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Preliminaries

The support function and the Steiner point



Support function

/ XCOSp+ysing =p




Support function

/ xcosp + ysinp = p(y)

\90

Uniparametric family of lines




Envelope

xcosp + ysinp = p(p)
/—xsiw +ycosp = p'(p)

\99

x=pcosp — p'sing
y = psinp + p cos



Arc length

dx = —(p+p")sinpdp

dy = (p+ p")cosp dyp

ds? = (p+ p")* dp*

For convex sets p+ p” > 0, ds = pdy

p = p+ p” = curvature radius



Length of the boundary of convex sets

27 27
LZ/dSZ/ (p+p”)d<p=/ pdy
0 0



Area of convex sets




Pedal curve

.-

1 27T2
A- = d
g 5| P

The pedal curve results from the orthogonal projection of a fixed
point on the tangent lines of a given curve




Steiner point

The Steiner point is the centroid of K with respect to the mass
distribution given by the curvature of OK.

L L
/xkds /ykds
o yy=fo
/kds
0

XM =



Steiner point

Substituting x = pcosp — p'sinp, and ds = pdyp,

/(Pcosqp/siny‘)k-/)-d»: 1 2
X = = — .
M o= 7T/o p-cospdyp

1 27
YM:—/ p-sinpdy
T Jo




Steiner point

The Steiner point is also characterized as being the point with pedal
curve enclosing minimum area.



Fourier series
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Fourier series

p(p) = ao + Z (a, cos ny + b, sin ny)
1

S(K) = (a1, br)

T (a1, by)
q = |a1 cos + by sinp — p|
p

Taking S(K) as origin p(p) = ao+ >, (ancos ny + by, sin ny)




A>3m(A—F)>0

A=1%—4AnF

A = area pedal curve w.r.t. Steiner point




A >3r(A—F)>0.

Parseval
27
/ p2dg0:27ra§—|—7TZc3; 2 =a>+ b,
0 n>2
2w
/ pPdp=mn Z nc?.
0

n>2
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L= [ pde.  F=3 [ @-pde=A-3 [ pap
0 2 0 2 0
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27
— 27?/ (P> — p?)dy
0

27
L2—47rF:(/ pdgo)
0

= (2mag)® — 2n[27a; + 7 Z 2] + 2x[r Z n*c?]

n>2

= 27 Z:(n2 —1)c?

n>2
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27
— 27?/ (P> — p?)dy
0

27
L2—47rF:(/ pdgo)
0

= (2mag)® — 2n[27a; + 7 Z 2] + 2x[r Z n*c?]

n>2

= 27 Z:(n2 —1)c?

n>2

In particular A > 0







Equality
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Equality

A =371(A— F) if and only if OK is a circle or a curve parallel to an
astroid (a 4-cusped hypocicloid) at distance L/27.

k=73 k=4

R = kr The locus of a point on a circle of radius r
when it rolls inside a circle of radius R.




Parallel sets

red: astroid; blue: parallel to the astroid




Constant width
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Constant width

Width: p(¢) + p(¢ +7) =2> 7 <az,, cos(2n¢) + b, sin(2n¢)>

Constant width = only odd terms

In this case we improve A > 37(A — F) to




Equality holds if and only if C is a circle or a curve parallel to an
hypocycloid of three cusps.

In this case the evolute of C and the interior parallel curve to C at
distance L/27, are similar with ratio 3.




Second part: upper bounds

2 27
S/ p*dy - 2r = 4nA
0

o (o)

= A=1>—47F < 47(A—F)



Second part: upper bounds

2 27
S/ p*dy - 2r = 4nA
0

o (o)

= A=1>—47F < 47(A—F)

3m(A— F) < A < 4x(A—F)




Hurwitz inequality

A < 7|F,|

Evolute = envelope of normals

= locus of centers of curvature

4 / C
parallel

/ _— evolute

~




Generalized support function

pe(p) = —p' (so + g)

Algebraic area:



Hurwitz inequality is based on

©Q Area of parallel sets

@ Wirtinger inequality



Q@ F =F+Lr+mr?

~




© Wirtinger inequality

27 27 27
If / q(p) de =0, then / q°dp > / q° do.
0 0 0

2w 2w
In particular, / q?dp > / q° do.
0 0



© Wirtinger inequality

27 27 27
If / q(p) de =0, then / q°dp > / q° do.
0 0 0

2w 2w
In particular, / q?dp > / q° do.
0 0

= F. <0



Proof of Hurwitz inequality

Given a convex set of length L and support function p we put

L 2w
9=p— 5 and denote W, = / (g% — ¢*)dyp > 0.
0



Proof of Hurwitz inequality

Given a convex set of length L and support function p we put

L 2w
g=p— —, and denote W, = / (g% — ¢*)dyp > 0.
0

2T
Thus, by the formula of algebraic area,
1
Fy “1—§Wq'
F. = —3 W, .

Substituting

m|Fe| — A = g(Wq/ —4W,) [it can be proved that > 0].



Lema. Let g = q() a 2m-periodic C? function defined on [0, 27].

Then
2 27
™ 0

Equality holds if and only if
q(p) = ag + a1 cos ¢ + by sinp + ay cos p + by sin

2

Corollary. m|Fe| — A > 0 with equality if and only if OK is a circle or
it is a curve parallel to an astroid at distance L/2r.



Hurwitz inequality [constant width]

For constant width we improve A < 7|F,| to

4
AS §7T|Fe‘

with equality when OK is parallel to a Steiner curve (hypocicloid
with k = 3)




And introducing the visual angle

2
W\Fe]—AZ§L2+5/ w—sinw—=sinw | dP >0




Equality holds if and only if

Q@ K is adisc or it is bounded by a curve parallel to an astroid.

@ K is bounded by a curve parallel to a Steiner curve.

© Minkowski sum of sets of the above type.



Third part: the visual angle

The visual angle was first considered by Crofton
On the theory of local probability 1868

w — sinw is the density of the intersection of lines that meet a given

area
L2

/ (w—=sinw)dP = — —7F

PEK 2



Integral Geometry

The set of lines of the plane is parametrized by p, ¢.
The measure (invariant by Euclidean motions) is

dG =dp Ndy

For instance, for a convex set K with
L = length of OK we have

/ dG = L P
GNK£D )




Density for pairs of lines

aq (%)

) |

A pair of intersecting lines is determined by the intersection point P
and the angles o, ap with the x axis

dGl VAN dG2 = |sin(a2 — Oél)| dOél VAN dOéQ A dP




Integrating both sides
[ =27F +/ 2(w —sinw) dP
PEK

Crofton formula



Masotti's integral via Integral Geometry

/ (w? —sin*w) dP
PE¢K

w = visual angle from P to K

Masotti, in 1954, gives without proof (she says that using Hurwitz
approach) the value of this integral in terms of F, L, and the Fourier
coefficients of the support function of JK.

We will calculate this integral in two different ways: using Integral
Geometry and using a general integration formula that we will explain
later.



Masotti's integral via Integral Geometry

Multiplying both sides of
dG; A dGy = |sin(ap — a1)| dag A dag A dP
by |sin(an — a)| we have

|sin(ap — a1)| dGy A dGy = sin®(a — ) doy dary dP



Integrating on the left

C(Oq
/ | sin(an — ay)| dGl—/ / |'sin(ap — ay)| day dpy
GﬂTK#@ b(Oél

:/ a(a)]sin(an — )| day

0

b o a(a) = width

! v




Integrating on the left

Using the Fourier series of a(«) and integrating the product of
Fourier series we get

212 1
/ |sin(a2—a1)]dG1 dG2 = — —4rx —— 2
G JG n

4n2 — 1C2”
n>1



Integrating on the right The right hand side must be integrated over
the points P € K and over the points P ¢ K.

2F
/ sin2(a2 — Oél) dO(l dO[z dP = 7T—
PeK 2

1
/ sin?(ap — a1) doy dap dP = Z(w? — sin® w)
PEK 2

Masotti:



Constant width

For constant width, ¢, =0, n > 1,



Santald in “Integral Geometry and Geometric Probability” gives lower
and upper bounds for the Masotti integral. We improve the lower
bound to

[4_L2—W2F} —%(A—F)g/%}((uﬂ—sm w)dP < [4—L2—7r F}

™ ™

A = area of the pedal curve



A formula for the integral of functions of the visual angle

/P L

Since de domain of integration is not bounded, f(w) must satisfy
some conditions when w — 0.



We can take (¢,w) as coordinates outside K

T T
sinw

do A dw




We denote by F(w) the area of the level set




We denote by F(w) the area of the level set

2

sinw - Fw) = )
m

—(1+ cosw +7r2gk
k>2

> 2 42
Ci = ai + by

gr(w) =1+ (_21)k((k +1)cos(k — 1)w — (k — 1) cos(k + 1)w)



The integral formula

[ f@)dp =~ F@)F@) + 5-M(f)
P¢K T

k—1 .
+r ) (I\/I(f)+2 > /Of/(w)jcos(jw)dw) c?

k>2, even Jj=1, odd

k—1 -
DY (2 > / f’(w)jcos(jw)dw) i

k>3, odd Jj=2, even

f'(w)

— dw. [Does not depend on the convex set]
1 —cosw

with M(f) = /OW



1. Crofton. M(f) = . [f(w)F(w)]§ =7F.
2. Masotti. M(f) = 8. [f(w)F(w)]5 = 72F.




Examples
Let K be a compact convex set with boundary of class C? and length
L. Write ¢2 = a2 + b where ai, by are the Fourier coefficients of the
support function of K. Then

L2
/ sin"TwdP = M— +
PEK 2m
N miz? 3 (-1):"1 (k2 —1)
om—1(m _ 7\ m mrl—ky Ck?
2 1(m_2) ot r( +21+k)r( +21 k)

where M = foﬂ @) gy, In particular for m odd the index k in the

1—cosw
sum runs only from 2 to m — 1.




312 9
/ sinfwdP = — + ~71%c3 Hurwitz
PeK 4 4
52 5x? 2572
. 5 2 2
dP = -
/P¢Ksmw 16+ 7 (o 6 Cy




. .3 312
Constant width sinwdP = —
PEK 4
L2
/ sin’ w dP = >
PEK 16
42
/ sin*w dP =
P¢K 31
Tm! L2
i dP =
/%KS'" T (m — 2)r(= 2 2n




Geometrical interpretation of ¢? [Hurwitz functions]

hi(w) = (_j)k [(k + 1) cos(k — 2)w + (k — 1)2 cos(k + 2)uw
— 2(k* — 3) cos kw] + 2 cosw

/ he(w) dP = L2 + (—1)*7?c3(k* — 1).
P¢K




Geometrical interpretation of ¢? [Hurwitz functions]

hi(w) = (_j)k [(k + 1) cos(k — 2)w + (k — 1)2 cos(k + 2)uw
— 2(k* — 3) cos kw] + 2 cosw

/ he(w) dP = L2 + (—1)*7?c3(k* — 1).
P¢K

c2 are invariants of the curve




The integral of the power of the sinus of the visual angle is a linear
combination of the integrals of the Hurwitz's functions.

Proof

/ sin"wap = ™ L 2502 )il 12
PeK 2m(m —2) i p r( m+1 + P)r(m+1 p)

o0

m! (—1)P+1 /
+ E = = . frp(w) dP.
2m=t(m = 2) &= T(732 + p)[ (52— p) Jegk o)




The sum in the coefficient of L2 is (except for a constant factor) the
hypergeometric function

3—m 3+ m
F 1; 1
( 2 Y ! 2 ! )
and ( b
—a— c
F(a.b:c:1) = —a—>b
(aa 1 G5 ) r(c—a)r(c— )7 c a >0

Using this we see

1)p+

=23,
m+1 m+1
= T + p)r( —p)

and the coefficient of L2 vanishes. ]
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