# Some geometrical applications of Fourier series

A. Reventós

Homage to Xosé Masa. June 2018

# The isoperimetric inequality

$$\Delta = L^2 - 4\pi F \ge 0$$

F =area of a convex set K

 $L = \text{length of } \partial K$ 

Equality if and only if K is a circle

The isoperimetric inequality

$$\Delta = L^2 - 4\pi F \ge 0$$

F = area of a convex set K

 $L = \text{length of } \partial K$ 

Equality if and only if K is a circle

First part of the talk  $\Delta \ge \bullet \ge 0$  lower bounds

Second part of the talk  $\Delta \leq ullet$  upper bounds

Bonnesen-style inequalities

Third part: the visual angle

Elemente der Matematik; J. Cufí, AR. Journal of Mathematical Analysis and Applications; J.Cufí; E.Gallego; AR. First part of the talk  $\Delta \ge \bullet \ge 0$  lower bounds

Second part of the talk  $\Delta \leq \bullet$  upper bounds

Bonnesen-style inequalities

Third part: the visual angle

Elemente der Matematik; J. Cufí, AR. Journal of Mathematical Analysis and Applications; J.Cufí; E.Gallego; AR.

# **Preliminaries**

The support function and the Steiner point

# Support function



#### Support function



Uniparametric family of lines

# Envelope



$$x = p\cos\varphi - p'\sin\varphi$$
$$y = p\sin\varphi + p'\cos\varphi$$

# Arc length

$$dx = -(p + p'') \sin \varphi \, d\varphi$$
$$dy = (p + p'') \cos \varphi \, d\varphi$$

$$ds^2 = (p + p'')^2 d\varphi^2$$

For convex sets 
$$p + p'' > 0$$
,  $ds = \rho d\varphi$ 

$$\rho = p + p'' =$$
curvature radius

## Length of the boundary of convex sets

$$L = \int ds = \int_0^{2\pi} (p + p'') d\varphi = \int_0^{2\pi} p \, d\varphi$$

#### Area of convex sets



#### Pedal curve



The pedal curve results from the orthogonal projection of a fixed point on the tangent lines of a given curve

## Steiner point

The Steiner point is the centroid of K with respect to the mass distribution given by the curvature of  $\partial K$ .

$$x_{M} = \frac{\int_{0}^{L} x \, k \, ds}{\int_{0}^{L} k \, ds}, \qquad y_{M} = \frac{\int_{0}^{L} y \, k \, ds}{\int_{0}^{L} k \, ds}.$$

## Steiner point

Substituting  $x = p \cos \varphi - p' \sin \varphi$ , and  $ds = \rho d\varphi$ ,

$$x_{M} = \frac{\int (p\cos\varphi - p'\sin\varphi)k \cdot \rho \cdot d\varphi}{2\pi} = \frac{1}{\pi} \int_{0}^{2\pi} p \cdot \cos\varphi \, d\varphi$$
$$y_{M} = \frac{1}{\pi} \int_{0}^{2\pi} p \cdot \sin\varphi \, d\varphi$$

$$S(K) = (x_M, y_M), \quad S(K) \in K$$

## Steiner point

The Steiner point is also characterized as being the point with pedal curve enclosing minimum area.

#### Fourier series

$$p(\varphi) = a_0 + \sum_{1}^{\infty} (a_n \cos n\varphi + b_n \sin n\varphi)$$
  
 $S(K) = (a_1, b_1)$ 

Taking 
$$S(K)$$
 as origin  $p(\varphi) = a_0 + \sum_{n=0}^{\infty} (a_n \cos n\varphi + b_n \sin n\varphi)$ 

#### Fourier series

$$p(\varphi) = a_0 + \sum_{1}^{\infty} (a_n \cos n\varphi + b_n \sin n\varphi)$$
  $S(K) = (a_1, b_1)$ 



$$q = |a_1 \cos \varphi + b_1 \sin \varphi - p|$$

$$p(\varphi) = a_0 + \sum_{n=0}^{\infty} (a_n \cos n\varphi + b_n \sin n\varphi)$$

#### Fourier series

$$p(\varphi) = a_0 + \sum_{1}^{\infty} (a_n \cos n\varphi + b_n \sin n\varphi)$$
  $S(K) = (a_1, b_1)$ 



$$q = |a_1 \cos \varphi + b_1 \sin \varphi - p|$$

Taking 
$$S(K)$$
 as origin  $p(\varphi) = a_0 + \sum_{n=0}^{\infty} (a_n \cos n\varphi + b_n \sin n\varphi)$ 

#### Theorem

$$\Delta \geq 3\pi(A-F) \geq 0$$

$$\Delta = L^2 - 4\pi F$$
 $A = area pedal curve w.r.t. Steiner point$ 



#### Theorem

$$\Delta \geq 3\pi(A-F) \geq 0$$
.

#### Proof.

#### **Parseval**

$$\int_{0}^{2\pi} p^{2} d\varphi = 2\pi a_{0}^{2} + \pi \sum_{n \geq 2} c_{n}^{2}; \qquad c_{n}^{2} = a_{n}^{2} + b_{n}^{2},$$

$$\int_{0}^{2\pi} p^{2} d\varphi = \pi \sum_{n \geq 2} n^{2} c_{n}^{2}.$$

$$L = \int_0^{2\pi} p \, d\varphi, \qquad F = \frac{1}{2} \int_0^{2\pi} (p^2 - p'^2) \, d\varphi = A - \frac{1}{2} \int_0^{2\pi} p'^2 \, d\varphi$$

$$L^{2} - 4\pi F = \left(\int_{0}^{2\pi} p \, d\varphi\right)^{2} - 2\pi \int_{0}^{2\pi} (p^{2} - p'^{2}) \, d\varphi$$

$$= (2\pi a_{0})^{2} - 2\pi [2\pi a_{0}^{2} + \pi \sum_{n \ge 2} c_{n}^{2}] + 2\pi [\pi \sum_{n \ge 2} n^{2} c_{n}^{2}]$$

$$= 2\pi^{2} \sum_{n \ge 2} (n^{2} - 1) c_{n}^{2}$$

In particular  $\Delta \geq 0$ 

$$L^2 - 4\pi F = \left(\int_0^{2\pi} p \, d\varphi\right)^2 - 2\pi \int_0^{2\pi} (p^2 - p'^2) \, d\varphi$$

$$L^{2} - 4\pi F = \left(\int_{0}^{\infty} p \, d\varphi\right) - 2\pi \int_{0}^{\infty} (p^{2} - p'^{2}) \, d\varphi$$
$$= (2\pi a_{0})^{2} - 2\pi [2\pi a_{0}^{2} + \pi \sum_{n}^{\infty} c_{n}^{2}] + 2\pi [\pi \sum_{n}^{\infty} n^{2} c_{n}^{2}]$$

 $=2\pi^2\sum_{n>2}(n^2-1)c_n^2$ 

In particular 
$$\Delta > 0$$

$$L^{2} - 4\pi F = \left(\int_{0}^{2\pi} p \, d\varphi\right)^{2} - 2\pi \int_{0}^{2\pi} (p^{2} - p'^{2}) \, d\varphi$$

$$=2\pi^2\left(\sum(n^2-1)c_n^2\right)$$

$$\geq \frac{3\pi^2}{2} \sum_{n} n^2 c_n^2 = \frac{3\pi}{2} \int_0^{2\pi} p'^2 d\varphi = 3\pi (A - F)$$



## Equality

 $\Delta = 3\pi(A - F)$  if and only if  $\partial K$  is a circle or a curve parallel to an astroid (a 4-cusped hypocicloid) at distance  $L/2\pi$ .

## **Equality**

 $\Delta = 3\pi(A - F)$  if and only if  $\partial K$  is a circle or a curve parallel to an astroid (a 4-cusped hypocicloid) at distance  $L/2\pi$ .



R = kr The locus of a point on a circle of radius r when it rolls inside a circle of radius R.

## Parallel sets



red: astroid; blue: parallel to the astroid

#### Constant width

Width: 
$$p(\phi) + p(\phi + \pi) = 2\sum_{1}^{\infty} \left(a_{2n}\cos(2n\phi) + b_{2n}\sin(2n\phi)\right)$$



Constant width  $\Rightarrow$  only odd terms

In this case we improve  $\Delta \geq 3\pi(A-F)$  to

#### Theorem

$$\Delta \ge \frac{32}{9}\pi(A-F)$$

#### Constant width

Width: 
$$p(\phi) + p(\phi + \pi) = 2\sum_{1}^{\infty} \left(a_{2n}\cos(2n\phi) + b_{2n}\sin(2n\phi)\right)$$



Constant width  $\Rightarrow$  only odd terms

In this case we improve  $\Delta \geq 3\pi(A-F)$  to

#### **Theorem**

$$\Delta \geq \frac{32}{9}\pi(A-F).$$

Equality holds if and only if C is a circle or a curve parallel to an hypocycloid of three cusps.

In this case the evolute of C and the interior parallel curve to C at distance  $L/2\pi$ , are similar with ratio 3.



## Second part: upper bounds

$$L^{2} = \left(\int_{0}^{2\pi} p \, d\varphi\right)^{2} \leq \int_{0}^{2\pi} p^{2} \, d\varphi \cdot 2\pi = 4\pi A$$

$$\Rightarrow \Delta = L^2 - 4\pi F \le 4\pi (A - F)$$

$$3\pi(A-F) \le \Delta \le 4\pi(A-F)$$

## Second part: upper bounds

$$L^{2} = \left(\int_{0}^{2\pi} p \, d\varphi\right)^{2} \le \int_{0}^{2\pi} p^{2} \, d\varphi \cdot 2\pi = 4\pi A$$

$$\Rightarrow \Delta = L^2 - 4\pi F \le 4\pi (A - F)$$

$$3\pi(A-F) \leq \Delta \leq 4\pi(A-F)$$

# Hurwitz inequality

$$\Delta \leq \pi |F_e|$$

Evolute = envelope of normals

= locus of centers of curvature





## Generalized support function



$$p_{\mathrm{e}}(arphi) = -p'\left(arphi + rac{\pi}{2}
ight)$$

## Algebraic area:

$$F_{e} = \frac{1}{2} \int_{0}^{2\pi} (p'^{2} - p''^{2}) d\varphi$$

# Hurwitz inequality is based on

- Area of parallel sets
- Wirtinger inequality

**1**  $F_r = F + Lr + \pi r^2$ 



$$F_{-\frac{L}{2\pi}} = F + L\left(-\frac{L}{2\pi}\right) + \pi \frac{L^2}{4\pi^2} = F - \frac{L^2}{4\pi}$$

$$\Delta = 4\pi |F_{-\frac{L}{2\pi}}|$$

Wirtinger inequality

If 
$$\int_0^{2\pi} q(\varphi) \, d\varphi = 0$$
, then  $\int_0^{2\pi} q'^2 \, d\varphi \geq \int_0^{2\pi} q^2 \, d\varphi$ .

In particular, 
$$\int_0^{2\pi} q''^2 d\varphi \ge \int_0^{2\pi} q'^2 d\varphi$$
.

$$\Rightarrow F_e \leq 0$$

Wirtinger inequality

If 
$$\int_0^{2\pi} q(\varphi) \, d\varphi = 0$$
, then  $\int_0^{2\pi} q'^2 \, d\varphi \geq \int_0^{2\pi} q^2 \, d\varphi$ .

In particular, 
$$\int_0^{2\pi} q''^2 d\varphi \ge \int_0^{2\pi} q'^2 d\varphi$$
.

$$\Rightarrow F_e \leq 0$$

# Proof of Hurwitz inequality

Given a convex set of length L and support function p we put  $q=p-\frac{L}{2\pi}$ , and denote  $W_q=\int_0^{2\pi}(q'^2-q^2)\,d\varphi\geq 0$ .

Thus, by the formula of algebraic area

$$F_{-\frac{L}{2\pi}} = -\frac{1}{2}W_q;$$

$$F_e = -\frac{1}{2}W_{q'}.$$

Substituting

$$\pi |F_e| - \Delta = \frac{\pi}{2} (W_{q'} - 4W_q)$$
 [it can be proved that  $\geq 0$ ].

# Proof of Hurwitz inequality

Given a convex set of length L and support function p we put  $q=p-\frac{L}{2\pi}$ , and denote  $W_q=\int_{0}^{2\pi}(q'^2-q^2)\,d\varphi\geq 0$ .

Thus, by the formula of algebraic area,

$$F_{-\frac{L}{2\pi}} = -\frac{1}{2}W_q;$$

$$F_e = -\frac{1}{2}W_{q'}.$$

Substituting

$$\pi |F_e| - \Delta = \frac{\pi}{2} (W_{q'} - 4W_q)$$
 [it can be proved that  $\geq 0$ ].

Lema. Let  $q = q(\varphi)$  a  $2\pi$ -periodic  $\mathcal{C}^2$  function defined on  $[0, 2\pi]$ . Then

$$W_{q'} \geq 4W_q + \frac{2}{\pi} \left( \int_0^{2\pi} q \, d\varphi \right)^2.$$

Equality holds if and only if  $q(\varphi) = a_0 + a_1 \cos \varphi + b_1 \sin \varphi + a_2 \cos \varphi + b_2 \sin \varphi$ 

Corollary.  $\pi |F_e| - \Delta \ge 0$  with equality if and only if  $\partial K$  is a circle or it is a curve parallel to an astroid at distance  $L/2\pi$ .

# Hurwitz inequality [constant width]

For constant width we improve  $\Delta \leq \pi |F_e|$  to

#### Theorem

$$\Delta \leq \frac{4}{9}\pi |F_e|$$

with equality when  $\partial K$  is parallel to a Steiner curve (hypocicloid with k=3)



# And introducing the visual angle

#### **Theorem**

$$\pi |F_e| - \Delta \ge \frac{5}{4}L^2 + 5\int_{P \notin K} \left(\omega - \sin \omega - \frac{2}{3}\sin \omega\right) dP \ge 0$$



# Equality holds if and only if

- lacksquare K is a disc or it is bounded by a curve parallel to an astroid.
- K is bounded by a curve parallel to a Steiner curve.
- Minkowski sum of sets of the above type.

# Third part: the visual angle

The visual angle was first considered by Crofton

# On the theory of local probability 1868

 $\omega - \sin \omega$  is the density of the intersection of lines that meet a given area

$$\int_{P \notin K} (\omega - \sin \omega) \, dP = \frac{L^2}{2} - \pi F$$

### Integral Geometry

The set of lines of the plane is parametrized by p,  $\varphi$ . The measure (invariant by Euclidean motions) is

$$dG = dp \wedge d\varphi$$

For instance, for a convex set K with  $L = \text{length of } \partial K$  we have

$$\int_{G\cap K\neq\emptyset}dG=L$$



# Density for pairs of lines



A pair of intersecting lines is determined by the intersection point P and the angles  $\alpha_1$ ,  $\alpha_2$  with the x axis

$$dG_1 \wedge dG_2 = |\sin(\alpha_2 - \alpha_1)| d\alpha_1 \wedge d\alpha_2 \wedge dP$$

# Integrating both sides

$$L^2 = 2\pi F + \int_{P \notin K} 2(\omega - \sin \omega) dP$$

Crofton formula

# Masotti's integral via Integral Geometry

$$\int_{P\notin K} (\omega^2 - \sin^2 \omega) \, dP$$

 $\omega = \text{visual angle from } P \text{ to } K$ 

Masotti, in 1954, gives without proof (she says that using Hurwitz approach) the value of this integral in terms of F, L, and the Fourier coefficients of the support function of  $\partial K$ .

We will calculate this integral in two different ways: using Integral Geometry and using a general integration formula that we will explain later.

# Masotti's integral via Integral Geometry

Multiplying both sides of

$$dG_1 \wedge dG_2 = |\sin(\alpha_2 - \alpha_1)| d\alpha_1 \wedge d\alpha_2 \wedge dP$$

by  $|\sin(\alpha_2 - \alpha_1)|$  we have

$$|\sin(\alpha_2 - \alpha_1)| dG_1 \wedge dG_2 = \sin^2(\alpha_2 - \alpha_1) d\alpha_1 d\alpha_2 dP$$

# Integrating on the left

$$\int_{G_1 \cap K \neq \emptyset} |\sin(\alpha_2 - \alpha_1)| \, dG_1 = \int_0^{\pi} \int_{b(\alpha_1)}^{c(\alpha_1)} |\sin(\alpha_2 - \alpha_1)| \, d\alpha_1 \, dp_1$$
$$= \int_0^{\pi} |a(\alpha_1)| \sin(\alpha_2 - \alpha_1)| \, d\alpha_1$$



$$\mathit{a}(lpha_1) = \mathsf{width}$$

### Integrating on the left

Using the Fourier series of  $a(\alpha)$  and integrating the product of Fourier series we get

$$\int_{G_1} \int_{G_2} |\sin(\alpha_2 - \alpha_1)| \, dG_1 \, dG_2 = \frac{2L^2}{\pi} - 4\pi \sum_{n \ge 1} \frac{1}{4n^2 - 1} c_{2n}^2$$

Integrating on the right The right hand side must be integrated over the points  $P \in K$  and over the points  $P \notin K$ .

$$\int_{P \in K} \sin^2(\alpha_2 - \alpha_1) d\alpha_1 d\alpha_2 dP = \frac{\pi^2 F}{2}$$

$$\int_{P \notin K} \sin^2(\alpha_2 - \alpha_1) d\alpha_1 d\alpha_2 dP = \frac{1}{2} (\omega^2 - \sin^2 \omega)$$

Masotti:

$$\int_{P \notin K} (\omega^2 - \sin^2 \omega) \, dP = \frac{4L^2}{\pi} - \pi^2 F - 8\pi \sum_{n \ge 1} \frac{1}{4n^2 - 1} c_{2n}^2$$

#### Constant width

For constant width,  $c_{2n} = 0$ ,  $n \ge 1$ ,

$$\int_{P \notin K} (\omega^2 - \sin^2 \omega) dP = \frac{4L^2}{\pi} - \pi^2 F$$

Santaló in "Integral Geometry and Geometric Probability" gives lower and upper bounds for the Masotti integral. We improve the lower bound to

$$\left[\frac{4L^2}{\pi} - \pi^2 F\right] - \frac{4}{3}(A - F) \le \int_{P \notin K} (\omega^2 - \sin^2 \omega) \, dP \le \left[\frac{4L^2}{\pi} - \pi^2 F\right]$$

A = area of the pedal curve

### A formula for the integral of functions of the visual angle

$$\int_{P\notin K} f(\omega)\,dP$$

Since de domain of integration is not bounded,  $f(\omega)$  must satisfy some conditions when  $\omega \to 0$ .

We can take  $(\varphi, \omega)$  as coordinates outside K



$$dP = \frac{T \cdot T_1}{\sin \omega} \, d\varphi \wedge d\omega$$

# We denote by $F(\omega)$ the area of the level set



$$\sin^2 \omega \cdot F(\omega) = \frac{L^2}{2\pi} (1 + \cos \omega) + \pi \sum_{k \ge 2} g_k(\omega) c_k^2$$

$$c_k^2 = a_k^2 + b_k^2$$

$$g_k(\omega) = 1 + \frac{(-1)^k}{2}((k+1)\cos(k-1)\omega - (k-1)\cos(k+1)\omega)$$

We denote by  $F(\omega)$  the area of the level set



$$\sin^2 \omega \cdot F(\omega) = \frac{L^2}{2\pi} (1 + \cos \omega) + \pi \sum_{k>2} g_k(\omega) c_k^2$$

$$c_k^2 = a_k^2 + b_k^2$$

$$g_k(\omega) = 1 + \frac{(-1)^k}{2}((k+1)\cos(k-1)\omega - (k-1)\cos(k+1)\omega)$$

# The integral formula

$$\begin{split} \int_{P\notin K} f(\omega) \, dP &= -\left[f(\omega)F(\omega)\right]_0^\pi + \frac{L^2}{2\pi} M(f) \\ &+ \pi \sum_{k\geq 2, \text{ even}} \left(M(f) + 2 \sum_{j=1, \text{ odd}}^{k-1} \int_0^\pi f'(\omega) j \cos(j\omega) \, d\omega\right) c_k^2 \\ &+ \pi \sum_{k\geq 3, \text{ odd}} \left(-2 \sum_{j=2, \text{ even}}^{k-1} \int_0^\pi f'(\omega) j \cos(j\omega) \, d\omega\right) c_k^2, \end{split}$$

with 
$$M(f) = \int_0^{\pi} \frac{f'(\omega)}{1 - \cos(\omega)} d\omega$$
. [Does not depend on the convex set]

1. Crofton. 
$$M(f) = \pi$$
.  $[f(\omega)F(\omega)]_0^{\pi} = \pi F$ .

2. Masotti. 
$$M(f) = 8$$
.  $[f(\omega)f(\omega)]_0^n = \pi^2 F$ .

Let K be a compact convex set with boundary of class  $C^2$  and length L. Write  $c_k^2 = a_k^2 + b_k^2$  where  $a_k, b_k$  are the Fourier coefficients of the support function of  $\partial K$ . Then

$$\int_{P \notin K} \sin^{m} \omega \, dP = M \frac{L^{2}}{2\pi} + \frac{m! \pi^{2}}{2^{m-1} (m-2)} \sum_{k \geq 2, \text{even}} \frac{(-1)^{\frac{k}{2}+1} (k^{2}-1)}{\Gamma(\frac{m+1-k}{2}) \Gamma(\frac{m+1-k}{2})} c_{k}^{2},$$

where  $M=\int_0^\pi \frac{f'(\omega)}{1-\cos\omega}\,d\omega$ . In particular for m odd the index k in the sum runs only from 2 to m-1.

$$\int_{P \notin K} \sin^3 \omega \, dP = \frac{3L^2}{4} + \frac{9}{4}\pi^2 c_2^2 \qquad \text{Hurwitz}$$

$$\int_{P \notin K} \sin^5 \omega \, dP = \frac{5L^2}{16} + \frac{5\pi^2}{4} c_2^2 - \frac{25\pi^2}{16} c_4^2$$

$$\int_{P \notin K} \sin^4 \omega \, dP = \frac{4L^2}{3\pi} + \sum_{1}^{\infty} \frac{24\pi}{9 - 4p^2} c_{2p}^2$$

Constant width 
$$\int_{P \notin K} \sin^3 \omega \, dP = \frac{3L^2}{4}$$
 
$$\int_{P \notin K} \sin^5 \omega \, dP = \frac{5L^2}{16}$$
 
$$\int_{P \notin K} \sin^4 \omega \, dP = \frac{4L^2}{3\pi}$$

$$\int_{P \notin K} \sin^m \omega \ dP = \frac{\pi m!}{2^{m-1} (m-2) \Gamma(\frac{m+1}{2})^2} \frac{L^2}{2\pi}.$$

# Geometrical interpretation of $c_k^2$ [Hurwitz functions]

$$h_k(\omega) = \frac{(-1)^k}{4} [(k+1)^2 \cos(k-2)\omega + (k-1)^2 \cos(k+2)\omega - 2(k^2-3)\cos k\omega] + 2\cos \omega$$

$$\int_{P\notin K} h_k(\omega) dP = L^2 + (-1)^k \pi^2 c_k^2 (k^2 - 1).$$

 $c_k^2$  are invariants of the curve

# Geometrical interpretation of $c_k^2$ [Hurwitz functions]

$$h_k(\omega) = \frac{(-1)^k}{4} [(k+1)^2 \cos(k-2)\omega + (k-1)^2 \cos(k+2)\omega - 2(k^2-3)\cos k\omega] + 2\cos \omega$$

$$\int_{P
otin K} h_k(\omega) \, dP = L^2 + (-1)^k \pi^2 c_k^2 (k^2 - 1).$$
  $c_k^2$  are invariants of the curve

.

#### $\mathsf{Theorem}$

The integral of the power of the sinus of the visual angle is a linear combination of the integrals of the Hurwitz's functions.

## Proof.

$$\int_{P \notin K} \sin^m \omega \, dP = \frac{m!}{2^m (m-2)} \left( \frac{1}{\Gamma(\frac{m+1}{2})^2} - 2 \sum_{p=1}^{\infty} \frac{(-1)^{p+1}}{\Gamma(\frac{m+1}{2} + p)\Gamma(\frac{m+1}{2} - p)} \right) L^2$$

$$+\frac{m!}{2^{m-1}(m-2)}\sum_{p=1}^{\infty}\frac{(-1)^{p+1}}{\Gamma(\frac{m+1}{2}+p)\Gamma(\frac{m+1}{2}-p)}\cdot\int_{P\notin\mathcal{K}}f_{2p}(\omega)\,dP.$$

#### Proof.

The sum in the coefficient of  $L^2$  is (except for a constant factor) the hypergeometric function

$$F(\frac{3-m}{2},1;\frac{3+m}{2};1)$$

and

$$F(a,b;c;1) = \frac{\Gamma(-a-b)\Gamma(c)}{\Gamma(c-a)\Gamma(c-b)}, \quad c-a-b>0.$$

Using this we see

$$\frac{1}{\Gamma(\frac{m+1}{2})^2} = 2\sum_{p=1}^{\infty} \frac{(-1)^{p+1}}{\Gamma(\frac{m+1}{2} + p)\Gamma(\frac{m+1}{2} - p)}$$

and the coefficient of  $L^2$  vanishes.







