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Integral geometry of pairs of planes
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Abstract. We deal with integrals of invariant measures of pairs of planes
in the Euclidean space E® as considered by Hug and Schneider. In this
paper, we express some of these integrals in terms of functions of the
visual angle of a convex set. As a consequence of our results, we evaluate
the deficit in a Crofton-type inequality due to Blaschke.
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1. Introduction. The main goal of this paper is to study integrals of invari-
ant measures with respect to Euclidean motions in the Euclidean space E?,
extended to the set of pairs of planes meeting a compact convex set. To carry
out this objective, we express these integrals in terms of functions of the dihe-
dral visual angle of the convex set from a line and integrate them with respect
to an invariant measure in the space of lines.

The first known formula involving the visual angle of a convex set in the
Euclidean plane E? is Crofton’s formula given in [2]. Other results in this
direction were obtained by Hurwitz [8], Masotti [10] and others, in which the
use of the Fourier series is the main tool. Recently, the authors [3,4] have dealt
with a general type of integral formulas, involving the visual angle, from the
point of view of integral geometry.

When trying to generalize these results to higher dimensions, the role played
by the Fourier series in the case of the plane has to be replaced by the use
of spherical harmonics. In this sense, Theorem 4.1 plays an important role.
After stating and proving this result in dimension 3, we realized that Hug
and Schneider [7] proved a more general result in any dimension. In fact, the
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present paper can be considered in some sense as a complement to [7], the
novelty being the introduction of the dihedral visual angle.

In Proposition 3.1, we give a characterization of invariant measures in the
space of pairs of planes. These will be the kind of measures considered along
the paper.

In Section 4, using Hug—Schneider’s theorem [7, p. 349], we give an expres-
sion for the integral of the sine of the dihedral visual angle of pairs of planes
meeting a given compact convex set K in terms of geometrical properties of
K, see formula (4.2); we also characterize the compact convex sets of constant
width in terms of invariant measures given by Legendre polynomials by means
of the following proposition that completes a result in [7].

Proposition 4.3. Let K be a compact convex set of constant width W and let

f:[-1,1] — R be an even bounded measurable function. Then
/ f((u1,u)) dEy dEy = NomW?, (1.1)
E;NK#)

where u; are normal unit vectors to the planes E; and \g = 27 f_ll f(t)dt.
Moreover, if the above equality holds when f(t) = Py,(t) where Py, is any
Legendre polynomial of degree 2n, n # 0, then K is of constant width.

In Section 5, we assign to any invariant measure on the space of pairs of
planes an appropriate function of the dihedral visual angle of a given convex
set. The integral of this function with respect to the measure on the space of
lines gives the integral of the above measure extended to those planes meeting
the convex set. This result is given in the following theorem.

Theorem 5.2. Let K be a compact conver set and let f : [-1,1] — R be an
even continuous function. Let H be the C* function on [—m, 7| satisfying

H"(z) = f(cos(z))sin®(z), —w<z<m H(0)=H0)=D0.
Then

/ F((ur, uz)) dEy dEy = mH(n)F + 2 / Hw)dG,  (1.2)
E:NK#0 GNK =0

where u; are normal unit vectors to the planes E;, w = w(Q) is the visual angle
from the line G, and F' is the area of the boundary of K.

Then we relate this result to Blaschke’s work [1]. If K is a convex set
of mean curvature M and area of its boundary F, it is known the following
Crofton—Herglotz formula

3
/ (w2 — sinZw) dG = 2M? — _7r2F’

GNK=0

where w = w(@) is the dihedral visual angle of K from the line G. This equality
reveals the significance of the function of the visual angle w? — sin? w. One can
ask what role the function w — sinw plays; this function, interpreting w as
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the visual angle in the plane, is significant thanks to Crofton’s formula. In
dimension 3, the inequality

/ (w —sinw) dG > E(M2 — 2 F)
GNK=0

was established in [1]. Here we provide a simple formulation of the deficit in
this inequality by means of the following result.

Theorem 5.3. Let K be a compact convex set with support function p, area of
its boundary F', and mean curvature M. Let L, be the length of the boundary
of the projection of K on span{u}* and let w = w(G) be the visual angle of K
from the line G. Then

. =T n+1/2)2
@) [ Didu=nd+any (n+ 1/ )2,
n=1

I'(n+1)2
u€eS?
.. . T —~I'(n+1/2)?
@ [ (@-sinwde =0 - mp) 47 Y S )P,
GNK =0 n=l

with mo,(p) the projection of the support function p of K on the vector space
of spherical harmonics of degree 2n.

Moreover, equality holds both in (5.5) and (5.6) if and only if K is of con-
stant width.

In Section 6, we give a formulation of Theorem 5.2 in terms of the Fourier
series of the function of the visual angle assigned to an invariant measure. As
a consequence, one obtains that the integral of any invariant measure in the
space of pairs of planes extended to those meeting a compact convex set K
is an infinite linear combination of integrals of even powers of the sine of the
visual angle of K. From this, we exhibit in Proposition 6.3 a simple family of
polynomial functions that are in some sense a basis for the integrals considered
in Theorem 4.1. In fact, every invariant integral can be written as an infinite
linear combination of integrals with respect to the invariant measures given by
those polynomial functions.

2. Preliminaries.

2.1. Support function. The support function of a compact convex set K in the
Euclidean space E? is defined as px (u) = sup{{z,u) : z € K} for u belonging
to the unit sphere S2. If the origin O of E? is an interior point of K, then
the number pg(u) is the distance from the origin to the support plane of
K in the direction given by u. The width w of K in a direction u € S? is
w(u) = px(u) + pr (—u).

From now on, we will write p(u) = px(u) and will assume that p(u) is of
class C?; in this case, we shall say that the boundary of K, K, is of class C?.

2.2. Spherical harmonics. Let us recall that a spherical harmonic of order n
on the unit sphere S? is the restriction to S? of an harmonic homogeneous
polynomial of degree n. It is known that every continuous function on S?
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can be uniformly approximated by finite sums of spherical harmonics (see for
instance [6]).

More precisely, the function p(u) can be written in terms of spherical har-
monics as

p(uw) = Y mn(p)(w), (2.1)

where m,(p) is the projection of the support function p on the vector space of
spherical harmonics of degree n. An orthogonal basis of this space is given in
terms of the longitude € and the colatitude ¢ in S? by

{cos(j0) (sin )7 PP (cos ), sin(j0)(sin @) PP (cosp): 0 < j <n}

where P,(,J) denotes the jth derivative of the nth Legendre polynomial P, (cf.
6)).

It can be seen that mo(p) = W/2 = M /4w where W = 1/4r [, w(u) du is
the mean width of K, and M is the mean curvature of K. Moreover, m(p) =
(s(K),-) where s(K) denotes the Steiner point of K (cf. [6, p. 182]). It is clear
that m(p) is invariant under Euclidean motions and that m;(p) is not. It is
known that 7, (p) is invariant under translations for every n # 1 (cf. [12, p. 5]).

One can easily check that K has constant width if and only if m,(p) = 0
for n # 0 even.

2.3. Measures in the space of planes. The space of affine planes Az 5 in E? is a
homogeneous space of the group of isometries of E®. It can also be considered
as a line bundle m : A3z 2—Gr(3,2) where Gr(3,2) is the Grassmannian of
planes through the origin in E® and w(FE) is the plane parallel to E through
the origin. The fiber on E, € Gr(3,2) is identified with E;. Each plane E €
A3z 2 is then uniquely determined by the pair (w(E), E N 7(E)‘). Every pair
(Ey, p) € Gr(3,2) x R? determines an element Ey + p € A3 5.

We shall also consider the space of affine lines A3 ; in E?; it is a vector bun-
dle 7w : A3 1 — Gr(3,1) where Gr(3,1) is the Grassmannian of lines through
the origin and every affine line G C E® can be identified with (7(G), GNm(G)™).

Both the isometry group of E® and the isotropy group of a fixed plane E €
A3 o are unimodular groups; so the Haar measure of the group of isometries is
projected into an isometry-invariant measure m on Ag .

For a measurable set B C A3 2, we consider

mB) = [ xw@ie= [ | [xsE+pp|a

A3z o Gr(3,2) "3

where x g is the characteristic function of B, dp denotes the ordinary Lebesgue

measure on Ej, and dv a normalized isometry-invariant measure on Gr(3,2)
such that v(Gr(3,2)) = 27.
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_ More generauy) if f : A3,2 — R and f : Gl'(3, 2) x R3 — R are related by
f(Ey,p) = f(Eo + p), we have

/f(E)dE = / /f(Eo,p)dp dv.
As 2

Gr(3,2) oy

Notice that the only measures on A3 > invariant under isometries are those of
the form f(E)dFE with f a constant function.

In a similar way, one has a normalized isometry-invariant measure on A3 ;
that will be denoted by dG. For more details, see [9].

3. Invariant measures in the space of ordered pairs of planes. We consider
measures in the space A3 X Ajz 2 of pairs of planes in E? of the form m ji=
f (Ey, E3)dE1dE,;. We want to study which functions f give an isometry-
invariant measure, that is, a measure m; satisfying m(B) = mj(gB) for
every Euclidean motion g. For instance, it is known that for a given compact
convex set K, one has fEnK;é(a dE = M. So when f(El,Eg) = 1, we have

/ dE\dEy = M? = 4m*W?, (3.1)
KNE;#0

where M and W are the mean curvature and the mean width of K, respectively.

Proposition 3.1. The measure given by f(El,Ez)dEl dE; in Azo X Az o 1is
invariant under isometries of E3 if and only if f(E1, Es) = f({u1,us)) where
n(E;)*t = span{u;}, i = 1,2, and f : [-1,1] — R is an even measurable
function.

Proof. Suppose that f (Eh, E3)dE, dE; is invariant. Using the representation
of an element E € A3 5 as a pair (7(E), p) where p = ENm(E)*, we can write

f(Ela E2) - F(W(El))pl;‘”(E2)’p2)
for some F': (Gr(3,2) x E®)? — R. For any translation 7, it is

f(El + T, E2 + T) - F(W(El)>pl + <T>u1>ul; W(Ez),pz + <T> u2)u2)
= F(n(E1),p1;7(E2), p2),

the last equality holds due to the invariance of f (Eh, E3)dE, dE;. Now, as it
can be easily checked, for each pair p! € 7(E;)*,i = 1,2, there is a translation
7 such that p! = p; + (7, u;)u;, and so F' is independent of p; and ps and we can
write f(E1, Es) = H(w(E4), 7(E>)) for some function H on Gr(3,2) x Gr(3, 2).

Given t € [—1,1], consider (V,W) € Gr(3,2)? such that V = span{v}~,
W = span{w}*, and t = (v, w) with v,w unit vectors. The function f(t) =
H(V,W) is well defined since for any rotation 6, we have that H(0V,0W) =
H(V,W) and it is even. So it is proved that there exists a measurable and even
function f :[—1, 1] — R such that

f(E1, Es) = f((u1,uz)).

If f is as above, it is clear that f (Eh, E3)dE dE; gives rise to an isometry-
invariant measure. ]



584 J. CUFI ET AL. Arch. Math.

4. Integral of functions of pairs of planes meeting a convex set. Let K be a
compact convex set in the Euclidean space E*. According to equality (3.1), it
is a natural question to evaluate

/ f(E1, Es)dE dE>,
ENK#D

where f (E1, Ey)dE,dE, is an isometry-invariant measure on A3 2 X A3 2. This
can be done in terms of the coefficients of the expansion of the support function
of K in spherical harmonics and the coefficients of the Legendre series of the
measurable even function f : [-1,1] — R such that f(E;, Es) = f({uy,us))
(see Proposition 3.1).

The following result is a special case, with a different notation, of [7, The-
orem 5|, whose proof is based on the Funk-Hecke theorem [6, p. 98].

Theorem 4.1. Let K be a compact convex set with support function p given in
terms of spherical harmonics by (2.1). Let f (Eh, E3)dE, dE5 be an isometry-
invariant measure on Az X Azo and f : [-1,1] — R an even measurable
function such that f(Ey, Es) = f((u1,us)) where w(E;)* = span{u;}, i = 1,2.
Then

. A >
/ f(Er, E3)dE, dEy = ﬁM2 + ) Aanllm2n(p)1?, (4.1)
E:NK#0 n=1

where Ao, = 2w f_ll f(t)Pa,(t) dt with Py, the Legendre polynomial of degree
2n.

Ezample 1. If f(t) = V1 — 2, then f({u,us)) = sin(f12) where 0 < 015 <=
is the angle between the planes E, and E, (that is, cos 012 = +(u;,us) where
7(E;)* = span{u;}, i = 1,2). Applying Theorem 4.1 with the corresponding
coefficients

1
F'n+ 3HT'(n-4H 7
A2'n=271"/.]0(t)-P2n(t)=_ ( 2)( 2)5) AO:WZ) A2n-|—1=0
21

n!(n+ 1)!

(cf. [5, 7.132]), one gets
/ sin(012)dE, dEs — T2 T (Z L(n+ 3)I'(n—3) ||772n(P)||2) .

4 2 n!(n+1)!
E;NK#0

n=1

(4.2)

In the particular case that f is a Legendre polynomial, one obtains from
Theorem 4.1 the following

Corollary 4.2. Let K be a compact convex set with support function p given in
terms of spherical harmonics by (2.1). Then if Py, is the Legendre polynomial
of even degree 2n, one has

/ Pgn(<u1, ’U,2>) dEl dE2 -
E;:NK#

47
dn + 1

||7r2n(p)”2-
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47
dn + 1

To end this section, we analyze equality (4.1) when K is a convex set of
constant width. As said, this means that m,(p) = 0 for n # 0 even.

Proof. In this case, A,,, = 0 for m # 2n and Ay, = ]

Proposition 4.3. Let K be a compact convex set of constant width W and let

f:[-1,1] — R be an even bounded measurable function. Then
[ £, u) By dBy = nerw?, (4.3)
EiNK#)

where u; are normal unit vectors to the planes E; and Ay = 27 f_ll f(t)dt.

Moreover, if the above equality holds when f(t) = P,,(t) where Py, is any
Legendre polynomial of degree 2n, n # 0, then K is of constant width.

Proof. Since K is of constant width, by (4.1), one gets

/ f((ur,uz)) dE; dEy = ﬁw

4
ENK#D

and remembering that M = 27W, the equality follows. If equality (4.3) holds
for f(t) = P»,(t) with n # 0, and since the corresponding Ay vanishes, one
has

/ Pgn(<u1, u2)) dEl dE2 = 0.
E;NK#)

Therefore, by Corollary 4.2, it follows that |72, (p)|| = 0 for every nonzero n
and K is of constant width. [

5. Integrals of invariant measures in terms of the visual angle. The aim of
this section is to write the integral of an isometry-invariant measure over the
pairs of planes meeting a convex set K, given in Theorem 4.1, as an integral
of an appropriate function of the visual angle.

Let us make precise what we mean by the angle of a plane about a straight
line G and the visual angle of a convex set K from a line GG not meeting K.

Definition 5.1.

1. Given a straight line G, let (g; e1, e2) be a fixed affine orthonormal frame
in G+ with ¢ € G. For each plane E through G, let u be the unit normal
vector to E pointing from the origin to it. Then the angle a associated
to F is the one given by u = cos(a)e; + sin(a)es.

2. The visual angle of a convex set K from a line G not meeting K is the
angle w = w(G), 0 < w < 7, between the half-planes E;, Fs through G
tangents to K.

If a; are the angles associated to E;, i = 1,2, then
cos(m — w) = cos(ay — ay) = (uy,us)

where u;,us are the normal unit vectors to F,, Fs pointing from the origin,
assuming the origin is inside of K.
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The measure dE, dE> in the space Aj 2 X Aj o of pairs of planes in E? can
be written according to Santalé (cf. [11], Section I1.12.6) as

dE, dE; = sin®(ay — a1) da; dos dG. (5.1)
Then we can prove the following

Theorem 5.2. Let K be a compact convex set and let f : [-1,1] — R be an
even continuous function. Let H be the C? function on [—m, | satisfying

H"(z) = f(cos(z))sin®(z), —w<z<m H(0)=H0)=D0.
Then

/ F((ur, uz)) dEy dEy = mH(n)F + 2 / Hw)dG,  (5.2)
E;NK#0 GNK=0

where u; are normal unit vectors to the planes E;, w = w(Q) is the visual angle
from the line G, and F' is the area of the boundary of K.

Proof. Let G = g+ span{u} with u a unit director vector such that KNG = 0.
Let E;,7 = 1,2, be the supporting planes of K through G. Take now an
affine orthonormal frame {q;e;, ez, u} in E* such that E; = ¢ + span{e;,u}.
Every plane E through G can be written as F = ¢ + span{v,,u} where v, =
cos ey + sin ey with a € [0, 7) and the planes E intersecting K correspond
to angles a € [0,w(G)|. Then, using (5.1), one has

/ f({u1,u2)) dE; dEs

E;NK#0
- / //H"(a2 — aq)day dagy dG
GNK=0 0 0
+ / //H”(a2 — 1) day das dG.
GNK#® 0 0

Evaluating the inner integrals and taking into account that [, . 40 dG = S F,
it follows that

/ f((“l,UZ)) dF, dFE,

E;NK#0
1
= om(H(x) + H(~m))F + / (H(w) + H(~w)) dG.
GNK=0
Since H(0) = H'(0) = 0 and H"(z) = H"(—z), it is easy to see that H(z) =
H(—=z) and the result follows. O

Ezample 2. Let f(t) = v/1 — t? be the function considered in Example 1. In
this case, the corresponding function H such that

H"(z) = f(cos(z)) sin?(z) = | sin®(z)|
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is given by
2 : L. .
H(z) = 3 (|lz| — |sinz|) — §|sm‘3x|.

Now, since w € [0, 7], Theorem 5.2 and equality (4.2) lead to

/ (w — sinw — %sm w) dG

=,r(3fl"g _gﬂp_gzlr("* ) =3), zn(p>||>

n!(n + 1)!

5.1. Crofton’s formula in the space. In Blaschke’s work [1, p. 75|, the following
Crofton—Herglotz formula is given

T F
/ (w? — sin’ w) dG = 2M? — 5 (5.3)
GNK=0

We can easily recover (5.3) from Theorem 5.2. In fact, considering f(t) = 1,
one gets H(z) = (z? — sin®z)/4 and equality (5.2) gives

M? = / dE, dE> = —7r3F+ - / (w? — sin? w) dG
ENK#) GnK 0

Blaschke’s formula reveals the significance of the function of the visual angle

w? — sin® w. One can ask what role the function w — sinw plays; this function,

interpreting w as the visual angle in the plane, is significant thanks to Crofton’s
formula [ P x(w —sinw)dP = L?/2 — «F, where K is a compact convex set

in the plane with area F' and length of its boundary L (see [11]).
In [1, p. 85|, Blaschke shows that

1 w2
/ (w — sinw)dG = 2 / L2du — ?F, (5.4)

GNK=0 ueS?

where L, is the length of the boundary of the projection of K on span{u}=.
It can be easily seen that fue g2 Lydu = 2w M and from this equality, ap-
plying Schwarz’s inequality, one gets
/ Lidu > nM?. (5.5)
ueS?

Introducing (5.5) into (5.4), one obtains

/ (w — sinw)dG > ;—r(M2 —2nF). (5.6)
GNK=0

As a consequence of Theorem 5.2, we can now evaluate the deficit in both
inequalities (5.5) and (5.6).
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Theorem 5.3. Let K be a compact convex set with support function p, area of
its boundary F', and mean curvature M. Let L, be the length of the boundary
of the projection of K on span{u}* and let w = w(G) be the visual angle of K
from the line G. Then

. =T n+1/2 2
() / Ldu=nM?+4n " S V200 )2,
n=1

['(n+1)2
u€eS?
. s T a2 = F(n+1/2)2 2
@) [ (@-sne)de = )+ 13 g @)
GNK =0 "

with mo,(p) the projection of the support function p of K on the vector space
of spherical harmonics of degree 2n.

Moreover, equality holds both in (5.5) and (5.6) if and only if K is of con-
stant width.

Proof. We consider f(t) = 1/4/1 — t2. For this function, the corresponding H
in Theorem 5.2 is H(z) = |z|—| sinz|. Applying equality (5.2) and Theorem 4.1
with the corresponding A,,,’s given by

Aon = 27 / f(t)P2n (t)dt =27 PI(‘?n++1{)2:22

(cf. [5, 7.226]), item (ii) follows. Equality (i) is a consequence of (ii) and (5.4).
The statement about equality in (5.5) and (5.6) is a consequence of the fact
that K is of constant width if and only if 75, (p) = 0 for n # 0. O

6. A formulation with the Fourier series. In this section, we give an alternative
formulation of Theorem 5.2 in terms of the Fourier coefficients of the function
H"(z). Since f is even, one has that H”(z) = f(cos(z))sin*(z) is an even
m-periodic function. Let

H"(z) = 1a,o + Z azy, cos(2nz) (6.1)

2
n>1

be the Fourier expansion of H"”(z). Integrating twice and taking into account
that H(0) = H'(0) = 0 one obtains

Qg a2n
H(z) = Zasz + m(l — cos(2nz)). (6.2)
n>1

Using this expression of the function H, Theorem 5.2 can be written as

Proposition 6.1. Let K be a compact convezx set and let f : [—1,1] — R be
an even continuous function. Let H be the C? function on [—m,w] satisfying

H"(z) = f(cos(z))sin®*(z), —-m<z<m, H()=H(0)=0. (6.3)
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If H(x) is given by (6.2), then

[ st ) as, ar,

E;:NK#0
N Bp ! / aow? + E aﬂ(l — cos(2nw)) | dG, (6.4)
T4 2 T L2 L

GNK=0

where u; are normal vectors to the planes E;, the visual angle from the line G
1s w, and F' denotes the area of the boundary of K.

The right hand side of (6.4) can be written as a linear combination of
integrals of even powers of sinw. For this purpose, we will use Blaschke’s
formula (5.3) and the known equality

T
CoS 2nx = E Qlp,m SIN

m=0

" - (-1)™n2?"(n+m —1)!

TOWIh G = T i — m)!

. (6.5)

which follows easily from the equality cos(2nz) = (—1)"T%s, (sin(x)) where T,
is Chebyshev’s polynomial of degree 2n. We can state

Proposition 6.2. Let K be a compact convezx set and let f : [-1,1] — R be
an even continuous function. Let H be the C? function on [—m,w] satisfying

H"(z) = f(cos(z))sin®(z), —-w<z<w, H(0)=H'(0)=0.
If H(z) is given by (6.2), then

/ f((ula U2>) dEl dE2
E;NK#)

1 o0 o0

_ 2 1 a2n . 2m
= agM —22 Z 3 Cn,m / sin“™wdG | , (6.6)

m=2 \n=m GnK=0

where u; are normal vectors to the planes E;, the visual angle from the line G

is w, I' denotes the area of the boundary of K, the coefficients oy, ., are given
by (6.5), and the coefficients asy, by (6.1).

Proof. Using (6.5), the right hand side of (6.4) is written as

3 00 00 n
aogm 1 a9 . as .
F+ = apw? — E —;an,l sin? w — E —; E Qn.m SIN*™ W ) G
4 2
" n=2 " ma=2

GNK =0 n=1
aoms 1 =\ Aoy —
. - 2 a2 . wan < 2m
== F + 5 / (ao(w sin” w) Z: 2 z_: Oty m SID w) dG
GNK =0 n=2 m=2
where we have used that a, o = 1,a,1 = —2n? and ag = —2 2:;1 a9, which

is a consequence of the fact that H”(0) = 0. Using Blaschke’s formula (5.3)
and reordering the double sum, the result follows. [
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6.1. A basis for the integrals of invariant measures. As a consequence of
Proposition 6.2, we can exhibit a simple family of polynomial functions that
are in some sense a basis for the integrals in Theorem 4.1. Consider the poly-
momials

hm(t) = m(2mt? — 1)(1 —t*)™ 2, m > 1. (6.7)
Then for H"(z) = hy,(cos(z)) sin®(z), one easily checks that H(w) = 3 sin®" w

and Theorem 5.2 applied to h,,(t) gives

/ b (41, u2)) dEy dEy = / sin®™ w dG,
E;:NK#D GNK=0(

which together with Equation (6.6) leads to the following

Proposition 6.3. Under the same hypotheses and notation as in Proposition 6.2,

one has
/ (s, u3)) dEy dE,
EiNK#0
1 o0 o0 .
= agM? — 5 Z Z: %an,m / hon({u1,u2)) dEy dEs | |
m=2 \ n=m E:NK#0

where the polynomials h,, are given in (6.7).

So every invariant integral can be written as an infinite linear combination
of the integrals of the invariant measures given by the polynomials h,,.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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