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EVOLUTES AND ISOPERIMETRIC DEFICIT IN
TWO-DIMENSIONAL SPACES OF CONSTANT CURVATURE

Julià Cufí and Agustí Reventós

Abstract. We relate the total curvature and the isoperimetric deficit of
a curve γ in a two-dimensional space of constant curvature with the area
enclosed by the evolute of γ. We provide also a Gauss-Bonnet theorem for a
special class of evolutes.

1. Introduction

The setting of this paper is the space X2
c , the 2-dimensional complete and simply

connected Riemannian manifold of constant curvature c, i.e. the sphere S2
c of radius

R = 1√
c

for c > 0, the hyperbolic plane H2
c for c < 0 (the imaginary sphere of

radius Ri = 1√
c
), or the Euclidean plane for c = 0. We shall assume that X2

c is
oriented.

For a closed curve γ on X2
c we will consider the evolute γe of γ and denote by

Fe the area with multiplicities enclosed by γe. By means of |Fe| we estimate the
deficit of the total curvature and the isoperimetric deficit of the curve γ.

The integral of the curvature of a simple closed curve (the total curvature) in
the Euclidean space R3 has been widely studied. The most remarkable result is
Fenchel’s theorem which states that this integral is greater than, or equal to, 2π. It
is equal to 2π if and only if the curve is a plane convex curve; see [5]. The following
result gives an interpretation of the difference between the total curvature and 2π
for curves on X2

c .

Theorem 1.1. Let γ(s) be a positively oriented closed strongly convex curve on
X2
c parametrized by arclength. Let Fe be the area with multiplicities enclosed by the

evolute of γ. Then ∫
γ

k(s) ds− 2π = c|Fe| ,

where k(s) is the curvature of γ(s) in the ambient space.
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The strong convexity notion used above will be defined later.

As it is well known the isoperimetric inequality in X2
c states

F ≤ L2 + cF 2

4π ,

where L is the length of a simple closed curve γ and F the area enclosed by γ; see
for instance [7]. We estimate the isoperimetric deficit by means of the area enclosed
by the evolute of γ proving the following result.

Theorem 1.2. Let γ be a positively oriented closed strongly convex curve on
X2
c of length L. Let F be the area enclosed by γ. Then the isoperimetric deficit

∆ = L2 − 4πF + cF 2 is bounded by

∆ ≤ cF 2
e + 4π|Fe| ,

where Fe is the area with multiplicities enclosed by the evolute of γ. Equivalently,
for c 6= 0,

∆ ≤ 1
c

((∫
γ

k(s) ds
)2
− 4π2

)
,

where k(s) is the curvature of γ in the ambient space. Equality holds if and only if
γ is a circle.

We note that letting c→ 0 in the second inequality and using Theorem 1.1 one
gets the first one for c = 0.

Finally we provide a Gauss-Bonnet formula with multiplicities (Theorem 6.1)
that enables us to calculate the total curvature of the evolute of a curve, for the
special case of evolutes with a finite number of singular points, these being the
points at which the evolute fails to have a tangent. We prove the following result.

Theorem 1.3. Let γ be a positively oriented closed strongly convex curve on X2
c

and let γe(se) be the evolute of γ, where se is its arclength parameter. Assume that
γe(se) has a finite number of singular points. Then the integral of the geodesic
curvature ke(se) of the evolute γe(se) is given by∫

γe

ke(se) dse = c|Fe|+ 2π ,

where Fe is the area with multiplicities enclosed by γe.

We point out that the obstruction to generalize the previous result for the evolute
of an arbitrary curve comes from the fact that the tangent vector to the evolute
can vanish on an arbitrary closed set. We overcome this difficulty considering only
evolutes with a finite number of singularities.

2. Preliminaries

We recall here the notions of geodesic curvature and radius of curvature of a
curve in X2

c .
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In order to treat together the cases of constant positive and negative curvature
we consider, as in [6] or [7], the metric on R3 given by the matrix

(1)

1 0 0
0 1 0
0 0 ε

 ,

where ε = ±1. If ε = 1 it is a Riemannian metric and if ε = −1 it is a Lorentz
metric.

The scalar product of the vectors u and v is denoted by 〈u, v〉. The subspace of
R3 given by

S(ε,K) =
{
u ∈ R3; 〈u, u〉 = 1

εK

}
where K is a positive constant, is the standard sphere of radius R = 1√

K
if ε = 1

or a hyperboloid if ε = −1. In this second case we assume that the elements
u = (u1, u2, u3) of S(ε,K) satisfy u3 > 0. Since S(−1,K) consists of vectors of
norm Ri, it is also called the imaginary sphere.

In both cases, ε = 1 or ε = −1, S(ε,K) is a Riemannian manifold of constant
curvature c = εK. In fact, the metric (1) restricted to S(ε,K) is positive definite.
Hence X2

c = S(1, c) = S2
c for c > 0, X2

c = S(−1,−c) = H2
c for c < 0.

We also note that the tangent space to S(ε) at P ∈ S(ε,K), TPS(ε,K), is given
by

TPS(ε,K) = P⊥

where P⊥ denotes the subspace of R3 orthogonal (with respect to the Riemannian
or the Lorentz metric) to P .

Since the covariant derivative on S(ε,K) is the orthonormal projection on S(ε,K)
of the covariant derivative of R3 we have

∇vY = v(Y )− c 〈v(Y ), P 〉P ,
where v ∈ TPS(ε,K), Y is a tangent vector field on S(ε,K), and v(Y ) = (v(Y1),
v(Y2), v(Y3)) is the directional derivative of each component. Note that since
〈∇vY, P 〉 = 0, we have ∇vY ∈ TPS(ε,K).

Let now γ(t) be a regular curve on S(ε,K), that is γ(t) is smooth and γ′(t) 6= 0,
and take v = Y = γ′(t). We have

∇γ′(t)γ′(t) = γ′′(t)− c 〈γ′′(t), γ(t)〉 γ(t) .
If γ is parametrized by arclength s, then

〈γ(s), γ(s)〉 = 1/c , 〈γ′(s), γ(s)〉 = 0 , 〈γ′(s), γ′(s)〉 = 1 ,
〈γ′′(s), γ(s)〉 = −1 , 〈γ′′(s), γ′(s)〉 = 0 ,

and hence
(2) ∇γ′(s)γ

′(s) = γ′′(s) + c γ(s) .

Definition 2.1. Let γ(s) be a regular curve on X2
c parametrized by arclength.

The geodesic curvature kg(s) of γ(s) is
kg(s) = |∇γ′(s)γ

′(s)| .
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The normal vector n(s) to γ(s) is given by
∇γ′(s)γ

′(s) = kg(s)n(s) .

Note that, for c 6= 0, n(s) is not the principal normal of γ(s) as a curve in the
ambient space R3 (Euclidean or Lorentzian).

We shall use later the equality
(3) γ′′(s) = kg(s)n(s)− cγ(s) .

If the parameter t of a given curve γ(t) on X2
c is not the arclength parameter,

the geodesic curvature is given by
kg(t) = f(t)2〈∇γ′(t)γ′(t), n(t)

〉
= f(t)2〈γ′′(t), n(t)

〉
,(4)

where f(t)2 = 〈γ′(t), γ′(t)〉−1 and n(t) is the normal vector to γ(t).
The relationship between the geodesic curvature kg(s) and the curvature k(s) of

γ(s) as a curve in R3 is

(5)
√
k2
g(s) + c = k(s) ,

since
kg(s)2 =

〈
γ′′(s) + cγ(s), γ′′(s) + cγ(s)

〉
= k(s)2 + 2c

〈
γ(s), γ′′(s)

〉
+ c2〈γ(s), γ(s)

〉
= k(s)2 − c .

In order to define the radius of curvature, we shall use the generalized sinus and
cosinus functions:

snc ρ :=


1√
−c sinh(

√
−c ρ) , c < 0

ρ , c = 0
1√
c

sin(
√
c ρ) , c > 0

cnc ρ :=


cosh(

√
−c ρ) , c < 0

1 , c = 0
cos(
√
c ρ) , c > 0 ,

as well as tanc ρ = snc ρ
cnc ρ

and cotc ρ = cnc ρ
snc ρ

.

Definition 2.2. We say that a regular simple curve γ(s) on X2
c parametrized by

arclength is strongly convex if, for each s, kg(s) > 0 for c ≥ 0 or kg(s) >
√
|c| for

c < 0.

This enable us to give the following definition.

Definition 2.3. Let γ(s) be a strongly convex curve on X2
c parametrized by

arclength. The radius of curvature of γ(s) is the function ρ(s) defined by
kg(s) = cotc ρ(s) ,

where cotc ρ(s) is the generalized cotangent function.
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The condition of strongly convexity corresponds, for c < 0, to the notion of
horocyclic convexity. It is needed because, for c < 0, cotc x >

√
−c, for all x ∈ R.

For c > 0 we shall also assume that 0 <
√
cρ(s) < π/2.

The motivation for the Definition 2.3 is the fact that a circle of radius ρ has
geodesic curvature cotc ρ.

3. Evolutes

First we recall that given x ∈ X2
c and y ∈ TxX2

c , with 〈y, y〉 = 1, then
σ(t) = cnc(t)x+ snc(t) y

is the geodesic through σ(0) = x with director tangent vector σ′(0) = y. This
it easy to see, since σ(t) verifies the equation of the geodesics σ′′(t) + cσ(t) = 0.
Moreover t is the arclength of σ(t) because 〈σ′(t), σ′(t)〉 = 1.

Definition 3.1. Let γ(s) be a strongly convex curve on X2
c parametrized by

arclength. The evolute of γ is the curve
γe(s) = cnc ρ(s)γ(s) + snc ρ(s)n(s) ,

where ρ(s) and n(s) are respectively the radius of curvature and the normal to
γ(s).

So γe(s) is the point on the geodesic through γ(s) with director tangent vector
n(s), given by the value ρ(s) of the parameter. Remark that s is not the arclength
parameter of the evolute.

By the definition of n(s), equation (2), and the definition of kg(s), we have
(6) n(s) = tanc ρ(s)

(
γ′′(s) + cγ(s)

)
,

and hence
γe(s) = 1

cnc ρ(s)
(
γ(s) + sn2

c ρ(s) γ′′(s)
)
.

For further purposes we need to compute the tangent vector to the evolute.
We first compute the derivative of the vector n(s). Since 〈n(s), n(s)〉 = 1, we

have 〈n′(s), n(s)〉 = 0 and hence
n′(s) = a(s)γ(s) + b(s)γ′(s) .

The equality 〈γ(s), n(s)〉 = 0 implies 〈γ(s), n′(s)〉 = 0, and so a(s) = 0. Also, from
formula (3), we have

kg(s) = 〈γ′′(s), n(s)〉 = −〈γ′(s), n′(s)〉 = −b(s) .
Thus,
(7) n′(s) = − cotc ρ(s) γ′(s) .

The tangent vector to the evolute is given by

(8) dγe(s)
ds

= γ′e(s) = ρ′(s)
(
− c snc ρ(s)γ(s) + cnc ρ(s)n(s)

)
,

because, according to (7),
cnc ρ(s)γ′(s) + snc ρ(s)n′(s) = 0 .
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Note that, by (6),

(9) γ′e(s) = ρ′(s) snc ρ(s) γ′′(s) .

In particular γ′e(s) = 0 at the critical points of ρ(s). Points where ρ′(s) 6= 0 are
called regular points of γe(s) and points where ρ′(s) = 0 are called singular points
of γe(s). In a neighborhood of each regular point the evolute can be reparametrized
by arclength, and so the normal vector is well defined at these points.

We remark that for c 6= 0 the tangent vector to the evolute does not coincide
with the normal vector to the curve (at corresponding points). Nevertheless we
have the following proposition.

Proposition 3.1. The normal vector to the evolute coincides at regular points, up
to the sign, with the tangent vector to the curve at corresponding points.

Proof. Let ne(s) be the normal vector to the evolute at regular points of γe(s).
We can write

ne(s) = A(s)γ(s) +B(s)γ ′(s) + C(s)n(s) ,

for some functions A(s), B(s), C(s). Multiplying by γe(s) one obtains

cC(s) = −kg(s)A(s)

and multiplying by γ′e(s) one obtains

A(s) = kg(s)C(s) .

Since γ(s) is strongly convex, we obtain A(s) = C(s) = 0, and hence

ne(s) = B(s)γ′(s) .

Thus |B(s)| = 1 and so ne(s) = ±γ′(s).

Figure 1.

To be more precise, using locally the arclength parameter se of γe(s), we have

B(s) = 〈ne(s), γ′(s)〉 =
〈d2γe
ds2
e

, γ′(s)
〉

=
〈d2γe
ds2

( ds
dse

)2
, γ′(s)

〉
=
( ds
dse

)2
〈ρ′(s) snc ρ(s)γ′′′(s), γ′(s)〉 = −

( ds
dse

)2
ρ′(s) snc ρ(s)〈γ′′(s), γ′′(s)〉 .
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Since all the factors in the right-hand side out of ρ′(s) are positive, we have (see
Figure 1)

ne(s) =
{
γ′(s) if ρ′(s) < 0
−γ′(s) if ρ′(s) > 0 .

�

We shall need also to compute the geodesic curvature of the evolute of a given
curve. Due to equality (4) this notion is well defined at regular points.

Proposition 3.2. The geodesic curvature ke(s) of the evolute of a strongly convex
curve γ(s) in X2

c , at regular points, is given by

ke(s) = k(s)
|ρ′(s)| = 1

|ρ′(s)| snc(ρ(s)) ,

where k(s) is the curvature of γ(s) in the ambient space, and ρ(s) is the radius of
curvature of γ(s).

Proof. Applying formula (4), Proposition 3.1 and equality (8), we have

ke(s) = 1
|γ′e(s)|2

〈γ′′e (s), ne(s)〉 = ± 1
ρ′(s)2 〈γ

′′
e (s), γ′(s)〉 .

Differentiating the expression of γ′e(s) obtained in (8), it follows

γ′′e (s) = −cρ′(s) snc
(
ρ(s)

)
γ ′(s)+ρ′(s) cnc

(
ρ(s)

)
n ′(s)+terms orthogonal to γ′(s) .

Substituting in this expression n′(s) by the value obtained in (7), we have

γ′′e (s) = − ρ′(s)
snc(ρ(s))γ

′(s) + terms orthogonal to γ ′(s) .

Hence,

ke(s) = ± 1
ρ′(s) snc(ρ(s)) .

Since ke > 0 we have,

(10) ke(s) = 1
|ρ′(s)| snc(ρ(s)) .

Using the generalized tangent and cotangent functions, it is easy to see that

(11) c tanc
ρ(s)

2 = −kg(s) +
√
kg(s)2 + c ,

where kg(s) = cotc ρ(s). From this and (5) one obtains
1

snc(ρ(s)) =
√
k2
g(s) + c = k(s) .

Hence, equation (10) can be written as

ke(s) = k(s)
|ρ′(s)| .

�
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We now introduce the index or winding number of a closed curve on X2
c with

respect to a given point.
First we recall that the index of a closed piece-wise C1 curve γ of R2 is the

function defined by

Ind(γ, P ) = ψP (L)− ψP (0)
2π , P ∈ R2 \ γ ,

where ψP (s) is a branch of the argument of the vector (γ(s) − P ) ∈ R2, and
s ∈ [0, L] is the arclength parameter of γ.

It is well known that Ind(γ, P ) is constant for P in a connected component
of R2 \ γ and vanishes on the unbounded component. Moreover Ind(γ, P ) can be
computed by counting the signed number of intersections of γ with a fixed ray
starting from P ; see [1], p.27.

Let now γ be a closed curve on X2
c and P a point not on γ. Assume, without

lost of generality, that γ and P are contained in an oriented local chart (U,ϕ)
where ϕ : U −→ X2

c , and U is an open subset of the plane R2. We define Ind(γ, P )
as Ind(γ̃, P̃ ), with γ = ϕ ◦ γ̃ and P = ϕ(P̃ ). It is easy to see that this number does
not depend on the chosen local chart.

Definition 3.2. Let γ be the a closed piece-wise C1 curve on X2
c , not necessarily

simple. The area with multiplicities, F , enclosed by γ is defined as

F =
∫
X2
c

Ind(γ, P ) dS ,

where dS is the area element of X2
c .

Remark 3.3. Let γ be a plane strongly convex closed curve, positively oriented.
This means Ind(γ, P ) = 1 for P in the interior of γ. Let γe denote the evolute of γ
and Fe the area with multiplicities enclosed by γe. We shall see that Fe ≤ 0, a fact
that comes from the inequality
(12) Ind(γ, P ) · Ind(γe, P ) ≤ 0 .
Indeed, if P does not belong to a bounded component of R2 \ γ or of R2 \ γe at
least one of the two indices are zero and the inequality holds. On the other case,
for a fixed s, we have

γ(s)− P = aγ′(s) + bn(s) , b ≤ 0 ,

γe(s)− P = cγ′e(s) + dne(s) , d ≥ 0 ,
and by Proposition 3.1

d =
〈
γe(s)− P, ne(s)

〉
=
〈
γ(s) + ρ(s)n(s)− P, ne(s)

〉
= a

〈
γ′(s),±γ′(s)

〉
.

More precisely,
d = a if ρ′(s) < 0 ,

d = −a if ρ′(s) > 0 .
Since d > 0, we have aρ′(s) < 0.
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It follows easily that

det
(
γe(s)− P, γ′e(s)

)
= aρ′(s) det

(
γ′(s), n(s)

)
= aρ′(s) < 0 ,

and the inequality (12) is proved. Note that det(γ′(s), n(s)) = 1 because γ is
positively oriented.

From this and the definition of the index of the evolute of a closed strongly
convex curve in X2

c it follows that Ind(γe, P ) ≤ 0, for P ∈ R2 \ γe. So the area
with multiplicities, Fe, enclosed by γe is negative or zero.

4. Area of the evolute and total curvature

We begin with some notation and a technical lemma. Let γ(s) be a strongly
convex curve on X2

c parametrized by arclength s.
At each point γe(s) of the evolute of γ(s) we consider the vector T (s) ∈ Tγe(s)X

2
c

given by
T (s) = c snc ρ(s) γ(s)− cnc ρ(s)n(s) ,

where n(s) is the normal vector to γ(s).
Note that T (s) is a vector field along γe(s) which by (8) has the same direction

as the tangent vector to the evolute at regular points, but with the advantage that
it is also defined at singular points.

We denote, as usual,
∇γe(s)T (s) ∈ Tγe(s)X

2
c

the covariant derivative of T (s) along γe(s). For c 6= 0, it is the projection on S(1, c)
or S(−1,−c) of the directional derivative on R3.

Lemma 4.1. Let γ(s) be a strongly convex curve on X2
c parametrized by arclength

s. Then
k(s) = 〈∇γe(s)T (s), γ′(s)〉 ,

where k(s) is the curvature of γ(s) in the ambient space.

Proof. Since
γ ′(s) ∈ Tγe(s)X

2
c ,

we have〈
∇γe(s)T (s), γ′(s)

〉
=
〈dT (s)

ds
, γ′(s)

〉
=
〈
cρ′(s)(cnc ρ(s)γ(s) + snc ρ(s)n(s)), γ′(s)

〉
+
〈
c snc ρ(s)γ′(s)− cnc ρ(s)n′(s), γ ′(s)

〉
.

By equation (7) and Proposition 3.2 we have〈
∇γe(s)T (s), γ ′(s)

〉
= c snc ρ(s) + cnc ρ(s) cotc ρ(s) = 1

snc ρ(s) = k(s) ,

and lemma is proved. �

Next result can be seen as a sort of refinement of Fenchel’s Theorem.
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Theorem 4.2. Let γ(s) be a positively oriented closed strongly convex curve on
X2
c parametrized by arclength. Let Fe be the area with multiplicities of the evolute

of γ. Then ∫
γ

k(s) ds− 2π = c|Fe| ,

where k(s) is the curvature of γ(s) in the ambient space.

Proof. Let (e1, e2) be a local orthonormal frame of vector fields on X2
c . The

connection 1-form ω12 associated to this moving frame is given by
ω12(X) = 〈∇Xe1, e2〉

for each tangent vector field X.
In the vector tangent space Tγe(s)X

2
c we have

T (s) = cos θ(s)e1 + sin θ(s)e2 ,

where θ(s) is the angle, module 2π, between T (s) and e1.
Then, by Lemma 4.1,

k(s) =
〈
∇γe(s)T (s), γ′(s)

〉
=
〈
∇γe(s)(cos θ(s)e1 + sin θ(s)e2), γ′(s)

〉
=
〈
θ′(s)(− sin θ(s)e1 + cos θ(s)e2), γ′(s)

〉
+
〈

cos θ(s)∇γe(s)e1 + sin θ(s)∇γe(s)e2, γ
′(s)
〉
.

But
γ′(s) = − sin θ(s)e1 + cos θ(s)e2 ∈ Tγe(s)X

2
c

and 〈
∇γe(s)e1,− sin θ(s)e1 + cos θ(s)e2

〉
= cos θ(s)ω12

(
γ′e(s)

)
〈
∇γe(s)e2,− sin θ(s)e1 + cos θ(s)e2

〉
= sin θ(s)ω12

(
γ′e(s)

)
.

Hence
k(s) = θ′(s) + ω12

(
γ′e(s)

)
.

This yields to an equality of 1-forms
k(s) ds = dθ + γ∗e ω12 .

Integrating on [0, L] we have,∫
[0,L]

k(s) ds =
∫

[0,L]
dθ +

∫
[0,L]

γ∗e ω12 .

Equivalently, ∫ L

0
k(s) ds =

∫ L

0
θ′(s) ds+

∫
γe

ω12 .

But we know, from the structure equations (see, for instance, [8], Vol. II, p. 295),
that

dω12 = −c θ1 ∧ θ2 = −c dS ,
where (θ1, θ2) is the dual basis of (e1, e2) and dS the area element of X2

c .
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By the Green formula with multiplicities (see for instance [1], p. 213) we have∫ L

0
k(s) ds =

∫ L

0
θ′(s) ds+

∫
X2
c

Ind(γe, P ) dω12

= 2π − c
∫
X2
c

Ind(γe, P ) dS = 2π + c|Fe|

since the index of the evolute is negative (see Remark 3.3), and theorem is proved.
�

Next we give, using Theorem 4.2, a simple proof of a known result which appears
in [4, Theorem 3.8] but with a completely different proof. It will be used in Section 5.

Theorem 4.3. Let γ(s) be a positively oriented closed strongly convex curve on
X2
c parametrized by arclength. Let ρ(s) be the corresponding radius of curvature.

Then

(13)
∫
γ

tanc
ρ(s)

2 ds = F + |Fe| ,

where F is the area enclosed by γ and Fe is the area with multiplicities enclosed by
the evolute of γ.

Proof. Integrating both sides of (11) and using (5) one obtains

c

∫
γ

tanc
ρ(s)

2 ds = −
∫
γ

kg(s) ds+
∫
γ

k(s) ds .

By the Gauss-Bonnet theorem (see for instance [7, p.303]) and Theorem 4.2 we
have

c

∫
γ

tanc
ρ(s)

2 ds = (−2π + cF ) + (2π + c|Fe|) = cF + c|Fe| .

This proves the theorem for c 6= 0. The case c = 0 follows just letting c → 0 in
(13). �

As an immediate consequence we have the following corollary, that can be
considered as a generalization to the case of constant curvature of the 2-dimensional
analogue of Ros’ inequality; see [3].

Corollary 4.4. Let γ(s) be a positively oriented closed strongly convex curve on
X2
c parametrized by arclength. Let ρ(s) be the radius of curvature of γ(s). Then

F ≤
∫
γ

tanc
ρ(s)

2 ds,

where F is the area enclosed by γ. Equality holds if and only if γ is a circle.

Proof. The inequality is immediate from Remark 3.3 and Theorem 4.3. Equality
holds if and only if Fe = 0. Since Ind(γe, P ) ≤ 0 (see Remark 3.3), it must be
Ind(γe, P ) = 0. This implies that the evolute γe is a point and hence γ must be
a circle. Indeed, if the evolute γe was not a point we could choose a small ball
separated by γe in two connected components. Then the index would be a different
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integer in each of these parts since although the evolute can be traversed twice this
always happens in the same sense. This gives a contradiction. �

Since the evolute of a simple closed curve γ coincides with the evolute of a
curve ‘parallel’ to it, the above results relating the area enclosed by γ and the
area enclosed by its evolute yield a new proof of Steiner’s formula for tubes on
noneuclidean spaces; see [7, p.322].

Theorem 4.5 (Steiner formula). Let γ = ∂Q be the strongly convex boundary of a
compact domain Q in X2

c . Denote by F the area of Q and by L the length of γ.
Let Qr be the strongly convex body parallel to Q in the distance r. Then

Fr − F = L snc(r) + 2 sn2
c(r/2)(2π − cF )

where Fr denotes the area of Qr.

Proof. Applying Theorem 4.3 to γ and to γr = ∂(Qr), and taking into account
that the evolute of γ coincides with the evolute of γr, and that the curvature radius
of γr and γ, at corresponding points γ(s) and γr(s) = expγ(s) rN(s), are related
by ρr(s) = ρ(s) + r, we have

Fr − F =
∫
γr

tanc
ρ(τ) + r

2 dτ −
∫
γ

tanc
ρ(s)

2 ds ,

where ds is the arclength measure on γ, and dτ is the arclength measure on γr.
Applying the sinus theorem in the infinitesimal triangle of the Figure 2 we see

that
dτ = snc(ρ(s) + r)

snc ρ(s) ds .

Figure 2.
Hence

Fr − F =
∫
γ

(
tanc

ρ(s) + r

2 ·
snc

ρ(s) + r

2 cnc
ρ(s) + r

2
snc

ρ(s)
2 cnc

ρ(s)
2

−
snc

ρ(s)
2

cnc
ρ(s)

2

)
ds .

Simplifying

Fr − F =
∫
γ

( sn2
c((ρ(s) + r)/2)− sn2

c((ρ(s) + r)/2)
snc(ρ(s)/2) cnc(ρ(s)/2)

)
ds .

Now we substitute sn2
c((ρ(s) + r)/2) for his expression

sn2
c((ρ(s) + r)/2) = sn2

c(ρ(s)/2) cn2
c(r/2) + cn2

c(ρ(s)/2) sn2
c(r/2)

+ 2 snc(r/2) cnc(r/2) snc(ρ(s)/2) snc(ρ(s)/2)
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and we obtain

Fr − F = L snc(r) + 2 sn2
c(r/2)

∫
γ

cnc(ρ(s))
snc(ρ(s)) ds

= L snc(r) + 2 sn2
c(r/2)(2π − cF ) .

�

5. An estimate of the isoperimetric deficit

As it is well known the isoperimetric inequality in X2
c states that

F ≤ L2 + cF 2

4π ,

where L is the length of a simple closed curve γ and F the area enclosed by γ.
Here we apply previous results to provide an upper bound for the right-hand

side of this inequality.

Theorem 5.1. Let γ(s) be a positively oriented closed strongly convex curve on
X2
c of length L parametrized by arclength. Let ρ(s) be the corresponding radius of

curvature. Then

(14) L2 + cF 2

4π ≤
∫
γ

tanc
ρ(s)

2 ds+ cF 2
e

4π ,

where F is the area enclosed by γ and Fe is the area with multiplicities enclosed by
the evolute of γ. Equality holds if and only if γ is a circle.

Proof. Integrating both sides of the identity

cotc
ρ(s)

2 = cotc ρ(s) + 1
snc ρ(s)

and multipliying by ∫
γ

tanc
ρ(s)

2 ds ,

we obtain∫
γ

tanc
ρ(s)

2 ds·
∫
γ

cotc
ρ(s)

2 ds =
∫
γ

tanc
ρ(s)

2 ds
(∫

γ

cotc ρ(s) ds+
∫
γ

1
snc ρ(s) ds

)
.

On the other hand, by the Schwarz’s inequality, we have

L2 =
(∫

γ

√
tanc

ρ(s)
2

1√
tanc

ρ(s)
2

ds

)2

≤
∫
γ

tanc
ρ(s)

2 ds ·
∫
γ

cotc
ρ(s)

2 ds .

Hence, using the Gauss-Bonnet theorem, and Theorems 4.2 and 4.3, we obtain
L2 ≤ (F + |Fe|)

(
(2π − cF ) + (2π + c|Fe|)

)
= (F + |Fe|)

(
4π − c(F − |Fe|)

)
.

Thus
L2 ≤ 4π

∫
γ

tanc
ρ(s)

2 ds− c(F 2 − F 2
e ) ,
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and inequality (14) is proved.
Finally, note that equality holds if and only if kg is constant. But closed curves

on X2
c of constant geodesic curvature are circles. �

As a consequence we have an estimate of the isoperimetric deficit in terms of Fe.

Theorem 5.2. Let γ be a positively oriented closed strongly convex curve on
X2
c of length L. Let F be the area enclosed by γ. Then the isoperimetric deficit

∆ = L2 − 4πF + cF 2 is bounded by
∆ ≤ cF 2

e + 4π|Fe| ,
where Fe is the area with multiplicities enclosed by the evolute of γ. Equivalently,
for c 6= 0,

∆ ≤ 1
c

((∫
γ

k(s) ds
)2
− 4π2

)
,

where k(s) is the curvature of γ in the ambient space. Equality holds if and only if
γ is a circle.

Proof. First inequality follows from Theorem 5.1 and Theorem 4.3, and for the
second one we use Theorem 4.2. �

Remark 5.3. Combining the isoperimetric inequality and formula (14) one gets

F ≤
∫
γ

tanc
ρ(s)

2 ds+ cF 2
e

4π ,

which is, for the case c < 0, an improvement of Corollary 4.4. �

6. The Gauss-Bonnet theorem for evolutes

It is possible to have a regular curve with an arbitrary closed set (for instance,
a Cantor set) of maximums and minimums of its curvature. In this case its evolute
has a singular point corresponding to each point of this closed set. The angle
between the tangent vector to the evolute and a given direction is not well defined
at singular points, since at these points the tangent vector to the evolute vanishes.
This is an obstruction in order to find a formula for the integral of the geodesic
curvature of the evolute. Nevertheless we think that it is interesting to consider
the particular case of evolutes with a finite number of singular points.

More generally, let us consider a closed piece-wise C2 curve γ(s) on X2
c where

s is the arclength parameter. That is, γ(s) has two continuous derivatives except
(possibly) at a finite number of singular points at which left and right derivatives
exist. The geodesic curvature of γ(s) is defined out of these singular points.

For this class of curves we give an extension of the Gauss-Bonnet theorem.

Theorem 6.1 (Gauss-Bonnet theorem with multiplicities). Let γ(s) be a positively
oriented closed piece-wise C2 curve on X2

c , not necessarily simple, where s is the
arclength parameter. Then the integral of the geodesic curvature kg(s) is given by∫

γ

kg(s) ds = −cF +
N∑
k=1

θk + (2ν −N)π ,
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where F is the area with multiplicities enclosed by γ, N is the number of singular
points, θk are the interior angles at these points and ν ∈ Z.

Proof. Suppose that (u, v) is a system of orthogonal coordinates defined on X2
c

given by a parametrization ϕ : U → X2
c defined on an open subset U of the (u, v)

plane R2. We may assume γ(s) ⊂ ϕ(U) for all s ∈ [0, L].
If we write the metric in this coordinates as(

E 0
0 G

)
,

the geodesic curvature of the curve γ(s) = ϕ(u(s), v(s)) is given by the piece-wise
C1 function

kg(s) = 1
2
√
EG

(
Gu

dv

ds
− Ev

du

ds

)
+ dθ

ds
,

where θ(s) is the the positive angle between ∂
∂u |γ(s) and γ′(s).

If we consider the 1-form on U ⊂ R2, ω = Adu+Bdv, with

A = − Ev

2
√
EG

, B = Gu

2
√
EG

we have the equality of 1-forms

(15) kg(s)ds = ω + dθ .

In this equality it is assumed that ω is restricted to γ(s), and dθ = dθ
ds ds = θ′(s) ds.

On the other hand, it is known that the Gauss curvature c of X2
c is given by

c = − 1
2
√
EG

(( Ev√
EG

)
v

+
( Gu√

EG

)
u

)
,

and hence

dω = −
(∂A
∂v
− ∂B

∂u

)
du ∧ dv =

(( Ev

2
√
EG

)
v

+
( Gu

2
√
EG

)
u

)
du ∧ dv

= −c
√
EGdu ∧ dv = −cdS .

The Green formula with multiplicities (see for instance [1, p.235]) states∫
γ

ω =
∫

R2
Ind(γ, P ) dω

where Ind(γ, P ) denotes the index of the curve γ(s) = ϕ−1(γ(s)) with respect to
the point P , and ω is a 1-form on R2.

Hence, integrating both sides of (15), we have,∫
γ

kg(s) ds =
∫
γ

ω+
∫
γ

dθ =
∫

R2
Ind(γ, P ) dω+

∫
γ

dθ = −c
∫

R2
Ind(γ, P ) dS+

∫
γ

dθ ,

and since by definition

F =
∫

R2
Ind(γ, P ) dS ,
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we have

(16)
∫
γ

kg(s) ds = −cF +
∫
γ

dθ .

But ∫
γ

dθ =
N∑
k=0

∫ ak+1

ak

θ′(s) ds

with 0 = a0 < a1 < · · · < aN < aN+1 = L, where a1, a2, . . . , aN are the singular
points of γ(s) and γ(a0) = γ(L), (L the length of γ). Hence (see Figure 3)∫

γ

dθ =
N∑
k=0

(
θ(a−k+1)− θ(a+

k )
)

=
N∑
k=1

(
θ(a−k )− θ(a+

k )
)

+
(
θ(a−0 )− θ(a+

N+1)
)

= −
N∑
k=1

(π − θk) + 2πν , ν ∈ Z ,

since by definition of interior angle

(17) θ(a+
k )− θ(a−k ) = π − θk .

Figure 3.

Substituting this expression of
∫
γ
dθ in (16) the theorem is proved. �

Note that for a plane curve the integer number ν coincides with its rotation
index. Recall that the rotation index of a closed plane curve is defined as the
number of turns made by the tangent vector to this curve; see a precise definition
in [2].

Using the previous theorem we can compute now the total geodesic curvature of
the evolute γe of a strongly convex curve on X2

c in the case that γe has a finite
number of singular points, obtaining a Gauss-Bonnet formula for these evolutes.
Indeed, we can reparametrize γe with respect to its arclength parameter se to
obtain a piece-wise C2 curve to which Theorem 6.1 can be applied. It does not
seem possible to do this in the general case.
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Theorem 6.2. Let γ be a positively oriented closed strongly convex curve on X2
c

and assume that its evolute γe has a finite number of singular points. Let se be the
arclength parameter of γe. Then the integral of the geodesic curvature ke(se) of the
evolute γe(se) is given by ∫

γe

ke(se) dse = c|Fe|+ 2π ,

where Fe is the area with multiplicities enclosed by γe.

Proof. For a negatively oriented closed piece-wise C2 curve we have, by Theo-
rem 6.1, ∫

γ

kg(s) ds = −cF −
N∑
k=1

θk + (N + 2ν)π .

This equality can be applied to γe(se) which is piece-wise C2 and negatively
oriented by Remark 3.3. To evaluate the right-hand side of previous equality, when
applied to γe, we consider first of all the case of plane cuves.

Note that the interior angles θk are zero. This is a consequence of equalities
(9) and (17) and the fact that the angles θ(a+

k ) and θ(a−k ) in (17) are the angles
with respect to a given direction of the normal vector to the curve and its opposite,
respectively.

Applying the turning tangents theorem to the evolute, see for instance [2], one
has

2πν = Ve −Nπ ,
where Ve is the differentiable variation of the angle formed by the tangent to the
evolute with a given direction (sum of the variations in each interval where the
evolute is regular) and N is the number of critical points of the radius of curvature
of γ. Since the tangent to the evolute coincides up to the sign with the normal to
the curve we get Ve = 2π. Hence N + 2ν = 2 and the theorem is proved for c = 0.

To generalize the above arguments to the case c 6= 0 we can argue as follows.
Let ϕt : X2

c → X2
(1−t)c, for 0 ≤ t ≤ 1, be a continuous family of mappings, ϕ0 being

the identity and ϕ1 the stereographic projection. For each t consider ϕt(γ) and
its corresponding evolute (which is not ϕt(γe)). Since the rotation index ν of this
family of evolutes depends continuously on t and takes integer values, it must be
constant. So N + 2ν = 2 holds, and the proof is finished. �
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