Edited by Ed Scheinerman

An Interesting Property of the Evolute

Carlos A. Escudero and Agustí Reventós

1. INTRODUCTION. The starting point of this note is the following inequality: if $C=\partial K$ is the boundary of a compact, convex set K of area F in \mathbb{R}^{2}, then

$$
\begin{equation*}
\int_{C} \frac{1}{k} d s \geqslant 2 F \tag{1}
\end{equation*}
$$

where $k=k(s)>0$ is the curvature function of C and $d s$ signifies arclength measure on C. Equality holds if and only if C is a circle.

In [1], two proofs of this result are given: the first uses a polygonal approximation of the curve C; the second is based on ideas of Osserman [4]. In this note we give a very short new proof of (1), which has the advantage of providing a geometric interpretation of the difference $2 F-\int_{C} k^{-1} d s$. To be precise, we prove that

$$
\int_{C} \frac{1}{k} d s=2\left(F-F_{e}\right)
$$

where $F_{e} \leq 0$ is the (algebraic) area of the domain bounded by the evolute of C.
Inequality (1) is the two-dimensional analogue of Heintze and Karcher's inequality:

$$
\int_{S} \frac{1}{H} d A \geqslant 3 V
$$

where $H>0$ is the mean curvature of a compact embedded surface S in \mathbb{R}^{3} bounding a domain D of volume V. Equality holds if and only if S is a standard sphere [5]. This raises the obvious question: Is there a geometric interpretation of the difference $3 V-\int_{C} H^{-1} d A$?
2. ENVELOPE OF A FAMILY OF LINES. An evolute is the locus of centers of curvature of a plane curve. The evolute E of a smooth curve C has singularities (called cusps; see Figure 1). The cusps of the evolute correspond to the points of C where the curvature takes extreme values. It can be seen that the evolute of C is the envelope of all the normals to this curve (i.e., the tangents to the evolute are the normals to C).

Recall, following [6], that a straight line G in the plane is determined by the angle ϕ that the direction perpendicular to G makes with the positive x-axis and the distance $p=p(\phi)$ of G from the origin. The equation of G then takes the form

$$
\begin{equation*}
x \cos \phi+y \sin \phi-p=0 \tag{2}
\end{equation*}
$$

Equation (2), when $p=p(\phi)$ varies with ϕ, is the equation of a family of lines. If we assume that the 2π-periodic function $p(\phi)$ is differentiable, the envelope of the family is obtained from (2) and the derivative of its left-hand side, as follows:

Figure 1.

$$
\begin{equation*}
-x \sin \phi+y \cos \phi-p^{\prime}=0, \quad p^{\prime}=d p / d \phi \tag{3}
\end{equation*}
$$

From (2) and (3) we arrive at a parametric representation of the envelope of the lines (2):

$$
x=p \cos \phi-p^{\prime} \sin \phi, \quad y=p \sin \phi+p^{\prime} \cos \phi .
$$

If the envelope is the boundary ∂K of a convex set K and the origin is an interior point of K, then $p(\phi)$ is called the support function of K (or the support function of the convex curve ∂K).

Since $d x=-\left(p+p^{\prime \prime}\right) \sin \phi d \phi$ and $d y=\left(p+p^{\prime \prime}\right) \cos \phi d \phi$ (we here assume that the function p is of class C^{2}), arclength measure on ∂K is given by

$$
\begin{equation*}
d s=\sqrt{d x^{2}+d y^{2}}=\left|p+p^{\prime \prime}\right| d \phi \tag{4}
\end{equation*}
$$

and the radius of curvature ρ by

$$
\begin{equation*}
\rho=\frac{d s}{d \phi}=\left|p+p^{\prime \prime}\right| \tag{5}
\end{equation*}
$$

It is well known that a necessary and sufficient condition for a periodic function p to be the support function of a convex set K is that $p+p^{\prime \prime}>0$. Finally, it follows from (4) that the length of a closed convex curve that has support function p of class C^{2} is given by

$$
L=\int_{0}^{2 \pi} p d \phi
$$

The area of the convex set K is expressed in terms of the support function by

$$
\begin{equation*}
F=\frac{1}{2} \int_{\partial K} p d s=\frac{1}{2} \int_{0}^{2 \pi} p\left(p+p^{\prime \prime}\right) d \phi \tag{6}
\end{equation*}
$$

or, equivalently, by

$$
d F=\frac{1}{2} p d s=\frac{1}{2} p \rho d \phi
$$

We also use the following well-known result (Wirtinger's inequality):

Lemma 1. If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a C^{2}-function of period 2π, then

$$
\int_{0}^{2 \pi}\left|f^{\prime}\right|^{2} d \phi \leq \int_{0}^{2 \pi}\left|f^{\prime \prime}\right|^{2} d \phi
$$

Equality holds if and only if $f(\phi)=a \cos \phi+b \sin \phi+c$ for constants a, b, and c.

See, for instance, [7, p. 81], or [2, p. 52], for an elementary geometric proof.
Finally we recall that if $h: \mathbb{R} \rightarrow \mathbb{R}$ is a C^{1}-function of period 2π, the hedgehog γ_{h} corresponding to h is parametrized by (see [3])

$$
\gamma_{h}(\phi)=\left(h(\phi) \cos \phi-h^{\prime}(\phi) \sin \phi, h(\phi) \sin \phi+h^{\prime}(\phi) \cos \phi\right) .
$$

Equivalently, the hedgehog is the envelope of the family of lines given by

$$
x \cos \phi+y \sin \phi=h(\phi)
$$

For instance, if $h(\phi)=\cos (25 \phi)$, this envelope actually looks like a hedgehog (Figure 2).

Figure 2.

The (algebraic) area F_{h} of the hedgehog corresponding to h is given by

$$
F_{h}=\frac{1}{2} \int_{0}^{2 \pi} h\left(h+h^{\prime \prime}\right) d \phi=\frac{1}{2} \int_{0}^{2 \pi}\left(h^{2}-h^{\prime 2}\right) d \phi
$$

This quantity can be positive, negative, or zero. If h is the support function of a convex set, then F_{h} is the Euclidean area of this convex set (see (6)). In particular, this algebraic area is positive. We shall see that $F_{h} \leq 0$ whenever h is the support function of an evolute.
3. THE EVOLUTE OF A CONVEX CURVE. Let C be a closed convex curve in \mathbb{R}^{2}. We assume that C is the boundary of a convex set K and that the origin is in the interior of K. We assume further that the support function $p=p(\phi)$ of K is
a C^{3}-function (of period $\left.2 \pi\right)$. A parametrization $\gamma_{p}(\phi)=(x(\phi), y(\phi))$ of C is then furnished by

$$
x(\phi)=p(\phi) \cos \phi-p^{\prime}(\phi) \sin \phi, \quad y(\phi)=p(\phi) \sin \phi+p^{\prime}(\phi) \cos \phi
$$

Relative to this parametrization, the evolute $\tilde{\gamma}$ of γ_{p} is expressed as follows:

$$
\tilde{\gamma}(\phi)=\gamma_{p}(\phi)+\rho(\phi) \frac{\left(-y^{\prime}(\phi), x^{\prime}(\phi)\right)}{\left(\left(x^{\prime}(\phi)\right)^{2}+\left(y^{\prime}(\phi)\right)^{2}\right)^{1 / 2}}
$$

where $\rho(\phi)$ is the radius of curvature of $\gamma_{p}(\phi)$. From (4) and (5) we have

$$
\tilde{\gamma}(\phi)=\gamma_{p}(\phi)+\left(-y^{\prime}(\phi), x^{\prime}(\phi)\right)
$$

Equivalently, $\tilde{\gamma}(\phi)=(\tilde{x}(\phi), \tilde{y}(\phi))$, with

$$
\begin{aligned}
& \tilde{x}(\phi)=x(\phi)-y^{\prime}(\phi)=-p^{\prime}(\phi) \sin \phi-p^{\prime \prime}(\phi) \cos \phi, \\
& \tilde{y}(\phi)=y(\phi)+x^{\prime}(\phi)=p^{\prime}(\phi) \cos \phi-p^{\prime \prime}(\phi) \sin \phi .
\end{aligned}
$$

We note the simplicity of this parametrization of the evolute.
Let $H(\phi)=-p^{\prime}(\phi+\pi / 2)$. Then H is a C^{2}-function of period 2π, and the hedgehog corresponding to it has the parametrization

$$
\begin{aligned}
\gamma_{H}(\phi)= & \left(H(\phi) \cos \phi-H^{\prime}(\phi) \sin \phi, H(\phi) \sin \phi+H^{\prime}(\phi) \cos \phi\right) \\
= & \left(-p^{\prime}\left(\phi+\frac{\pi}{2}\right) \cos \phi+p^{\prime \prime}\left(\phi+\frac{\pi}{2}\right) \sin \phi\right. \\
& \left.-p^{\prime}\left(\phi+\frac{\pi}{2}\right) \sin \phi-p^{\prime \prime}\left(\phi+\frac{\pi}{2}\right) \cos \phi\right)
\end{aligned}
$$

In particular,

$$
\begin{aligned}
\gamma_{H}\left(\phi-\frac{\pi}{2}\right) & =\left(-p^{\prime}(\phi) \sin \phi-p^{\prime \prime}(\phi) \cos \phi, p^{\prime}(\phi) \cos \phi-p^{\prime \prime}(\phi) \sin \phi\right) \\
& =(\tilde{x}(\phi), \tilde{y}(\phi))=\tilde{\gamma}(\phi)
\end{aligned}
$$

We thus see that the evolute $\tilde{\gamma}$ of γ_{p} is the hedgehog γ_{H}.
We conclude that the (algebraic) area F_{e} of the evolute of the convex curve supported by p is equal to the (algebraic) area F_{H} of the hedgehog corresponding to $H=H(\phi)=-p^{\prime}(\phi+\pi / 2)$. Stated differently,

$$
F_{e}=\frac{1}{2} \int_{0}^{2 \pi} H\left(H+H^{\prime \prime}\right) d \phi=\frac{1}{2} \int_{0}^{2 \pi} p^{\prime}\left(p^{\prime}+p^{\prime \prime \prime}\right) d \phi
$$

We now have the tools to establish the following result:
Theorem 1. The integral with respect to arclength of the radius of curvature of a plane convex curve is twice the area of the domain it bounds minus the (algebraic) area of the domain bounded by its evolute:

$$
\int_{C} \rho d s=2\left(F-F_{e}\right)
$$

Proof. The area F_{e} enclosed by the evolute satisfies

$$
F_{e}=\frac{1}{2} \int_{0}^{2 \pi} p^{\prime}\left(p^{\prime}+p^{\prime \prime \prime}\right) d \phi
$$

Integration by parts yields

$$
\int_{0}^{2 \pi}\left(p^{\prime \prime} p\right) d \phi=-\int_{0}^{2 \pi}\left(p^{\prime}\right)^{2} d \phi
$$

and

$$
\int_{0}^{2 \pi}\left(p^{\prime} p^{\prime \prime \prime}\right) d \phi=-\int_{0}^{2 \pi}\left(p^{\prime \prime}\right)^{2} d \phi .
$$

Hence

$$
\begin{align*}
F_{e} & =\frac{1}{2} \int_{0}^{2 \pi}\left(\left(p^{\prime}\right)^{2}-\left(p^{\prime \prime}\right)^{2}\right) d \phi \tag{7}\\
& =-\frac{1}{2} \int_{0}^{2 \pi} p^{\prime \prime}\left(p+p^{\prime \prime}\right) d \phi=-\frac{1}{2} \int_{C} p^{\prime \prime} d s
\end{align*}
$$

since $d s=\left(p+p^{\prime \prime}\right) d \phi$. We conclude that

$$
2 F_{e}=-\int_{C} p^{\prime \prime} d s=-\int_{C}(\rho-p) d s=2 F-\int_{C} \rho d s
$$

or

$$
\int_{C} \rho d s=2\left(F-F_{e}\right) .
$$

Corollary 1. If the boundary $C=\partial K$ of a convex set K in the plane is a C^{2}-curve, then

$$
\int_{C} \rho d s \geq 2 F,
$$

where $d s$ is arclength measure on $C, \rho=\rho(s)$ is the radius of curvature of C, and F is the area of K. Equality holds if and only if C is a circle.

Proof. The corollary is an immediate consequence of Theorem 1 and the fact that $F_{e} \leq 0$. That $F_{e} \leq 0$ follows from Lemma 1 and formula (7).

If equality holds, then $F_{e}=0$ and we have equality in Wirtinger's formula. That is, $p(\phi)=a \cos \phi+b \sin \phi+c$. But this implies that C is a circle of center (a, b) and radius $|c|$.

ACKNOWLEDGMENTS. We thank Carlos Rodríguez and Jordi Saperas for many valuable conversations. We also thank Bruce Solomon for suggesting several improvements in this note. The authors received support from DGICYT, 2003-03458, and Universidad Tecnológica de Pereira, project 3-05-2.

1. C. A. Escudero and C. Rodríguez, Curvatura en un poligono y teorema de Ros para curvas planas, Departamento de Matemáticas de la Universidad del Valle, Colombia, 1996.
2. H. Hopf, Differential Geometry in the Large, Springer-Verlag, Berlin, 1983.
3. Y. Martinez-Maure, Hedgehogs and area of order 2, Arch. Math. 67 (1996) 156-163.
4. R. Osserman, Curvature in the eighties, this MONTHLY 97 (1990) 731-756.
5. A. Ros, Compact hypersufaces with constant scalar curvature and congruence theorem, J. Diff. Geom. 27 (1988) 215-220.
6. L. A. Santaló, Integral Geometry and Geometric Probability, Encyclopedia of Mathematics and Its Applications, vol. 1, Addison-Wesley, Reading, MA, 1976.
7. G Talenti, The standard isoperimetric theorem, in Handbook of Convex Geometry, P. M. Gruber and J. M. Wills, eds., North Holland, Amsterdam, 1993.

Departamento de Matemáticas. Universidad Tecnológica de Pereira, Colombia carlos10@utp.edu.co

Departament de Matemátiques. Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Catalunya, Spain agusti@mat.uab.cat

Rotation in a Normed Plane

Jack Cook, Jonathan Lovett, and Frank Morgan

1. INTRODUCTION. What would it be like to live in a space with a non-Euclidean norm, where length depends on direction? Could you turn around? We'll show that in general the answer is no: you tend to get stuck. In a non-Euclidean normed plane, although a triangle can be fully rotated (all the way around), a typical rhombus with diagonal struts cannot. There are some exceptions.

Our main theorem (2) gives the rhombus results. Corollary 1 treats an isosceles triangle plus median, and Corollary 2 treats a right triangle plus median.

Our results strengthen a theorem of Day [2, Theorem 2.1, p. 321], which says that a norm is linearly equivalent to the Euclidean norm if every rhombus with diagonals can be fully rotated (although he did not use the language of rotation). Our results follow easily from results of Nordlander [4] and Alonso and Benítez [1].
2. DEFINITIONS AND PREVIOUS RESULTS. A norm $\|\cdot\|$ on \mathbf{R}^{2} is a centrally symmetric positive function (except that $\|0\|=0$) satisfying the triangle inequality $(\|a+b \leq\| a\|+\| b \|)$ and homogeneity $(\|\Lambda a\|=|\lambda|\|a\|)$. A unit norm ball, meaning a set of the type $\{x:\|x-p\| \leq 1\}$, is convex (by the triangle inequality) and centrally symmetric (by homogeneity). Examples of unit balls appear in Figure 1. The Euclidean norm on \mathbf{R}^{2} is denoted by $\|\cdot\|_{\mathrm{E}}$. Two norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are linearly equivalent if, for some linear map $L,\|x\|_{2}=\|L x\|_{1}$.

We consider (finite) connected graphs with positive prescribed edge-lengths satisfying a strict generalized triangle inequality: for any cycle (closed path of distinct edges and vertices), the edge-lengths $a_{1}, a_{2}, \ldots, a_{n}$ satisfy

$$
a_{n}<a_{1}+a_{2}+\cdots+a_{n-1}
$$

