or curves parallel to an astroid.

Proposition 5.3. Let

p(φ) = a0 + a3 cos(3φ) + b3 sin(3φ)

be the support function of a closed convex curve C of length L. Then the evolute of C and
the interior parallel curve to C at distance L/2π , are similar with ratio 3.

Proof. Analogous to that of Proposition 5.1 with q(φ) = a cos(3φ), according to the proof
of Proposition 4.3.

Next figures show convex curves with support functions p(φ) = 5 + sin(2φ) and p(φ) =
8+sin(3φ), their parallel interior curves at distance L/2π = 5 and L/2π = 8 respectively,
and the corresponding evolutes.
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p(φ) = 5 + sin(2φ) p(φ) = 8 + sin(3φ)
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