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Abstract. Using a notion of curvature at the vertices of a polygon, we prove an inequality
involving the length of the sides of the polygon and the radii of curvature at the vertices. As a
consequence, we obtain a discrete version of Ros’ inequality.

1. INTRODUCTION. The starting point of this note is the following known inequal-
ity. If C is a closed convex curve in R

2 of class C2 and length L , then

L2

4π
≤ 1

2

∫
C

ρ(s) ds, (1)

where ρ = ρ(s) is the radius of curvature of C and ds signifies arclength measure on
C . Equality holds if and only if C is a circle. This result can be easily proved using
Schwarz’s inequality (Proposition 1).

On the other hand, one has the isoperimetric inequality

A ≤ L2

4π
, (2)

where A is the area enclosed by C , with equality if and only if C is a circle.
Combining (1) and (2) one gets

A ≤ 1

2

∫
C

ρ(s) ds, (3)

which is the two-dimensional Ros’ inequality (see [4] and [6]). The difference
1
2

∫
C ρ(s)ds − A was studied in [2]. The corresponding inequality for the sphere

and the hyperbolic plane can be found in [3].
Here we consider the inequality (1) for the case where the curve C is a polygon. For

this we introduce a notion of radius of curvature at the vertices of a polygon (Definition
1), which is a good approximation of the radius of curvature of a smooth curve. We
prove the following inequality:

L2

4π
≤ 1

2

n∑
k=1

lk
ρk + ρk+1

2
,

where L is the length of the polygon, lk the length of its sides, and ρk the radius
of curvature at its vertices. Equality holds if and only if the polygon is umbilical
(Theorem 1).

As a consequence, we obtain a discrete version of Ros’ inequality (Corollary 1).
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2. ON THE INTEGRAL OF THE RADIUS OF CURVATURE. For the sake of
completeness, we give a proof of the well known inequality (1).

Proposition 1. If C is a closed convex plane curve of class C2 of length L, then

L2

4π
≤ 1

2

∫
C

ρ(s)ds,

where ρ(s) is the radius of curvature of C, and ds signifies arclength measure on C.
Equality holds if and only if C is a circle.

Proof. Applying Schwarz’s inequality we have

L =
∫

C
1 ds =

∫
C

k1/2k−1/2 ds ≤
(∫

C
kds

)1/2 (∫
C

k−1

)1/2

= (2π)1/2

(∫
C

ρ ds

)1/2

,

where k = k(s) is the curvature of C . Equality holds if and only if k(s) = λk−1(s), for
a constant λ. That is, k(s) is constant and C is a circle. �

3. CURVATURE FOR POLYGONS. Given a plane convex polygon of vertices
P1, P2, . . . , Pn , we denote by lk = |−−−−→

Pk Pk+1| the length of its sides and by αkπ the
measure of its external angles (see Figure 1). Of course we have

∑n
k=1 αk = 2, with

0 < αk < 1, and

−−−−→
Pk−1 Pk · −−−−→

Pk Pk+1 = lk−1 · lk · cos(αkπ).

Pk–1

lk–1

Pk+1

lk+1

Pk lkα k π
α k+1 π

Figure 1.

Definition 1. Given a plane convex polygon of vertices P1, P2, . . . , Pn , and sides of
lengths l1, l2, . . . , ln , we define the radius of curvature at the vertex Pk by

ρk = lk−1 + lk

2αkπ
.
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In particular, the curvature at the vertex Pk is given by

κk = 1

ρk
= 2αkπ

lk−1 + lk
,

an expression that essentially agrees with the classical definition of curvature as the
ratio of the angle to the length. Note also that l0 = ln .

Note. This notion of curvature was also considered in [1] and [5]. Another natural
definition of radius of curvature of a polygon is the following. If Pi−1, Pi , Pi+1 are
consecutive vertices of a polygon, the radius of curvature Ri at Pi is the radius of the
circumscribed circle around the triangle Pi−1 Pi Pi+1 (see [7] and Figure 2).

Pi–1

li–1
li

Pi

Pi+1
Ri

α β

Ω

Figure 2.

The relation between Ri and ρi is (with the notation of the figure)

ρi = Ri
sin α + sin β

α + β
.

In particular, since � = α + β, Ri tends to ρi when the external angles of the polygon
tend to zero.

In order to justify Definition 1, we remark that if we have a sequence of polygons
approximating a smooth curve then both sequences Ri and ρi approximate the radius
of curvature function.

More precisely, let γ : [0, L] −→ R
2 be the arclength parametrization of a smooth

closed curve C and consider the dyadic polygons whose consecutive vertices are

P (n)

k = γ (s(n)

k ), where s(n)

k = k
L

2n
∈ [0, L], and k = 1, 2, 3, . . . , 2n.

Then the radius of curvature at the vertex P (n)

k of the nth dyadic polygon and
the radius of curvature of C at this point, have the same limit when n → ∞, for
k = 1, 2, 3, . . . , 2n.

4. A DISCRETE VERSION OF ROS’ INEQUALITY. Now we give a discrete
version of inequality (1). For this, we shall need the following result.

Lemma 1. Let a1, . . . , an ∈ R
+ and let f : (R+)n −→ R be the function given by

f (x1, . . . , xn) = a2
1

x1
+ · · · + a2

n

xn
.
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If x1 + · · · + xn = 2, then

f (x1, . . . , xn) ≥ 1

2

(
n∑

i=1

ai

)2

.

Proof. Applying Schwarz’s inequality we have

n∑
i=1

ai =
n∑

i=1

x1/2
i

ai

x1/2
i

≤
(

n∑
i=1

xi

)1/2 ( n∑
i=1

a2
i

xi

)1/2

=
√

2

(
n∑

i=1

a2
i

xi

)1/2

. �

Definition 2. A convex polygon is called umbilical if the radius of curvature at its
vertices is constant.

Of course all regular polygons are umbilical. Note that the radius of curvature of an
umbilical polygon must be equal to L/2π , where L is the length of the polygon. This
fact is easily demonstrated by simply adding the equalities

lk−1 + lk = 2αkπρ, for k = 1, . . . , n,

where ρ is the constant radius of curvature.

Theorem 1. Let L be the length of a convex polygon with sides lk and radii of curva-
ture ρk . Then we have

L2

4π
≤ 1

2

n∑
k=1

lk
ρk + ρk+1

2
.

Equality holds if and only if the polygon is umbilical.

Proof. By definition of ρk , the second term of this inequality is

1

2

n∑
k=1

lk
ρk + ρk+1

2
= 1

8π

n∑
k=1

lk

(
lk−1 + lk

αk
+ lk + lk+1

αk+1

)

= 1

8π

n∑
k=1

(lk + lk+1)
2

αk+1
.

Since α1 + · · · + αn = 2, we can apply Lemma 1 and obtain

1

8π

n∑
k=1

(lk + lk+1)
2

αk+1
≥ 1

8π

1

2
(2L)2.

Hence

1

2

n∑
k=1

lk
ρk + ρk+1

2
≥ 1

4π
L2

and the inequality of the theorem is proved.
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By the proof of Lemma 1, equality is attained when

αk+1 = 2(lk + lk+1)
n∑

i=1

(li + li+1)

= lk + lk+1

L
= 2αk+1πρk

L
.

Hence

ρk = L

2π
, k = 1, . . . , n

and the polygon is umbilical. �
We get now the corresponding discrete version of Ros’ inequality.

Corollary 1. If A is the area of a convex polygon with sides lk and radii of curvature
ρk , then we have

A ≤ 1

2

n∑
k=1

lk
ρk + ρk+1

2
. (4)

Proof. The proof is a direct consequence of Theorem 1 and the isoperimetric in-
equality L2 − 4π A ≥ 0. �

As a concluding remark, we note that Ros’ inequality (3) for regular curves is the
limit of inequality (4) for n → ∞.

If l(n)

k denotes the length of the side P (n)

k P (n)

k+1 and ρ̃k
(n) the arithmetic mean

ρ̃k
(n) = ρ

(n)

k + ρ
(n)

k+1

2

where ρ
(n)

k is the discrete radius of curvature at the vertex P (n)

k , then by considering
dyadic polynomials as at the end of Section 3 we claim that

∫
C

ρ(s) ds = lim
n→∞

(
2n∑

k=1

l(n)

k ρ̃k
(n)

)
. (5)

Indeed, since by the definition of the Riemann integral

∫
C

ρ(s) ds = lim
n→∞

(
2n∑

k=1

L

2n
ρ(s(n)

k )

)
,

the assertion follows easily.
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