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Abstract. It is known that the limit Area/Length for a sequence of convex sets expanding over the
whole hyperbolic plane is less than or equal to 1, and exactly 1 when the sets considered are convex
with respect to horocycles. We consider geodesics and horocycles as particular cases of curves of
constant geodesic curvature λ with 0 ! λ ! 1 and we study the above limit Area/Length as a
function of the parameter λ.
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1. Introduction

In the study of some problems in geometric probability there is the limit F/L of
the quotient between the area F of a convex set and the length L of its boundary.
For instance, if σ is the random variable length of a chord of a given convex set,
the expected value of σ is given by E(σ ) = πF/L. In the Euclidean plane it is
clear that this quotient, when the convex set becomes ‘very large’, tends to∞. But,
as it was pointed out by L. A. Santaló and I. Yañez in [4], this is no longer true in
the hyperbolic plane.
In fact they proved that for a certain class of convex sets in the hyperbolic plane,

concretely the horocyclic convex sets, the limit F/L is 1. In [2], we showed that
this limit can attain, in the hyperbolic plane, any value between 0 and 1.
Since horocycles are curves of geodesic curvature ±1 and geodesics are curves

of geodesic curvature 0, both can be considered as particular cases of curves of
constant geodesic curvature λ, 0 ! |λ| ! 1.
Thus, if convexity is defined with respect to horocycles this limit is 1 and when

convexity is defined with respect to geodesics the limit F/L is less or equal than
1. Hence it is natural to ask the question, first posed to us by A. Borisenko, about
the influence of λ upon this limit. In fact, when convexity is defined with respect
to λ-geodesics (see 2.5), we shall prove:
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Figure 1. Hyperbolic plane models: projective, disk and half-plane.

THEOREM 1. For each α ∈ [λ, 1], there exists a sequence of λ-convex polygons
{Kn} expanding over the whole hyperbolic plane such that limn→∞ Fn/Ln = α.
If the sequence is formed by λ-convex sets with piecewise C2 boundary, then the
lim sup and lim inf of these ratios lie between λ and 1.

This kind of questions also makes sense in higher dimensions but we restrict our
attention here to the two-dimensional case where the Gauss–Bonnet theorem in the
hyperbolic plane allows an easier treatment.

2. Convexity in H2

2.1. THE HYPERBOLIC PLANE

The hyperbolic plane H2 is the unique complete simply connected Riemannian
manifold with constant curvature −1. Its geometry corresponds to the one obtained
from the absolute geometry given by the first four Euclid postulates and the Lob-
atchevsky postulate: through every point P exterior to a line l passes more than
one line not intersecting l. It is useful to have different models for this geometry
(see Figure 1), we shall describe their points, lines (geodesics) and rigid motions:

Projective model. The set of points is the interior of a conic in the real projective
plane and the lines are the restriction of the projective lines to this set. The rigid
motions are the projectivities fixing the conic and transforming the interior to itself.

Poincaré disk model. The set of points is the interior of the unit disk and the
lines are the arcs of circles orthogonal to the boundary. The rigid motions are the
homographies of the complex plane fixing the disk.

Poincaré half-plane model. The set of points is one of the connected components of
the complement of a straight line in R2 and the lines are the arc of circles that meet
orthogonally the border. The motions are compositions of inversions with respect
to those circles.

It must be pointed out that the two Poincaré models are both conformal to the
Euclidean plane, in particular this means that the Euclidean and hyperbolic angles
between intersecting curves are identical.
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DEFINITION 1. We shall say that two lines are parallel if they meet at a point in
the border (they meet at infinity), if they don’t meet we call them ultraparallel.

For practical purposes we shall use polar coordinates. In these coordinates the
length element in H2 is given by

ds2 = dr2 + sinh2 r dθ2. (1)

DEFINITION 2 . Let γ be a regular curve with unit tangent and normal vectors
t,n such that {t,n} is compatible with a given orientation. Then ∇tt = κgn and κg

is the (signed) geodesic curvature of γ .

2.2. HYPERBOLIC TRIGONOMETRY

We shall need the hyperbolic trigonometric formulas for triangles. If a, b, c are the
sides of a triangle and α,β, γ are the opposite angles, then

sinh a

sin α
= sinh b

sin β
= sinh c

sin γ
, (2)

cosh a = cosh b · cosh c − sinh b · sinh c · cos α, (3)

cos α = − cos β · cos γ + sin β · sin γ · cosh a. (4)

They are, respectively, the law of sines and the first and the second law of cosines.
As an application we give an expression for the area of an isosceles triangle that

we shall use later. This expression is, obviously, independent of the model.
Let △OAB be an hyperbolic isosceles triangle with d(O,A) = d(O,B) = R,

d(A,B) = d and ̸ AOB = α. Let P be the midpoint of AB. By the law of sines
applied to △OPA, we have

sinhR

sin 12π
= sinh 12d
sin 12α

.

Therefore

d = 2 arcsinh (sinhR · sin 12α) (5)

By the second law of cosines (4) applied to the same △OPA, we have

coshR = cot 12α · cot γ

where γ = ̸ OAP. Since the area F of △OAB is given by

F = π − (α + 2γ )
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we have

F = π −
(

α + 2 arctan
1

tan 12α · coshR

)
(6)

2.3. CONVEX SETS

A set K ⊂ H2 is said to be convex when the segment joining a pair of points in K
is contained in K. In the projective model, convex sets are seen as convex sets in
Euclidean plane. A closed convex curve is a curve such that the region it encloses
is convex.

DEFINITION 3 . A closed convex set with nonempty interior will be called a
convex domain.

As in the Euclidean case we have

LEMMA 1. A compact domain K with C2 boundary is convex if and only if its
geodesic curvature does not change the sign.

2.4. HOROCYCLIC CONVEX SETS

Horocycles are curves orthogonal to a bundle of parallel lines. They can be con-
sidered as circles centered at infinity. In the half-plane model horocycles are the
circles tangent to y = 0 and the curves y = ct. Given two points in H2 there are
two and only two horocycle arcs joining them and the geodesic line passing through
them lies between the horocyclic arcs. Horocycles have geodesic curvature ±1.

DEFINITION 4 . A subset K ⊂ H2 is said to be h-convex or convex with respect
to horocycles if for each pair of points belonging to K, the entire segments of the
two horocycles joining them also belong to K.

It is clear that every h-convex set is convex but, as can be seen taking a convex
polygon, not every convex set is h-convex.

2.5. λ-CONVEX SETS

Given a geodesic line l in the Euclidean plane, the set of equidistant points to l are
two parallel lines symmetric with respect to l. In the hyperbolic plane this is no
longer true. The set of equidistant points to l are two curves called equidistants. If
we consider the half-plane model H2 = {(x, y) ∈ R2 : y > 0}, the equidistants to
the hyperbolic line x = 0 are Euclidean lines passing through (0, 0). Indeed any
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Figure 2. λ-geodesic segments with end points A and B ′.

geodesic arc with center in (0, 0) going from x = 0 to y = mx has the same length
because they are (Euclidean) homothetic and every homothety with center in the
axis y = 0 is the composition of two inversions with respect to circumferences
centered in y = 0 which are hyperbolic isometries. In fact, if m = tan θ the length
of these geodesic arcs is equal to arctan eθ/2. In this model equidistant lines are, in
general, arcs of Euclidean circles meeting the infinity at two points.

DEFINITION 5 . A λ-geodesic is an equidistant line that meets the infinity line
with angle α such that | cos α| = λ.

Remark. When λ = 0 they are geodesics and when λ = 1 they are horocycles.

LEMMA 2 . Given two points in H2 and 0 < λ ! 1 there are two and only two
λ-geodesic lines through them. They are included in the region bounded by the
two horocycles determined by the given points and are symmetric with respect the
geodesic passing through these points

Proof. Let A,B be points on H2 and rλ the λ-geodesic of type y = mx + b
passing through A. If B ′ is a point in rλ such that the geodesic segment AB ′ has
the length of AB (see Figure 2), the λ-geodesics through A and B ′ correspond, via
a rigid motion, to the λ-geodesics through A and B.
Now consider the inversion of rλ with respect to the geodesic determined by A

and B ′. In this way we obtain the unique Euclidean circumference Cλ in the real
plane intersecting y = 0 with the same angle as rλ and passing through A and B
(it passes through the center of the geodesic between A and B ′). !

Remark. Since the two Poincaré models are conformal, the λ-geodesic lines in
the Poincaré disk are also the arcs of Euclidean circles intersecting the border with
an angle α such that | cos α| = λ.
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Consider now the equidistant γ (t) = (t, tan α · t), t > 0 in the half-plane. The
tangent and normal unit vectors are t = sin α · t (1, tan α) and n =
sin α · t (− tan α, 1), hence ∇tt = cos α · n. Therefore, if cos α = λ, we have

LEMMA 3 . The geodesic curvature of a λ-geodesic is ±λ.

Remark. λ-geodesics through a point P with direction v in P are solutions of
the second order differential equations κg = ±λ. Then, with these initial condi-
tions, there are two λ-geodesic lines, one with positive geodesic curvature and the
other one with negative geodesic curvature.

DEFINITION 6 . A subset K ⊂ H2 is said to be λ-convex if for each pair of points
belonging toK, the entire segments of the λ-convex lines joining them also belong
to K.

Remark. It follows from Lemma 2 that every λ-convex set is convex.
If K and K ′ are λ-convex sets then K ∩ K ′ is also a λ-convex set. Thus

LEMMA 4 . λ-convexity is stable under intersection.

A λ-geodesic line l divides the plane in two regions having l as common bound-
ary. Only one of these regions is λ-convex, it is the one containing the geodesic
lines passing through every pair of points in l. It will be called the λ-convex region
determined by l and denoted by Kl .

Remark. Definition 6 is equivalent to the following one: a closed set K is λ-
convex if for every point of the boundary there exists a λ-geodesic line l through
it such that the λ-convex region determined by l contains K. This λ-convex line is
called supporting λ-geodesic of K. Thus, in higher dimensions a closed set K is
λ-convex if it is supported by umbilical hypersurfaces with principal curvature λ.

DEFINITION 7 . A λ-polygon is the region obtained by intersection of a finite
number of λ-convex regions Kli determined by λ-geodesic lines li .

EXAMPLE 1. Let K be a regular convex polygon with vertices ai and edges ei =
aiai+1 on a circle C. For every pair (ai, ai+1) consider the λ-geodesic segment
joining ai and ai+1 not in K, let li be the λ-geodesic line containing this segment.
The intersection ∩Kli defines a regular λ-convex polygon denoted by Kλ. Let us
prove that K ⊂ Kλ. Consider the Poincaré disk model, the λ-geodesic curves li
are seen as Euclidean circles and they intersect C in ai and ai+1, since different
circles intersect in at most two points we conclude that Kli contains the rest of the
vertices. Therefore K ⊂ Kλ.

Remark. The same construction can be done with an arbitrary convex polygon
K but the associated polygon Kλ not necessarily includes K. This is so because
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the λ-geodesic line joining two consecutive vertices can intersect the other sides of
the original polygon K.
In the smooth case we can characterize convexity in terms of the curvature of

the boundary.

PROPOSITION 1 . Let K be a compact domain bounded by a curve of class C2.
Then K is λ-convex if and only if the geodesic curvature of the boundary satisfies
κg " λ (or κg ! −λ if we consider the opposite orientation).

Proof. Let p ∈ ∂K such that κg(p) < λ. Let us consider geodesic normal
coordinates (x, y) in p such that ∂/∂x is tangent to ∂K in p and ∂/∂y is the
interior normal in p. With respect to these coordinates, in a neighbourhood of p,
the boundary is the graph of

y = 1
2κg(p)x2 + o(x2)

and the geodesic and the λ-geodesic curves with direction ∂/∂x in p are the graph
of

y ≡ 0, y = ± 1
2λx2 + o(x2).

Let q = (x0, y0) with x0 > 0 be a point in the interior λ-geodesic and near p.
The λ-geodesics joining q with p are contained in K. One of them arrives to p
tangential to ∂K. Take ε > 0 small enough such that the point qε = (x0, y0 − ε)
lies in K. By continuity there is a λ-geodesic joining qε and p that crosses the
boundary. This contradicts the λ-convexity of K. Hence κg " λ.
Conversely, if K is not λ-convex there are two points x, y ∈ ∂K such that the

λ-geodesic between them is not contained in K. By hypothesis κg " λ " 0, and
this implies that K is convex, therefore the geodesic segment r between x and y
is contained in K. Let 0 ! µ < λ be the supremum of all nonnegative numbers
such that the µ-geodesic between x and y is contained in K. If this µ-geodesic
touches ∂K in a point we should have κg ! µ < λ in this point, a contradiction.
This implies, because µ is the supremum, that the µ-geodesic is tangent to ∂K at
x or at y. But then κg ! µ < λ at x or at y, a contradiction. !

Remark. In fact, if K is a λ-convex domain such that ∂K is piecewise C2, i.e.
a finite union of C2 arcs, on every regular point p ∈ ∂K the geodesic curvature
satisfies also κg " λ.

EXAMPLE 2. The region bounded by a circle of radius r is h-convex. A simple
computation in polar coordinates shows that κg = coth r, and this value is greater
than one. Note that in the limit case we obtain the horocycles whose geodesic
curvature is one.
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Remark. Observe that there are no λ-convex sets K bounded by a C2-smooth
curve with 0 < κg < λ0 ! 1: at the intersection points with the circumdisc of
radius R we obtain κg " cothR > 1

2.6. SOME ISOPERIMETRIC INEQUALITIES

In the next sections we shall use inequalities involving the area and the perimeter
of a compact convex domain. Let K be a compact convex domain in H2. Then it
is known (see, for example [3]) that if L denotes the perimeter of ∂K and F the
enclosed area we have

L2 − 4πF − F 2 " 0 (7)

and equality holds if and only if K is a geodesic circle. This is the isoperimetric
inequality in the hyperbolic plane.
In the next sections we shall make an extensive use of some relations derived

from the Gauss–Bonnet formula. If we assume that ∂K is piecewise C2, the
geodesic curvature is well defined except in a finite number of points. Therefore

∑

i

∫

∂Ki

κp = 2π −
∑

i

αi + F, (8)

where αi are the exterior angles in the singular points and ∂Ki are the arcs of ∂K.
From this we have the following lemma.

LEMMA 5 . Let K be a compact convex domain in H2 with ∂K piecewise C2.
Then we have

(a)

F "
∑

i

αi − 2π. (9)

(b) If K is h-convex

L ! 2π −
∑

i

αi + F. (10)

(c) If K is λ-convex

λL ! 2π −
∑

i

αi + F. (11)
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Remark. When K is a λ-polygon we have the equality

λL = F +
n∑

i=1
βi − (n − 2)π, λ ∈ [0, 1], (12)

where n is the number of vertices and βi are the interior angles.

3. A Problem in Hyperbolic Geometric Probability

Given a rectifiable curve C in the Euclidean plane and a line l, denote by n(C ∩ l)
the number of intersection points, counted with their multiplicities. If dl denotes
a measure of lines invariant under rigid motions the classical Cauchy–Crofton
formula states that

∫

l∩C ̸=∅
n(l ∩ C) dl = δL,

where L is the length of C. We choose the unique measure dl such that δ = 2.
Therefore, since n(l ∩ C) = 2 for the boundary C of a convex domain, and l not
tangent to C, the measure of lines that intersect a convex domain is equal to its
perimeter. Note that the set of lines, tangent to C, forms a set of measure zero.
Given a convex domain K let σ (l) be the length of the chord l ∩ K. It is easy to

see that the expected value of the random variable σ is

E(σ ) = πF

L
.

These results, that are easily proved in the Euclidean case, remain true in the
hyperbolic plane (cf. [3]).

DEFINITION 8. We say that a sequence of compact convex domains {Kn} expands
over the whole plane if Kn ⊂ Km when n < m and for every point P there exists
a KN such that P ∈ KN .

In the Euclidean plane it can be proved that F/L " ri/2 where ri is the radius of
the greatest circumference contained in K (this easily follows from the expression
F = 1

2
∫

p ds where p is the distance between the origin of the circumference and
the support lines of the convex domain). Then, if {Kn} is a sequence of compact
convex domains expanding over the whole plane, the mean value E(σ ) tends to
infinity.
In the hyperbolic plane this is no longer true. Indeed if {Kn} is formed by h-

convex domains bounded by piecewise C2 curves it is known that

lim
Fn

Ln

= 1. (13)
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Nevertheless in [2] it was proved

THEOREM 2 . For every nonnegative α ! 1 there exists a sequence {Kn} of
compact convex domains expanding over the whole hyperbolic plane H2 such that

lim
Fn

Ln

= α. (14)

Roughly speaking we can say that the perimeter becomes much larger than the
area. This is a consequence of the so called ‘edge effect’ in the hyperbolic plane.
Now we shall see, using an approach different from that in [2], how these ex-

amples can be constructed. LetKn be a regular polygon formed by 3·2n−1 isosceles
triangles inscribed in a circle of radius Rn. Then if dn is the length of the basis of
one of these triangles and hn is its area, then Fn/Ln = hn/dn. If αn = 2π/(3 ·2n−1)
is the central angle, by (5)

dn = 2 arcsinh (sinhRn · sin( 12αn))

and using (6)

hn = π −
(

αn + 2 arctan
1

tan 12αn · coshRn

)
.

But

lim(tan 12αn · coshRn) = lim
αn

2
2

µαn

= 1
µ

,

hence

lim hn = π − 2 · arctanµ. (15)

In an analogous way

lim dn = 2 arcsinh
1
µ

. (16)

Taking Rn = n we have that lim hn/dn = 0. And taking Rn = log(4/µαn) with
µ > 0 we have that

lim
Fn

Ln

= lim
hn

dn

= π − 2 arctanµ

2 arcsinh 1
µ

which attains, depending on the parameter µ, all values between 0 and 1.
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4. Asympotic Behaviour of λ-convex Sets in H2

We have seen that the quotient Fn/Ln tends to 1 in the horocyclical case and that
this limit can take any value less or equal than 1 in the general convex case. Since
horocycles and geodesics can be considered as the extremal case of λ-geodesics
(λ = 1 and λ = 0 respectively) it is natural to ask what is the asymptotic behaviour
of F/L in the λ-convex case. As a consequence of Lemma 5 we have

PROPOSITION 2 . Let Kn be a family of compact λ-convex domains with piece-
wise C2 boundary that expands over the whole hyperbolic plane. Then

λ ! lim inf
Fn

Ln

! lim sup
Fn

Ln

! 1. (17)

Proof. Taking (7) into account and dividing by L2 we have that F/L < 1. On
the other hand, changing in (11) the exterior angles αi by the interior ones βi and
dividing by L we have

F

L
" λ + (n − 2)π −∑n

i=1 βi

L
" λ − 2π

L
.

Hence the proposition follows. !

We shall study if there are sequences {Kn} of λ-convex sets expanding over the
whole hyperbolic plane such that the limit Fn/Ln is some fixed value between λ
and 1.

4.1. λ-LENGTH

As it was said in Lemma 2, given two points A and B there are exactly two λ-
geodesic lines from A to B and the geodesic segment AB lies between them. The
symmetry with respect to these geodesics permutes the λ-geodesic lines so that
they have, between A and B, the same length l.
Now we are going to compute this length l = l(A,B) as function of the

hyperbolic distance d = d(A,B).
By transitivity, we can assume A = i,B = bi with b > 1. Recall that d = log b.

The parametric equations of the Euclidean circles through A and B that meet y = 0
with angle α are given by

x = ± 1
2λ
√

(1+ b)2 − (b − 1)2λ2 + 1+ b

2λ
cos θ,

y = 1+ b

2
+ 1+ b

2λ
sin θ,

where λ = | cos α|.
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Hence the arclength is given by

ds =
√
dx2 + dy2

y2
= dθ

|λ + sin θ |

and so

l =
∫ arcsin b−1

b+1λ

arcsin 1−b
1+b λ

dθ
λ + sin θ

because λ + sin θ > 0 in this interval.
The evaluation of this integral gives us

l = 1√
1− λ2

log |-(b,λ)|,

where -(b,λ) verifies

-(b,λ) − 1
-(b,λ) + 1

= (b − 1)
√
1− λ2

√
(1+ b)2 − (b − 1)2λ2

.

Since tanh( 12 log x) = (x − 1)/(x + 1) we have

l = 1√
1− λ2

(

2 arctanh
(b − 1)

√
1− λ2

√
(b + 1)2 − (b − 1)2λ2

)

, (18)

which we express in terms of d = d(A,B) in the following:

PROPOSITION 3 . The λ-length l between two points at hyperbolic distance d is
given by

l = 1√
1−λ2

(
2 arctanh (ed−1)

√
1−λ2√

(ed+1)2−(ed−1)2λ2

)

= 2√
1−λ2

arcsinh
(√
1− λ2 sinh 12d

)
.

Remark. Observe that if λ = 0 we obtain l = d and when λ = 1 (h-convex
case) l = 2 sinh 12d.
The angle β between the geodesic and the λ-geodesic in A is equal to the angle

θ corresponding to the polar coordinate of A. Hence

tan β = tan θ = λ(b − 1)
√

(b + 1)2 − (b − 1)2λ2
. (19)
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Figure 3. A triangle forming the λ-polygon Kn.

4.2. A FAMILY OF λ-CONVEX SETS

Let {Kn} be a family of λ-convex sets defined as in Example 1 from regular poly-
gons with central angle αn = 2π/(3 · 2n−1) and radius Rn = log(4/µαn). Let
(an,k) be the vertices of Kn, and let fn be the area of the figure formed by the
points O, an,k, an,k+1, the geodesic segments Oan,k , Oan,k+1 and the λ-geodesic
segment between an,k and an,k+1 in ∂Kn (see Figure 3). We shall denote by ln the
length of this λ-segment. Let hn be the area of the hyperbolic triangle Oan,kan,k+1,
and βn be the angle between the geodesic and the λ-geodesic in each vertex.
We are interested in the quotient Fn/Ln but

Fn

Ln

= fn

ln
.

By the Gauss–Bonnet theorem, we have

fn = hn + λln − 2βn (20)

and, hence,
fn

ln
= λ + hn − 2βn

ln
. (21)

Remark. Since arcsinh y = log(y +
√
1+ y2) the formula (16) can be written

as

lim edn =
(
1
µ

+ 1
µ

√
1+ µ2

)2

or, equivalently,

lim edn = ν + 1
ν − 1

, where ν2 = 1+ µ2.
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This notation will be useful in the next lemmas.

LEMMA 6 . The relation, in the limit, between the parameter ν =
√
1+ µ2 and

the length ln of the above family of λ-polygons is given by

lim ln = 1√
1− λ2

⎛

⎝2 arctanh

√
1− λ2

ν2 − λ2

⎞

⎠ . (22)

Proof. It is a direct substitution of

lim(edn + 1) = ν + 1
ν − 1

+ 1 = 2ν
ν − 1

,

lim(edn − 1) = ν + 1
ν − 1

− 1 = 2
ν − 1

in the formula of Theorem 3. !

Substituting the expression of l given by Formula 18 in Formula 19 we obtain

LEMMA 7 . Let P and Q be two points on a λ-geodesic r and let l be the length
of r between P and Q. Let s be the geodesic between P and Q and let β be the
angle between r and s in P . Then

β = arctan
(

λ√
1− λ2

tanh
(

l

2

√
1− λ2

))
. (23)

This expression can also be written as

β = arctan

⎛

⎝ λ
√
coth2 12d − λ2

⎞

⎠ ,

where d is the hyperbolic distance between P and Q.
Substituting now the expression of lim ln obtained in Lemma 6 in formula (23)

we have

LEMMA 8 . With the same notation:

limβn = arctan
λ√

ν2 − λ2
.

Substituting the values obtained in the above lemmas in formula (21) one ob-
tains

LEMMA 9 . The relation, in the limit, between area and length of the family of
λ-convex polygons considered in this section is given by limFn/Ln = λ+ϕ(λ, µ),
where

ϕ(λ, µ) =
π − 2

(
arctanµ + arctan λ√

µ2+1−λ2

)

1√
1−λ2

(
2 arctanh

√
1−λ2

µ2+1−λ2

) .
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Since for each λ the function ϕ(λ, µ) is continuous with respect to µ and

lim
µ→0

ϕ(λ, µ) = 0

and

lim
µ→∞

ϕ(λ, µ) = 1− λ,

the proof of Theorem 1 is complete.
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