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0. Introduction.

This paper deals with the problem of the realization of a given Lie algebra
as transverse algebra to a Lie foliation on a compact manifold.

Lie foliations have been studied by several authors (cf. [4], [5], [6], [12],

[17] $)$ . The importance of this study was increased by the fact that they arise
naturally in Molino’s classification of Riemannian foliations (cf. [14]).

TO each Lie foliation are associated two Lie algebras, the Lie algebra $\mathcal{G}$ of
the Lie group on which the foliation is modeled and the structural Lie algebra
$\mathcal{H}$ . The latter algebra is the Lie algebra of the Lie foliation $\mathscr{F}$ restricted to
the closure of any one of its leaves. In particular, it is a subalgebra of $\mathcal{G}$ . We
remark that $\mathcal{H}$ is canonically associated to $\mathscr{F}$ , but $\mathcal{G}$ is not.

Thus two interesting problems are naturally posed: the realization Problem
and the change problem.

The realization problem is to know which pair of Lie algebras $(\mathcal{G}, \mathcal{H})$ , with
$\mathcal{H}$ a subalgebra of $\mathcal{G}$ , can arise as transverse and structural Lie algebras,
respectively, of a Lie foliation $\mathscr{F}$ on a compact manifold $M$.

This problem is closely related to the following Haefliger’s problem (see

[9] $)$ : given a subgroup $\Gamma$ of a Lie group $G$ , is there a Lie $G$ -foliation on a
compact manifold $M$ with holonomy group $\Gamma$ ?

The present formulation of the realization problem in terms of Lie algebras
was first considered in [10], and [7] made a very detailed study of Lie flows
of codimension 3. But a complete classification was not obtained because of the
following open questions:

i) Let $\mathcal{G}_{7}^{k}$ be the family of Lie algebras for which there is a basis $\{e_{1}, e_{2}, e_{3}\}$

such that

$[e_{1}, e_{2}]=0$ , $[e_{1}, e_{3}]=e_{1}$ , $[e_{2}, e_{3}]=ke_{2}$ , $k\in[-1,0)\cup(0,1]$ .

For which $k$ is there a Lie $\mathcal{G}_{7}^{k}$-flow on a compact manifold with basic
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dimension 1 ?
ii) Let $\mathcal{G}_{8}^{h}$ be the family of Lie algebras for which there is a basis $\{e_{1}, e_{2}, e_{3}\}$

such that

$[e_{1}, e_{2}]=0$ , $[e_{1}, e_{3}]=e_{2}$ , $[e_{2}, e_{3}]=-e_{1}+he_{2}$ , $h\in(0,2)$ .

For which $h$ is there a Lie $\mathcal{G}_{8}^{h}$-flow on a compact manifold with basic
dimension 1 or basic dimension 2 ?

We solve these problems here, for basic dimension 1, and give a complete
characterization in terms of $k$ and $h$ for a given Lie algebra of the families $\mathcal{G}_{7}^{k}$

and $\mathcal{G}_{8}^{h}$ to be realizable in the above conditions.
The change problem is to know if a given Lie $\mathcal{G}$ -foliation can be at the same

time a Lie $\mathcal{G}’$-foliation, where $\mathcal{G}$ and $\mathcal{G}’$ are two non isomorphic Lie algebras.
An example of this situation, given by P. Molino, can be found in [7]. As far
as we know this problem has not been treated for non-trivial basic dimension.
The only a priori restriction is that the structural Lie algebra $\mathcal{H}$ must be a Lie
subalgebra of both $\mathcal{G}$ and $\mathcal{G}’$ .

AS a first step in the study of these two problems we consider the case of
codimension 3 (the cases of codimension 1 and 2 are trivial). We expect that
this study becomes useful in order to attack the general case.

We begin this paper with some results on abelian and nilpotent Lie foliations,
that we shall use later. We first prove:

PROPOSITION 2.2. Every Lie abelian foliation of codimension 3 without dense
leaves on a compact manifold $M$ is also a Lie $\mathcal{G}_{8}^{h=0}$-foliation.

We also give an example to show that the converse is not true. But the
converse is true for Lie flows of basic dimension 1 or 2:

COROLLARY 2.4. Let $\mathscr{F}$ be a Lie $\mathcal{G}_{8}^{h=0}- flow$ on a compact manifold $M$ with
basic dimenston 1, then $\mathscr{F}$ is also a Lie abelian flow.

COROLLARY 2.7. Let $\mathscr{F}$ be a Lie $\mathcal{G}_{8}^{h=0}- flow$ on a compact mamfold $M$ with
basic dimension 2, then $\mathscr{F}$ is also a Lie abelian flow.

This corollary enables us to construct a pair of Lie groups $(G, \Gamma)$ , with $\Gamma$

a finitely generated subgroup of $G$ , $\overline{\Gamma}$ uniform, such that there are no Lie
G-flows on a compact manifold with holonomy group $\Gamma$. But $\Gamma$ is realizable as
the holonomy group of a Lie $G$ -foliation of a compact manifold.

We also prove (Proposition 2.9) that if a given Lie foliation is transversely

modeled on two nilpotent Lie algebras, then these algebras are isomorphic.

In \S 4 we study the realization problem and we obtain:
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THEOREM 4.1. There is a compact manifold $M$ endowed with a Lie $\mathcal{G}_{8}^{h}- flow$

$\mathscr{F},$ $h\neq 0$, of basic dimensim 1 if and only if

$h= \frac{2\ln\lambda}{\sqrt{}\overline{4\omega^{2}+\ln^{2}\lambda}}$

where $\lambda$ and $\omega$ are two real numbers, with $\lambda>1$ and $\omega\neq k\pi(k\in Z)$ , such that $\lambda$ ,
$(\cos\omega\pm i\sin\omega)/\sqrt{\lambda}$ are the roots of a monic polynomial of degree 3 with integer

coefficients.
THEOREM 4.4. There is a compact manifold $M$ endowed with a Lie $\mathcal{G}_{7}^{k}- flow$

$\mathscr{F}$ of basic dimension 1 if and only if

$k= \frac{\ln b}{\ln a}$ and $k\not\in Q$

where a, $b,$ $1/ab$ are the positive real roots of a monic polynomial of degree 3
with integer coefficients.

We devote \S 5 to the change problem. We obtain a quite surprising result,

essentially that each Lie flow of codimension 3 on a compact manifold with
basic dimension 1 is transversely modeled on one, two or countable many Lie
algebras. Concretely, we prove (see \S 1 for the description of the algebras $\mathcal{G}_{i}$):

THEOREM 5.4. Let $\mathscr{F}$ be a Lie flow of codimenszon 3 on a compact manifold
$M$ with basic dimension 1. Then only three cases are possible:

i) $\mathscr{F}$ is transversely modeled exactly on one Lie algebra. This occurs if and
only if the transverse Lie algebra is $\mathcal{G}_{6}$ or $\mathcal{G}_{7}^{k}$ .

ii) $\mathscr{F}$ is transversely modeled exactly on two Lie algebras. This occurs if and
only if these two transverse Lie algebras are $\mathcal{G}_{1}$ and $\mathcal{G}_{8}^{h=0}$ .

iii) $\mathscr{F}$ is transversely modeled on countable many Lie algebras. This occurs
if and only if $\mathscr{F}$ is transversely modeled on $\mathcal{G}_{8}^{h\neq 0}$ .
In this case

a) There exist two real numbers $\lambda>1$ and $\omega$ such that

$h= \frac{2\ln\lambda}{\sqrt{4\omega^{2}+\ln^{2}\lambda}}$ .

b) $\mathscr{F}$ is also transversely modeled on $\mathcal{G}_{8}^{h’}$ for each

$h’=$ (V $k\in Z$).

c) If $\mathscr{F}$ is also transversely modeled on $\mathcal{G}$ then $\mathcal{G}=\mathcal{G}_{8}^{h’}$ for some of the
above $h’$ .
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1. Preliminaries.

Let $\mathscr{F}$ be a $C^{\infty}$-foliation of codimension $n$ on a compact orientable manifold
$M$ given by an integrable subbundle $L\subset TM$. We denote by $T\mathscr{F}$ the Lie algebra
of the vector fields which are tangent to the foliation, $i.e.$ , the sections of $L$ .
A vector field $Y\in X(M)$ is said to be $\mathscr{F}$ -foliated (or simply foliated) if and only
if [X, $Y$] $\in T\mathscr{F}$ for all $X\in T\mathscr{F}$ . The Lie algebra of foliated vector fields is
denoted by $\mathcal{L}(M, \mathscr{F})$ . Clearly, $T\mathscr{F}$ is an ideal of $\mathcal{L}(\mathscr{M}, \mathscr{F})$ and the elements of
$X(M/\mathscr{F})=\mathcal{L}(M, \mathscr{F})/T\mathscr{F}$ are called transverse (or basic) vector fields.

If there is a family $\{X_{1}, \cdots, X_{n}\}$ of foliated vector fields on $M$ such that the
corresponding family $\{\overline{X}_{1}, \cdots,\overline{X}_{n}\}$ of basic vector fields has rank $n$ everywhere,
the foliation is called transversely parallelizable and $\{\overline{X}_{1}, \cdots , \overline{X}_{n}\}$ is a transverse
parallelism. If the vector subspace $\mathcal{G}$ of $X(M/\mathscr{F})$ generated by $\{\overline{X}_{1}, \cdots,\overline{X}_{n}\}$ is
a Lie subalgebra, the foliation is called Lie $\mathcal{G}$ -foliation and we say that $\mathscr{F}$ is
transversely modeled on the Lie algebra $\mathcal{G}$ .

We shall use the following structure theorems:

THEOREM 1.1 ([14]). Let $\mathscr{F}$ be a transversely parallelizable foliation on a
comPact manifold $M$, of codimenston $n$ . Then

a) There is a Lie algebra $\mathcal{H}$ of dimenston $g\leqq n$ .
b) There is a locally trimal fibration $\pi:Marrow W$ with compact fibre $F$ and

$\dim W=n-g=m$ .

c) There is a dense Lie $\mathcal{H}$-foliation on $F$ such that:

i) The fibres of $\pi$ are the closures of the leaves of $\mathscr{F}$ .
ii) The foliation induced by $\mathscr{F}$ on each fibre of $\pi:Marrow W$ is isomorphic

to the $\mathcal{H}$-foliatim on $F$.
$\mathcal{H}$ is called the structural Lie algebra of $(M, \mathscr{F}),$ $\pi$ the basic fibration and

$W$ the basic manifold. The foliation given by the fibres of $\pi$ is denoted by 9.
Note that the basic dimension ( $i.e.$ , the dimension of $W$) is

$\dim W=co\dim\overline{\mathscr{F}}=co\dim \mathscr{F}-\dim \mathcal{H}$ .

THEOREM 1.2 ([6]). Let $G$ be the connected and simply connected Lie group
with the Lie algebra $\mathcal{G}$ . $\mathscr{F}$ is a Lie $\mathcal{G}$-foliation on a compact manifold $M$ if and
only if there exists a homomorphism $\Phi$ : $\pi_{1}(M)arrow G$ and a covering $p:\tilde{M}arrow M$ such
that

i) There is a locally tnvial fibration $D:\tilde{M}arrow G$ equivariant under the action
of $\pi_{1}(M)$ , where $Aut(p)\cong{\rm Im}\Phi$ .

ii) The fibres of $D$ are the leaves of the lifted foliation $\overline{\mathscr{F}}=p^{*}\mathscr{F}$ of $\mathscr{F}$ .
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Condition i) means that if $g_{\gamma}=\Phi([\gamma])$ and 7 is the corresponding element to
$[\gamma]$ in $Aut(p)$ , then

$D(\overline{\gamma}(x))=g_{\gamma}\cdot D(x)$
$\forall x\in\tilde{M}$ .

The subgroup $\Gamma={\rm Im}\Phi$ is called the holonomy group of the foliation.
For a Lie $\mathcal{G}$ -foliation the structural Lie algebra $\mathcal{H}$ is always a subalgebra

of $\mathcal{G}$ .
A geometrical characterization of the fact that $\mathcal{H}$ is an ideal of $\mathcal{G}$ is the

following

LEMMA 1.3 ([10]). Let $\mathscr{F}$ be a Lie $\mathcal{G}$-foliation of codimenszon $n$ on a compact

manifold M. The structural algebra $\mathcal{H}$ is an ideal of $\mathcal{G}$ if and only if there exists
a Lie $\mathcal{G}$ parallelism $\{\overline{Y}_{1}, \cdots,\overline{Y}_{n}\}$ such that the foliated vector fields $Y_{1},$

$\cdots,$
$Y_{t}$

$(t=\dim \mathcal{H})$ are tangent to 9 at each point.

The basic cohomology $H^{*}(M/\mathscr{F})$ of a foliation $\mathscr{F}$ on a manifold $M$ is the
cohomology of the complex of basic forms, $i.e.$ , the subcomplex $\Omega^{*}(M/\mathscr{F})\subset\Omega(M)$

of the De Rham complex given by the forms $\alpha$ satisfying $i_{X}\alpha=0$ and $L_{X}\alpha=0$

for all vector fields $X\in T\mathscr{F}$ .
For a Riemannian foliation it is well known (cf. [3]) that $H^{n}(M/\mathscr{F})=0$ or

$R$ , where $n$ is the codimension of the foliation. We have the following result:

THEOREM 1.4 ([11]). Let $\mathscr{F}$ be a Lie $\mathcal{G}$ -foliation of codimenszon $n$ on a
compact manifold $M$.

i) If $H^{n}(M/\mathscr{F})=R$ then $H^{n}(\mathcal{G})=R$ and $H^{p}(\mathcal{G})\subset H^{p}(M/\mathscr{F})$ . In this case $\mathscr{F}$

will be called unimodular.
ii) If $H^{n}(\mathcal{G})=R$ and the structural Lie algebra is an ideal of $\mathcal{G}$ then

$H^{n}(M/\mathscr{F})-R$ .

Given a basis $\{e_{1}, \cdots, e_{n}\}$ of $\mathcal{G}$ with structure constants $\{c_{ij}^{k}\}$ , we say that
a family of foliated vector fields $Y_{1}$ , -, $Y_{n}\in \mathcal{L}(M, \mathscr{F})$ is a foliated realization
of the basis $\{e_{1}, \cdots, e_{n}\}$ if the Lie brackets of these vector fields are

$[Y_{i}, Y_{j}]= \sum_{k=1}^{n}c_{ij}^{k}Y_{k}$ $mod T\mathscr{F}$ .

We shall use the following classification of the 3 dimensional Lie algebras:

. $\mathcal{G}_{1}$ (Abelian): $[e_{1}, e_{2}]=[e_{1}, e_{3}]=[e_{2}, e_{3}]=0$ .

. $\mathcal{G}_{2}$ (Heisenberg): $[e_{1}, e_{2}]=[e_{1}, e_{3}]=0$ , $[e_{2}e_{3}]=e_{1}$ .

. $\mathcal{G}_{3}(so(3))$ : $[e_{1}, e_{2}]=e_{3z}$ $[e_{2}, e_{3}]=e_{1}$ , $[e_{3}, e_{1}]=e_{8}$ .

. $\mathcal{G}_{4}(sl(2))$ : $[e_{1}, e_{2}]=e_{3}$ , $[e_{2}, e_{3}]=-e_{1}$ , $[e_{3}, e_{1}]=e_{2}$ .
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. $\mathcal{G}_{5}$ (Affine): $[e_{1}, e_{2}]=e_{1}$ , $[e_{1}, es]=[e_{2}, es]=0$ .

. $\mathcal{G}_{6}$ : $[e_{1}, e_{2}]=0$ , $[e_{1}, e_{3}]=e_{1}$ , $[e_{a}, e_{3}]=e_{1}+e_{2}$ .

. The family $\mathcal{G}_{7}^{k}$ : $[e_{1}, e_{2}]=0$ , $[e_{1}, e_{3}]=e_{1}$ , $[e_{\mathfrak{g}}, es]=ke_{2}$ , $k\neq 0$ .

The algebras $\mathcal{G}_{7}^{k}$ and $\mathcal{G}_{7}^{k’}$ are isomorphic if and only if $k=k’$ or $k=1/k’$ . From
now on we consider that the family is parametrized by $k\in[-1,0)\cup(0,1]$ .

. The family $\mathcal{G}_{8}^{h}$ : $[e_{1}, e_{2}]=0$ , $[e_{1}, e_{3}]=e_{2}$ , $[e_{2}, e_{3}]=-e_{1}+he_{2}$ , $h^{2}<4$ .

The algebras $\mathcal{G}_{8}^{h}$ and $\mathcal{G}_{8}^{h’}$ are isomorphic if and only if $h=h’$ or $h=-h’$ . From
now on we consider that the family is parametrized by $h\in[0,2)$ . Notice that
for $h^{2}\geqq 4$ we obtain an algebra isomorphic to $\mathcal{G}_{6}$ .

The Lie algebras $\mathcal{G}_{1},$ $\mathcal{G}_{2},$ $\mathcal{G}_{3},$ $\mathcal{G}_{4}$ are unimodular. The Lie algebras $\mathcal{G}_{6},$ $\mathcal{G}_{6}$ are
not unimodular. The only unimodular Lie algebra of the family $\mathcal{G}_{7}$ is $\mathcal{G}_{7}^{k=-1}$ and
the only unimodular Lie algebra of the family $\mathcal{G}_{8}$ is $\mathcal{G}_{8}^{h\Leftarrow 0}$ .

In \S 3 we shall need an explicit description of the connected simply connected
Lie groups corresponding to $\mathcal{G}_{5},$

$\mathcal{G}_{7}^{k},$ $\mathcal{G}_{8}^{h}$ . These groups are given by

$G_{5}=\{(\begin{array}{lll}e^{t} 0 x0 1 y0 0 1\end{array})$ ; $x,$ $y,$ $t\in R\}$

$G_{7}^{k}=\{(\begin{array}{lll}e^{-t} 0 x0 e^{-kt} y0 0 1\end{array});x,$ $y,$ $t\in R\}$

$G_{8}^{h}=\{(\begin{array}{lll}c(i)cos(\varphi+t) -c(t)sint xc(t)sint c(t)cos(\varphi-t) y0 0 1\end{array});x,$ $y,$ $t\in R\}$

where $c(t)=2e^{\beta t}/\alpha,$ $\alpha=\sqrt{4-h^{2}}$ and $\beta=\tan\varphi=h/\alpha$ .
These groups can also be thought as $R^{3}=R^{2}\cross R$ with the product

$(p, t)\cdot(p’, t’)=(p+e^{-\Lambda t}p’, t+t’)$

where $\Lambda$ depends on the algebra:

For $\mathcal{G}_{5}$ , $\Lambda=(\begin{array}{ll}-1 00 0\end{array})$ , $e^{-\Lambda\iota}=(\begin{array}{ll}e^{t} 00 1\end{array})$ .

For $\mathcal{G}_{7}^{k}$, $\Lambda=(\begin{array}{ll}1 00 k\end{array})$ , $e^{-\Lambda t}=(\begin{array}{ll}e^{-t} 00 e^{-kt}\end{array})$ .

For $\mathcal{G}_{8}^{h}$ , $\Lambda=(\begin{array}{ll}0 1-1 h\end{array})$ , $e^{-\Lambda c}=c(t)(\begin{array}{ll}cos(\varphi+t) -sintsint cos(\varphi-t)\end{array})$ .



Transverse structure of Lie foliations 775

The above basis of these Lie algebras are given by:

for $\mathcal{G}_{5}$ $\{$

$e_{1}= e_{\partial}^{t}\frac{\partial}{x}$

$e_{2}=\partial^{\frac{\partial}{y}}$

$e_{3}=- \frac{\partial}{\partial t}$

for $\mathcal{G}_{7}^{k}$
$\{$

$e_{1}= e^{-t}\frac{\partial}{\partial x}$

$e_{2}= e^{-kt}\frac{\partial}{\partial y}$

$e_{3}= \frac{\partial}{\partial t}$

for $\mathcal{G}_{8}^{h}$ $\{$

$e_{1}= \frac{2}{\alpha}e^{-\beta t}(\cos(\varphi+t)\frac{\partial}{\partial x}+\sin t\frac{\partial}{\partial y})$

$e_{2}= \frac{2}{\alpha}e^{-\beta t}(-\sin t\frac{\partial}{\partial x}+\cos(\varphi-t)\frac{\partial}{\partial y})$

$e_{3}=- \frac{\alpha}{2}\frac{\partial}{\partial t}$

2. Abelian and nilpotent Lie foliations.

Many of the problems about Lie foliations are, in fact, problems on Lie
groups. For instance, as a consequence of the following proposition, every Lie
abelian foliation without dense leaves is also a Lie $\mathcal{G}_{8}^{h=0}$-foliation:

PROPOSITION 2.1. Let $H$ be a proper closed uniform subgroup of the abelian
group $(R^{3}, +)$ . Then there is a product on $R^{3}$ such that the Lie group $(R^{3}, )$

is isomorphic to $G_{8}^{h=0}$ and

$h+g=hg$ $\forall h\in H,$ $\forall g\in R^{3}$ .

PROOF. The proper closed uniform subgroups of $(R^{3}, +)$ are isomorphic to

$R^{2}\cross Z$ , $R\cross Z^{2}$ or $Z^{3}$ .

Thus there are vectors $v_{1},$ $\cdots,$ $v_{a}$ , $w_{1},$ $\cdots,$ $w_{b}$ linearly independent in $R^{3}$ with
$a+b=3$ and $a\neq 3$ , such tbat $H$ is exactly the set of vectors that can be written
in the form

$x_{1}v_{1}+:\cdots:+x_{a}v_{a}+y_{1}w_{1}+$ $\cdot$ .. $+y_{b}w_{b}$
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where $x_{1},$ $\cdots,$
$x_{a}\in R$ and $y_{1},$ $\cdots,$

$y_{b}\in Z$ . With respect to this new basis we
define

$(x, y, z)(x’, y’, z’)=((x, y)+R_{2\pi z}(x’, y’),$ $z+z’)$

$\forall(x, y, z),$ $(x’, y’, z’)\in R^{3}$ , where $R_{2\pi z}$ is the rotation of angle $2\pi z$ .
Then $(R^{3}, )$ is clearly isomorphic to $G_{8}^{h=0}$ .
Moreover, since $z\in Z$ for each $(x, y, z)\in H$, we have

$(x, y, z)(x’, y’, z’)=(x, y, z)+(x’, y’, z’)$

$\forall(x, y, z)\in H,$ $\forall(x’, y’, z’)\in R^{3}$ . $\blacksquare$

PROPOSITION 2.2. Every no dense Lie abelian foliation of codimension 3 on
a compact manifold $M$ is also a Lie $\mathcal{G}_{8}^{h=0}$-foliation.

PROOF. Since $\mathscr{F}$ is a Lie abelian foliation we have, by Theorem 1.2, a
homomorphism $\Phi$ : $\pi_{1}(M)arrow(R^{3}, +)$ and a locally trivial fibration $D:\tilde{M}arrow R^{3}$

equivariant under the action of $\pi_{1}(M)$ . Put $\Gamma={\rm Im}\Phi$ .
Then $H=\overline{\Gamma}$ is a proper closed uniform subgroup of the abelian group $(R^{3}, +)$ .
Proposition 2.1 implies that $\Phi$ also defines a homomorphism $\pi_{1}(M)arrow(R^{3}, )$

with respect to which $D$ is again equivariant.
Thus $\mathscr{F}$ is a Lie $\mathcal{G}_{8}^{h=0}$-foliation. $\blacksquare$

This proposition is a generalization of the following example given by P.
Molino (cf. [7]) in which the change of the parallelism was explicitely given:

Let us consider the flow given by the fibres of the trivial bundle

$T^{1}\cross T^{3}arrow T^{3}$ .

Let $\theta^{0},$ $\theta^{1},$ $\theta^{2},$
$\theta^{3}$ denote the canonical coordinates in $T^{1}\cross T^{3}$ . The parallelism

given by $\partial/\partial\theta^{1},$ $\partial/\partial\theta^{2},$ $\partial/\partial\theta^{3}$ shows that the fibres of this bundle are the leaves
of a Lie abelian foliation. At the same time, the parallelism given by the
vector fields

$e_{1}= \cos\theta^{1}\frac{\partial}{\partial\theta^{2}}+\sin\theta^{1}\frac{\partial}{\partial\theta^{3}}$

$e_{2}=- \sin\theta^{1}\frac{\partial}{\partial\theta^{2}}+\cos\theta^{1}\frac{\partial}{\partial\theta^{3}}$

$e_{3}=- \frac{\partial}{\partial\theta^{1}}$

is a Lie parallelism with $[e_{1}, e_{2}]=0,$ $[e_{1}, e_{3}]=e_{2},$ $[e_{2}, e_{3}]=-e_{1}$ , that is, the flow
is also transversely modeled on $\mathcal{G}_{8}^{h=0}$ .

The converse of Proposition 2.2 is not true in general. That is, there are
Lie $\mathcal{G}_{8}^{h=0}$-foliations which are not abelian foliations.
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For instance, take the uniform discrete subgroup

$\Gamma=\{(m, n, \pi t)|m, n, t\in Z\}\subset G_{8}^{h=0}$ .

Let $M$ be the compact manifold $\Gamma\backslash G_{8}^{h=0}$ . Then the trivial fibration $M\cross S^{1}$

$arrow M$ is a Lie $\mathcal{G}_{8}^{h=0}$-flow with basic dimension 3 that can not be abelian. In fact
any abelian parallelism of the above flow would induce three linearly independent
vector fields on $M$ which pairwise commute, $i.e.,$ $M$ would be a 3-dimensional
torus $T^{3}$ . But this is impossible because the fundamental group of $M$ is the
non abelian group $\Gamma$ .

The converse of Proposition 2.2 is, however, true for Lie flows of basic
dimension 1 and for Lie foliations of basic dimension 2.

For basic dimension 1 it is a corollary of the following:

PROPOSITION 2.3. Let $\mathcal{G}$ be a unimodular Lie algebra of dimenston $n$ . If $\mathscr{F}$

is a Lie $\mathcal{G}- flow$ on a compact manifold with basic dimension 1, then $\mathscr{F}$ is also a
Lie abelian flow.

PROOF. It is well known tbat the structural Lie algebra $\mathcal{H}$ of a Lie flow
is abelian (cf. [2]). In this case it is a subalgebra of dimension $n-1$ of a
unimodular Lie algebra $\mathcal{G}$ of dimension $n$ . Then $\mathcal{H}$ is an ideal of $\mathcal{G}$ . By Lemma
1.3, one can find a $\mathcal{G}$ -parallelism $Y_{1},$

$\cdots,$
$Y_{n}$ such that $Y_{i}\in T\overline{\mathscr{F}}$ for $i=1,$ $\cdots,$ $n-1$

and, hence, $Y_{n}\not\in T\overline{\mathscr{F}}$ at any point.
In this situation $\mathscr{F}$ is a unimodular Lie flow, that is $H^{n}(M/\mathscr{F})\neq 0$ (cf. [11]).

By [15] there exist foliated vector fields $X_{1},$
$\cdots,$

$X_{n-1}$ such that $[X_{i}, Y]\in T\mathscr{F}$

for all foliated veetor field $Y(i.e.$ , the commuting sheaf has a global trivializa-
tion). Thus, $X_{1},$

$\cdots,$
$X_{n-1},$ $Y_{n}$ is a Lie abelian parallelism. $\blacksquare$

COROLLARY 2.4. Let $\mathscr{F}$ be a Lie $\mathcal{G}_{8}^{h=0}- flow$ on a compact manifold $M$ with
basic dimension 1, then $\mathscr{F}$ is also a Lie abelian flow.

In the case of basic dimension 2, we have

PROPOSITION 2.5. Let $\mathscr{F}$ be a Lie $\mathcal{G}_{8}^{h\Rightarrow 0}$-foliation on a compact manifold $M$

with bastc dimenston 2. If the basic manifold is orientable, then $\mathscr{F}$ is also a Lie
abelian foliation.

The proof is based on the following lemma:

LEMMA 2.6. Let $\mathscr{F}$ be a Lie $\mathcal{G}_{8}^{h=0}$-foliation on a compact manifold $M$ with
basic dimenston 2 and let $Y_{1},$ $Y_{2},$ $Y_{3}$ be the Lie $\mathcal{G}8h^{=0}$-parallelism corresponding to
the basis $\{e_{1}, e_{2}, e_{3}\}$ given in \S 1. Then the foliated vector field $Y_{3}$ is not tangent
to 9 at any point and there exists a global foliated vector field $Y$ tangent to 9
which commutes (modulo $T\mathscr{F}$ ) with every foliated vector field ($i.e.$ , the commuting

sheaf is globally tnmal).
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PROOF. For each point $x\in M$ there exists a foliated vector field $Z_{U}$ in a
neighbourhood $U$ of $x$ , such that $Z_{U}$ is tangent to 9, no tangent to $\mathscr{F}$ , and
commutes (modulo $T\mathscr{F}$ ) with every global foliated vector field. Here we are
considering a local section of the commuting sheaf (cf. [8], [14]). Moreover if
$Z_{V}$ is another vector field in a neighbourhood $V$ of $x$ with the same property
then $Z_{V}=\alpha Z_{U}$ (modulo $T\mathscr{F}$ ) where $\alpha$ is a locally constant function.

We can assume that the vector field $Z_{U}$ can be written as

$Z_{U}=a_{U}Y_{1}+b_{U}Y_{2}+c_{U}Y_{3}$

where $a_{U},$ $b_{U},$ $c_{U}$ are basic functions on $U$ .
Since $[Y_{i}, Z_{U}]\in T\mathscr{F}$ we obtain the equations:

$Y_{1}(a_{U})=0$ $Y_{2}(a_{U})=c_{U}$ $Y_{3}(a_{U})=-b_{U}$

$Y_{1}(b_{U})=-c_{U}$ $Y_{2}(b_{U})=0$ $Y_{3}(b_{U})=a_{U}$

$Y_{1}(c_{U})=0$ $Y_{2}(c_{U})=0$ $Y_{3}(c_{U})=0$ .

We deduce from these equations that $c_{U}$ is constant on $U$ .
Since $Z_{V}=\alpha Z_{U}$ (modulo $T\mathscr{F}$ ), with $\alpha$ a locally constant function, if $c_{U}=0$

then $c_{V}=0$ . Then there are only two possibilities:

i) for any point $y\in M$ and any neighbourhood $W$ of $y$ we have $c_{W}=0$ or
ii) for any point $y\in M$ and any neighbourhood $W$ of $y$ we have $c_{W}\neq 0$ .

Let us prove that ii) is not possible:
In this case $Y_{1},$ $Y_{2}$ are not tangent to 9 at any point. We take a riemannian

metric and we define $Y_{i}^{N}$ as the normal component to 9 of $Y_{i}$ . Then $Y_{3}^{N}$ is a
combination of $Y_{1}^{N}$ and $Y_{2}^{N}$ at each point, $i.e.$ , there are basic functions $f,$ $g$

such that
$(Y_{3}^{N})_{p}=f(p)(Y_{1}^{N})_{p}+g(p)(Y_{2}^{N})_{p}$ $\forall P\in M$ .

We obtain
$Y_{2}^{N}=[Y_{1}, Y_{3}]^{N}=Y_{1}(f)Y_{1}^{N}+Y_{1}(g)Y_{2}^{N}$

$-Y_{1}^{N}=[Y_{2}, Y_{3}]^{N}=Y_{2}(f)Y_{1}^{N}+Y_{2}(g)Y_{2}^{N}$

and, hence, $Y_{1}(g)$ is the constant 1 and $Y_{2}(f)$ is the constant $-1$ . This is not
possible because $f$ and $g$ are continuous functions on a compact manifold.

Thus $c_{W}=0$ in each neighbourhood $W$ and this means that $Y_{3}$ is not tangent
to 9 at any point. This proves the first part of the lemma.

NOW we consider $\alpha=i_{Y_{3}}\pi^{*}\omega$ , where $\pi$ is the basic projection and $\omega$ is a
volume form on the basic manifold. We take the global basic functions

$A=i_{y_{2}}\alpha$ , $B=-i_{y_{1}}\alpha$ .
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AS $A^{2}+B^{2}\neq 0$ , we can consider the foliated vector field $Y=aY_{1}+bY_{2}$ where

$a= \frac{A}{\sqrt{A^{2}+B^{2}}}$ , $b= \frac{B}{\sqrt{2}}$ .

Using that $\alpha(Y)=0$ it is easy to see that $Y$ is tangent to 9 everywhere and
not tangent to $\mathscr{F}$ at any point.

It remains to prove that $Y$ commutes (modulo $T\mathscr{F}$ ) with every global foliated
vector field. Since $Y\in T\overline{\mathscr{F}}$ it suffices to prove that $[Y_{i}, Y]\in T\mathscr{F}$ .

$From_{i}^{v}the$ fact that $[Y_{i}, Y]\in T\overline{\mathscr{F}}$ we have $[Y_{i}, Y]=\lambda_{i}Y+T\mathscr{F}$ and we obtain
the equations

$Y_{1}(a)=\lambda_{1}$ a $Y_{2}(a)=\lambda_{2}$ a $Y_{3}(a)+b=\lambda_{3}a$

$Y_{1}(b)=\lambda_{1}b$ $Y_{2}(b)=\lambda_{2}b$ $Y_{3}(b)-a=\lambda_{3}b$ .

From these equations we deduce

$\lambda_{i}=\lambda_{i}(a^{2}+b^{2})=aY_{i}(a)+bY_{i}(b)=\frac{1}{2}Y_{i}(a^{2}+b^{2})=\frac{1}{2}Y_{i}(1)=0$ .
Thus we obtain the result. $\blacksquare$

PROOF OF PROPOSITION 2.5. By the above lemma there exists a foliated
vector field $Y=aY_{1}+bY_{2}$ tangent to 9 at any point with $a,$

$b$ basic functions
such that $a^{2}+b^{2}=l$ and $Y$ commutes (modulo $T\mathscr{F}$ ) with every global foliated
vector field.

Let us see that $X_{1}=Y,$ $X_{2}=-bY_{1}+aY_{2},$ $X_{3}=Y_{3}$ give a Lie abelian parallel-
ism. Clearly these vector fields are transversely independent. Using now

$Y_{3}(a)+b=\lambda_{8}a=0$ , $Y_{3}(b)-a=\lambda_{3}b=0$ and $[\overline{Y},\overline{Y}_{i}]=\lambda_{i}\overline{Y}=0$

we have

$[\overline{X}_{1},\overline{X}_{2}]=[\overline{Y}, -b\overline{Y}_{1}+a\overline{Y}_{2}]=-b[\overline{Y},\overline{Y}_{1}]+a[\overline{Y},\overline{Y}_{2}]=(-b\lambda_{1}+a\lambda_{2})\overline{Y}=0$

$[\overline{X}_{2},\overline{X}_{3}]=[-b\overline{Y}_{1}+a\overline{Y}_{2},\overline{Y}_{3}]=-(b+Y_{3}(a))\overline{Y}_{2}+(Y_{3}(b)-a)\overline{Y}_{1}=0$

$[\overline{X}_{1},\overline{X}_{3}]=[\overline{Y},\overline{Y}_{3}]=0$ .

This ends the proof. $\blacksquare$

COROLLARY 2.7. Let $\mathscr{F}$ be a Lie $\mathcal{G}_{8}^{h=0}- flow$ on a compact manifold $M$ with
basic dimension 2, then $\mathscr{F}$ is also a Lie abelian flow.

PROOF. It follows from the above demonstration that it suffices to show
that the commuting sheaf admits a global trivialization. In the case of flows
this condition is true if and only if the flow is isometric (cf. [15]).
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If the basic manifold $W$ is not orientable we take a double covering $D$ over
the orientation covering of $W$ . Here, by the above proposition, the commuting
sheaf is trivial and, hence, the flow on $D$ is isometric. This implies that the
initial flow is isometric. $\blacksquare$

Next corollary is closely related to the Haefliger’s problem.

COROLLARY 2.8. There is a pair of Lie grouPs $(G, \Gamma)$ , with $\Gamma$ a finitely
generated subgroup of $G,\overline{\Gamma}$ uniform, such that there are no Lie G-flows on a
comPact manifold with holonomy group $\Gamma$ .

PROOF. Let $G$ be the Lie group $G_{8}^{h\subset 0}$ and let $\Gamma$ be the Lie subgroup

$\Gamma=\langle(1,0,0), (\xi, 0,0), (0,1,0), (0,0, \pi)\rangle$ $\xi\not\in Q$ .

We have $\overline{\Gamma}^{d}\cong^{iff}R\cross Z^{2}$ because tbe elements of 1“ are of the form $(a, m, n\pi)$ with
$a\in R$ and $m,$ $n\in Z$ . Moreover $\overline{\Gamma}$ is a uniform not abelian subgroup of $G_{8}^{h=0}$ .

Assume that there is a Lie $\mathcal{G}_{8}^{h=0}$-flow $\mathscr{F}$ on a compact manifold with
holonomy group $\Gamma$ (this implies that $\mathscr{F}$ has basic dimension 2). Then, by

Corollary 2.7, $\mathscr{F}$ would be also a Lie abelian flow and then $\Gamma$ would be abelian,

which is not possible. $\blacksquare$

Note that the pair $(G, \Gamma)$ is realizable, i.e., tbere is a Lie $G$ -foliation of a
compact manifold with the holonomy group $\Gamma$ . The reason is because $G_{8}^{h=0}$ is
solvable and $\Gamma$ is polycyclic (cf. [13]).

In order to generalize this kind of results to Lie foliations of arbitrary
codimension we consider the case of Lie foliations with nilpotent transverse Lie
algebra. In this category the transverse Lie algebra is canonically associated to
the foliation:

PROPOSITION 2.9. Let $\mathscr{F}$ be a Lie foliation on a compact manifold transversely
modeled on two nilpotent Lie algebras $\mathcal{G}$ and $\mathcal{H}$ . Then $\mathcal{G}$ and $\mathcal{H}$ are isomorphic.

PROOF. Again, this is a consequence of a result on Lie groups.
In fact, if $p:\tilde{M}arrow M$ is the universal covering of $M$ and we fix points

$x_{0}\in M$ and $\tilde{x}_{0}\in\tilde{M}$ with $p(\tilde{x}_{0})=x_{0}$ , the developing diagrams are given by the
canonical projection

$D:\tilde{M}arrow\tilde{M}/p^{-1}(\mathscr{F})$

and the holonomy morphisms

$\Phi_{1}$ : $\pi_{1}(M, x_{0})arrow G$ , $\Phi_{2}$ : $\pi_{1}(M, x_{0})arrow H$

where $G$ and $H$ are the connected simply connected groups corresponding to $\mathcal{G}$

and $\mathcal{H}$ respectively. Note that as differentiable manifolds we have:
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$G\cong\tilde{M}/p^{-1}(\mathscr{F})\cong H$ .

Since
$D(\tilde{\gamma}(\tilde{x}))=\Phi_{1}([\gamma])\cdot D(\tilde{x})=\Phi_{2}([\gamma])*D(\tilde{x})$

the holonomy groups $\Gamma_{1}=\Phi_{1}(\pi_{1}(M, x_{0}))$ and $\Gamma_{2}=\Phi_{2}(\pi_{1}(M, x_{0}))$ are related by

$\Gamma_{1}=(r_{H})_{e}\Gamma_{2}$

where $(r_{H})_{e}$ is the right translation in $H$ witb respect to the unit element $e$ of
$G$ . In fact, $(r_{H})_{e}$ restricted to $\Gamma_{2}$ is a morphism of Lie groups. This implies
that the closures $\overline{\Gamma}_{1}$ and $\overline{\Gamma}_{2}$ are isomorphic.

AS they are also uniform subgroups of the nilpotent Lie groups $G$ and $H$

respectively, these two groups are isomorphic as Lie groups (cf. [16]). $\blacksquare$

The foliation by points of the quotient of the Heisenberg group $7l/\Gamma$ (cf.

[7] $)$ is a good example of this situation.

3. Lie flows of basic dimension one.

Let $\mathscr{F}$ be a Lie $\mathcal{G}- flow$ of codimension 3 and basic dimension 1 on a compact

manifold $M$. There is a matrix $A\in SL(3, Z)$ with an eigenvalue $\lambda>0$ and an
eigenvector $v$ , whose components are rationally independent, such that $M$ is
diffeomorphic to the manifold $T^{3}\cross_{A}R$ (usually called $T_{A}^{4}$) described as the
quotient of $T^{3}\cross R$ by the equivalence relation $(p, t)\sim(Ap, t+1)$ . The flow $\mathscr{F}$

is the induced by the linear flow $\mathscr{F}_{v}$ (cf. [1], [2]).

The basic fibration corresponding to this Lie flow is a $T^{3}$ bundle over $T^{1}$ :

$T^{3}arrow Marrow T^{1}$ .

The homotopy sequence of the basic fibration gives the exact sequence of
fundamental groups

$0arrow Z^{3}arrow\pi_{1}(M)arrow Zarrow 0$

from which we have that $\pi_{1}(M)\cong Z^{3}\chi_{A}Z,$ $i.e.,$ $\pi_{1}(M)$ is $Z^{3}\cross Z$ with the product

$(x, t)(y, s)=(x+A^{t}y, t+s)$ .

This implies, in particular, a certain kind of uniqueness for the matrix $A$ :
If $A$ and $B$ are two elements of $SL(3;Z)$ such that the fibre bundle $T_{A}^{4}$ is
diffeomorphic to the fibre bundle $T_{B}^{4}$ then $A$ is conjugated to $B$ or to $B^{-1}$ .

On the other hand, the only possibilities for the Lie algebra $\mathcal{G}$ are
$\mathcal{G}=\mathcal{G}_{1}$ , $\mathcal{G}=\mathcal{G}_{6}$ , $\mathcal{G}=\mathcal{G}_{7}^{k}(k\not\in Q)$ or $\mathcal{G}=\mathcal{G}_{8}^{h}$ .
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In fact it is evident that the algebras $\mathcal{G}_{3},$ $\mathcal{G}_{4}$ are not possible because they do
not have any abelian subalgebra of dimension 2. That the algebras $\mathcal{G}_{2},$ $\mathcal{G}_{6}$ and
$\mathcal{G}_{7}^{k}(k\in Q)$ are not realizable as transverse algebras of a Lie flow of basic
dimension 1 is proved in [7].

When $\mathscr{F}$ is a unimodular Lie $\mathcal{G}- flow$ then the Lie algebra $\mathcal{G}$ is also
unimodular. Hence the only possibilities for a unimodular Lie $\mathcal{G}- flow$ of basic
dimension 1 are $\mathcal{G}=\mathcal{G}_{1}$ or $\mathcal{G}=\mathcal{G}_{8}^{h=0}$ , and it follows from Proposition 2.2 and
Corollary 2.4 that $\mathscr{F}$ is transversely modeled on both algebras.

For a non unimodular Lie $\mathcal{G}- flow\mathscr{F}$ of basic dimension 1 the Lie algebra $\mathcal{G}$

is not unimodular (Theorem 1.4), hence the only possibilities are $\mathcal{G}=\mathcal{G}_{5},$ $\mathcal{G}=\mathcal{G}_{7}^{k}$ or
$\mathcal{G}=\mathcal{G}_{8}^{h\neq 0}$ . Notice that in all these cases the connected simply connected groups
associated to these algebras are diffeomorphic to $R^{3}$ . Moreover the matrix $A$

used in the construction of $T_{A}^{4}$ is not the identity matrix because the flow is
unimodular if and only if $A=Id$ (cf. [1]).

The following theorem proves that the matrix $A$ is closely related to tbe
matrix defining the group structure.

THEOREM 3.1. Let $\mathscr{F}$ be a non unimodular Lie $\mathcal{G}- flow$ of codimension 3 and
bastc dimension 1 on a compact manifold M. Then the matrix $A\in SL(3;Z)$

defining $M$ is conjugated to:

$B=(\begin{array}{lll}\lambda^{-1} 0 00 1 00 0 \lambda\end{array})$ for $\mathcal{G}=\mathcal{G}_{\text{\’{o}}}$ ,

$B=(\begin{array}{lll}\lambda 0 00 \lambda^{k} 00 0 \lambda^{-1-k}\end{array})$ for $\mathcal{G}=\mathcal{G}_{7}^{k}$ ,

and

$B=c(\lambda)(\begin{array}{lll}cos(\varphi+\lambda) -sin\lambda 0sin\lambda cos(\varphi-\lambda) 00 0 c(\lambda)^{-3}cos^{-2}\varphi\end{array})$ , $\lambda\in R$ , for $\mathcal{G}=\mathcal{G}_{8}^{h}$ .

PROOF. Recall that $\pi_{1}(M)$ is $Z^{3}\cross Z$ with the product

$(x, t)(y, s)=(x+A^{t}y, t+s)$

Thus the holonomy representation of $\mathscr{F}$ is a morphism $\Phi$ : $Z^{3}\cross_{A}Zarrow G$ ,

where $G$ is G\’o’ $G_{7}^{k\neq 1}$ or $G_{8}^{h\neq 0}$ and, hence, it is diffeomorphic to $R^{3}$ .
The image of $\Phi,$ $\Gamma=\Phi(Z^{3}x_{A}Z)$ , is the holonomy group of $\mathscr{F}$ and, since the

basic manifold $T^{1}$ is diffeomorphic to $\overline{\Gamma}\backslash G$ , we have $\dim\overline{\Gamma}=2$ .
In spite of the fact that the identity component, $\overline{\Gamma}_{e}$ , of 2“ is abelian, 1“ is

not abelian because $A\neq Id$ and $\Phi$ is injective.
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For $G_{7}^{k}$ and $G_{8}^{\hslash}$ it is easy to prove (cf., for example, [7]) that for every
abelian subgroup $H$ of the holonomy group $\Gamma$ , either $H$ is contained in $R^{2}\cross\{0\}$

(the only subalgebra of dimension two is, in both cases, the subalgebra generated
by $e_{1},$ $e_{2}$) or there is an element $\alpha=(\alpha_{1}, \alpha_{2}, \alpha_{s}),$ $\alpha_{3}\neq 0$ , such that $H=\{\alpha^{n}|n\in Z\}$ .

For $G_{5}$ every abelian subgrouP $H$ of $\Gamma$ is contained in $R^{2}x\{0\}$ or there is
an element $\alpha=(\alpha_{1}, \alpha_{2}, \alpha_{3}),$ $\alpha_{3}\neq 0$ , such that

$H \subset\{(C(1-e^{t}), y, t)|C=\frac{\alpha_{1}}{1-e^{\alpha_{3}}}\}$ .

Using now that the subgroup $\Phi(0\cross Z)$ can not be contained in $\Phi(Z^{3}\cross 0)$

(because $\Gamma$ is not abelian) and that $\Phi(Z^{3}\cross 0)$ is an abelian normal subgroup of
$\Gamma$, an easy computation shows that in the three cases $(G_{5}, G_{7}^{k\neq 1}, G_{8}^{h\neq 0})$ we have

$\Phi(Z^{3}\cross 0)\subset R^{2}\cross\{0\}$ .

Let $\Phi(Z^{3}\cross 0)=\langle(p_{1},0), (p_{2},0), (p_{3},0)\rangle$ and $\Phi(Z)=\langle\Phi(0,1)\rangle=\langle(p, \theta)\rangle,$ $\theta>0$ .
Then the normality condition is

$(p, \theta)(p_{i}, 0)(p, \theta)^{-1}=(p, \theta)(p_{i}, 0)(-e^{\Lambda 9}p, -\theta)\subset\Phi(Z^{2}\cross 0)$ .

Thus
$e^{-\Lambda\theta}p_{i}=\Sigma\lambda_{i}^{j}p_{j}$ , $\lambda_{i}^{j}\in Z$ . (1)

Let us consider $q_{t}\in Z^{3}$ such that $\Phi((q_{i}, o))=(p_{i}, 0)$ . Then

$(p, \theta)(p_{i}, O)(-e^{\Lambda\theta}p, -\theta)=\Phi((0,1)(q_{i}, 0)(0,1)^{-1})$

$=\Phi((0,1)(q_{i}, -1))=\Phi(A(q_{i}), 0)=\Phi((\Sigma\lambda iq_{J}, 0))$ ,

i.e., the matrix $(\lambda_{i}^{j})$ is the matrix $A$ in the basis $q_{i}$ .
Next we consider the vectors $v_{1}=(a_{1}, a_{2}, a_{3})$ and $v_{2}=(b_{1}, b_{v}b_{3})$ where $p_{1}=$

$(a_{1}, b_{1}),$ $p_{2}=(a_{2}, b_{2}),$ $p_{3}=(a_{3}, b_{3})$ . The equation (1) can be written now as:
i) For $G=G_{6}$

$(\begin{array}{ll}e^{9} 00 1\end{array})(\begin{array}{l}a_{i}b_{i}\end{array})=\lambda_{i}^{1}(\begin{array}{l}a_{1}b_{1}\end{array})+\lambda_{i}^{2}(\begin{array}{l}a_{2}b_{2}\end{array})+\lambda_{i(\begin{array}{l}a_{3}b_{a}\end{array})}^{3}$

that is $Av_{1}=e^{\theta}v_{1}$ and $Av_{2}=v_{2}$ .
ii) For $G=G_{7}^{k}$

$(\begin{array}{ll}e^{-\alpha}9 00 e^{-k\theta}\end{array})(\begin{array}{l}ab_{t}\end{array})=\lambda:(\begin{array}{l}a_{1}b_{1}\end{array})+\lambda_{i}^{2}(\begin{array}{l}a_{2}b_{2}\end{array})+\lambda_{i(\begin{array}{l}a_{3}b_{3}\end{array})}^{3}$

that is $Av_{1}=e^{-\theta}v_{1}$ and $Av_{2}=e^{-kS}v_{2}$ .
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iii) For $G=G_{8}^{h\neq 0}$

$c(\theta)(\begin{array}{ll}cos(\varphi+\theta) -sin\thetasinS cos(\varphi-\theta)\end{array})(\begin{array}{l}a_{i}b_{i}\end{array})=\lambda_{i}^{1}(\begin{array}{l}a_{1}b_{1}\end{array})+\lambda_{t}^{2}(\begin{array}{l}a_{2}b_{2}\end{array})+\lambda_{i}^{3}(\begin{array}{l}a_{3}b_{3}\end{array})$

tbat is $Av_{1}=c(\theta)(\cos(\varphi+\theta)v_{1}-\sin\theta v_{2})$ and $Av_{2}=c(\theta)(\sin\theta v_{1}+\cos(\varphi-\theta)v_{2})$ .

Set $\lambda=e^{-\theta}$ . Completing $v_{1},$ $v_{2}$ to a basis $\{v_{1}, v_{2}, v_{3}\}$ the matrix $A$ is equiv-
alent to

$B=(\begin{array}{lll}\lambda^{-1} 0 00 1 00 0 \lambda\end{array})$ for $\mathcal{G}=\mathcal{G}_{6}$

$B=(\begin{array}{lll}\lambda 0 00 \lambda^{k} 00 0 \lambda^{-1-k}\end{array})$ for $\mathcal{G}=\mathcal{G}_{7}^{k}$

and

$B=c(\lambda)(\begin{array}{lll}cos(\varphi+\lambda) sin\lambda 0-sin\lambda cos(\varphi-\lambda) 00 0 c(\lambda)^{-a}cos^{-2}\varphi\end{array})$ for $\mathcal{G}=\mathcal{G}_{8}^{h}$ .

Hence the result.

COROLLARY 3.2. Let $\mathscr{F}$ be a Lie $\mathcal{G}- flow$ of basic dimension 1. Assume that
$\mathscr{F}$ is also a Lie $\mathcal{G}’- flow$ .

i) If $\mathcal{G}=\mathcal{G}_{5}$ then $\mathcal{G}’=\mathcal{G}_{6}$ .
ii) If $\mathcal{G}=\mathcal{G}_{7}^{k}$ then $\mathcal{G}’=\mathcal{G}_{7}^{k’}$ .

iii) If $\mathcal{G}=\mathcal{G}_{8}^{h}$ then $\mathcal{G}’=\mathcal{G}_{8}^{h’}$

PROOF. The manifold $M$ is diffeomorphic to $T_{A}^{4}$ by the existence of a Lie
$\mathcal{G}- flow$ , and is also diffeomorphic to $T_{B}^{4}$ by the existence of a Lie $\mathcal{G}’arrow flow$ . Then
$A$ and $B$ or $B^{-1}$ are conjugated matrices of $SL(3, Z)$ . By the above theorem
we have the following 3 cases:

i) The matrix $A$ has three real eigenvalues $\lambda,$ $1,$ $\lambda^{-1}$ . Then 1 is also an
eigenvalue of the matrix $B$ . The only possibility is $\mathcal{G}’=\mathcal{G}_{5}$ .

ii) The matrix $A$ has three real eigenvalues $\lambda,$ $\lambda^{k},$ $\lambda^{-(k+1)}$ with $\lambda\neq 1$ . Then
the matrix $B$ has also three real eigenvalues not equal to 1. The only
possibility is $\mathcal{G}’=\mathcal{G}_{7}^{k’}$ .

iii) The matrix $A$ has two complex eigenvalues. Then the matrix $B$ has
also two complex eigenvalues. The only possibility is $\mathcal{G}’=\mathcal{G}_{8}^{h’}$ $\blacksquare$

We improve this result in \S 5.
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4. The realization problem with basic dimension one.

The realization problem that we consider is the following:
Given a Lie algebra $\mathcal{G}$ of dimension 3 and an integer $q,$ $0\leqq q\leqq 3$ , is there a

compact manifold endowed with a Lie $\mathcal{G}- flow$ of basic dimension $q$ ?
This problem has been studied in [10] and [7], but two cases remained

open: namely the cases corresponding to the family of Lie algebras $\mathcal{G}_{8}^{h},$ $h\neq 0$ ,

for $q=1,2$ , and to the family $\mathcal{G}_{7}^{k}$ for $q=1$ .
In this paper we solve the case $q=1$ . In fact we give, for $q=1$ , a necessary

and sufficient condition, in terms of $h$ (resp. $k$ ), for an algebra of the $\mathcal{G}_{8}^{h}$ -family
(resp. $\mathcal{G}_{7}^{k}$) to be realizable.

THEOREM 4.1. There is a compact manifold $M$ endowed with a Lie $\mathcal{G}_{8}^{\hslash}- flow$

$\mathscr{F},$ $h\neq 0$ , of basic dimenszon 1 if and only if

$h= \frac{2\ln\lambda}{\sqrt 4\overline{\omega^{2}+\ln^{2}\lambda}}$

where $\lambda$ and $\omega$ are two real numbers, with $\lambda>1$ and $\omega\neq k\pi(k\in Z)$ , such that $\lambda$ ,
$(\cos\omega\pm i\sin\omega)/\sqrt{\lambda}$ are the roots of a monic polynomial of degree 3 with integer

coefficients.

Observe that $\pm\omega$ is determined except an additive multiple integer of $2\pi$ .

PROOF. First assume that $\mathscr{F}$ is a Lie $\mathcal{G}_{8}^{h}$ -flow, $h\neq 0$ , on a compact manifold
$M$ with $\dim W=\dim M/\overline{\mathscr{F}}=1$ .

Let $\{e_{1}, e_{2}, e_{3}\}$ be the basis of $\mathcal{G}_{8}^{h}$ described in \S 1. Since $\mathscr{F}$ is a Riemannian
flow its structural Lie algebra $\mathcal{H}$ must be abelian (cf. [2]) and it is a subalgebra
of $\mathcal{G}_{8}^{h}$ . The only abelian subalgebra of $\mathcal{G}_{8}^{h}$ is the generated by $e_{1},$ $e_{2}$ , which is
an ideal. Then, by Lemma 1.3, we can find a transverse Lie parallelism

$\{\overline{Y}_{1},\overline{Y}_{2},\overline{Y}_{3}\}$ associated to the basis $\{e_{1}, e_{2}, e_{3}\}$ such that $Y_{1},$ $Y_{2}$ are tangent to
$\overline{\mathscr{F}}$ at any point. Hence $Y_{3}$ is not tangent to 9 at any point.

Recall that there exists a matrix $A\in SL(3, Z)$ with an eigenvalue $\lambda>0$ and
a eigenvector $v$, whose components are rationally independent, such that $M$ is
the manifold $T_{A}^{4}$ and the flow $\mathscr{F}$ is the induced by the linear flow $\mathscr{F}_{v}$ . If
necessary, we take the matrix $A^{-1}$ for $\lambda$ to be $>1$ .

It follows from Theorem 3.1 that the roots of the characteristic polynomial
$p(x)$ of $A$ are $\lambda,$ $z=(\cos\omega+i\sin\omega)/\sqrt{\lambda}$ and $\overline{z}=(\cos\omega-i\sin\omega)/\sqrt{\lambda}$ .

We can find a basis $\{v, u_{1}, u_{2}\}$ of $R^{3}$ such that $Au_{1}=u_{2}$ and $Au_{2}=-(1/\lambda)u_{1}$

$+au_{2}$ , where $\alpha=(2/\sqrt{\lambda})\cos\omega$ .
We define the vector fields of $T^{s}\cross R$

$X_{1(p.t)}=(u_{1},0),$ $X_{2(p.t)}=(u_{2},0)\in T_{p}T^{3}\oplus T_{t}R$ .
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The transverse vector fields $Y_{1},\overline{Y}_{2},\overline{Y}_{3}$ are the projections of the transverse
vector fields of $T^{3}\cross R$ given by:

$Z_{1(p.t)}=a(t)\overline{X}_{1(p.t)}+b(t)\overline{X}_{2(p.t)}$

$\overline{Z}_{2(p.t)}-c(t)\overline{X}_{1(p.t)}+d(t)\overline{X}_{2(p.t)}$

$\overline{Z},(p.t)=(0,$ $k \frac{\overline\partial}{\partial t})$ ( $k\in R$ , constant).

The reason is as follows.
Observe that each transverse vector field $Y_{i}$ is the projection of some

transverse vector field $Z_{i}$ of $T^{3}xR$ , and these transverse vector Pelds are of
the form:

$\overline{Z}_{i(p,t)}=F_{i}(p, t)\overline{X}_{1(p,t)}+G_{i}(p, t)\overline{X}_{2(p,t)}+f_{i}(p, t)\overline{\frac{\partial}{\partial t}}$ .

The fact that $Y_{i}$ is a foliated vector field implies that the functions $F_{i},$ $G_{i},$ $f_{i}$

does not depend on $p$ . Since $Y_{1},$ $Y_{2}$ are tangent to 9, the corresponding vector
fields $Z_{1},$ $Z_{2}$ must be tangent to $T^{3}$ in $T^{8}\cross R$ , this means that $f_{l}=f_{2}=0$ .

Therefore the transverse vector fields $\overline{Z}_{i}$ are of the form

$\overline{Z}_{1(p,t)}=a(t)\overline{X}_{1(p.t)}+b(t)\overline{X}_{2(p,t)}$

$\overline{Z}_{2tp,t)}=c(t)\overline{X}_{1tp.t)}+d(t)\overline{X}_{2(p,t)}$

$\overline{Z}_{3(p,t)}=F_{3}(t)\overline{X}_{1\langle p.t)}+G_{3}(t)\overline{X}_{2(p.t)}+f(t)\overline{\frac{\partial}{\partial r}}$

with $f(t+1)=f(t)$ (because $\overline{Z}_{3}$ is projectable) and $f(t)\neq 0$ (since $Y_{3}$ is not tangent
to 9 at any Point).

Observe that

$[\overline{Z}_{i},\overline{Z}_{3}]=[\overline{Z}_{i},$
$f(t)\overline{\frac{\partial}{\partial t}}]$ $(i=1,2)$ .

Tben $\overline{Y}_{1}=\pi_{*}(\overline{Z}_{1}),\overline{Y}_{2}=\pi_{*}(\overline{Z}_{2}),$ $\pi_{*}(f(t)\overline{(\partial/\partial t)})$ are also a realization of the basis
$\{e_{1}, e_{2}, e_{3}\}$ .

Finally, if $f$ is not constant, we can take the reparametrization of $R$ given
by:

$s(t)= \frac{\int_{0}^{t}\frac{1}{f(x)}dx}{k}$

where $k= \int_{0}^{1}\frac{1}{f(x)}dx$

to obtain $f(t)\overline{(\partial/\partial t)}=k\overline{(\partial/\partial s})$ and $s(t+1)=s(t)+1$ .
The identification $(x, t)\sim(Ax, r+1)$ is equivalent to $(x, s(t))\sim(Ax, s(t)+1)$

and the projections of the transverse vector fields $\overline{Z}_{1(p.s)}=\tilde{a}(s)\overline{X}_{1(p.s)}+\tilde{b}(s)\overline{X}_{2(p.\epsilon)}$ ,
$\overline{Z}_{2(p.s)}=\tilde{c}(s)\overline{X}_{1(p.\iota)}+d(s)\overline{X}_{2(p.s)}$ and $\overline{Z}_{3(p.s)}=(0, k\overline{(\partial/\partial s)})$ give $\overline{Y}_{1},\overline{Y}_{2},\overline{Y}_{3}$ .

It can be shown that the constant $k$ is always $\neq 1$ (cf. Remark 4.3).
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Thus we can assume that the transverse vector fields $\overline{Z}_{i}$ are of the form:

$\overline{Z}_{1}=a(t)\overline{X}_{1}+b(t)\overline{X}_{2}$ , $\overline{Z}_{2}=c(t)\overline{X}_{1}+d(t)\overline{X}_{2}$ , $\overline{Z}_{3}=k\overline{\frac{\partial}{\partial t}}$ .

The condition that the $\overline{Z}_{i}$ are projectable is equivalent to

$a(t+1)=- \frac{1}{\lambda}b(t)$

$b(t+1)=a(t)+\alpha b(t)d(t+1)=c(t)+\alpha d(t)\}$ . (1)
$c(t+1)=- \frac{1}{\lambda}d(t)$

On the other hand,

$c(t)\overline{X}_{1}+d(t)\overline{X}_{2}=\overline{Z}_{2}=[Z_{1},\overline{Z}_{s}]=-ka’(t)\overline{X}_{1}-kb’(t)\overline{X}_{2}$

$hc(t)\overline{X}_{1}+hd(t)\overline{X}_{2}-a(t)\overline{X}_{1}-b(t)\overline{X}_{2}=h\overline{Z}_{2}-\overline{Z}_{1}=[\overline{Z}_{2},\overline{Z}_{3}]$

$=-kc’(t)\overline{X}_{1}-kd’(t)\overline{X}_{l}$ .

Then $a(t),$ $c(t)$ and $b(t),$ $d(t)$ are two independent solutions of the system of
differential equations:

$y(t)=-kx’(t)$
$hy(t)-x(t)=ky’(t)\}$ .

Therefore, $a(t),$ $b(t)$ are solutions of the differential equation

$k^{2}x^{M}(t)+khx’(t)+x=0$ .
Then

$a(t)=e^{-(h/2k)}{}^{t}(A_{1}\cos\theta t+A_{2}\sin\theta t)$

$b(t)=e^{-(h/2k)}{}^{t}(B_{1}\cos\theta t+B_{2}\sin\theta t)$

$d(t)=-kb’(t)= \frac{h}{2}b(t)-ke^{-(h/2k)}{}^{t}(-\theta B_{1}\sin\theta t+\theta B_{2}\cos\theta t)c(t)=-ka’(t)=\frac{h}{2}a(t)-ke^{-(h/2k)t}(-\theta A_{1}\sin\theta t+\theta A_{l}\cos\theta t)\}$ (2)

$w$here $A_{1},$ $A_{2},$ $B_{1},$ $B_{2}$ are constants, $\theta=\sqrt{4-h^{2}}/2k$ and $A_{1}B_{g}-A_{2}B_{1}\neq 0$ .
By substituting these values in (1) we obtain:

$e^{-(h/2k)}(B_{2}\cos\theta-B_{1}\sin\theta)=A_{2}+B_{2}\alpha e^{-(h/2k)}(B_{1}\cos\theta+B_{2}\sin\theta)=A_{1}+B_{1}\alpha e^{-(h/2k)}(A_{1}\cos\theta+A_{2}\sin\theta)=-\frac{1}{\lambda}B_{1}e^{-(\hslash/2k)}(A_{2}\cos\theta-A_{1}\sin\theta)=-\frac{1}{\lambda}B_{2}\}$ . (3)
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Then $(A_{1}, A_{2}, B_{1}, B_{2})$ is a non trivial solution of the homogeneous system
whose matrix of coefficients is:

$[_{0}^{1_{\hslash/z_{1}k)}^{h/2k)}}-e^{-}e^{-}\cos\theta\sin\theta$
$e^{-}e_{0}^{-}|_{h/2k)}^{h/2k)}\sin\theta 1\cos\theta$ $\alpha-e^{-(h/2k)}\cos\theta e^{-(h/2k)}\sin\theta\frac{1}{\lambda}0$

$\alpha-e^{-(h/2k)}\cos\theta-e^{-(h/2k)}\sin\theta\frac{1}{\lambda}0)$ . (4)

The determinant of this matrix must be zero.
Therefore

$e^{-(h/k)}\alpha^{2}-2e^{-(h/2k)}\cos\theta(e^{-(h/k)}+\frac{1}{\lambda})\alpha+(e^{-(h/k)}-\frac{1}{\lambda})^{2}+4\frac{1}{\lambda}e^{-(h/k)}\cos^{2}\theta=0$ .

Then $\alpha$ is a real root of the polynomial:

$q(x)= e^{-(h/k)}x^{2}-2e^{-(h/2k)}\cos\theta(e^{-(\hslash/)}k+\frac{1}{\lambda})x+(e^{-(h/k)}-\frac{1}{\lambda})^{2}+4\frac{1}{\lambda}e^{-(h/k)}\cos^{2}\theta$

whose discriminant is $-\sin^{2}\theta e^{-(h/k)}(e^{-(h/k)}-1/\lambda)^{2}\leqq 0$ .
Since $\sin\theta\neq 0$ (otherwise $A_{1}B_{2}-A_{2}B_{1}=0$), the only possibility is $\lambda=e^{(h/)}k$

and, hence, $\alpha=2e^{-(\hslash/2k)}\cos\theta$ .
Then we have

$2 e^{-(h/2k)}\cos\theta=\alpha=\frac{2}{\sqrt{\lambda}}\cos\omega=2e^{-(h/2k)}\cos\omega$

hence $\cos\omega=\cos\theta$ . Since $\lambda=e^{(h/k)}$ and $\theta=\sqrt{4-h^{2}}/2k$ , taking the argument of
the complex roots $\omega=\theta$ we have

$h= \frac{2\ln\lambda}{\frac{4\omega^{2}\ln}{+}2\overline{\lambda}}$

as stated in the theorem.
Finally, we prove the converse:
Let $p(x)$ be the polynomial $x^{3}-mx^{2}+nx-1(m, n\in Z)$ with only one real

root $\lambda(\lambda>1)$ . Recall that $p(x)$ has only one real root if and only if

$\frac{m^{3}+n^{3}m^{2}n^{2}nm}{271086}+\frac{1}{4}>0$ ,

and this root is $\neq 1$ if $(m, n)\neq(0,0),$ $(1,1),$ $(2,2)$ .
One can consider the matrix



Transverse structure of Lie foliations 789

$A=(\begin{array}{lll}0 0 11 0 -n0 1 m\end{array})$

whose characteristic polynomial is $p(x)$ . A computation shows that the root $\lambda$

is irrational and the components of an eigenvector $v$ are rationally independent.
If we define $k=h/\ln\lambda,$ $\theta=\omega$ and $a=2e(h/2k)\cos\theta$ , then the determinant of

the matrix (4) is zero and the system (3) has non trivial solutions. Let $A_{1},$ $A_{2}$ ,
$B_{1},$ $B_{2}$ be one of these solutions. Observe that $A_{1}B_{2}-A_{2}B_{1}\neq 0$ (because $\sin\theta\neq 0$).

We consider the functions $a(t),$ $b(t),$ $c(t),$ $d(t)$ as in (2). Note that

$a(t)\cdot d(t)-b(t)\cdot c(t)=-k\theta e^{-(h/2k)}{}^{t}(A_{1}B_{2}-A_{2}B_{1})\neq 0$ .

Let $\{v, u_{1}, u_{2}\}$ be the basis of $R^{3}$ such that

$Av=\lambda v$ , $Au_{1}=u_{2}$ , $Au_{2}=- \frac{1}{\lambda}u_{1}+\frac{2}{\sqrt{\lambda}}\cos\omega\alpha$ .

The vector fields

$Z_{1(p.t)}=a(t)u_{1}+b(t)u_{2}$ , $Z_{2(p,t)}=c(t)u_{1}+d(t)u_{2}$ , $Z_{3(p.t)}=k \frac{\partial}{\partial t}$

are projectable by construction and their projections give a foliated realization
of the basis $\{e_{1}, e_{2}, e_{3}\}$ of $\mathcal{G}_{8}^{h}$ .

Observe that if we make the same construction taking $\theta=\omega+2k\pi$ then the
same flow is also a Lie $\mathcal{G}_{8}^{h’}$ -flow with

$h’= \frac{2\ln\lambda}{\frac{4\omega 2k\pi^{2}\ln^{2}\lambda}{(+)+}}\neq h$ . $\blacksquare$

COROLLARY 4.2. Only a numerable set of algebras of $\mathcal{G}_{8}^{h}$ are realizable on
a compact manifold as transverse algebras to a basic dimension 1 Lie flow. $\blacksquare$

REMARK 4.3. Let $\mathscr{F}$ be a Lie $\mathcal{G}_{8}^{h}$-flow, $h\neq 0$ , of basic dimension 1. We
have seen in the proof of Theorem 4.1 that for a foliated realization $Y_{1},$ $Y_{2},$ $Y_{3}$

of the basis $e_{1},$ $e_{2},$ $e_{3}$ the vector field $Y_{3}$ is the projection of the vector field
$(0, k(\partial/\partial t))$ of $T^{3}\cross R$ . The constant $k$ is always $\neq 1$ .

The reason is as follows.
Assume that $k=1$ . Following the proof of Theorem 4.1 and using the

same notation we see that there is a basis $\{v, u_{1}, u_{2}\}$ of $R^{3}$ such that

$Av=\lambda v$ , $Au_{1}=u_{2}$ , $Au_{2}=- \frac{1}{\lambda}u_{1}+\alpha u_{2}$

with $\lambda=e^{h}$ and $a=2e^{-(h/2)}\cos\theta$ . Therefore the characteristic polynomial of $A$

is equal to
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$p(x)=x^{3}-( \lambda+\alpha)x^{2}+(\alpha\lambda+\frac{1}{\lambda})x-1$

$=x^{3}-(e^{h}+2e^{-(h/2)}\cos\theta)x^{2}+(2e^{h/2}\cos\theta+e^{-h})x-1$ .

Hence $e^{h}(h\in(O, 2))$ is a solution of the system

$\{$

$m= e^{\hslash}+2e^{-(h/2)}\cos(\frac{\frac{4-h^{2}}{}}{2})$

$n=2 e^{h/2}\cos(\frac{\sqrt{4-h^{2}}}{2})+e^{-h}$

$m,$ $n\in Z$ .

But it can be shown, after a quite long computation, that this system has no
solutions for $h\in[0,2]$ .

THEOREM 4.4. There is a compact manifold $M$ endowed with a $\mathcal{G}_{7}^{k}$-flow $\mathscr{F}$

of basic dimenston 1 if and only if

$k= \frac{\ln b}{\ln a}$ and $k\not\in Q$

where a, $b,$ $1/ab$ are the posrtive real roots of a monic polynomial of degree 3
with integer coefficients.

PROOF. Let $\mathscr{F}$ be a Lie $\mathcal{G}_{7}^{k}$-flow of dimension 1 on a compact manifold $M$.
Then $M=T^{3}\cross_{A}R$ . By Theorem 3.1, the matrix $A\in SL(3, Z)$ has the three
real roots

$a=e^{-\theta}$ , $b=e^{-t}9k$ $c=e^{\theta_{(k+1)}}$ , $\theta>0$

and $k\not\in Q$ (cf. [7]).

Conversely, let $x^{3}-mx^{2}+nx-1$ a polynomial with real roots $a,$ $b,$ $c$ such
that

$k= \frac{\ln b}{\ln a}\not\in Q$ .

Let us consider the matrix

$A=(\begin{array}{lll}0 0 11 0 -n0 1 m\end{array})\in SL(3, Z)$ .

AS the eigenvalues of $A$ are not in $Q$ , the components of the eigenvectors of
$A$ are rationally independent.

If we define $\theta=-\ln a$ , then the roots of the polynomial $p(x)$ are
$e^{-}9$ $e^{-\theta k},$ $e^{\theta_{(k+1)}}$ .
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Let $\{v_{1}, v_{2}, v_{3}\}$ be a basis of eigenvectors of $A$ :

$A(v_{1})=e^{-\theta}v_{1}$ , $A(v_{2})=e^{-t}v_{2}9k$ $A(v_{3})=e^{9_{(k+1)}}v_{3}$ .

Then the linear flow on $T^{3}$ parallel to the vector $v_{3}$ gives rise to a flow $\mathscr{F}$ on
$M=T_{A}^{4}$ .

The vector fields on $T^{3}\cross R$

$\{$

$\tilde{x}_{1}(p, t)=e^{-t\theta}(v_{1},0)$

$\tilde{x}_{2}(p, t)=e^{-tk\theta}(v_{2},0)$

$\tilde{x}_{3}(p, t)=\frac{1}{\theta}\frac{\partial}{\partial t}$

are projectable on $M$ because $\tilde{X}_{i}(p, t+1)=A(\tilde{X}_{i}(p, t))$ . Tbe projections $X_{1},$ $X_{2}$ ,
$X_{3}$ of tbese vector fields are foliated vector fields transverse to the flow such
that

$[X_{1}, X_{2}]_{(p,t)}=[e^{-t\theta}(v_{1},0), e^{-tk\theta}(v_{2},0)]=0$

$[X_{1}, X_{3}]_{(p.t)}=[e^{-t\theta}(v_{1},0),$ $\frac{1}{\theta}\frac{\partial}{\partial t}]=e^{-t9}t(v_{1},0)=X_{1(p,t)}$

$[X_{2}, X_{s}]_{(p.t)}=[e^{-tk\theta}(v_{2},0),$ $\frac{1}{\theta}\frac{\partial}{\partial t}]=kX_{2(p.t)}$ . $\blacksquare$

COROLLARY 4.5. Only a numerable set of algebras of $\mathcal{G}_{7}^{k}$ are realizable on a
compact manifold as transverse algebras to a Lie flow with bastc dimension 1. $\blacksquare$

5. The change problem.

The aim of this section is to prove that a Lie $\mathcal{G}- flow$ of codimension 3 on
a compact manifold with basic dimension 1 can be transversely modeled on one,
two or countable many Lie algebras.

PROPOSITION 5.1. Let $\mathscr{F}$ be a Lie $\mathcal{G}_{7}^{k}- flow$ of bastc dimenszon 1 on a compact

manifold $M$ transversely modeled on another Lie algebra $\mathcal{G}$ . Then $\mathcal{G}=\mathcal{G}_{7}^{k’}$ and $k’$

is one of the values

$k’=k$ , $\frac{1}{k}$ ; $\frac{1}{-1-k}$ $-1-k$ ; $- \frac{k}{1+k}$ , $- \frac{1+k}{k}$ .

PROOF. By Corollary 3.2 the Lie algebra $\mathcal{G}$ is $\mathcal{G}_{7}^{k’}$ . Then the matrix
$A\in SL(3;Z)$ defining $M$ has the eigenvalues $a,$ a, $a^{-1-k}$ and $b,$ $b^{k},$ $b^{-1-k’}$

AS they are the same, we have $3!=6$ possibilities that imply directly the
result. $\blacksquare$
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REMARK 5.2. If $\mathscr{F}$ is a Lie $\mathcal{G}_{7}^{k}$-flo $w$ on a compact manifold $M$, then we also
have on $M$ a Lie $\mathcal{G}_{7}^{-1-k}$ -flow and a Lie $\mathcal{G}_{7}^{-k/(1+k)}$ -flow.

TO see this, let $u_{1},$ $u_{2},$ $u_{3}$ be the eigenvectors of $A$ with eigenvalues $a,$ a,
$a^{-1-k}$ respectively.

The vector fields on $T^{3}\cross T^{1}$

$\tilde{X}_{1}=a^{t}u_{1}$ , $X_{2}=a^{k}{}^{t}u_{2}$ , $\tilde{X}_{3}=a^{-(1+k)}{}^{t}u_{3}$ , $\tilde{X}_{0}=-\frac{1}{\ln a}\frac{d}{dt}$

are invariant for $A$ , so they induce vector fields on $M=T^{3}\cross_{A}T^{1}$ , that we denote
by $X_{1},$ $X_{2},$ $X_{3},$ $X_{0}$ , respectively.

The foliation induced by $X_{1}$ admits $X_{2},$ $X_{3},$ $-X_{0}/(1+k)$ as transverse paral-
lelism and

$[X_{2}, X_{3}]=0$ , $[X_{3},$ $- \frac{1}{1+k}X_{0}]=X_{2}$ , $[X_{2},$ $- \frac{1}{1+k}X_{0}]=-\frac{1}{1+k}X_{2}$ ,

$i.e.$ , it is a Lie $\mathcal{G}_{7}^{-k/(1+k)}$ -flow.
The foliation induced by $X_{2}$ admits $X_{1},$ $X_{3},$ $X_{0}$ as transverse parallelism and

$[X_{1}, X_{3}]=0$ , $[X_{1}, X_{0}]=X_{1}$ , $[X_{3}, X_{0}]=-(1+k)X_{3}$ ,

i.e., it is a Lie $\mathcal{G}_{7}^{-1-k}$ -flow.
The foliation induced by $X_{3}$ admits $X_{1},$ $X_{2},$ $X_{0}$ as transverse parallelism and

$[X_{1}, X_{2}]=0$ , [X,, $X_{0}$] $-X_{1}$ , $[X_{2}, X_{0}]=kX_{2}$ ,

i.e., it is a Lie $\mathcal{G}_{7}^{k}$-flow.

It follows from this remark that it is not possible to deduce from Theorem
3.1 if a Lie $\mathcal{G}_{7}^{k}- flow$ of basic dimension 1 is at the same time a Lie $\mathcal{G}_{7}^{k’}$ -flow with
$k\neq k’$ .

A priori the six cases of Proposition 5.1 are possible. Nevertheless we have

PROPOSITION 5.3. Let $\mathscr{F}$ be a Lie flow of basic dimension 1 on a compact
manifold $M$ transversely modeled on two Lie algebras, $\mathcal{G}_{7}^{k}$ and $\mathcal{G}_{7}^{k^{\ell}}$ , of the family
$\mathcal{G}_{7}$ . Then $\mathcal{G}_{7}^{k}\cong \mathcal{G}_{7}^{k’}$ .

PROOF. Assume that the flow is transversely modeled on two Lie algebras,
$\mathcal{G}_{7}^{k}$ and $\mathcal{G}_{7}^{k’}$ , of the family $\mathcal{G}_{7}$ . Since the structural Lie algebra is abelian and the
only abelian subalgebra of $\mathcal{G}_{7}$ is the ideal generated by $e_{1},$ $e_{2}$ we have two Lie
parallelisms $\overline{Y}_{1},\overline{Y}_{2},\overline{Y}_{3}$ and $Z_{1},\overline{Z}_{2},\overline{Z}_{3}$ with products

(1) $[\overline{Y}_{1},\overline{Y}_{2}]=0$ , $[\overline{Y}_{1},\overline{Y}_{3}]=\overline{Y}_{1}$ , $[\overline{Y}_{2},\overline{Y}_{3}]=k\overline{Y}_{2}$

(2) $[Z_{1}, Z_{2}]=0$ , $[Z_{1}, Z_{3}]=Z_{1}$ , $[Z_{2}, Z_{3}]=k’Z_{2}$
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such that the foliated vector fields $Y_{1},$ $Y_{2}$ and $Z_{1},$ $Z_{2}$ are tangent to 9 every-
where.

The transverse vector fields $\overline{Z}_{i}$ are
$\overline{Z}_{1}=f_{1}^{1}\overline{Y}_{1}+f_{1}^{2}\overline{Y}_{2}$

$\overline{Z}_{2}=f_{2}^{1}Y_{1}+f_{2}^{2}\overline{Y}_{2}$

$\overline{Z}_{3}=f_{3}^{1}\overline{Y}_{1}+f_{3}^{2}\overline{Y}_{2}+f_{3}^{3}\overline{Y}_{3}$

with $f_{i}^{j}$ basic functions.
By substitution of these values in the equations (2) we have the equations:

$\{$

$f_{1}^{1}=f_{1}^{1}f_{3}^{3}-f_{3}^{3}Y_{3}(f_{1}^{1})$

$f_{1}^{2}=kf_{1}^{2}f_{3}^{3}-f_{3}^{3}Y_{3}(f_{1}^{2})$

$k’f_{2}^{1}=f_{2}^{1}f_{3}^{3}-f_{3}^{3}Y_{3}(f_{2}^{1})$

$k’f_{2}^{2}=kf_{2}^{2}f_{3}^{3}-f_{3}^{3}Y_{3}(f_{2}^{2})$

(observe that as $Y_{1},$ $Y_{2}$ are tangent to 9, then $Y_{1}(f_{i}^{j})=Y_{2}(f_{i}^{j})=0$).

Note that $f_{3}^{3}$ is not zero at any point. Then all these equations are of the
form $y’=g(x)y$ .

By interpreting this system of differential equations on the basic manifold
$S^{1}$ , we have the solutions:

$f_{1}^{1}=C_{1}e^{x}e^{-\int_{t_{0}}^{x}\frac{1}{f_{3}^{3}}dt}$

$f_{1}^{2}=C_{2}e^{kx}e^{-\int_{t_{0}}^{x}\frac{1}{f_{3}^{3}}dt}$

$f_{2}^{1}=C_{3}e^{x}e^{-\int_{t_{0}}^{x}\frac{k’}{f_{3}^{S}}dt}$

$f_{2}^{2}=C_{4}e^{kx}e^{-\int_{t_{0}}^{x}\frac{k’}{f_{3}^{3}}dt}$

Then there exist periodic solutions with $f_{1}^{1}f_{2}^{2}-f_{1}^{2}f_{2}^{1}\neq 0$ if and only if $k=k’$

or $k=1/k’$ . $\blacksquare$

NOW we are in the position to prove the main result of this section.

THEOREM 5.4. Let $\mathscr{F}$ be a Lie flow of codimenston 3 on a compact manifold
$M$ with basic dimenston 1. Then only three cases are possible:

i) $\mathscr{F}$ is transversely modeled exactly on one Lie algebra. This occurs if and
only if the transverse Lie algebra is $\mathcal{G}_{5}$ or $\mathcal{G}_{7}^{k}$ .

ii) $\mathscr{F}$ is transversely modeled exactly on two Lie algebras. This occurs if and
only if these two transverse Lie algebras are $\mathcal{G}_{1}$ and $\mathcal{G}_{8}^{h=0}$ .

iii) $\mathscr{F}$ is transversely modeled on countable many Lie algebras. This occurs
if and only if $\mathscr{F}$ is transversely modeled on $\mathcal{G}_{8}^{\hslash\neq 0}$ .
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In this case
a) There exist two real numbers $\lambda>1$ and $\omega$ such that

$h= \frac{2\ln\lambda}{\sqrt{4\omega^{2}+\ln^{2}\lambda}}$ .

b) $\mathscr{F}$ is also transversely modeled on $\mathcal{G}_{8}^{h’}$ for each

$h’= \frac{2\ln\lambda}{\sqrt{4(\omega+2k\pi)^{2}+\ln^{2}\lambda}}$ (V $k\in Z$ ).

c) If $\mathscr{F}$ is also transversely modeled on $\mathcal{G}$ then $\mathcal{G}=\mathcal{G}_{8}^{h’}$ for some of the
above $h’$ .

PROOF. Assume that $\mathscr{F}$ is a Lie $\mathcal{G}- flow$ of codimension 3 on the compact
manifold $M$ with basic dimension 1. Then $\mathcal{G}$ is one of the following Lie
algebras: $\mathcal{G}_{1},$ $\mathcal{G}_{6},$

$\mathcal{G}_{7}^{i}$ or $\mathcal{G}_{8}^{h}$ .
i) If $\mathcal{G}=\mathcal{G}_{6}$ then by Corollary 3.2, 9 is not transversely modeled on any

other Lie algebra.
If $\mathcal{G}=\mathcal{G}_{7}^{k}$ then by Proposition 5.3, $\mathscr{F}$ is not transversely modeled on any
other Lie algebra.

ii) If $\mathcal{G}=\mathcal{G}_{1}$ then by Proposition 2.2, $\mathscr{F}$ is also transversely modeled on
$\mathcal{G}’=\mathcal{G}_{8}^{h=0}$ .
Conversely if $\mathcal{G}=\mathcal{G}_{8}^{h=0}$ , Corollary 2.4 proves that $\mathscr{F}$ is also a Lie abelian
flow.

iii) It only remains the case that $\mathcal{G}=\mathcal{G}_{8}^{h\neq 0}$ .
a) We have, by Theorem 4.1, that

$h= \frac{2\ln\lambda}{\sqrt{4\omega^{2}+\ln^{l}\lambda}}$

where $\lambda(\lambda>1)$ and $(\cos\omega\pm i\sin\omega)/\sqrt{\lambda}$ are the roots of a polynomial
of integer coefficients.

b) Theorem 4.1 also proves that $\mathscr{F}$ is also a Lie $\mathcal{G}_{8}^{\hslash’}$ -flow with

$h’= \frac{2\ln\lambda}{\sqrt{4(\omega+2k\pi)^{l}+\ln^{f}\lambda}}$ for any $k\in Z$ .

c) If $\mathscr{F}$ is also a Lie $\mathcal{G}’- flow$ , it follows from Corollary 3.2 that $\mathcal{G}=\mathcal{G}_{8}^{h’}$

Again, by Theorem 4.1 we have that

$h’= \frac{2\ln\lambda’}{\sqrt{4(\omega’)^{l}+\ln^{2}\lambda’}}$ .

But using Theorem 3.1 is easy to see that $\lambda’=\lambda’$ and $\omega’=\omega+2k\pi$ . $\blacksquare$
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