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LIE FLOWS OF CODIMENSION 3

E. GALLEGO AND A. REVENTOS

ABSTRACT. We study the following realization problem: given a Lie algebra
of dimension 3 and an integer ¢, 0 < ¢ < 3, is there a compact manifold
endowed with a Lie flow transversely modeled on & and with structural Lie
algebra of dimension g ? We give here a quite complete answer to this problem
but some questions remain still open (cf. §2).

0. INTRODUCTION

Among the class of foliations with a transverse structure, Lie foliations stand
out. These are foliations transversely modeled on Lie groups. They have been
studied by several authors, mainly by Fedida (cf. [3]). Apart from its intrinsic
interest, the importance of this study is increased by the fact that they arise
naturally in Molino’s classification of Riemannian foliations [6].

To each Lie foliation are associated two Lie algebras, the Lie algebra & of
the Lie group on which it is modeled and the structural Lie algebra # . The
latter algebra is the Lie algebra of the Lie foliation # restricted to the closure
of any one of its leaves. In particular, it is a subalgebra of & . We remark that
although # is canonically associated to # , & is not.

Thus, one natural and interesting question is to know which pairs of Lie
algebras (9, #), with # a subalgebra of &, can arise as transverse algebra
and structural Lie algebra, respectively, of a Lie foliation # on a compact
manifold A .

We shall study here a particular but interesting case; namely, given a Lie al-
gebra of dimension 3 and an integer ¢, 0 < g < 3, is there a compact manifold
endowed with a Lie flow transversely modeled on & and with structural Lie
algebra of dimension g ? For simplicity’s sake we shall say that the pair (£, gq)
is (or is not) realizable.

By using the classification of the 3-dimensional Lie algebras and the fact that
the structural Lie algebra of a Lie flow is abelian (cf. [1]) it becomes appar-
ent that certain pairs (¥, ¢g) are not realizable (for instance, (sl(2), 2) and
(so(3), 2) are not realizable because sl(2) and so(3) have no abelian subalge-
bras of dimension two).
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530 E. GALLEGO AND A. REVENTOS

Nevertheless, in some cases the obstruction for certain pairs to be realizable
is rooted in the compactness of M and not based on purely algebraic reasons
(for instance, the pair (affine, 0) is not realizable (cf. Theorem 1)).

We classify the 3-dimensional Lie algebras in 6 algebras &, , ..., 7, and two
families &, (parametrized by kK € R, k # 0) and &, (parametrized by 2 € R,

h < 4) (cf. §1). We obtain

Theorem 1. If the structural Lie algebra is zero, i.e. F is a compact foliation,
then 9\, 9,, &,, and &, are realizable. &, and &, are not realizable. &, is
realizable if and only if k = -1, and & is realizable if and only if h=0.

Theorem 2. If the structural Lie algebra has dimension 1, then &, %,, &, &,
and % are realizable. %, and Z, are not realizable and &, with h = 0 is
realizable.

We do not know any realization of & with 4 # 0 and 1-dimensional struc-
tural Lie algebra of dimension 1.

Finally, it is remarkable that the realization of the pair (¥, 2) depends on
k . In fact we have

Theorem 3. If the structural Lie algebra has dimension 2, then &, Z,, and
& with h =0 are realizable. %,, &,, &,, &, and &, with k € Q are not
realizable.

We give a realization of &, with k ¢ Q. A characterization of those k for
which &, is realizable and the & case, are still open.

We wish to thank Professors G. Hector and M. Nicolau for their helpful
comments during the development of this work.

1. PRELIMINARY DEFINITIONS AND RESULTS

Let # be a smooth foliation of codimension # on a smooth manifold M
given by an integrable subbundle L C TM . We denote by £ (M, %) the Lie
algebra of foliated vector fields, i.e. X € &£ (M, ) ifandonlyif [X, Y]eTL
for all Y € I'L. Thus, the set of sections of L, I'L, is an ideal of £ (M, ).
The elements of (M, ¥ )/TL(M, %) are called basic vector fields.

If there is a family {X,,..., X,} of foliated vector fields of M such that
the corresponding family {X,,..., X,} of basic vector fields has rank n ev-
erywhere, the foliation is called transversely parallelizable and {71 e Yn}
a transverse parallelism. If the vector subspace & of Z(M, #) generated by
{X,...., X,} is a Lie subalgebra, the foliation is called a Lie foliation.

We shall use the following structure theorems (cf. [3] and [6]):

Theorem A. Let F be a transversally parallelizable foliation on a compact man-
ifold M of codimension n. Then:

(a) There is a Lie algebra # of dimension q < n.
(b) There is a locally trivial fibration n: M — W with compact fibre F and
dimW=n-q=m.
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LIE FLOWS OF CODIMENSION 3 531

(c) There is a dense Lie # -foliation on F such that:
(i) The fibres of m are the closures of the leaves of F .
(ii) The foliation induced by ¥ on each fibre of m is isomorphic to
the # -foliation on F .

# is called the structural Lie algebra of (M, ¥ ), m the basic fibration,
and W the basic manifold. The foliation given by the fibres of z is denoted
by ¥ . Note that codim¥ + ¢q = codim.¥ .

Theorem B. Let F be a Z-foliation on a compact manifold M and let G be
the connected simply-connected Lie group with Lie algebra & . Let p: MM
be the universal covering of M . Then there is a locally trivial fibration D: M-
G equivariant by Aut(p) (i.e. if D(x) = D(y) thenND(gx) = D(gy) for all
X,y € M and g € Aut(p)) such that the foliation F = p*F is given by the
fibres of D.

The natural morphism h: n,(M) — Diff(G) is such that I = im(h) C G,
where the inclusion G C Diff(G) is by left translations.

We shall also use some cohomological properties of the foliation. Recall that
the basic forms complex is given by the forms o € Q" (M) such that Zya=0
and iya =0 forall X € TL. The cohomology of this complex, H* (M, ),
is the basic cohomology of the foliated manifold (M, ¥). If H'(M, %) #0
we say that ¥ is homologically orientable or unimodular. We have (cf. [5]):

Theorem C. Let F be an unimodular Lie Z-foliation on a compact manifold
M . Then the Lie algebra & is unimodular.

Finally, we recall that the 3-dimensional Lie algebras can be classified in eight
families.
%, (Abelian):
le,, e,] =[e,, e;] =[e,, 5] =0.
%, (Heisenberg):

le,,e;]=1e;,e]1=0, ey, e;]=¢,.

gy (s0(3))
le,,e,]=e;, ey, e5]1=¢,, [e5,e]=¢,.

g, (s1(2))

le,,e)]=¢e5, [e,,e5]1=—¢, [e;,e]=0¢e,.
7, (Affine):

le,,e]=¢,, [e;,e]=1]e,,e;]=0.

:

le,,e,]=0, [e.e5l=¢;, [e;,e51=¢ +e,.
..

[e,,e,]=0, [e,e;l=¢,, [e,,e;]=ke,, k#0.
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532 E. GALLEGO AND A. REVENTOS
Z:
2
le,, 6,]1=0, [e,e;1=¢,, [e,,e]=—e +he,, h"<4.

Notice that &, %,, &, and &, are unimodular, & and & are not uni-
modular, &, is unimodular only if kK = -1, and & onlyif A =0.

Remark. We can think that &, is parametrized by k € [-1, 0)U(0, 1]. In fact
two of these algebras are isomorphic if and only if k- k' = 1.

2. LIE FLOWS OF CODIMENSION 3

Let # be a Lie flow of codimension 3 on a compact manifold M . Since the
closures of the leaves of # are the fibres of a bundle (cf. Theorem A), there
are four possible cases.

Case 1. codimZ =3.

In this case ¥ is compact and the basic bundle is M — M/¥ . Thus
the basic cohomology coincides with the de Rham cohomology of the compact
manifold M/ , and hence H® (M/F) # 0. By Theorem C, if such a flow
exists it is transversely modeled on a unimodular Lie algebra. So & and %
are not realizables, &, is realizable (a priori) only if k = -1, and & only if
h=0.

We now give examples for each one of the remainder algebras.

o Z,: Just consider the trivial bundle T'x1T° - 1.

o Z,: Consider the trivial bundle T' x M — M where M is the homoge-
neous space N/I' of the Heisenberg group

1 a b
N = 0 1 ¢cl;a,b,ceR
0 0 1

by the discret uniform subgroup I' of N given by the matrices of N with
integer coeflicients.

e %, : Just consider the trivial bundle T'x§° = 8.

e %,: Consider the trivial bundle T' x T\W — T\W where T\W is the
unit sphere bundle of the two hole torus W . T, W is the homogeneous space
PSL(2, R)/n,(W) and therefore we have the desired example.

o Z (with k = —1): Let 4 € SL(2, Z) be a matrix with eigenvalues 4,
1/A (being A > 0 and 4 # 1). We can give a solvable Lie group structure on
R’=R xR’ by

(t,u)-(s,v)=(t+s, A’-v+u).
The Lie algebra of this group is &, with k = —1 (cf. [4]). Moreover, the
points of R® with integer coordinates constitute a uniform discret subgroup I'
of R?. The quotient is usually denoted by Tj. Then, one example of a Lie
flow transversely modeled on &, with kK = —1, is given by the trivial bundle
T'xT,—T..
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LIE FLOWS OF CODIMENSION 3 533

o % (with & =0) (P. Molino): Let us consider the flow given by the fibres

of the trivial bundle T' x T° — T°. Let 00, 6! , 02, 6 denote the canonical
coordinatesin T'xT>. The parallelism given by 8 /801 , 0 /802 ,0/0 6° makes
the fibres of the bundle an abelian Lie foliation. But we have basic functions
enough to modify this parallelism. In fact, we can take

e, =cosf' -0/86" +sin6'-9/06°,
e,=—sin6' -9/86" +cosh' -9/86°,
e, =-8/80",

to obtain a new parallelism with [e,, e,] =0, [e,, e;] = ¢,, [e,, ;] = —¢,
i.e. the flow is also transversely modeled on &, (with 4 =0).

Case 2. codim¥ =2.

In this case we give examples for &, , &,, &, &,, &, ,and & (with h =0).
We also prove that &, and &, are not realizable.

e Z : One example is given by the flow (X, 0) on T? x T? where X isa

dense linear flow on T°.
e Z,: Let M be the homogeneous space of the Heisenberg group considered

before. The flow on M x T' whose integral curves are given by

1 a b+t
¢,(p)=((0 1 ¢ ),t+d)
0 0 1

1 a b
pz((O 1 c),d) and d €R\Q
0 0 1

is transverse to M , and the closure of each leaf is T2 . Hence it is one example
of a Z,-Lie flow with codim.¥ =2.

e T As S3 = SU(3), an example can be constructed by suspending the
representation /4: nl(Sl) — Diff(S3) given by Aa(l) = ("(')" ?a>, where a €
e
R\Q.
e %, (A. ElKacimi): Let & be the transverse affine Lie flow on Tj (cf.
[1]). Using the fact that the affine group GA can be considered, lifting the map

a b . 1 fa b

0 1 va\0 1
of GA in SL(2, R), as a Lie subgroup of SAI:(2, R), and using also that the
unfolding diagram of %, (cf. Theorem B), D,: T — G4, p,: 7,(T;) — GA,

the desiigd fol~iation can be constructed as follows:
Let M =T j x R be the universal covering of M = Tj x S' and define

D: M — SL(2,R) and p: 7, (M) — SL(2,R) by D(x,t) = Dyx - ¢(t) and

where
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534 E. GALLEGO AND A. REVENTOS

p{y, n) = py(y) - ¢(n), where ¢: R — éi(Z, R) is a lift of the uniparametric
subgroup ¢: R — SL(2, R) given by
_ [ cost sint
v= (—sint cost) '

It turns out, using the fact that ¢(n) is in the center of §I:(2, R), that p is
an homomorphism and D is equivariant (i.e., D((y, n)-(x,t)) = p(y, n) -
D(x, t)). Thus the fibres of D induce the desired Lie foliation on M (cf. [2]
for details).

o Z.: Let X be the generator of the transversely affine Lie flow on Tj.
As we have that &, =&/ + R, where & is the affine Lie algebra of dimension
2, the vector field (X, 0) on Tj x S' is transversely modeled on ¥, and
codim& =2.

e % and ¥, are not realizable: Let & bea & ora &, Lie flow on a
compact manifold M . Fix a generator X of # and a transverse parallelism
Y,,Y,, Y, such that [¥,,Y,] =0, [Y,,Y,]=7,, [¥,,¥,]=Y,+7,
for & ,and [Y,,Y,]=0, [Y,,Y,]=7,, [Y,,Y;]=kY, for &,. Let g
be a Riemannian metric on M . Then we have the orthogonal decomposition
TM =TF + TS * and we shall denote by Z' and Z" the tangent and the
orthogonal parts of a vector field Z on M.

Theset T ={pe M, Yl"(p) = 0} isopen. In fact,if p € T, Y, is tangent to
 in p, therefore Y, , ;' are independent in p. Hence they are independent
in an open neighborhood U of p and we can write Y,' = 1Y, + uY, where
A, u are basic functions on U. Computing now [Y]', ¥,'] and [, ¥,'], we
deduce the following system of differential equations:

Y, (A)+ui+u=0,
Y, (1) +u’ =0,
2
Y7 (4) -4 =0,
Yy () — ud+p =0,

for &, and
Y, (A)+ku=0,
Y, (u) =0,
Y, () + (1 —k)A=0,
Y, (w)+u=0,

for &, with the initial conditions A(p) = u(p) =0.

This implies that 4 = O on the integral curves of Y, and Y,. Due to
transverse transitivity, 4 = 0 on U. It follows, in a similar way, that 4 = 0
on U. Thus Y =0 on U and T is open.

As it is also closed and M is supposed to be connected, T = or T =M.
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LIE FLOWS OF CODIMENSION 3 535

But if T = M, we arrive in both cases (¥, and &) to a contradiction. In
fact, if we denote by 00, 6! , 02, 6> the dual basis of X , Y, Y,, Y, we have
d9> = -6 A6’ in &, and d6° = k0° A0 (k #0) in & . As 0%(Z) =
03(2) = d02(Z, )= d03(Z, .) =0 for each vector field Z tangentto ¥ , the
1-forms 6% and 6> are projectable on the basic manifold W = M /:7 .

So we would have an exact volume element on the compact manifold W,
which is a contradiction.

Therefore T = 0.

Next we consider the set Q = (J,.gQ, Wwhere @, = {p € M;Y)(p) =
aY;'(p)}.

Q isopen: If p € Q, there 1s a € R such that Y2"(p) = aYI"(p) and hence
Y; and Y are independent in p. So Y, = AY' + uY; is an open neigh-
borhood U of p with A(p) = a and u(p) = 0. Computing now [Y, YZ"],
[Y;, an] and considering their tangent and normal parts one obtains the equa-
tions:

(4)

Y (A) +

Y, (u
Y,(4) +

Y3(:u) —H
As before, this yields 4 =0, ie. ¥, =Y on U. Thus every point x € U is
in Ql(x) C Q and Q is open.

Q isclosed: If p ¢ Q, for each a € R, Y, (p) # aY,'(p). In particular,
Y, (p) = 0. As we have proved that ¥ 3 0, the vector fields Y,, Y, arelinearly
independent on p. Hence they are independent in an open neighborhood U
of p,ie. UcC M\Q and Q is closed.

As M is connected, Q=2 or Q=M.

If Q =@, Y and Y, are linearly independent in each point. So there
are differentiable functions A and u globally defined on M, such that Y3" =
AY{ + uY, . Computing now [Y,, Y;'], we obtain Y,;(4) = 1, but as M is
compact this is impossible.

If Q =M, foreach p € M thereis a(p) € R such that Y, (p) = a(p)Y,|' (p).
This gives rise to a differentiable basic function a on M with ¥, =a-Y]".
Equivalently, Y, —a- Y, is everywhere tangent to ¥ . Since [Y;, ¥, —a- Y]
must be in F we obtain Y;(a) = —1 for &, which is again a contradiction,
and Y;(a) = (1 —k)a for & . If k # 1, the only possibility is a = 0 and so
Y, is everywhere tangent to Z . As before, this yields a contradiction because
de' = —0' A 6, with 6' and 6’ projectables on W = M/F . If k = 1
it follows that a is constant over the integral curves of Y,,7Y,, Y;, ie. a
1s constant. With a)o, w' , a)z, @’ the dual basis of X , YV—aY, Y, Y, we
obtain dw? = —w’Aw® with »’ , o’ projectables on W | again a contradiction.
This proves that & and &, are not realizable.

RS
I

)

Il

)

0
0,
0
0
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536 E. GALLEGO AND A. REVENTOS

o % (with 4 =0): The same construction as before. If 00, 6' , 02, 6> are
the canonical coordinates on T2 x T2, the vector field X =0 /0 6° + 0d /86",

a € R\Q is transversely abelian for the parallelism 9 /<9t91 ,0/0 6%, 0 /0 6> and
has codim % = 2. We modify this parallelism by taking

e, =cos6’-0/06" +sin6>-5/06°,
e, = —sin 6’ -8/801 +c0502-8/863,
e, =-0/00".

Thus X is also transversely modeled on & (with 4 =0).

Case 3. codimZ =1.

In this case the structural Lie algebra has dimension 2. As this algebra is
abelian (cf. [1]), &, and &, are not realizable because they do not have abelian
subalgebras of dimension 2. Examples for the algebras &, %,, %, and &
(h = 0) are given. For the algebra &, we prove that the only realizable cases
are when k ¢ Q, an example will be given. We also prove that & is not
realizable.

e % : Consider the flow (X, 0) on T>xT' where X is a dense linear flow
on T°.

. ?2 is not realizable: As 32 is unimodular and codim% =1, & is
unimodular (cf. [5]) and it follows, from the results by Molino (cf. [6]), that
the central transverse sheaf & admits a global trivialization, i.e. there are in-
dependent foliated vector fields v, w tangents to the # closure which com-
mute, as transverse fields, with every global foliated vector field. In particular,
[v,e]=[w,e]=0. Writing

v = Ae, + ue, +ve,, w = ae, + fe, + ye,
we obtain v = de; and w = ae, , which is a contradiction.
o Z.: Let X be the generator of the transversely affine Lie flow on Tj.
The vector field (X, ad/36) on Tj x S , with o € R\Q and 8 the coordinate
function on S , 1s transversely modeled on ?5 =& +R and codim¥Z = 1.
e % (h=0): The same construction as before. If 00, 01, 92, 6° are the
canonical coordinates on T° x T', the vector field X = o /860 + ad /{170l +
Bo /602 with a, B rationally independent, admits
e, =cos8>-9/06° +sinf>-8/06",
e,=—sin6’-9/06° +cos6’-8/886',
e,=-8/06’,

as a transverse parallelism. But e , e,, e, is a basis of & with h=0.

e Next we study the remainder algebras &, %, and & (h # 0). As
the center of these algebras are trivial, the corresponding connected simply-
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LIE FLOWS OF CODIMENSION 3 537

connected groups G, G,, G, can be obtained as e o € g with i =

1,2, 3. We find that these groups can be thought of as R’ = R? x R with the

product (p, £)-(p', {) = (p+e ™.p', t+7) and A depending on the algebra.

For &,
A (11 oM (e e
“\0 1)° N0 ')
For &,
A_(l O oM_ (e 0
~\0 k)’ Lo M)
For &,
(0 1 Al (cos(p+1)  —sint
A_(—l h>’ ¢ _C(I)( sin ¢t cos(p—t) )’
where C(t):%eﬂ’ and o = V4 - h*, p=tang =h/a, (sinp =h/2,cosp =
af2).

The basis we have used to define the algebras are given in this case by the
following left invariant fields.

For &,
e—e_'i e——te_'—+e’i e——a—
I ox’ 0 ay’ 3 ot
For &,
e—e_’i e—g‘k’i e__a_
=" ax’> 7 ay’ 37 ot
For &,

e = ée_ﬂt (cos(l + (0)(,?—)6 + sint;—y) ,

e, = ze_ﬂt (— sint—a— + cos(t — (o)i)
27 a 0x oy )’
o —=_00
3 20t

Suppose now that we have a codim# = 1 realization on a compact man-
ifold M of one of these algebras. We shall denote the algebra by & and the
corresponding group by G. The basic fibration is: T° > M = T and, as
nl(T3) = Zs, nl(Tl) = Z, and nz(Tl) = 0, the corresponding homotopy
exact sequence is 0 — Z° — n(M)—-Z-0.

Since this exact sequence has a section, m,(M) is the semidirect product of
Z® with Z , i.e. m,(M) is the product Z> xZ with the operation (x, t)-(y, X) =
(X+1t-y,t+s) where ¢-y represents the natural action of Z on Z>. To be
precise, if ¢: T3 — T? is the diffeomorphism which gives the bundle, then the
action is t-y = q)i -y where ¢_: 7z1(T3) — nl(T3) is the morphism induced
by ¢ . We shall denote the group by 7 x 0 Z.
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538 E. GALLEGO AND A. REVENTOS

Since # is a Lie foliation, we have the unfolding diagram:
M
M
and the holonomy representation 4: z (M) — h(n,(M)) = I’ C G with
D(y-%)=h(y)-Dx, %€M, yen,(M).
As M/ is diffeomorphic to G/T (cf., for instance, [5]) we have that T is
a two-dimensional closed subgroup of G.
The Lie algebra # of T, (the identity component of ') is named the
structural Lie algebra of ¥ and, in the case of flows, it is abelian (cf. [1]).
But it is easy to see that the only two-dimensional abelian subalgebra of &
is (e,, e,), thus # = (¢, e,). Looking at the expressions for e, and e, in
%, %,,and %, we see that # = (9/0x, 0/0y) and hence T ~ R x Ze,

e>0. _
Notice that I', = R’ x {0} is abelian.

P .

Lemma. Let A be an abelian subgroup of T'. Then A is contained in R* x {0}
or there is an element a = (a,, a,, a,) with a, # 0 suchthat A={a",neZ}.

Proof. If A isnotin R* x {0}, then AN (R*x {0})=0€R’.

Otherwise, there is (p,0) € A, p # 0, and (g,t) € A4, t #0. As A is
abelian we have that (p, 0)(q,t?) = (¢, ¢t)(p,0). Then g + eM.p=gqg+p
and this implies that ¢t = 0, except for & with h = 0, but this case is not
considered here. Therefore AN (R2 x{0})=0¢ R

In particular, 4 has at most one element in each level R’ x {me}, mel.
In fact, q, -az_l € AN (R* x {0}) =0 and a, =a,.

Let a = (a,, a,, ne) be the element of A in the lower level. For each
b=(b,b,, me)€ A, weput m=nd+r; then ba~“ is an element of 4 in

the re level and hence r =0, 1.e. b= a® and this proves the lemma.

Proposition 1. Let the notation be as above. Then (R2 x{0HhnT= hz?).
Proof. Applying the lemma we have four possibilities:

(1) h(Z3 ) and h(Z) are both contained in R® x {0}. Then I", generated by
h(Z%) and h(Z), is contained in R? x {0}, which contradicts R*/T = S".

(i1) h(Z3) is contained in R’ x {0} and A(Z) = {a",n € Z} with a ¢
R’ x {0}. As h(Z?) is a normal subgroup of I, for each b € h(Z3) we have
aba™' = b’ which is in h(Z’). Hence, the elements of (R2 x {0}) NI can be
written as

o =>ba"ba*ba” - ba*
with > r, = 0 and b, € h(Z?). Thatis, ¢ = IB-aZ" =be h(Z3), ie.
(R x {O)NT = h(Z?).
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LIE FLOWS OF CODIMENSION 3 539

(iii) A(Z) is contained in R* x {0} and A(Z’) = {a", n € Z} with a ¢
R? x {0}. In this case, T is abelian because if we let A(1) = b we have
bab~! = a*. This implies kK = | and ab = ba. As in (1), this implies that
I'nR? x {0} = h(Z) which is not dense in R? x {0}.

(iv) h(Z) = {a", neZ}andh = {b", n € Z} with a, b¢R><{0} As
before, aba~' = b* and therefore T is abelian. So the elements of R x{0})nT"
can be written as a”-b™" = (a-b~")" and this is not dense in R* x {0}.

Remark. Three elements u, v, w € R’ can generate a dense subgroup of R?.
In fact, it suffices to take u = Av+ uw with 4, u, and A/u € R\Q. So, a priori,

it is possible to have h(Z*) = R’ x {0}.

Proposition 2. & is not realizable.

Proof. If such a realization exists, the subgroup h(Z3 ) is normal in I". Let
h(Z3) = ((p;,0), (p,,0), (py,0)) and A(Z) = ((p, t)) with ¢ > 0; then the
j,where l{ eZl.

The matrix 4 = (Aj ) corresponds, in fact, to ¢_: . Z> - 27 so it is invertible,
and, as we are assuming orientability, we have detA=1. Let v, = (qa;, b, ¢,)
and v, = (a,, b,, ¢,), where p, = (a,, a,), p, = (b, b,), and p, = (¢, c,).
From the above equations we have

normality condition can be written as e M. p; = Z?=1 A{ D

Av, =a-a +aloga-v,, Av,=a-v,,
where a=¢"".
Completing v, , v, to a basis {v,, v,, v;}, the matrix 4 can be written

a 0 o
aloga a f
0 0 a?

1 2 2
2a — = s a — = 5
+a2 D +a q

and satisfies

with p,g€Z, 0<a< 1, and a € R\Q. But this is impossible because the
equations imply that pa2 —2gqa+3 =0 and hence a = (g + q2 -3p)/p.

In particular, 4/ > -3pec R\Q. Substituting a in the first equation above we
conclude, after a short computation, that p = ¢ = 3, which is in contradiction
with a € R\Q. So % is not realizable.

Proposition 3. The Lie algebras of the &, family with k € Q are not realizable.

Proof. Proceeding as in Proposition 2, we obtain that e~' and e are eigen-
values of 4.

The characteristic polynomial of A4, X3 - p)c2 + gx — 1, has three roots, &,
ék, and 5_(k+1) with ¢ = e '. As >0 we have 0 < & < 1. This implies,
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from standard arguments in Galois theory (see lemma below), that k ¢ Q;i.e.
the Lie algebras of &, with k € Q are not realizable.

The authors are grateful to P. Ara for his remarks about the following lemma.

Lemma. Let f(x) = x> —px2 +gx — 1 be a polynomial with p, q € Z. If there
are k € R\{0} and & € (0, 1) such that the roots of f(x) can be written as
g, &8 e ® D ihen k e R\Q.

Proof. First we observe that any rational root of this polynomial must be 1 or
—1, and so it is irreducible over Q. Hence the Galois group of f(x) over
Q is Z, or the symmetric group S;. In both cases there is an automorphism
o of the splitting field Z of order 3, which is the identity over Q. This
automorphism permutes the roots, i.e. g(&) = ék , a(ﬁk) = é'k_l , a(é—k—l) =
goor o) =¢"", o) =¢, o¢T ) =&k,

If kK = p/q, using that a(xl/q) = ia(x)l/q, we obtain é_k_l a(ék) =
o(E7) = o((E)/) = (6(€)P)? = & in the first case and & = o(&¥) =
é(_k_l)k in the second. This implies that k*+k+1=0, which is impossible.
Thus k ¢ Q and the lemma is proved.

Example. Now we give an example of a Lie flow on a compact manifold M
transversely modeled over a Lie algebra & of the family &, with structural Lie

algebra of dimension 2.
Let
2 1 1
A= (1 1 —1)
1 0 3
be an element of SL(3; R).

The eigenvalues are lj =2+ 2cos((67zj —4m)/9) where j =1,2,3. We
have 2 + 2cos(87/9) < 1 < 2+ 2cos(14n/9) < 2 + 2cos(2n/9). If we let
¢ =4,,thereisa k <0 such that ék = 4. Inthis case 4, = €_k_1 . Here k is
the quotient of logarithms of algebraic numbers. Notice that this is a necessary
condition for the corresponding algebra to be realizable.

Thus we have the eigenvectors u;=(4;-3,4,(4,-3)-1,1).

A computation shows that the components of these vectors have irrational
quotient, i.e. they induce dense linear flows in T,

Now we consider the compact manifold T: =7« R/ ~, where (x,t) ~
(A-x,t+1). As the direction given by u, is invariant by A, it induces a global
flow in Tj . This flow is transversely modeled over the Lie algebra of &, with
k = logA,/logd, < 0. To verify this we observe that an invariant transverse
parallelism in T xR is given by

1o
logéat’

and it satisfies [e,, e,] =0, [e,, e;] =¢,, [e,, 5] = ke, .

t kt
e, =CUy, €= Uy, €=
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Remark. We do not know any realization of &, with & # 0 and codim¥ =1.

Case 4. codim¥ =0.
This is a trivial case because the transverse algebra coincides with the struc-
tural algebra and so it is abelian. Only &, is realizable (a linear dense flow on

Y.
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