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NOTES
Edited by Ed Scheinerman

An Interesting Property of the Evolute

Carlos A. Escudero and Agustı́ Reventós

1. INTRODUCTION. The starting point of this note is the following inequality: if
C = ∂K is the boundary of a compact, convex set K of area F in R

2, then
∫

C

1

k
ds � 2F, (1)

where k = k(s) > 0 is the curvature function of C and ds signifies arclength measure
on C . Equality holds if and only if C is a circle.

In [1], two proofs of this result are given: the first uses a polygonal approximation of
the curve C ; the second is based on ideas of Osserman [4]. In this note we give a very
short new proof of (1), which has the advantage of providing a geometric interpretation
of the difference 2F − ∫

C k−1ds. To be precise, we prove that

∫
C

1

k
ds = 2(F − Fe),

where Fe ≤ 0 is the (algebraic) area of the domain bounded by the evolute of C .
Inequality (1) is the two-dimensional analogue of Heintze and Karcher’s inequality:

∫
S

1

H
d A � 3V,

where H > 0 is the mean curvature of a compact embedded surface S in R
3 bounding

a domain D of volume V . Equality holds if and only if S is a standard sphere [5].
This raises the obvious question: Is there a geometric interpretation of the difference
3V − ∫

C H−1d A?

2. ENVELOPE OF A FAMILY OF LINES. An evolute is the locus of centers of
curvature of a plane curve. The evolute E of a smooth curve C has singularities (called
cusps; see Figure 1). The cusps of the evolute correspond to the points of C where the
curvature takes extreme values. It can be seen that the evolute of C is the envelope of
all the normals to this curve (i.e., the tangents to the evolute are the normals to C).

Recall, following [6], that a straight line G in the plane is determined by the angle
φ that the direction perpendicular to G makes with the positive x-axis and the distance
p = p(φ) of G from the origin. The equation of G then takes the form

x cos φ + y sin φ − p = 0. (2)

Equation (2), when p = p(φ) varies with φ, is the equation of a family of lines.
If we assume that the 2π-periodic function p(φ) is differentiable, the envelope of the
family is obtained from (2) and the derivative of its left-hand side, as follows:
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Figure 1.

−x sin φ + y cos φ − p′ = 0, p′ = dp/dφ. (3)

From (2) and (3) we arrive at a parametric representation of the envelope of the lines
(2):

x = p cos φ − p′ sin φ, y = p sin φ + p′ cos φ.

If the envelope is the boundary ∂K of a convex set K and the origin is an interior point
of K , then p(φ) is called the support function of K (or the support function of the
convex curve ∂K ).

Since dx = −(p + p′′) sin φ dφ and dy = (p + p′′) cos φ dφ (we here assume that
the function p is of class C2), arclength measure on ∂K is given by

ds = √
dx2 + dy2 = |p + p′′| dφ (4)

and the radius of curvature ρ by

ρ = ds

dφ
= |p + p′′|. (5)

It is well known that a necessary and sufficient condition for a periodic function p to
be the support function of a convex set K is that p + p′′ > 0. Finally, it follows from
(4) that the length of a closed convex curve that has support function p of class C2 is
given by

L =
∫ 2π

0
p dφ.

The area of the convex set K is expressed in terms of the support function by

F = 1

2

∫
∂K

pds = 1

2

∫ 2π

0
p(p + p′′) dφ (6)

or, equivalently, by

d F = 1

2
p ds = 1

2
p ρ dφ.

We also use the following well-known result (Wirtinger’s inequality):
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Lemma 1. If f : R −→ R is a C2-function of period 2π , then

∫ 2π

0
| f ′|2dφ ≤

∫ 2π

0
| f ′′|2dφ.

Equality holds if and only if f (φ) = a cos φ + b sin φ + c for constants a, b, and c.

See, for instance, [7, p. 81], or [2, p. 52], for an elementary geometric proof.
Finally we recall that if h : R → R is a C1-function of period 2π , the hedgehog γh

corresponding to h is parametrized by (see [3])

γh(φ) = (h(φ) cos φ − h′(φ) sin φ, h(φ) sin φ + h′(φ) cos φ) .

Equivalently, the hedgehog is the envelope of the family of lines given by

x cos φ + y sin φ = h(φ).

For instance, if h(φ) = cos(25φ), this envelope actually looks like a hedgehog (Figure
2).

Figure 2.

The (algebraic) area Fh of the hedgehog corresponding to h is given by

Fh = 1

2

∫ 2π

0
h(h + h′′)dφ = 1

2

∫ 2π

0
(h2 − h′2)dφ.

This quantity can be positive, negative, or zero. If h is the support function of a convex
set, then Fh is the Euclidean area of this convex set (see (6)). In particular, this algebraic
area is positive. We shall see that Fh ≤ 0 whenever h is the support function of an
evolute.

3. THE EVOLUTE OF A CONVEX CURVE. Let C be a closed convex curve
in R

2. We assume that C is the boundary of a convex set K and that the origin is
in the interior of K . We assume further that the support function p = p(φ) of K is
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a C3-function (of period 2π). A parametrization γp(φ) = (x(φ), y(φ)) of C is then
furnished by

x(φ) = p(φ) cos φ − p′(φ) sin φ, y(φ) = p(φ) sin φ + p′(φ) cos φ.

Relative to this parametrization, the evolute γ̃ of γp is expressed as follows:

γ̃ (φ) = γp(φ) + ρ(φ)
(−y′(φ), x ′(φ))

((x ′(φ))2 + (y′(φ))2)1/2
,

where ρ(φ) is the radius of curvature of γp(φ). From (4) and (5) we have

γ̃ (φ) = γp(φ) + (−y′(φ), x ′(φ)).

Equivalently, γ̃ (φ) = (x̃(φ), ỹ(φ)), with

x̃(φ) = x(φ) − y′(φ) = −p′(φ) sin φ − p′′(φ) cos φ,

ỹ(φ) = y(φ) + x ′(φ) = p′(φ) cos φ − p′′(φ) sin φ.

We note the simplicity of this parametrization of the evolute.
Let H(φ) = −p′(φ + π/2). Then H is a C2-function of period 2π , and the hedge-

hog corresponding to it has the parametrization

γH (φ) = (H(φ) cos φ − H ′(φ) sin φ, H(φ) sin φ + H ′(φ) cos φ)

=
(
−p′

(
φ + π

2

)
cos φ + p′′

(
φ + π

2

)
sin φ,

−p′
(
φ + π

2

)
sin φ − p′′

(
φ + π

2

)
cos φ

)
.

In particular,

γH

(
φ − π

2

)
= (−p′(φ) sin φ − p′′(φ) cos φ, p′(φ) cos φ − p′′(φ) sin φ)

= (x̃(φ), ỹ(φ)) = γ̃ (φ).

We thus see that the evolute γ̃ of γp is the hedgehog γH .
We conclude that the (algebraic) area Fe of the evolute of the convex curve sup-

ported by p is equal to the (algebraic) area FH of the hedgehog corresponding to
H = H(φ) = −p′(φ + π/2). Stated differently,

Fe = 1

2

∫ 2π

0
H(H + H ′′)dφ = 1

2

∫ 2π

0
p′(p′ + p′′′)dφ.

We now have the tools to establish the following result:

Theorem 1. The integral with respect to arclength of the radius of curvature of a
plane convex curve is twice the area of the domain it bounds minus the (algebraic)
area of the domain bounded by its evolute:

∫
C

ρ ds = 2(F − Fe).
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Proof. The area Fe enclosed by the evolute satisfies

Fe = 1

2

∫ 2π

0
p′(p′ + p′′′)dφ.

Integration by parts yields

∫ 2π

0
(p′′ p) dφ = −

∫ 2π

0
(p′)2 dφ

and

∫ 2π

0
(p′ p′′′) dφ = −

∫ 2π

0
(p′′)2 dφ.

Hence

Fe = 1

2

∫ 2π

0
((p′)2 − (p′′)2)dφ (7)

= −1

2

∫ 2π

0
p′′(p + p′′)dφ = −1

2

∫
C

p′′ds,

since ds = (p + p′′)dφ. We conclude that

2Fe = −
∫

C
p′′ds = −

∫
C
(ρ − p)ds = 2F −

∫
C

ρ ds

or
∫

C
ρ ds = 2(F − Fe).

Corollary 1. If the boundary C = ∂K of a convex set K in the plane is a C2-curve,
then

∫
C

ρ ds ≥ 2F,

where ds is arclength measure on C, ρ = ρ(s) is the radius of curvature of C, and F
is the area of K . Equality holds if and only if C is a circle.

Proof. The corollary is an immediate consequence of Theorem 1 and the fact that
Fe ≤ 0. That Fe ≤ 0 follows from Lemma 1 and formula (7).

If equality holds, then Fe = 0 and we have equality in Wirtinger’s formula. That is,
p(φ) = a cos φ + b sin φ + c. But this implies that C is a circle of center (a, b) and
radius |c|.
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Departamento de Matemáticas. Universidad Tecnológica de Pereira, Colombia
carlos10@utp.edu.co

Departament de Matemátiques. Universitat Autònoma de Barcelona,
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Rotation in a Normed Plane
Jack Cook, Jonathan Lovett, and Frank Morgan

1. INTRODUCTION. What would it be like to live in a space with a non-Euclidean
norm, where length depends on direction? Could you turn around? We’ll show that
in general the answer is no: you tend to get stuck. In a non-Euclidean normed plane,
although a triangle can be fully rotated (all the way around), a typical rhombus with
diagonal struts cannot. There are some exceptions.

Our main theorem (2) gives the rhombus results. Corollary 1 treats an isosceles
triangle plus median, and Corollary 2 treats a right triangle plus median.

Our results strengthen a theorem of Day [2, Theorem 2.1, p. 321], which says that a
norm is linearly equivalent to the Euclidean norm if every rhombus with diagonals can
be fully rotated (although he did not use the language of rotation). Our results follow
easily from results of Nordlander [4] and Alonso and Benı́tez [1].

2. DEFINITIONS AND PREVIOUS RESULTS. A norm ‖ · ‖ on R2 is a centrally
symmetric positive function (except that ‖0‖ = 0) satisfying the triangle inequality
(‖a + b ≤ ‖a‖ + ‖b‖) and homogeneity (‖�a‖ = |λ| ‖a‖). A unit norm ball, meaning
a set of the type {x : ‖x − p‖ ≤ 1}, is convex (by the triangle inequality) and centrally
symmetric (by homogeneity). Examples of unit balls appear in Figure 1. The Euclidean
norm on R2 is denoted by ‖ · ‖E. Two norms ‖ · ‖1 and ‖ · ‖2 are linearly equivalent if,
for some linear map L , ‖x‖2 = ‖Lx‖1.

We consider (finite) connected graphs with positive prescribed edge-lengths satisfy-
ing a strict generalized triangle inequality: for any cycle (closed path of distinct edges
and vertices), the edge-lengths a1, a2, . . . , an satisfy

an < a1 + a2 + · · · + an−1.
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