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The transverse structure of Lie flows of codimension 3

By

Bias HERRERA and Agusti REVENT6S

1. Introduction

T h is  p a p e r  d e a ls  w ith  th e  problem  o f  th e  realization o f  a  g iven  Lie
algebra as transverse algebra to a Lie foliation on a compact manifold.

Lie foliations have been studied by several authors ( [E.H.S], [E.N], [F],
[H.M], [M], [M a ] , e tc .) . The importance of this study w as increased by the
f a c t  t h a t  t h e y  a r i s e  n a tu ra lly  i n  Molino's c la ss if ic a tio n  o f  Riemannian
foliations [M].

To each Lie foliation are associated two Lie algebras, the Lie algebra 9 of
the Lie group on which the foliation is modeled and the structural L ie algebra

. T he  la tte r a lgebra  is the L ie algebra of the L ie foliation g  restricted to
the  closure o f  any  one  o f i t s  le a v e s . In  particu lar, i t  i s  a  subalgebra of 9.
W e remark that although Ye is canonically associated to g , 9 is  not.

Thus two interesting problems are  naturally posed: the realization problem
and the change problem.

The realization problem  is  to  know  w hich  pa irs  o f L ie  a lgebras (9, .0)
with Ye subalgebra of 9, can  arise  as transverse and structural L ie  algebras,
respectively, of a Lie foliation g  on a compact oriented manifold M.

T h is  p ro b le m  is  c lo se ly  re la te d  to  th e  following Haefliger's problem
[Ha]: given a Lie subgroup T of a Lie group G. is  th e re  a Lie G - foliation on a
compact manifold M  w ith  holonomy group F? E. Ghys [Gh] and G . Meigniez
[M g] also studied this problem  and they gave necessary conditions for a pair
(G, r) to be realizable.

O ur form ulation of the realization problem  is a  little different: W e shall
say  th a t th e  p a ir  (9, g )  is  realizable if  th e re  is  a com pact oriented manifold
endowed with a L ie foliation transversely modeled on  9 and  w ith  structural
Lie algebra of dimension q .  W e also say that 9 is realizable as transverse to  a
Lie foliation.

This form ulation of the realization problem has been considered i n  [Ll]
[H] ,  [G , R ] a n d  [H.L1.R] m aking a  v e ry  d e ta iled  s tu d y  o f  L ie  flow s of
codimension 3 (c f . § 8 ).  B u t  a  com plete classification w as no t ob ta ined
because of the following open question:
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Let wg be the  family of L ie algebras fo r w hich  there  is a  basis el , e2 , e3

such that

ed  =0 , [el, e3] =e2, [e2, ed= — e1
-f- he2 , h E (0,2).

F o r  w hich  h  i s  t h e r e  a  L ie  M - flow o n  a  c o m p a c t m a n ifo ld  w ith  basic
dimension 2?

W e so lv e  th is  p ro b lem  h e re , sh o w in g  th a t th e re  is  n o  algebra of the
family M, h 0, realizable as transverse  to  a L ie flow  of basic dim ension 2
(Theorem 5.1).

T he change problem is  to  k n o w  i f  a  given L ie W- fo lia tion  can  be  a t the
sam e tim e a Lie ' - foliation, where  a n d  W' a re  tw o  n o n  isomorphic Lie
a lg e b ra s . T he  only a  priori restriction is  th a t  the  struc tu ra l L ie  algebra IC
must be a Lie subalgebra of a n d

A first example of th is situation was given by P. Molino [G.R]:
Let 0° , 0 1, 02 , 0 3 denote the canonical coordinates in  T3 x .  The vector filed
x= ame°+aa/aei F same2, w ith a„8 rationally independent, admits ame°,
5/501, a/5e3 as an abelian p a ra lle lism . But

a a ei =cos0 3± s i n 0 3

aeo aei
a a e2 =  — sin03+ C O S O 3aeo ae i

a e3= 503
is a  new parallelism with [el, ed =0, Eel, = e2, [e2, =- — e l , i.e. the flow
is also transversely modeled on n

A  system atic study o f  th e  change problem w a s  f irs t  m a d e  in  [H ]. T h e
c a se  o f  L ie  flow s o f  codimension 3  and  basic  d im ension  1 w a s  made in
[H.L1.R] (cf. §8).

In  this paper w e com plete the classification, in relation w ith  the change
problem, of Lie flows of codimension 3. The cases of codimension 1 and 2 are
e a sy  (cf. § 3 ).  W e expect that this study becom es usuful in  order to attack
the general case.

The main results of this paper are the following.

Theorem 5.1. (1 )  The Lie group cg admits, for countable many values
of h, a closed Lie subgroup H w hich is the closure of a f initely generated subgroup
and such that the homogeneous space G/H is a compact manifold of dimension 2.
(2) For these h the p air (M , 1 ) is realizable as transverse to a Lie foliation.
(3) The pair (wg, 1) is not realizable as transverse to a Lie flow for any  h *0.

Theorem 6.1. Let g be a codimension 3 Lie flow of basic dimension 2 on
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a compact oriented manifold M .  Then
(1) g  can be modeled exactly on one or exactly on two Lie algebras. This second

case arises if  and only if  g  is modeled on 9 1 and 92 or on W4 and 95.
(2) g  is modeled oni f  and only if  it is modeled on 92.
(3) If  g  is modeled on 9 5 then it is modeled on W.I.
(4) There are W4 Lie flows which are not W5 Lie flows.

Theorem 7.1. Let g  be a  codimension 3 L ie foliation on a com pact
oriented manifold M with compact leaves. T h e n
(1) g  can be modeled exactly on one or exactly on two Lie algebras.
(2) g  can be modeled on two Lie algebras if  and only if  it is modeled on 9 1 . In
this case the pair is (91, 92)
(3 )  There are L ie 92 - foliations that can not be modeled on 91.

W e w ish  to  thank  P rofessors G . H ector and G . Guasp fo r  their helpful
comments during the development of this work.

2. Preliminaries

Let g  be a  smooth foliation of codimension n on  a  differentiable manifold
M  g iv e n  b y  a n  integrable subbundle L  C T M . W e d en o te  b y  T g  the Lie
algebra of the vector fields tangents to  the foliation, i.e. the sections of L .  A
vector field YE  '( M )  is said to be .J - foliated (or simply foliated) if
[X , Y ] E  T g  fo r  a ll X  E T g .  T he  L ie  algebra o f  foliated vector fie lds is
denoted by .T(M, g ) .  Clearly. T g  is  a n  ideal of .T (M , g) and the  elements
of X (M /g) = X (M, g )/TY  are called transverse (or basic) vector fields.

If there  is a  family (X i .... X n }  of foliated vector fields on M  such that the
corresponding family Yn} of basic vector fields has rank n everywhere
th e  fo lia t io n  is  c a lle d  tra n sv e rse ly  parallelizable a n d  {X i .... X  n } i s  a
transverse p a ra lle lism . If the vector subspace 9 of (M/g) generated by
(X i ,... X n }  is  a  L ie  subalgebra, th e  foliation is called L ie 9 - foliation and  we
say that g  is  transversely modeled on the Lie algebra 9.

W e shall use the following structure theorems:

Theorem 2.1. ( [M ]).L e t  g  be a  transversely parallelizable foliation on
a compact manifold M, of codim ension n. Then
a )  There is a L ie algebra IC of dimension q . n.
h )  There is a locally trivial f ibration 7T: M W with compact fibre F and

dim W=n

c )  There is a dense Lie IC-foliation on F such that:
i )  The fibres of  i t  are the closures of the leaves of g .
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i i )  The foliation induced by g  on each f ibre of  it : M— )W is isomorphic to ohe
L i a -foliation on g .

Ye is called the structural L ie algebra o f  (M, , i t  the  basic f ibration and
W the basic m anif o ld . The foliation given by the fibres of it is denoted by g.

Note that the basic dim ension (i.e. the dimension of 147) is

d im  W =codim  g= codim  g — dim

Theorem 2.2 ([F ])  . g  is  a L ie  V -foliation o n  a  compact connected
manifold M if  and only if  there exists a homomorphisni h: 7ri (M) —>G, where G is
the connected and simply connected L ie group with its L ie algebre V, a  covering
map p: 11-71—>M, and a locally trivial fibration D: kl.-- >G such that

i) D. is eguivariant under the group Aut (p)

ii) The f ibres of D are the leaves of the lif t foliation g =p * g  of g .
C ondition i )  means that

D( x ) =h ( y )  •  D(x) rE it1  (M)

W e also  say  that g  is a Lie G - foliation. T h e  subgroup F=Im  h  is called
the holonomy group of the foliation.

For a Lie p - foliation the structural Lie algebra ie  is alw ays a subalgebra
of

The basic cohomology H* (M /g )  of a foliation g on a m anifold M  is  the
c o h o m o lo g y  o f  t h e  c o m p le x  of b a s i c  forms, i . e .  the su b c o m p le x
Q* (M /g )C Q (M ) o f th e  D e  R h am  complex given by th e  form s a satisfying
ix a=0  and L x a=0 for any vector field XE T g.

F o r  a  Riemannian foliation on a com pact manifold M  it is w ell know n
[E.H.S] that Hn(M1g) = 0  o r  R, where n  is  the codimension of the foliation.
If I f  ( M / g )  R  the foliation g is called unimodular.

We have the result

Theorem 2.3 ( [LI.R.2] ). Let g  be a L ie V -foliation of codimension n on
a compact oriented manifold M.
i) If  g  is unimodular then Hn  (W) R and HP (V) CH (M /g).
ii) I f  Hn  ( ) R  a n d  the structural L ie  algebra is an ideal o f  V  then

(M / .)  R.

W e shall also use the following results on unimodularity.

Theorem 2.4 ( [URA.] ). Let g  be a si (2 , R ) Lie flow of codimension 3
and of  basic  d im ension 2  o n  a  compact oriented m anif o ld . Then g  is not
uni modular.
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Theorem 2.5 ( [LA.R.2]) . L et g  b e a L ie w - foliation with a nilpotent
Lie a lgebra  on a compact orien ted  m anif o ld . T hen g  is  unimodular.

Now we recall the  definition of com m u tin g  sh ea f associated to a foliation

[M]. Let U be an open subset of M and let ZuE X (U/g) be a local transverse

field. W e will say that Zu is  a  local com m u tin g transverse f ield if, for all
YE (M / ) , the  restric tion  of .)7 to  U commutes w ith Zu• T h e  s e t  o f  these
lo ca l commuting tra n sv e rse  f ie ld s  fo rm s a  subalgebra C (U ) o f  X (U /g).
These subalgebras, together the  na tu ra l restrictions, can be considered as a
presheaf of a lg e b ra s . The com m u tin g  sh ea f is then the sheaf associated to this
presheaf.

For instance, in the case of dense Lie foliations, where the transverse Lie
algebra can be identified with the Lie algebra of left invariant vector fields on
G, the commuting sheaf is nothing but the germs of the right invariant ones.

Theorem 2.6 ( [MS] ). Let ,7 be a riemannian flow on a compact oriented
manifotd M .  T h en  g  i s  unimodular i f  an d  o n l y  i f  th e  c o m m u t in g  sh ea f i s
globaly trivial.

W e  s h a l l  u s e  t h e  follow ing c la ss if ic a tio n  o f  th e  3  dim ensional Lie
algebras:
• WI (Abelian):

• W2 (Heisenberg):

•

•

W3 (SO (3) ) :

W4 (S1 ( 2 ) )

[el, = [el, e3] =Ee2, ed =0

=Eel, ed 0 ,  [e2, ea] = e l

=e3, [e2, =e i, [e 3 , e i=e 2

e2] =e3, [e2, =  el, [e3, ei] = e2
• (Affine):

[el, = e 1 , [ei, ea] = [e2, ea] =0
•

[el, ed =0, [ e i , =ei [e2, e3] =e1+e2
• The family V;:

[el, 6'2] =0,[ c i ,  ea] =ei [e2, e3] =ke2 k * 0

T he  algebras V ;  and  WI' a re  isomorphic if  a n d  on ly  if  k  = k ' o r  k  = 1

From now on we consider that the family is parametrized by
h E [ — 1 , 0) U (0 , 1.] .
• The family M:

[ci, 6'2] =0, [el, e3] =e2,1 e2, = — ei +he2 h2<4
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The algebras m and ' a r e  isomorphic if and only if h = h ' o r h= —  h'.
From now on  we consider thet family is parametrized by h E  [0 , 2 ) .  Notice
that for 112 ...4 we obtain an algebra isomorphic to W6.

The Lie algebras W2, W3, W4 a re  unimodular. The L ie algebras Ws, W6
are  not unimodular. The only unimodular Lie algebra in  the  family W7 is
and the only unimodular Lie algebra in the family Ws is M.

T he connected simply connected Lie groups corresponding to W s,  g",
are given by

G5 =
et

( o
0 x \
1 y ; x, y, tER1

0 01 /

G14=1
/ e t

0

0 x \
e t y ; x , y ,tE RI

\ 0 0 i /

I
c (t) cos ((p+t) — c(t)sint x  \

Gti= c (t) sint c (t) cos ((p —  t) y  ; x, y, t E R

0 0i i

where c (t) = 
2e41` 

 , a =.1 4  h 2  and  )3= tango= 
h  

 .a a
They can also be described as 11,3 =R 2 x R with the product

(p , t) • (p ', t') =  (p+ e - Afp', t+t')

where

( —1 0 )
A =

0 0

( 1  0 )
A =

0  k

(  0 1  )
A =

— 1 h

In §7 we shall use the following result concerning semisimple Lie groups.

Theorem 2.7 ( [G] ). Let F be a lattice in  a semisimple Lie group G that
has no compact semisimple factors, let W =c / r,  and let G ' be a L ie group acting
transitively and locally effectively o n  W . Then G' is locally isomorphic to G.

for G5

for GI;

for GL'
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W e shall also use the following results obtained in [H.L1.R.]:

Proposition 2.8. Every no dense L ie abelian foliation of  codimension 3

on a compact manifold M is also a L ie wro-foliation.

The converse is  n o t t r u e .  N evertheless it is true for basic dimension 2
(and also for Lie flows of basic dimension 1):

Proposition 2.9. Let g  be a L ie W ° -foliation on a compact manifold M
with basic dimension 2, then g  is also a L ie abelian foliation.

Proposition 2.10. L e t g  be a L ie foliation on a com pact m anifold
transversely modeled on two nilpotent Lie algebras and ï e. T h e n  and IC are
isomorphiec.

3. Codimensions 1 and 2

T h e  realization a n d  th e  c h a n g e  problem s a r e  v e ry  e a sy  in  these two
codim ensions. Codimension 1. T h e re  is  o n ly  one Lie algebra of dimension 1,
so that the change problem has no sense in  th is c a s e . T h e  linear flows on T2

(rational slope for basic dimension 1 and irrational slope for basic dimension 0)
are examples of such foliations.

Codimension 2. T here  a re  tw o L ie algebras of dimension 2: the abelian
and the affine Lie a lgebras. E xam ples of the abelian case in basic dimension
0 , 1  o r  2  a re  given by linear flow s of suitable slope o n  r .  A dense (basic
dimension 0) affine Lie foliation of codimension 2 was given by A . H aefliger
in  [G h ]. T h is  s itu a tio n  is not possible for Lie flows [C].

The flow on the hyperbolic torus TA induced by one of the eigenvectors of
A C S L  (2 , Z )  ,  t r  ( A )  > 2 , is  o n e  exam ple o f  a n  a ff in e  L ie  f lo w  o f  b a s ic
dimension 2 and basic dimension 1 [C].

B ut i t  is  n o t  possible to  have a codim ension 2 affine L ie flow  of basic
d im e n sio n  2 . T h is  is  because  in  th is  c a se  th e  leaves are com pact and the
folita tion i s  i n  f a c t  a  loca lly  t r iv ia l  bund le  o n  a  c o m p a c t m a n ifo ld . In
particular, since the basic cohomology coincides w ith the cohomology of the
base space of the bundle, the foliation is  un im odu la r. But th is is  no t possible
because the affine Lie algebra is not unimodular (Theorem 2.3).

O n the o ther hand, since every Lie foliation transversely modeled on the
abelian  L ie  a lg e b ra  is  u n im o d u la r  (T h e o re m  2 .3 )  it  is  c le a r  th a t it  is  n o t
possib le  t o  change th e  tra n sv e rse  a lg eb ra  o f  a  g iven  cod im ension  2  Lie
foliation.

4. Review of some general facts
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F irs t  o f a ll w e  note th a t the  language of L ie  algebras can be translated
into the language of Lie groups.

The pair of Lie algebras (9, le) is realizable if and only if the pair of Lie
groups (G , T ) is realizable, where G  is  the connected 1 - connected Lie group
corresponding to 9 and F is a  subgroup of G  such that the Lie algebra of the
connected component of the identity of r is Ye.

But we can have subgroups F and F' of G, with the  same Lie algebra Ye,
and such that (G, n is realizable a n d  (G, F ') is  no t [Gh].

The non - isomorphic L ie algebras 9 and 9 ' are transverse to the same Lie
foliation of and only if on the connected 1 - connected Lie group (G, .) corresponding
to 9 there exists another operation of group, * , such that the Lie algebra of
(G , * )  is 9' and there exist a subgroup F ' o f (G , * )  and an isomorphism 0
between the holonamy group F of the given foliation and r  such that 7- g =- 0 (r) *
g for each T E  F and g c G.

T h is  la s t  condition im plies, in  particu lar, th a t  0 can  be  ex tended  to  a

unique continuous isomorphism 45 between r and  0 ( r ) .  Since the  holonomy
group r of a  dense Lie foliation is  dense in G, 0  is  a n  isomorphism between
(G ,•) a n d  (G , * ) ,  i.e. a dense Lie foliation can be modeled only on one Lie
algebra.

A nother consequence o f  th is  in te r p r e ta t io n  is  th a t  a  L ie  fo lia tio n
transversely modeled on  a  L ie  algebra such that the corresponding connected
1-connected L ie g roup  is  compact, can be m odeled only o n  th is  L ie algebra.
T h is  follows from th e  f a c t  [F ] th a t the L ie group G  i s  diffeomorphic to  the
manifold fi/ g ,  w hich depends only on  the  fo lia tion , and  th a t  compact Lie
groups with the same homotopy type are locally isomorphic [S].

W e remark that in the case of Lie foliations on simply connected manifolds
the holonomy group is trivial. Hence, in  th is  case, a Lie G-foliation is also a
Lie foliation w ith  respect to  every  structure of L ie group on the m anifold G.
There are  not topological obstructions to  the change p ro b le m . If the manifold
is not only simply connected, but compact, then the foliation is  a  locally trivial
bund le  over G . In particular the foliation can not be dense and the connected
1-connected group G  corresponding to 9  is  co m p ac t. Hence there are no Lie
foliations of codimension 1 or 2 on compact simply connected manifolds.

5. On the dimension of the foliation

The dimension of the foliation plays an im portant ro le  in  th e  realization
and the change problem s. To see th is w e shall construct exam ples of pairs
(9 , q )  s u c h  th a t  th e y  a r e  no t rea lizab le  a s  L ie  f low s b u t  th a t  th e y  are
realizable as L ie  fo lia tions of d im ension  g re a te r  th a n  o n e  (Theorem 5.1).
A lso, w e shall give exam ples o f  p a ir s  (9, q )  su ch  th a t one  can  change the
tran sv e rse  L ie  a lgeb ra  9  o n  a n y  o f  the ir  rea liza tions a s  L ie  flow s and
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examples of foliations on the same p a ir  (5, q ) on  w hich  it is  no t possible to
change the transverse Lie algebra 5  (Example 5.1).

It follows directly from [F . ]  th a t  a  necessary condition  for a  pair (5, q)
t o  b e  r e a l i z a b le  i s  t h a t  t h e  connec ted  sim ply  connec ted  L ie  g ro u p  G
corresponding to 5  admits a  closed Lie subgroup H of dimension q .  Moreover
th is  H  m ust b e  th e  closure o f  a  finitely generated sugroup F  o f G .  These
conditions are n o t e a sy  to  check u p  in  general a n d  m oreover they a re  not
sufficient (Theorem  5 .1 ).  M ore specific necessary conditions are g iven  in
[G h ]. We begin with the following

Lemma 5.1. The basic manifold of  a L ie 5g - foliation of basic dimension
2 on a compact manifold M is diffeomorphie to T2  or K 2 .

Proof. F o r  each point x E  M  there  ex ists a  foliated vector field Z u in  a
neighbourhood U of x , such that Z u is  tangent to  g ,  is  no t tangent to  g ,  and
commutes (modulo T g )  w ith  every  global foliated vector field , th a t  is , we
consider a  lo c a l se c tio n  o f  th e  com m uting  sheaf [M ]. M oreover i f  Z v  is
another vector f ie ld  in  a  neighbourhood V of x  w ith the  same property then
Z u=aZ v  (modulo T g ) where a is a locally constant function.

We can assume that the vector field Z u is

Z u  =a u b u Y2+c u Y3

where au , bu, eu a re  basic  functions o n  U  a n d  {Y1, Y2, Y 3}  i s  a  parallelism
corresponding to the basis of Vg considered in section 2 .  Since [Y,, Zu] E  T g
we obtain the equations:

(cu) = 0 Y2 (cu) = 0 Y3 (c u) = 0

We deduce from these equations that cu is constant on U.
Since Z u =aZ v  (modulo T g ),  with a a  locally constant function, if cu =0

then cv = 0 .  Then there are only two possibilities:
i) for any point y c M  and any neighbourhood U of y  we have cu=0 or
ii) for any point y C M  and any neighbourhood U of y  we have cu ± 0 .  Let us

p ro v e  th a t  i i )  is not possible:
In  th is  case  it  is  e a sy  to  s e e  th a t  Y1, Y2 a re  n o t tangents to  g  at any

p o in t .  T h e n  w e  h a v e  T (M ) =  T g  (Y i ,  Y2) a n d  w e  d e f in e  Y  a s  th e
component o f Y, in  (Y1, Y2). Then YI

3
v i s  a  combination o f Y i and 11 at each

point, i.e. t h e r e  are basic functions f, g such that

( Ynp
=

 f(p) (Y ,N ) p+g (p) ( n )  p  V pEM.

In this case we obtain

11= [Y1, Y3] N = y 1 ( (g)
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then Y1 (q) is the constant 1, but this is not possible because g  is  a  continuous
function on a compact manifold.

T h u s  cu=0 i n  each neighbourhood U  a n d  th is  m e a n s  th a t  Y 3  is  no t
tangent to g  at any p o in t .  Hence the projection of the foliated vector field Y3
on the basic manifold W is a  non-vanishing vector field, i.e. W= T 2 o r If 2.

Theorem 5.1. (1 ) The Lie group Gg admits, for countable many values
of h, a closed Lie subgroup H which is the closure of a finitely generated subgroup
and such that the homogeneous space G/H is a compact manifold of dimension 2.
(2) For these h the pair (wg, 1) is realizable as transverse to a Lie foliation.
(3) The pair (M, 1) is not realizable as transverse to a Lie flow for any h*O.

Proof of (1). Let I ' = ((1, 0, 0) , 0, 0 ), (0 , 1 , 0 ), (0 , 0 , r)), E t(),, be a
subgroup of Gg and let H=T.

W e shall first prove that dim  H=1, for at least countable many values of
h. Note that every elem ent of r can be w ritten  a s  a  product of elements of
type

(a, m, kir) a eR, m, keZ

But

cos (0 - Fkr) — sinkr a'
(a, m, kir) • (a',,  k 'i r )  =  ( c  (kir)

sinkr cos (0 —  kir)

+ ( a  ,  ( k + e )  r )  =

=  (a+e k
4

l
i

t
h 2 •  ( ± d ), e  k

4
1, - -r

h , •  (±m ')+m , (k+k ')ir )

Now, as —7.L. logn >0, V n Z, n > l, there is hE [0, 2) such that h  = 1 1 0 0 ,

A/4 h2

T h u s  (a , m , O r) • (a', m', k'n. ) =  (—  —  , ± + m , (k + k') TE and
H = (Rx Z) DOTZ., i.e. dim H=1.

Moreover the Gg/Hf-=- T2 , i.e. i t  i s  a compact manifold of dimension two.
Proof o f (2). Since F  is  a  polycyclic, finitely generated subgroup of

with GVH compact, F is realizable [Mg].
M o re  p rec ise ly  M egniez th e o re m  s ta te s  th a t  if a  finitely generated

subgroup F o f  a  conected simply connected solvable Lie group G contains a
un ifo rm  polycyclic su b g ro u p , th e n  r  i s  t h e  holonomy g ro u p  o f  a  L ie
G- foliation on a compact manifold M.

In particular the  pa ir  (wg, 1) is realizable.
B u t  t h e  M eigniez construc tion  g i v e s  r i s e  t o  a  2-dimensional Lie

Vg-foliation. In fact this realization can be made in the following way:
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Let S = (R 2 X R2) IXR be the Lie group given by
(a, b, c, d , e )  •  (a', b', ,  d ',  e ') =  ((a, b) +A  (e) (a', b') , (c, d) ±

A (e) (c% a'),  - Fe')
where

A (e) (e)
(cos (0 - — s i n e  )

sine cos (0 — e)

Now we consider the submersion

: S R2IXR=G4s

(a, b, c, d , e )  — > (a+c , b +d ,e )

It is easy to see that çb (rx) (r) • 95 (x )  , V  T E M X 7 rZ , V .r  S and hence
we have a 2-dimensional Lie G-foliation on S/Z 4 V7z-Z).

Before proving p a r t  ( 3 )  w e  re m a rk  th a t it  is  th e  answ er to  one of the
open questions stated in  [G R ] a n d  i t  c loses the realization problem  for Lie
flows of codimension 3 and basic dimension 2.

Proof of  (3). A s s u m e  that there is a W42 , h *0, Lie flow of basic dimension
2  on  a  com pact oriented m an ifo ld  M . B y replacing, i f  necessary, the basic
manifold W w ith  its  double cover we can assume tha t the basic libration  i s  a
T 2  b u n d le  o v e r  T 2 . U sing now  the classification of such bundles given by
Sakam oto-Fukuhara [SF] we obtain that M  is diffeomorphic to
(T 2  X  R X  R) / ,  the  quotien t space o f  (T 2 X  R  X  R )  b y  th e  equivalence
relation "--:" generated by

(7r (s, t), x, y) (71-(s, t), x +1, y)

and

(71- (s, t) , x , y) — (71- (A (s, t) ±x  (m , n) ), x , y +1 )

where Jr: R 2 — >T2 is  the canonical projection, m, n E Z and A E SL (2, Z).
This description enable us to construct a  well defined and injective map

j: T 2 — >M, that we shall use later, by

j (7-c (a, b)) =p(ir (0, a) , b, 0)

where p: T 2 x R 2—>M is the canonical projection.
O n the o ther hand the homotopy sequence of the basic  fibration induces

the exact sequence of fundamental groups

0-- >7r1 (T 2 ) - 1 (M) — >Tr1 ( T2 ) — >0

Since r 1 (T2) is a free abelian group we have

ir (M )=Z 2V Z 2
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I n  p a r t i c u l a r ,  a n d  b e c a u se  o f  t h e  in jec tiv ity  o f  t h e  holonomy
representation h: z i (M) - - - *Gg of a non - compact Lie flow, we have two subgroups
h (Z9X0) and h (OVZ2 )  of cg isomorphic to Z E D Z . But it can be seen that if

S is a subgroup of cg isomorphic to ZEDZ then S c R 2 x 101 or
S C  {e V ; ab= ba, m, n Z } for a, b Er R2 x {0}. In  th is case if a = az,
and b = (b1, b2, n), and  n a re  rationally independent. H ence w e have four
possibilities:

(1) h (Z2 V 0 )  and  h (01XZ2 ) a re  both contained in  R2 x  {W . T h e n  the
holonomy group r= h  (7-c1 (M )) , generated by h (Z9><O) a n d  h  (0 X  Z 2 ) is
contained in 11.2 x {0}, which contradicts Gg/ r=r.

(2)
(Z9 (0 ) =  {an  bn; ab -= ba, m, n E  Z )  a, biEtR2 X {o}

and

h(OVZ9= tc n idn ; cd=dc, ni, nEZ) c, d 1$ R 2 X {0}

As h (Z 2 V 0 ) is a normal subgroup of F we have cac - i  E h (Z2 IXO) ,
i.e cac - 1  =- an i bn . T his implies ni, - Fnr) and since and  77 a re  rationally
independent we have m = 1  and n = 0 , and hence ca=ac. Analogously ad=da,
bc = cb, a n d  bd =  d b . Thus 7 t1(M ) i s  abelian a n d  th e  m atrix  A  in  th e
Sakamoto - Fukuhara classification is the  identity  [SF].  B u t  this implies that
the  flow  is  isom etric  [A.M] w h ic h  is  impossible because h 0, is  no t
unimodular.

(3 )  h (VIXO) c 2 X 10) and h (OVZ 2 ) = {e V ;  ab =- ba, ni, n
a ,  b Et R2 x  (0 ) o r  v ic e  v e r s a .  B y  the  construc tion  o f the  map j  w e have
j *  [ r ]  EZ 2 V 0 and j * [d] EOVZ 2 , w here [y], [a] are the generators of in  (T 2 ).
Then h ( j  [r ])  =  (x , y, O), (x , y ) ±  (0, O), a n d  h (j [6 ])  -=- (p, g, t) , t 0  but
this is not possible because (x, y , 0 )  •  (p, g, t) *  (p, g, t) • (x, y,0)

W e end th is section showing, by means of an example, that the dimension
of the foliation plays an important role in the change problem.

F irs t  w e  re c a ll th a t th e  Molino's example in  §1 i s  a t  th e  sam e tim e a
realization of the pair (g, 2) and of the pair 2).

In fact we have proved in  [H.Ll.R] that any realization of the pair (g, 2)
as transverse to a Lie flow is, at the same time, an abelian flow.

But there a re  realizations of the same p a ir  (92, 2) as transverse to  a Lie
foliation which a re  no t L ie foliations for any  o ther Lie a lgeb ra . T o  see  th is
we consider the following example:

Example 5.1. Let r be the subgroup of Gâ given by
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F=1(1,0, 0),(0, 0), (0,1, 0), (0, 77,0), (0, 0, r ) }

w h e r e  and ri Er Q.
Since F is  a  polycyclic finitely generated subgroup of GS th e  p a ir  (Gs, r)

is realizable  [Mg] , as transverse  to  a  2-dimensional fo lia tion . N ote  tha t the

connected component o f  th e  identity  o f  r i s  R2 X  { W . M o re o v e r , a s  the

structural L ie algebra 0  is  an  ideal of § °8 and § 08 is unimodular, the foliation
i s  unimodular (T heorem  2 .3 ), a n d  h e n c e  i t  o n ly  c a n  b e  m o d e le d  on
umimodular Lie a lgeb ras , i.e . on (.6 - 2, - 3, - 4, -  P .  But

(1) It can  not be  m odeled  on  WI  b ecause  th e  holonomy group r is not
abelian.

(2) It can not be m odeled neither on  § 3 n o r  on  §4 because they do  not
have abelian subalgebras of dimension 2.

(3 ) It can not be modeled neither on § 3 n o r  on To see this assume
th a t  i t  i s  m o d e le d  o n  W2 (r e s p . W P ).  T h a t  m e a n s  th a t  o n  t h e  same
u n d e rly in g  m an ifo ld  R3 w e  h a v e  t w o  s t r u c tu r e s  o f  L ie  g r o u p ,  th e
corresponding to GS and the corresponding to G2 (resp. G P ). M oreover w e
have r  g = (7 )  *  g  fo r all g  in the underlying manifold R 3 w h e re  • a n d  *
are the respective Lie multiplications (§ 4 ).  Then the subgroup H= {(1, 0, 0),
(0, 1, 0), (0, 0, ir)) of F is  a  discrete uniform subgroup of GS a n d  (H) is  a
discrete uniform subgroup of G 2  (resp. G P) isom orphic to H .  But th is  is  a
contradiction to the classification of the uniform subgrups of these Lie groups
(§7).

6. Lie flows of codimension 3 and basic dimension 2.

T h e  realization and the change problem in basic dim ension 1 w as first
considered in  [G.R] and completely solved in  [H.L1.R].

In basic dimension 2, th e  realization problem was also considered in the
above two papers but the  case §g, h *  0 remained o p e n . T h is  c a se  has been
solved here in Theorem 5.1.

So it only remains to study the change problem.
We begin with the following

Lemma 6.1. The basic manifold of a Lie § 5 - flow of basic dimension 2 is
diffeamorphic to the torus r .

P roo f Let Zu be a local section of the commuting sheaf a s  in  Lemma 5.1.
Recall that if ZIT is another section of this sheaf then Z u= aZy (modulo T g)
where a is  a  locally constant function.

We can assume that the vector field Z u  is
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ZU= a U Y1+ bUY2 +CUY3

where au, bu, cu are  basic  functions o n  U  a n d  0 -'1, T7 2, -37 3 ) i s  a  parallelism
corresponding to the basis of W3 considered in section 2 .  Since [Ye, Z u ] E
we obtain the equations:

Yi (a u) —  b U  Y2 (a — a u Y3 ( a  = 0

Yi (bu) = 0 Y2 (bu) = 0 Y3 (b  LT) = 0

Y1 (CU)
 = 0

Y 2  (Cu) 
= 0 Y 3  (CU)

 = 0

T hus bu and cu a re  locally c o n s ta n t. A s  bu= auvbv and cu=auvCv we
have bu=0 everywhere o r bu*0 for each U and the same for cu.

B u t  b u  ±  0  everyw here  im p lie s  tha t t  i s  a  g lo b a l se c tio n  o f  th e
com m uting sheaf w hich is impossible because  th is  f low  i s  n o t  unimodular
[M .S ]. Hence bu=0 everywhere.

A s the  sam e is true  for Cu w e  have Zu = au Y i. In  particu la r Y2 a n d  Y3
are never tangent to g  and the basic manifold is diffeomorphic to  T 2 .

Theorem 6.1. Let .7 be a codimension 3 Lie flow of basic dimension 2 on
a compact oriented manifold M .  Then

(1) g  can be modeled exactly on one or exactly on two L ie algebras. This
second case arise if  and only if  g  is modeled on V i and wg or on W4 and W5

(2) g  is modeled on Wi  if  and only if  it is modeled on wg.
(3) If  g  is modeled on W3 then it is modeled on W4
(4) There are L ie W4 - flows which are not Lie W5 - flows.

Proof. First w e recall that (2) is proved in  [H.LI.R].
Proof o f  (1 ) .  It fo llow s from  th e  re su lts  o n  realization i n  [G.R] and

[H.L1.R] a n d  Theorem  5.1 th a t  th e  o n ly  L ie  a lg e b ra s  th a t c a n  a p p e a r  as
transverse Lie algebras to this Lie flow are

W2, W4, WS, W4

A lso  i f  g  is m odeled  on i t  i s  n o t  possible t o  change  the  algebra
because W3 i s  th e  on ly  L ie  algebra of dim ension 3 w ith  compact connected
1- connected associated Lie group.

Assume tha t g  is modeled on WI . T h e n  the flow is  unimodular [Ll.R.2]
a n d  hence  it can  no t be  m ode led  o n  W3, because th e  a ff in e  algebra  is not
unimodular, and it can not be m odeled on W4, because the L ie  flows of basic
dimension 2 on W4 are  not unimodular [U R A ]. F inally  it can not m odeled on
W2 because they are both nilpotent [H.L1.R.].

Assume that g  is modeled on W2. Since the flow is  unimodular [Ll.R.2] ,
we have as before that it can not be modeled neither on W4 nor on W3.

Proof o f  (3). If  g  is m odeled on the  basic  fibration i s  a  r  bundle



Lie flows of codimension 3 469

o v e r T2 (L em m a 6 . 1 ) .  U sing now  the classification of T2 b u n d le  o v e r  T2

given by Sakamoto - Fukuhara [S.F] we have that there are  a  matrix

A =
( a  b

E SL (2, Z) and numbers m, n E Z such that M is  diffeomorphic to
c  d

the quotient of R 4  b y  the  natural action of Z W Z . This semidirect product is
given by

(s, d) (s', d') = (s+B d (s'), d - Ed') s, s'EZ 3 , d, d'E Z

and

fa  b  m \
B = c d n

0  0  1 /

That corresponds exactly to the action on the universal covering Ai of the
fundamental group of M.

Set G4
=  SL (2, R ) and G5= Aff÷  (R ) x R .  Let D: 114— G5 and  h: VIXZ— G5

be the developing map and the holonomy morphism associated to the given Lie
flow J .  L e t  F = h (Z 3 V Z )  b e  th e  holonomy g r o u p . T h e  vec to r f ie ld  Y1

considered in  the  proof of Lemma 6 .1  is  the projection on M of a  vector field
Yi  on  M such that D* (YI) -=ei where el is the left invariant vector field on G5
given by

where the coordinates x, y correspond to the notation

A ft (R ) =  {( Y  x  ; y  > 0 )
0 1

Since Y1 i s  tangent to the closure of the leaves and M/ Gs /T it follows
th a t  r= R  x  H  w here  H  i s  a  subgroup  {x  =  0 )  in  G 5 .  Since Gs/r has
dimension 2, H must be a  discrete subgroup and hence F c  A ft -  (R) X  a  for a
given E E R . We may assume E = 1 . Next we define

P:G s - 4 G4
(a, b, t) ã(a, b) • 0'(t)

where 0  is a lifting of

g5 : R SL (2, R)

t 1—*
c o s 2 r1  — sin27rt
sin2n1 cos27rt

and a  is  a lifting of
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a: A f t -  (R) —> SL (2, R)
( a  b\ 1  ( a  b) a  > 01-*
\ i l o 1

to the universal covering G4 of SL (2, R).
Since 0 (n) , n E Z, i s  in  th e  center o f G4 [P] , cP i s  a  morphism when

restricted to T .  Then if we define 5=0°D and ir=-0.h, we have

(r • :f) = (h  (r) • D  (x )) =  ( (a, b, n) • (x, y, z)) = 0(a+ bx, by, n+z) =
= ± bx , by) • 0 (n =  (a, b) • 0 (n) • ã(x, y) (z) =

=41- (r) ( r)

and hence g - is a lso  a W4 Lie flow.
Proof of (4) . Let D = T 2 T 2 b e  the double torus and  le t T ID be the unit

tangent bundle over D .  I t  is  w e ll k n o w n  th a t T i D i s  diffeomorphic to  the
quotient space Tilihri (D ) w here the action of the fundamental group of the
double torus rci  (D) on the unit tangent bundle of the hyperbolic plane H is by
hyperbolic isometries.

Next we consider the diagonal action of 71 (D ) on the producxt T 11-1 X  S1 ,
where the action on the second component is the the identity.

As T 1H X s  is  diffeomorphic to  H x S I X S1 w e can take coordinates t, s
on S1 X  S1 and  consider the vector field on H X s' x s' given by
—  a 

= Q .  Since the above action is by rotations on the first s' andat as'
the  identity on the second one, the vector field  -i f  induces a  vector field X on

ithe quotient space H  s X
 sibri T ID  X S .

We claim that X is a  W4 Lie flow on the compact manifold T i D X  51 •

To see this recall that H x .S1 i s  diffeomorphic to PSL (2, R) and hence we

have on H x Si x S i vector fie lds ( 7 1, 0), (
7 2, 0) , (

73, 0) induced by a  basis of
the L ie  algebra of PSL (2 , R ). I t  is  w o rth  to  sa y  th a t the identification
between PSL (2, R) and 1 1X 5 '  is given by (A-1(i), Ai:u) where

az+b Az = and u  i s  a  u n it ta n g e n t vector in  Tuoll w ith  a  previous fixed

direction.
Since left invariant vector fields on the group PSL (2, R) correspond to

infinitestimal hyperbolic  isometries, t h e  above  vec to r f ie ld s  induce vector
fields Y1, Y2, Y3 on the quotient space H x 5  X  si hci(D) T1D  X 5'.

Again because they a re  infinitestimal isometries w e h a v e  [Yi, X ] = 0, i.e.
they are foliated with respect to X .  Since they are obviously transverse to X,
they are the desired W4 Lie parallelisme.

But X can not be modeled on W5 because the basic manifold is  D (Lemma
6.1).
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7. Compact Lie Flows of codimension 3

T he  results of this section  are  equally true both fo r L ie  flows and Lie
foliations.

First we shall recall the classification of discrete uniform subgroups of
dim ension 3  L ie  groups [A .G .H ]. T his c lassifica tion  directly solves the
realization problem: Only the algebras W2, W3, W4, V3 are realiz able . We
have:

(1) T h e  only connected 1 - connected L ie  groups of d im ension  3  with
uniform discrete subgroups are those corresponding to the Lie algebras

W2, W3, D.4, 'VP, WS

(2) In the abelian case, the group is isomorphic to the matrix group

and the uniform discrete subgroup F corresponds to

/1 0 0  n i

0 1 0  n z

(111, nz, n3) E Z3

\ 0 0 1 n3

\o 0 0 1

(3 ) In  the  non-abelian nilpotent case, W2, the group is isomorphic to the
matrix group

1x i X2\(

0 1 x 3 (xi, 13, X3) E R 3

0 o 1 /

and the subgroup [ ' corresponds to the subgroup generated by

(  1  1  0 \  / 1  0  0 \  / 1  1  1  \
0  1  0 0 1 1 0 1 0
0  o 1 /  \o o  1/  \  0 0  1 /

for a given k E N. We call this subgroup F(k )  and we have
F ( k )  F(k') <=>k = le' .

Moreover Z (F (k)) /  [F(k ), [ ' (k)] n z ( F (k)) Z /k Z , a n d  z (r(i)) *0
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=
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[A.G.H] .
(4) In the case of the group is isomorphic to

1 e" 0  0  x

0  e- k z  0
0 0  1  z

\  0  0  0  1  /

and F corresponds to the subgroup generated by

(x, y, z) E It3  f o r  a  fixed ke Z such that ek 2

e l= e2= e3=

/e k  0  0  0  \

0  e
- k  0  0

0 0 1 1

\  0  0  0  1 /

o o ul\
0  1  0  v i

0 0 1 0

\o 0  0  1  /

/ 1  0  0  u 2\
0  1  0  V2

0 0 1 0
\  0  0  0  1  /

141 U2
with ± 0 .  It is not abelian.

Vi v2
(5) In the case wg the group is isomorphic to

/  cos (27rz) sin (27z-z )  0  x
—sin (27rz) cos ( 2 r z )  0  y

0 0 1  z
0 0 0 1 /

(x, y, z) E R3

and r corresponds to a subgroup generated either by
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or to a  subgroup generated by

/ i  o  o  1\ /1 0  o o /1 o o u\
o l o o 0 1 0 1 o l o v
0 0 1 0  o o 1 o o o n

\ o o o 1/  \o  o  o  1 \o  o  o  1/

with n E Z . I t  is not abelian.
W e sh a ll a lso  u se , an d  th is  is  a n  strightforward computation, th a t  the

center of FF 1 i s  triv ial and that Z (110) [r8°, n Z (r8° ) )  Z i  on i E  {1, 3)
where f ' a  a re  th e  corresponding uniform  discrete subgroups o f W7

- 1

and Wg.
Using this we can solve the change problem:

Theorem 7.1. L et g  be a  codimension 3 L ie foliation on a com pact
oriented manifold M with compact leaves. T h e n

(1) g  can be modeted exactly on one or exactly on two Lie algebras.
(2) g  can be modeted on two Lie algebras if  and only if  it is modeled on WI .

In  this case the pair is (Wi, W2)
(3 ) There are L ie WS-foliations that can not be modeled on WI .

Proof. W e study the six possibilities WI, V2, V3, W4, V7 1,
(1) g  is a Lie W3

- foliation.
I t  is  n o t  possible to  change the algebra because is  th e  only algebra

such that the corresponding connected 1 - connected group is compact.
(2) <7 is  a Lie W4

- foliation.
Let F be  th e  holonomy group of g .  Assume th a t g  is also m odeled on

another Lie algebra of connected 1 - connected group G' w ith  holonomy group
F . T h e n  G ' a c ts  t ra n s it iv e  a n d  loca lly  e ffec tive  on  the  basic  m anifo ld
W -=- G4 /F - G 7 F .  M o re o v e r  G 4  is semisimple a n d  h a s  n o t  compact
semisimple fa c to rs  [A.G.H]. T h u s  w e  a re  in  th e  hypothesis o f  Gorbacevie
theorem  [G ] and hence G is locally isomorphic to G', i.e. i t  i s  n o t  possible to
change the algebra

Thus it only remains to study the four solvable Lie algebras.
(3) g  is  a  L ie  2

- foliation.
T h e n  it  c a n  n o t  b e  m o d e le d  o n  WI  b e c a u s e  th e y  a r e  both nilpotent

[H.L1.R]. O n  th e  o th e r  h a n d  th e  a b o v e  re su lts  a b o u t  th e  c e n te r  of the
uniform discrete subgroups of G2, GF1, and G2 te lls us that it is no t possible to
have a uniform  discrete subgroup (the holonomy group) w hich is at the same
tim e subgroup o f  tw o  o f  th e s e  th re e  g ro u p s . H e n c e  it  is  n o t  possible to
change. the algebra W2.

(4) g  is  a  L ie WF1 -foliation. T h e  same argument shows that neither in
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th is case it is possible to change the algebra.
(5) g  is  a L ie W1- foliation. It is  know n [H.L1.R] th a t in  th is  case g  is

also a Lie WS-foliation.
(6) g  is  a Lie W S-foliation. One of the uniform discrete subgroups of WS

described above is not abelian . So it can not be a  subgroup of WI ,  and hence
there are examples of Lie WS-foliations which are not Lie pi - foliations.

8. Summary

W e sum  up here the classification of Lie flows of codimension 3 ( [G.1?]
[H11.12] and the present paper).

Realization Problem. (1 ) B asic dim ension 3. Only W21 W31 W41

g7 1 , wg are realizable.
(2) Basic dimension 2. Only W3, W4, WS are realizable.
(3) Basic dimension 1. are re a liz a b le . W 2, W 3, 4 , W6, k  Q are
not realizable.

W; is realizable if and only if

lnbk = 
l n a '

k Q

where a, b, —

a b  
are positive real roots o f a  monic polynomial of degree 3 with

integer coefficients.
h * 0  is realizable if and only if

21n2 h =   
4w 2 +1n22

where 2 and w are two real numbers, with 2 > 1 and w*krr(k E Z ) , such that

A, - h r (cosco ± isinw ) a re  th e  roots o f  a  monic polynomial of degree 3  with

integer coefficients.
(4 ) Basic dimension O. O nly  W I  is realizable.

Change Problem. L et g  be a cod imension 3  L ie f low  on a com pact
oriented m anif o ld  M . Then g  can be modeled on one, two, or countable many Lie
algebras.

(1) B asic dim ension 3. g  can be modeled exactly on  one  o r exactly on
tw o  L ie  a lg e b ra s . g  is m odeled  o n  tw o  L ie  a lgebras if  a n d  on ly  i f  it  is
modeled on WI, and the pair i s  (W i, M ). But there are WS Lie flows which are
not modeled on
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(2) B asic dim ension 2. g  can be modeled exactly on  one  o r exactly on
two Lie a lg e b ra s . g  can be modeled on two Lie algebras in the cases
o r  (W4, W5). g  is modeled o n  i  i f  a n d  only if  it is m odeled on WS. If g  is
modeled on W5 then it is modeled on W4. But there are L i e  flows which are
not modeled on W5.

(3) B asic dim ension 1. g  can be modeled on one, two, o r countable many
Lie a lg e b ra s . g  is modeled on one Lie algebra in the case Ws or
g  is modeled on tw o Lie algebras if and only if  it is modeled on WI or on  WS,
and the pair is (WI , WS).
g  is modeled on countable many Lie algebras if and  only if  it is m odeled on
wg, with

21n2 h =   V kE Z
(co+ 21er) 2 +1112 2

where A and w  are  defined as above.
(4) Basic dimension 0. It is not possible to change the Lie algebra.
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