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Abstract
In this paper we deal with a general type of integral formulas of the visual angle, among
them those of Crofton, Hurwitz and Masotti, from the point of view of Integral Geometry.
The purpose is twofold: to provide an interpretation of these formulas in terms of integrals
of functions with respect to the canonical density in the space of pairs of lines and to give
new simpler proofs of them.
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1 Introduction

Throughout this paper K will be a compact convex set in R2 with boundary a curve of class
C1. We will denote by F the area of K and by L the length of its boundary.

In 1868 Crofton showed [1], using arguments that nowadays belong to Integral Geometry,
the well known formula

2
∫

P /∈K
(ω − sinω)dP + 2πF = L2, (1)

where ω = ω(P) is the visual angle of K from the point P , that is the angle between the
two tangents from P to the boundary of K . In terms of Integral Geometry both sides of this
formula represent the measure of pairs of lines meeting K . In fact the normalized measure

The authors were partially supported by grants 2017SGR358, 2017SGR1725 (Generalitat de Catalunya) and
PGC2018-095998-B-100 (Ministerio de Economía y Competitividad).

B Eduardo Gallego
egallego@mat.uab.cat

Julià Cufí
jcufi@mat.uab.cat

Agustí Reventós
agusti@mat.uab.cat

1 Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona,
Catalonia, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12215-019-00461-w&domain=pdf
http://orcid.org/0000-0002-5176-8357


J. Cufí et al.

of all pairs of lines meeting K is L2, twice the integral of ω − sinω with respect to the area
element dP is the measure of those pairs of lines intersecting themselves outside K and 2πF
is the measure of those intersecting themselves in K .

Later on, Hurwitz in 1902, in his celebrated paper [4] on the application of Fourier series
to geometric problems, considers the integral of some new functions of the visual angle.
Specifically he proves

∫

P /∈K
fk(ω)dP = L2 + (−1)kπ2(k2 − 1)c2k , (2)

where

fk(ω) = −2 sinω + k + 1
k − 1

sin((k − 1)ω) − k − 1
k + 1

sin((k + 1)ω), k ≥ 2, (3)

and c2k = a2k + b2k , with ak, bk the Fourier coefficients of the support function of K .
In the particular case k = 2 formula (2) gives

∫

P /∈K
sin3 ω dP = 3

4
L2 + 9

4
π2c22. (4)

Masotti Biggiogero in [5] states without proof the following Crofton’s type formula
∫

P /∈K
(ω2 − sin2 ω) dP = −π2F + 4L2

π
+ 8π

∑

k≥1

(
1

1 − 4k2

)
c22k . (5)

In [2] a unified approach that encompasses the previous results is provided. As well the
following formula for the integral of any power of the sine function of the visual angle, that
generalizes (4), is given:

∫

P /∈K
sinm(ω) dP = m!

2m(m − 2)Γ (m−1
2 )2

L2

+ m!π2

2m−1(m − 2)

∑

k≥2,even

(−1)
k
2+1(k2 − 1)

Γ (m+1+k
2 )Γ (m+1−k

2 )
c2k . (6)

In this paper we deal with a general type of integral formulas of the visual angle including
those we have just commented above, from the point of view of Integral Geometry according
to Crofton and Santaló [6]. The purpose is twofold: to provide an interpretation of these
formulas in terms of integrals of functions with respect to the canonical density in the space
of pairs of lines and to give new simpler proofs of them.

For each straight line G of the plane that does not pass through the origin let P be the
point of G at a minimum distance from the origin. We take as coordinates for G the polar
coordinates (p,ϕ) of the point P , with p > 0 and 0 ≤ ϕ < 2π . Notice that p and ϕ

can also be seen as functions in this space of lines, and we shall write p(G),ϕ(G) for the
corresponding coordinates of the straight line G.

The invariant density in the set of lines of the plane not containing the origin is given by
a constant multiple of dG = dp∧ dϕ. In fact this density is, except for a constant factor, the
only one invariant under Euclidean motions (see [6], Section I.3.1). In the space of ordered
pairs of lines we consider the canonical density dG1 ∧ dG2. For every function f̃ (G1,G2)

integrable with respect to dG1 ∧ dG2 we can consider the density f̃ (G1,G2) dG1 ∧ dG2.
We prove in Proposition 1 that this density is invariant under Euclidean motions if and only
if f̃ (G1,G2) = f (ϕ(G2) − ϕ(G1)) with f an even π -periodic function on R.
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For such densities it follows from Theorem 1 and Corollary 2 that

A0L2 + π2
∑

n≥1

c22n A2n =
∫

Gi∩K ̸=∅
f (ϕ(G2) − ϕ(G1)) dG1 ∧ dG2

= 2H(π)F + 2
∫

P /∈K
H(ω) dP, (7)

where Ak , k ≥ 0, are the Fourier coefficients of f corresponding to cos(kϕ), and H is the
C2 function on [0,π] satisfying H ′′(x) = f (x) sin(x), x ∈ [0,π], and H(0) = H ′(0) = 0.

The above two equalities are the main tools to obtain both new proofs of the previous
formulas and their interpretation as integrals of functionswith respect to the canonical density
in the space of pairs of lines. As concerning to this second point, in Sect. 3.3 one obtains the
following formulas.

– Crofton’s formula
∫

P /∈K
(ω − sinω) dP = −πF + 1

2

∫

Gi∩K ̸=∅
dG1 ∧ dG2

– Hurwitz’s formula
∫

P /∈K
fk(ω) dP =

∫

Gi∩K ̸=∅
(1+ (−1)k(k2 − 1) cos(k(ϕ(G2) − ϕ(G1)))) dG1 ∧ dG2

– Masotti’s formula
∫

P /∈K
(ω2 − sin2 ω) dP = −π2F + 2

∫

Gi∩K ̸=∅
| sin(ϕ(G2) − ϕ(G1))|dG1 ∧ dG2

– Power sine formula
∫

P /∈K
sinm ω dP

= 1
2

∫

Gi∩K ̸=∅

(
m(m − 1)| sinm−3(ϕ(G2) − ϕ(G1))|

−m2| sinm−1(ϕ(G2) − ϕ(G1))|
)
dG1 ∧ dG2

Moreover using the first equality in (7) one gets the announced new proofs of formulas
(1), (5) and (6).

Concerning Hurwitz’s integral, when we apply the methods here developed, there appears
a different behavior according to whether k is even or odd. For k even using (7) one gets a
new proof of (2). Nevertheless when k is odd the function associated to the Hurwitz integral
is not π-periodic since the function cos(kx) is not, and so we cannot use (7). In this case
appealing to Proposition 5 one obtains a new result that involves a decomposition of the
visual angle ω into two parts ω = ω1 + ω2 that also have a geometrical interpretation.

In this setting, the function ω *→ fk(ω) + 2(sinω − ω) plays a role; this function is the
sum of the functions of Hurwitz and Crofton. In spite of the fact that

∫
P /∈K ( fk(ω)+2(sinω−

ω)) dP depends on k, the surprising fact is that, for k odd, decomposing the visual angle ω

into the two parts ω1,ω2 and adding the corresponding integrals leads to
∫

P /∈K
( fk(ω1)+ 2(sinω1 − ω1)+ fk(ω2)+ 2(sinω2 − ω2)) dP = 2πF,

for each k ≥ 3 odd, as a consequence of Proposition 9.

123



J. Cufí et al.

Moreover it will appear that the functions of Crofton and Hurwitz are in some sense
a basis for the integral of any π -periodic or anti π-periodic function with respect to the
density dG1 ∧ dG2 over the set of pairs of lines meeting a given compact convex set. More
precisely, for everyπ-periodic or antiπ -periodic function f , the integral

∫
Gi∩K ̸=∅ f (ϕ(G2)−

ϕ(G1))dG1 ∧ dG2 is a linear combination of integrals extended outside K of Crofton and
Hurwitz functions of the visual angle ω or of the two parts ω1,ω2 of ω, respectively.

2 Densities in the space of ordered pairs of lines

From now on we deal with the space of ordered pairs of lines endowed with the density
dG1∧dG2. For every function f̃ (G1,G2) defined on this space we consider the new density
f̃ (G1,G2)dG1 ∧ dG2. The measure of a set A of pairs of lines in the plane, provided A is
measurable, is then given by

∫

A
f̃ (G1,G2)dG1 ∧ dG2.

We want now to characterize when this measure is invariant under Euclidean motions.

Proposition 1 The density f̃ (G1,G2)dG1 ∧ dG2 is invariant under the group of Euclidean
motions if and only if f̃ (G1,G2) = f (ϕ(G2)− ϕ(G1)) with f an even π-periodic function
on R.

Proof Let (pi ,ϕi ) be the coordinates of Gi and define the function g by g(p1,ϕ1, p2,ϕ2) =
f̃ (G1,G2). The invariance of the density is equivalent to the equality g(p1,ϕ1, p2,ϕ2) =
g(p′

1,ϕ
′
1, p

′
2,ϕ

′
2) for each Euclidean motion sending the pair of lines with coordinates

(p1,ϕ1, p2,ϕ2) to the pair of lines with coordinates (p′
1,ϕ

′
1, p

′
2,ϕ

′
2). First of all let us

show that g does not depend on p1, p2. In fact, for every straight line G = G(p,ϕ)
and an arbitrary a > 0 there is a parallel line to G with coordinates (a,ϕ). Given two
straight lines G1 = G(p1,ϕ1),G2 = G(p2,ϕ2) and two numbers a1, a2 > 0 let G ′

1
and G ′

2 be the corresponding parallel lines with coordinates (a1,ϕ1), (a2,ϕ2). Perform-
ing the translation that sends the point G1 ∩ G2 to the point G ′

1 ∩ G ′
2 we have that

g(p1,ϕ1, p2,ϕ2) = g(a1,ϕ1, a2,ϕ2) and so g does not depend on p1 and p2.
Given now the line G(p,ϕ) if we perform, for instance, the translation given by the

vector −(p + ϵ)(cosϕ, sin ϕ), ϵ > 0, the translated line has coordinates (ϵ,ϕ + π). There-
fore the function g must be π -periodic with respect to the arguments ϕ1,ϕ2. Due to the
invariance under rotations it follows that g(p1,ϕ1, p2,ϕ2) = g(p1, 0, p2,ϕ2 − ϕ1) and so
g(p1,ϕ1, p2,ϕ2) = f (ϕ2−ϕ1) = f (ϕ(G2)−ϕ(G1))with f a π-periodic function. Finally
the invariance under symmetries implies that f is an even function.

Conversely it is clear that if f is an even π -periodic function then the density f (ϕ(G2)−
ϕ(G1))dG1 ∧ dG2 is invariant under Euclidean motions. ⊓-

Our goal is now to integrate densities, not necessarily invariant under Euclidean motions,
over the set of pairs of lines meeting a compact convex set K . We shall consider densities
of the form f̃ (G1,G2)dG1 ∧ dG2 = f (ϕ(G2) − ϕ(G1))dG1 ∧ dG2 with f a continuous
2π -periodic function. Notice that ϕ(G2) − ϕ(G1) gives one of the two angles between the
lines G1 and G2. In Theorem 1 we give a formula to compute the integral of the above
densities in terms of both the Fourier coefficients of f and of the support function of K .

Recall that when the origin of coordinates is an interior point of K , a hypothesis that we
will assume from now on, the support function ϕ *→ p(ϕ) is given by the distance to the
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Integral geometry about the visual angle of a convex set

origin of the tangent to K whose normal makes an angle ϕ with the positive part of the real
axis (see [6]).

Theorem 1 Let K be a compact convex set with C1 boundary of length L. Let f be a 2π-
periodic continuous function on R with Fourier expansion

f (ϕ) ∼
∑

n≥0

An cos(nϕ)+ Bn sin(nϕ).

Then
∫

Gi∩K ̸=∅
f (ϕ(G2) − ϕ(G1)) dG1 ∧ dG2 = A0L2 + π2

∑

n≥1

c2n An, (8)

with c2n = a2n + b2n where an, bn are the Fourier coefficients of the support function p of K .

Proof Let (pi ,ϕi ) be the coordinates of Gi . We have
∫

Gi∩K ̸=∅
f (ϕ(G2) − ϕ(G1)) dG1 ∧ dG2

=
∫ 2π

0

∫ 2π

0

∫ p(ϕ1)

0

∫ p(ϕ2)

0
f (ϕ2 − ϕ1)dp1 dp2 dϕ1 dϕ2

=
∫ 2π

0

∫ 2π

0
p(ϕ1)p(ϕ2) f (ϕ2 − ϕ1) dϕ1 dϕ2. (9)

Performing the change of variables ϕ2 − ϕ1 = w, ϕ1 = u the integral (9) becomes
∫ 2π

0
p(u)

∫ 2π−u

−u
p(u + w) f (w) dw du. (10)

Since we are assuming that the boundary of K is of class C1 the support function p is C2
and so the Fourier development of p(u + w) in terms of the Fourier coefficients an, bn of
p(u) is convergent and reads as

p(u + w) = a0 +
∑

n≥1

(
(an cos(nu)+ bn sin(nu)) cos(nw)

+(− an sin(nu)+ bn cos(nu)) sin(nw)

)
.

By the Plancherel identity the integral (10) is equal to
∫ 2π

0
p(u)

[
2π A0 a0 + π

∑

n≥1

An(an cos(nu)+ bn sin(nu))

+Bn(−an sin(nu)+ bn cos(nu))
]
du

=
∫ 2π

0
p(u)

[
2π A0 a0 + π

∑

n≥1

(Anan + Bnbn) cos(nu)+ (Anbn − Bnan) sin(nu))
]
du

= 4π2A0 a20 + π2
∑

n≥1

(Anan + Bnbn)an + (Anbn − Bnan)bn

= 4π2A0 a20 + π2
∑

n≥1

An(a2n + b2n) = A0L2 + π2
∑

n≥1

Anc2n,
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wherewe have used that L = 2πa0, which is a consequence of the equality L =
∫ 2π
0 p(ϕ) dϕ

(see for instance [6], Section I.1.2)1, and the Theorem is proved. ⊓-
As it is well known (see [4]) the quantities c2k = a2k +b2k , k ≥ 2, are invariant under Euclidean
motions of K . However c21 changes when moving K . So the integral in (8) is invariant under
Euclidean motions of K if and only if A1 = 0. In particular this is the case when f is
π-periodic.

For a density given by a π -periodic function f and a compact set of constant width the
measure of the pairs of lines that intersect K is proportional to L2. More precisely we have

Corollary 1 Let K be a compact convex set of constant width and f a continuous π-periodic
function. Then

∫

Gi∩K ̸=∅
f (ϕ(G2) − ϕ(G1)) dG1 ∧ dG2 = λL2,

where λ = (1/π)
∫ π
0 f (ϕ) dϕ.

Proof Since K is of constant width the Fourier development of p has only odd terms (see for
instance Sect. 2 of [2]). Moreover the Fourier development of f has only even terms because
it is a π-periodic function. Hence (8) gives

∫

Gi∩K ̸=∅
f (ϕ(G2) − ϕ(G1)) dG1 ∧ dG2 = A0L2,

with A0 = (1/π)
∫ π
0 f (ϕ) dϕ. ⊓-

3 Integral formulas of the visual angle in terms of densities in the space
of pairs of lines

In [2] there is a unified approach to several classical formulas involving integrals of functions
of the visual angle of a compact convex set K . Among them one can find the integrals of
Crofton, Masotti, powers of sine, and Hurwitz.

The original proof of Crofton’s formula, via Integral Geometry, involves a measure on the
space of pairs of lines. The aim of this section is to interpret the formulas in [2] in terms of
integrals of densities in the space of pairs of lines.

To begin with let us consider Hurwitz’s formula
∫

P /∈K
fk(ω)dP = L2 + (−1)kπ2(k2 − 1)c2k , (11)

where fk is given in (3). For a proof of (11) see [4] or [2].
Comparing this equality with (8) one gets immediately the following result.

Proposition 2 Let fk be the Hurwitz function defined in (3). Then
∫

P /∈K
fk(ω)dP =

∫

Gi∩K ̸=∅

(
1+ (−1)k(k2 − 1) cos(k(ϕ(G2) − ϕ(G1)))

)
dG1 ∧ dG2.

Nevertheless for the other quoted integral formulas it is not clear at all what density must
be chosen. We shall provide a general method to find the densities corresponding to integrals
of general functions of the visual angle.

1 Here one uses the hypothesis that the boundary of K is of class C1 which implies that the support function
p = p(ϕ) is C2. Then one has ds = (p + p′′)dϕ that integrating gives L =

∫ 2π
0 p dϕ.
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Fig. 1 Direction of a line

3.1 A change of variables

The classical proof of Crofton’s formula is based on the change of variables in the space of
ordered pairs of lines given by

(p1,ϕ1, p2,ϕ2) −→ (P,α1,α2)

where P is the intersection point of the two straight lines and αi ∈ [0,π] are the angles
which determine the directions of the lines. More precisely the angle α associated to a line
through a given point P is defined in the following way. Let u be a unitary vector orthogonal
to

−→
OP where O is the origin of coordinates, and such that the basis (u,

−→
OP) is positively

oriented. Let G be a line through P with unitary director vector v such that the basis (u, v)
is positively oriented (Fig. 1). Then α = α(G) is defined by cosα = u · v and 0 < α < π .
From now on we shall say that α is the direction of the line G. With these new coordinates,
proceeding as in [6], Section I.4.3, one has

dG1 ∧ dG2 = | sin(α2 − α1)| dα1 ∧ dα2 ∧ dP. (12)

We have used the fact that ϕ2 − ϕ1 = α2 − α1 + ϵπ where ϵ = ϵ(P,α1,α2) = 0,±1,
according to the position with respect to the origin of the lines G1,G2. As a consequence if
f is a π-periodic function we have

f (ϕ(G2) − ϕ(G1)) dG1 ∧ dG2 = f (α2 − α1)| sin(α2 − α1)|dα1 ∧ dα2 ∧ dP. (13)

3.2 Integrals of functions of pairs of lines meeting a convex set

For a point P /∈ K let α,β be the directions we have introduced corresponding to the
support lines of K through P , with 0 < α < π/2 and π/2 < β < π . Then ω = β − α is the
visual angle of K from P . This is the reason why we have slightly modified the definition of
the direction angle given by Santaló in [6] as the angle between the line through P and the
positive x axis, because with this definition one could have ω = β − α or ω = π − (β − α);
see Fig. 2. We shall provide now a general formula to calculate the integral of the right-hand
side of (13).

Proposition 3 Let f be a 2π-periodic continuous function on R, and H the C2 function on
[−π,π ] satisfying the conditions H ′′(x) = f (x) sin(x), x ∈ [−π,π], and H(0) = H ′(0) =
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Fig. 2 Visual angle of a convex set

0. Denote by αi the direction of the line Gi . Then
∫

Gi∩K ̸=∅
f (α2 − α1)| sin(α2 − α1)| dα1 ∧ dα2 ∧ dP

= (H(π) − H(−π))F +
∫

P /∈K
(H(ω) − H(−ω)) dP,

where ω = ω(P) is the visual angle of K from P.

Proof For a given point P in the plane there are angles α(P),β(P) such that the pairs of lines
G1,G2 through P that intersect the convex set K are those satisfying α(P) ≤ αi ≤ β(P),
where αi = α(Gi ). When P ∈ K we have α(P) = 0 and β(P) = π .

We need to integrate the function f (α2 − α1)| sin(α2 − α1)| over [α,β]2 with α = α(P)
and β = β(P). In order to perform this integral we divide [α,β]2 into the union of the regions
R1 = {(α1,α2) ∈ [α,β]2 : α2 ≥ α1} and R2 = {(α1,α2) ∈ [α,β]2 : α2 < α1}. Therefore

∫

[α,β]2
f (α2 − α1)| sin(α2 − α1)| dα1 dα2

=
∫

R1

f (α2 − α1) sin(α2 − α1) dα1 dα2 −
∫

R2

f (α2 − α1) sin(α2 − α1) dα1 dα2

=
∫ β

α

(∫ α2

α
f (α2 − α1) sin(α2 − α1)dα1

)
dα2

−
∫ β

α

(∫ α1

α
f (α2 − α1) sin(α2 − α1)dα2

)
dα1

=
∫ β

α

[
−H ′(α2 − α1)

]α2
α

dα2 −
∫ β

α

[
H ′(α2 − α1)

]α1
α

dα1

= [H(α2 − α)]βα − [H(α − α1)]βα = H(β − α) − H(α − β).

Hence
∫

Gi∩K ̸=∅
f (α2 − α1)| sin(α2 − α1)| dα1 ∧ dα2 ∧ dP

=
( ∫

P∈K
+

∫

P /∈K

)
(H(β − α) − H(α − β)) dP.
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Taking into account that the visual angle ω(P) is given by β(P) − α(P) the result follows.
⊓-

In the next result we assume the additional hypothesis that f is an even function.

Proposition 4 Let f be a 2π-periodic continuous function onR, with f (−x) = f (x), x ∈ R,
and let H be the C2 function on [0,π] satisfying the conditions H ′′(x) = f (x) sin(x),
x ∈ [0,π], and H(0) = H ′(0) = 0. Denote by αi the direction of the line Gi . Then

∫

Gi∩K ̸=∅
f (α2 − α1)| sin(α2 − α1)| dα1 ∧ dα2 ∧ dP = 2H(π)F + 2

∫

P /∈K
H(ω) dP,

where ω = ω(P) is the visual angle of K from P.

Proof Just proceed as in the above proof taking into account that
∫

[α,β]2
f (α2 − α1)| sin(α2 − α1)| dα1 dα2

= 2
∫ β

α

(∫ α2

α
f (α2 − α1) sin(α2 − α1)dα1

)
dα2.

⊓-
For the special case where f is a π -periodic function one has

Corollary 2 Let f be a π -periodic continuous function on R, and let H be the C2 function
on [−π,π ] satisfying the conditions H ′′(x) = f (x) · sin(x), x ∈ [−π,π], and H(0) =
H ′(0) = 0. Then

∫

Gi∩K ̸=∅
f (ϕ(G2) − ϕ(G1)) dG1 ∧ dG2

=
(
(H(π) − H(−π))F +

∫

P /∈K
(H(ω) − H(−ω)) dP

)
.

If moreover f (−x) = f (x) and H is C2 on [0,π] with H ′′(x) = f (x) · sin(x), x ∈ [0,π],
and H(0) = H ′(0) = 0, one has

∫

Gi∩K ̸=∅
f (ϕ(G2) − ϕ(G1)) dG1 ∧ dG2 = 2H(π)F + 2

∫

P /∈K
H(ω) dP. (14)

Proof When f is a π -periodic function we have equality (13) and the result is then a
consequence of Propositions 3 and 4. ⊓-
Remark that according to Proposition 1, equality (14) holds for densities that are invariant
under Euclidean motions.

Integral formulas as those given in (8) and (14) open the possibility to prove interesting
relations for quantities linked to convex sets. For instance when applied to the function
f (x) = cos(kx) they give Hurwitz’s formula (11) for k even (see Sect. 4).
For odd values of k the Corollary 2 does not apply because f (x) = cos(kx) is not a

π-periodic function. In this case we have f (x + π) = − f (x) and we say that f is an anti
π-periodic function. For this type of functions we can modify the above proofs to obtain
a new result that involves a decomposition of the visual angle ω into ω = ω1 + ω2 where
ω1 and ω2 are defined in the following way. Given a point P /∈ K we have considered in
Sect. 3.2 the directions 0 < α < π/2 < β < π of the support lines of K through P and the
visual angle ω = β − α. Let us take ω1 = π/2 − α and ω2 = β − π/2 (Fig. 3). Then we
have
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Fig. 3 Angles ω1 and ω2

Proposition 5 Let f be an antiπ-periodic continuous function onR such that f (x) = f (−x)
and let H be the C2 function on [0,π ] with H ′′(x) = f (x) sin(x), x ∈ [0,π], and H(0) =
H ′(0) = 0. Then

∫

Gi∩K ̸=∅
f (ϕ(G2) − ϕ(G1)) dG1 ∧ dG2

= 2(2H(π/2) − H(π))F + 2
∫

P /∈K
(2H(ω1)+ 2H(ω2) − H(ω)) dP. (15)

Proof In Sect. 3.1we have seen thatϕ2−ϕ1 = α2−α1+ϵπ where ϵ = ϵ(P,α1,α2) = 0,±1.
Then

∫

Gi∩K ̸=∅
f (ϕ(G2) − ϕ(G1)) dG1 ∧ dG2

=
∫

P∈R2

∫

[α(P),β(P)]2
(−1)ϵ f (α2 − α1)| sin(α2 − α1)| dα1 dα2 dP.

If P /∈ K we consider the regions

R1 = {(α1,α2) : α ≤ α1 < α2 ≤ π/2}
R2 = {(α1,α2) : π/2 ≤ α1 < α2 ≤ β}
R3 = {(α1,α2) : α ≤ α1 < π/2 < α2 ≤ β}.

In R1 and R2 we have ϵ = 1 and ϵ = −1 in region R3. Therefore, for P /∈ K
∫ β

α

∫ β

α
(−1)ϵ f (α2 − α1)| sin(α2 − α1)| dα1 dα2

= 2
(∫

R1

f (α2 − α1) sin(α2 − α1) dα1 dα2 +
∫

R2

f (α2 − α1) sin(α2 − α1) dα1 dα2

)

= −
∫

R3

f (α2 − α1) sin(α2 − α1) dα1 dα2
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The integrals overR1 andR2 are easily computed and their values are 2H(ω1) and 2H(ω2)

respectively. Let us compute the third integral.
∫

R3

f (α2 − α1) sin(α2 − α1) dα1 dα2

=
∫ β

π/2

∫ π/2

α
f (α2 − α1) sin(α2 − α1) dα1 dα2

= 2
∫ β

π/2

[
−H ′(α2 − α1)

]α1=π/2
α1=α

dα2 = 2
∫ β

π/2
(H ′(α2 − α) − H ′(α2 − π/2))dα2

= 2 [H(α2 − α) − H(α2 − π/2)]α2=β
α2=π/2 = 2 (H(ω) − H(β − π/2) − H(π/2 − α))

= 2 (H(ω) − H(ω2) − H(ω1)) .

Finally, for G1 ∩ G2 = P /∈ K we have
∫

P /∈K
f (ϕ(G2) − ϕ(G1)) dG1 ∧ dG2 = 2

∫

P /∈K
(2H(ω1)+ 2H(ω2) − H(ω)) dP. (16)

When P ∈ K we do the same computations but now α = 0,β = π and ω = β −α = π and
so ω1 = π/2 = ω2. Thus

∫

G1∩G2∈K
f (ϕ(G2) − ϕ(G1)) dG1 ∧ dG2 = 2(4H(π/2) − H(π))F . (17)

Joining (16) and (17) the Proposition follows. ⊓-

3.3 Interpretation in terms of densities of the formulas of Crofton, Masotti and
powers of sine

In this section we will give an interpretation of the integrals of the visual angle appearing in
the formulas of Crofton, Masotti and power of sine in terms of integrals of densities in the
space of pairs of lines. All these densities will be given by even π-periodic functions and
so they will be invariant under Euclidean motions. For Hurwitz’s formula this was done in
Proposition 2.

Crofton’s formula

Taking H(x) = x − sin(x) it follows that f = 1 in Corollary 2 and since H(π) = π using
(14) we get

Proposition 6 The following equality holds.
∫

Gi∩K ̸=∅
dG1 ∧ dG2 = 2πF + 2

∫

P /∈K
(ω − sinω) dP.

Masotti’s formula

Taking H(x) = x2 − sin2(x) one gets H ′′(x)/ sin(x) = 4 sin(x). So the function f (x) =
4| sin(x)|, x ∈ R, satisfies the hypothesis of Corollary 2 and Eq. (14) gives
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Proposition 7 The following equality holds

2
∫

Gi∩K ̸=∅
| sin(ϕ(G2) − ϕ(G1))|dG1 ∧ dG2 = π2F +

∫

P /∈K
(ω2 − sin2 ω) dP.

Powers of sine formula

Finally, in an analogous way we can interpret the integral of any power of the sine of the
visual angle. Effectively for H(x) = sinm(x) it follows that

H ′′(x)/ sin(x) = m(m − 1) sinm−3(x) − m2 sinm−1(x).

So taking f (x) = m(m − 1)| sinn−3(x)|−m2| sinm−1(x)| the hypotheses of Corollary 2 are
satisfied and by (14) we have

Proposition 8 The following equality holds

2
∫

P /∈K
sinm(ω) dP

=
∫

Gi∩K ̸=∅

(
m(m − 1)| sinm−3(ϕ(G2) − ϕ(G1))|

−m2| sinm−1(ϕ(G2) − ϕ(G1))|
)
dG1 ∧ dG2.

4 New proofs of classical formulas

Combining the results of the previous section with Theorem 1 new proofs of the formulas of
Masotti and the powers of sine can be obtained, in the spirit of the classical proof of Crofton’s
formula via Integral Geometry

To begin with we note that Theorem 1 implies the equality
∫
Gi∩K ̸=∅ dG1 ∧ dG2 = L2

which is also an immediate consequence of the well known Cauchy-Crofton’s formula (see
[6], Section I.4.3). Now this equality together with Proposition 6 gives Crofton’s formula

L2 = 2πF + 2
∫

P /∈K
(ω − sinω) dP. (18)

Masotti’s formula

A simple calculation shows that the Fourier expansion of the function | sin(t)| is

| sin(t)| = 2
π

+ 4
π

∑

n≥1

cos(2nt)
1 − 4n2

. (19)

So by Theorem 1,

∫

Gi∩K ̸=∅
| sin(ϕ(G2) − ϕ(G1))| dG1 ∧ dG2 =

2L2

π
+ 4π

∑

n≥1

c22n
1 − 4n2

,
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and using Proposition 7 one gets
∫

P /∈K
(ω2 − sin2 ω) dP = −π2F + 4L2

π
+ 8π

∑

n≥1

c22n
1 − 4n2

,

which is Masotti’s formula (5).

Another example

In the preceding sections we have interpreted integral formulas of some functions of the
visual angle in terms of densities in the space of pairs of lines. But one can also proceed in
the reverse sense, that is to start from a density and to look for the corresponding function of
the visual angle.

For instance the proof of Masotti’s formula leads to compute
∫
Gi∩K | sin(ϕ(G2) −

ϕ(G1))| dG1∧dG2. If we consider now the function | cos(ϕ(G2)−ϕ(G1))|, usingTheorem1
and that

| cos(t)| = 2
π

+ 4
π

∑

n≥1

(−1)n cos(2nt)
1 − 4n2

we get
∫

Gi∩K ̸=∅
| cos(ϕ(G2) − ϕ(G1))|dG1 ∧ dG2 =

2L2

π
+ 4π

∑

n≥1

(−1)nc22n
1 − 4n2

.

The function H appearing in Corollary 2 is in this case

H(ω) =
{ 1

4 (ω − sinω cosω) 0 ≤ ω ≤ π/2
1
4 (3ω − π + sinω cosω) π/2 ≤ ω ≤ π.

Hence, by (14) we have
∫

Gi∩K ̸=∅
| cos(ϕ(G2) − ϕ(G1))|dG1 ∧ dG2 = πF + 2

∫

P /∈K
H(ω)dP.

Powers of sine formula

In order to apply Theorem 1 to the right-hand side of the equality in Proposition 8 we
need to compute the Fourier coefficients of the function f (x) = m(m − 1)| sinm−3(x)| −
m2| sinm−1(x)|. It is clear that Ak = 0 for k odd. For k even we have

Ak = 1
π

∫ 2π

0
f (x) cos(kx)dx

= 1
π
[2m(m − 1)

∫ π

0
sinm−3 x cos(kx) dx − 2m2

∫ π

0
sinm−1 x cos(kx) dx]

= 1
π
[2m(m − 1)Im−3,k − 2m2 Im−1,k] (20)

where

Im,k =
∫ π

0
sinm(x) cos(kx) dx = (−1)k/2

2−mm!π
Γ (1+ m−k

2 )Γ (1+ m+k
2 )

,
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(see, for instance, [3], p. 372). Substituting this expression in (20) it follows

Ak =
m!

2m−2(m − 2)
(−1)

k
2+1(k2 − 1)

Γ (m+1+k
2 )Γ (m+1−k

2 )
.

Finally using Theorem 1 we get

∫

P /∈K
sinm(ω) dP = m!

2m(m − 2)Γ (m−1
2 )2

L2

+ m!π2

2m−1(m − 2)

∑

k≥2,even

(−1)
k
2+1(k2 − 1)

Γ (m+1+k
2 )Γ (m+1−k

2 )
c2k .

Note that for m odd the index k in the sum runs only from 2 to m − 1.
This formula, which was first obtained by a different method in [2], provides an interpre-

tation of the coefficients of c2k as the Fourier coefficients of the above function f .

Crofton-Hurwitz’s integral

In the above two previous sections we have strongly used equality (14) of Corollary 2, which
depends on the fact that the function f isπ -periodic, a fact that is crucial in order that equality
(13) holds.

Consider now the function f (x) = cos(kx) with k > 1. This function satisfies the
hypothesis of Corollary 2 for k even and the hypothesis of Proposition 5 for k odd. We have
that

Hk(x) =
1

2(k2 − 1)
( fk(x)+ 2(sin x − x)) , (21)

with fk the Hurwitz’s function given in (3), satisfies the equation H ′′
k (x) = cos(kx) · sin x,

x ∈ [0,π], and Hk(0) = H ′
k(0) = 0. Therefore, for k even, equalities (8) and (14) give

π2c2k =
∫

Gi∩K ̸=∅
cos(k(ϕ(G2) − ϕ(G1))) dG1 ∧ dG2 = − πF

k2 − 1
+ 2

∫

P /∈K
Hk(ω) dP,

and using Crofton’s formula (18) one gets a new proof of Hurwitz’s formula (11) for k even.
When k is odd Eq. (15) gives

∫

Gi∩K ̸=∅
cos(k(ϕ(G2) − ϕ(G1))) dG1 ∧ dG2

= − 2πF
k2 − 1

+ 2
∫

P /∈K
(2Hk(ω1)+ 2Hk(ω2) − Hk(ω)) dP.

Using the equality (8) one deduces that

∫

P /∈K
Hk(ω)dP = −π2c2k

2
− 2πF

k2 − 1
+

∫

P /∈K
(Hk(ω1)+ Hk(ω2)) dP.

Now by (21) and Crofton’s formula we obtain
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∫

P /∈K
fk(ω)dP = L2−π2(k2−1)c2k−2πF+2(k2−1)

∫

P /∈K
(Hk(ω1)+Hk(ω2))dP. (22)

Since we do not know the value of
∫
P /∈K (Hk(ω1) + Hk(ω2))dP we are not able to prove

Hurwitz’s formula in the case of k odd. But from (11) we get the following result.

Proposition 9 Let K be a compact convex set of area F. Then

(k2 − 1)
∫

P /∈K
(Hk(ω1)+ Hk(ω2)dP = πF (23)

for each k ≥ 3 odd, where Hk is given in (21).

Notice that the above equation is equivalent to

∫

P /∈K
( fk(ω1)+ 2(sinω1 − ω1)+ fk(ω2)+ 2(sinω2 − ω2)) dP = 2πF . (24)

The function Hk is the sum, except for a constant, of Hurwitz’s function and Crofton’s
function and so are the terms in the above integrand. The integral of the sum of Crofton’s
and Hurwitz’s functions of the visual angle is

∫

P /∈K
( fk(ω)+ 2(sinω − ω))dP = 2πF + (−1)kπ2(k2 − 1)c2k , k ≥ 2.

The surprising fact is that, for k odd, decomposing the visual angle ω into the two parts
ω = ω1 + ω2 and adding the corresponding integrals one gets (24) in which the right-hand
side does not depend on k.

In concluding we make the following remark. Theorem 1 states that the integral∫
Gi∩K ̸=∅ f (ϕ(G2) − ϕ(G1)) dG1 ∧ dG2 depends only on the integrals

∫

Gi∩K ̸=∅
cos(k(ϕ(G2) − ϕ(G1))) dG1 ∧ dG2.

So, by the results of Sect. 3.1 we are led to calculate the functions Hk(x) such that H ′′
k (x) =

cos(kx) sin(x) with Hk(0) = H ′
k(0) = 0. These functions appear to be the sum of the

functions of Hurwitz and Crofton given in (21), that is

Hk(x) =
1

2(k2 − 1)
( fk(x)+ 2(sin x − x)) , k ≥ 2,

and H1(x) = (1/8)(2x − sin(2x)).
As a consequence when f is a π-periodic function, according to Corollary 2, the integral∫

Gi∩K ̸=∅ f (ϕ(G2)−ϕ(G1)) dG1∧dG2 is a linear combination of integrals extended outside
K of the functions of the visual angle Hk(ω). Likewisewhen the function f is antiπ-periodic,
according to Proposition 5, the corresponding integral is a linear combination of integrals
extended outside K of the functions Hk(ω), Hk(ω1) and Hk(ω2).

Summarizing, it appears that the functions of Crofton and Hurwitz are some kind of basis
for the integral of any π-periodic or anti π-periodic function with respect to the density
dG1 ∧ dG2 over the set of pairs of lines meeting a given compact convex set.
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