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ON SOME GEOMETRICAL PROPERTIES
OF SEIFERT BUNDLES

BY
M. NICOLAU AND A. REVENTOS

ABSTRACT

In this paper we use the integration along the leaves introduced by Haefliger in
1980 to obtain a differentiable version of the Gysin sequence and Euler class for
compact Hausdorff orientable foliations with generic leaf the sphere S*. From
this we give a geometrical significance to the vanishing of the Euler class on
Seifert bundles. We also obtain an integral formula on Seifert bundles similar to
the Gauss—-Bonnet one.

§1. Introduction

In [3] Haefliger defines for each oriented foliation %, a linear operator § = (the
integration along the leaves) which has similar properties to those of the
integration over the fibres on fibre bundies.

If & is Hausdorff and compact this operator can be interpreted as a linear map
of degree —p

,ﬁp L AR (M)~ A*(M/F)

where A (M/%) denotes the algebra of V-forms on the V-manifold M/%.

In this paper we use the integration along the leaves to obtain a differentiable
version of the Gysin exact sequence and Euler class for compact Hausdorit
orientable foliations with generic leaf the sphere S”.

From this interpretation we obtain the main theorems of this paper.

THEOREM A. Let M be a compact oriented manifold and F an oriented
Hausdorff foliation by circles on M. The following conditions are equivalent:

(i) The Euler class of & is zero.

(ii) There exists a Riemannian foliation complementary to % (see Definition 2).
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THeorem B, Let M be a compact orientable 3-manifold and let & be an
orieniable Seifert bundle on M. The following conditions are equivalent:

(i) The first Betti number of M is even.

(ii) The Euler class of & is not zero.

(i) F is a contact foliation (see Definition 3).

(iv) & does not admit any complementary Riemannian foliation

We also show that the implication (i) = (iv) is true for an oriented p-
dimensional sphere foliation on an n-dimensional manifold M (see Proposition
3). We give an example of an oriented p-dimensional sphere foliation & with
complementary Riemannian foliation %" such that neither % nor %* are
fibrations.

In the last paragraph, and using also the integration along the leaves, we
obtain an integral formula on Seifert bundles similar to the Gauss-Bonnet one.

We would like to thank our advisor, Professor Joan Girbau, for his help and
encouragement during the preparation of this work.

We are also grateful to the referee for suggesting the current proof of
Proposition 5 which, in the original version of this paper, was proved by using a
metric,

§2. Integration along the leaves and Euler class

2.1, In this paper M will denote an oriented compact connected smooth
manifold of dimension p+g

Let # be a codimension g smooth oriented Hausdorff compact foliation on M,
ie.,allleaves of ¥ are compact, smoothly oriented, and the leaf space B = M| %
is Hausdorff.

It is well known (cf. for instance {2]) that % admits the following local
representation:

Tueorem 1. There is a generic leaf L and an open dense subset of M where the
leaves are all diffeomorphic to L. Moreover, given a leaf L., there is

(a) a finite subgroup G of O(q),

(b) a free action of G on L, on the right,

(c) an open neighborhood V of Lo,

(d) a diffeomorphism ¢ : I XD — V, where D is the unit ball of R", which
preserves leaves if one takes the foliation on L X D whose leaves are the quotient
of the submanifolds L x{point}.

It follows from this theorem that B is, in a natural way, a V-manifold and that
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the canonical projection = : M -> B defines a V-fibre space structure over B
For definitions we refer to [8].

In {3] Haefliger defines, for each oriented p-dimensional foliation & on M, the
integration along the leaves as a linear map

fﬁ C AT M) — AT &)
where A:(Tr &) denotes the quotient of the vector space of k-forms with
compact support on a submanifold T transversal to every leaf of & by the vector
subspace generated by elements of the form « ~ h*a, where h belongs to the
holonomy pseudogroup of % and « is a k-form on T.

In our situation (oriented Hausdorff compact foliations) this operator can be
interpreted as a linear map of degree ~ p, f5: A*(M)— A*(B), where A*(B)
denotes the algebra of V-forms on B. Mareover, if w is a k-form on M, we can
compute fsw as follows: In each local model L X5 D the k-form ¢ *w can be
regarded as a G-invariant k-form on L X D. The integration of this form along
the fibres in the trivial bundle [ X D — D gives us a G-invariant (k — p)-form
on D which we divide by the order of G to get a consistent construction. Now
the canonical structure of V-fibre space of #: M — B tells us that the above
construction defines a V-form on the V-manifold B This V-form is fsw.

Note that if % is a fibration this definition coincides with the usual one.

We list here some properties of this operator we shall use later. All the
statements follow directly from the analogous properties of the integration over
the fibres on fibre bundles.

Prorosition 1. (a) The integration along the leaves commutes with the exterior
derivative

(b) Letvbear— V-formon B and w an s-formon M. Then fs (w*r Aw)=
TAafsw.

(c}) With respect to the orientation of B induced by the orientations of M and the
leaves we have [y = [o(fsw) where w is a n-form on M.

2.2, We recall here the definition of a bundle-like metric [5]. Let g be a
Riemannian metric on M For each flat neighborhood (U, x°, -+ -, x", yloo v
of a foliation & (the foliation in U is given by y* = constant), there are 1-forms
@', -, 8" such that {8',---, 8", dy', -, dy} is a basis of the cotangent space
with dual basis (8/dx', - 8/9x", vy, -+, 1}, where v, are vector fields or-
thogonal to # by g. We say g is bundle-like with respect to &% if in each flat
neighborhood we have
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g =g (%, y)0'8 + g (yidy“dy”

If % is a compact foliation and there exists a bundle-like metric on M with
respect to %, then F is Hausdorff {5]. Reciprocally, if & is Hausdorff and
compact, one can obtain a bundle-like metric by glueing together, by means of a
partition of unity on M constant on the leaves, bundle-like metrics on the local
models.

Note that a bundle-like metric induces a Riemannian metric invariant by the
holonomy pseudogroup on each submanifold transverse to &, and thus a
Riemannian metric on the V-manifold B.

Let g be a bundle-like metric on M with respect to a foliation & If on each fiat
neighborhood the 1-forms 8',- -, 8" are positively ordered, then

7 =Vdet(g,)8'n A 0"

is a global p-form on M The restriction of n to each leaf L, of F gives the
volume element of L, with respect to the metric induced on L, by g 7 is called
the volume form associated to g and to the orientation of &

Dermirion 1. A bundle-like metric will be called of constant volume if all
regular leaves (leaves with trivial holonomy group) have the same volume

For such metrics the leaves are minimal (¢f Rummler, Comm. Math. Helv,
84, 224-239),

With the notation above, g is of constant volume if and only if the function
£ #m is constant,

We obtain such a metric from a bundle-like metric g’ in the following way: Let
7' be the volume form associated to g'. Then ' = fs7' is a strictly positive
function on B and the desired metricis g = h. g’ where h = (h'e 7 )" (Here
fsn=1, where 7 is the volume form associated to g)

2.3 In this paragraph & will be an oriented sphere foliation, i e, an oriented
Hausdorfl compact foliation with generic leaf the sphere S of dimension p We
also assume M compact

The situation being similar to that of sphere bundles, we can give a
differentiable version of the Euler class and Gysin exact sequence, via the
integration along the leaves.

It follows from paragraph 2.2 that there exists 5 € A"(M) such that
fsm=1Thus, for each r&A*(B), we have fs(zw*ram)=s and
£z AT (M)— A" (B) is surjective. Let K’ denote the kernel of f It follows
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from Proposition 1{a) that d(K")C K'™' Thus we obtain the exact sequence of
differential spaces

0— K*— A*(M)-25 A*(B)— 0.

We denote by § the connecting homomorphism associated to this sequence
On the other hand, Im 7% C K* and the commutative diagram

A'(B)—— K’
o d

Ar*‘-I(B) = K’r!-l

induces, for each r, a morphism #; : H'(B)— H'(K*} (For the construction of
the de Rham cohomology of 2 V-manifold see [7])

Now an argument similar to the case of sphere bundles shows that %7 is an
isomorphism (see, for instance, Greub, Halperin and Vanstone, Connections.
Curvature, and Cohonology, Vol. ). From this and the above exact sequence we
get the following proposition.

Prorosition 2. If F is an oriented sphere foliation then the sequence (the
Gysin sequence of F)

s HY(B) o HT T (B) 5 HO W (M) 5 1 (B s

where @ = ("Y'« § is exact

Since B is connected H'(B)= R and we can define, as is usual, the Fuler class
of the sphere foliation F by x» = ()€ H""(B)

REMARKS. (1) The connecting homomorphism £ is nothing but the
product by the Euler class ys Moreover, if o € A" (M) and 7€ A" (B) ure
such that f;w=1 and dw = %7, then y; =7}

(2) As in the case of sphere bundles, we have that if the Euler class is zero
then H¥(M)= H*(B)Q H*(S")

We end this paragraph by computing the Euler class in a particular case.

DeriniTION 2. A codimension p foliation F' transverse to F is said to be @
Riemannian foliation complementary to & if there is a Riemannian metric on M
bundle-like both with respect to F and F°
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Note that if ¥ and F* are Hausdorff compact, then F* is 2 Ricmannian
foliation complementary to %

PROPOSITION 3. Assume the sphere foliation F admits a Riemannian foliation
F* complementary to F. Then the Euler class of F is zero.

ProOoOF  Let g be a Riemannian metric on M bundle-like with respect to the
two foliations & and F*. Let 5 be the volume p-form associated to g We can
cover M by local charts (U, x', y*) such that the foliations % and F* are given
locaily by x' = constant and y“ = constant, respectively. In such a chart we have

g = g )de'dx’ + g (y)dy dy”
and

n = Vdet(g;)dx' A Adx”

where x', . x" are ordered positively with respect to the orientation of F We
have dn =0, h = f:n>0 and dh = f:dn=0, so h is constant, different from
zero, and the morphism f%: H"(M)— H(B) is surjective. Thus the Euler class
IS Zero.

CorotLARY 1. If M is a homology n-sphere, then any Seifert sphere foliation
F does not admit any Riemannian foliation complementary to &

Proor. Use Proposition 2 and Remark 2

REMARK 3. A Riemannian foliation complementary to & is not necessarily a
fibration. Simple examples of this can by obtained from the action of a finite
group on a product of manifolds. Take, for instance, M =S ' T*
(™" ={z=(z, -, z)EC™; Pz =1}, TP={(w, ws W) ECT wid, = 1.
i =1,2,3}) Consider now the action of G = Z, P Z. = {1, a, b, c} on M given by

alz, wi, wa, wi) = (2, — w,, wa, W3),
bz, wi, wa, wy) = (2, W\, Wz, W3),
€z, Wa Wa, Wa) = {— Z, — wy, Wa, W),

where Z =(Z(, -, Z.)

This action is free and M = M/ G is a manifold. The foliations & and F* on M
whose leaves are respectively ™' x{point} and {point} x T° are preserved by
the action of G So we have foliations % and F' on M They are transverse
Hausdorff compact {oliations and they are not fibrations.

Note that if m is even then M and & are orientable.
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§3. Seifert bundles and Euler class

3.1 In this paragraph & will be a circle Hausdorfl foliation, so the leaves of F
are the fibres of a Seifert bundle. Our object here is to give some geometrical
significance to the Euler class.

Recall that if & is an oriented circle foliation the following conditions are
equivalent:

(1) % is Hausdorff

(i} There isan action p : §' % M ~> M such that the leaves of F are the orbits
of p

(i1} There is some Riemannian metric with respect to which the orbits are
totally geodesic submanifolds.

This is proved by Wadsley in [10] Throughout his paper Wadsley shows that
in this sttuation there exist a Riemannian metric g and a unit Killing vector fieid
& such that the trajectories of £ coincide with the leaves of &

Let 8 be the I-form on M given by 6(X)=g(& X} Then we have the
following resuit.

Provosifion 4. (a) g is bundle-like with respect 10 F

{b) g is of constant volume

(¢) There exists v € A*(B) such that d8 = w* v In particular, L6 =0 where Le
is the Lie derivaiive with respect lo §

ProorF  Let (U, x, v") be a flat neighborhood with &= ad/ix lLet o, =
dfay" + b,£ be vector fields on U orthogonal to £ Then {£ u,} is the dual basis
of {8.dy"} and in this basis we have

g =00+ gy, y)dy” @ dy”

An easy computation shows that
df = ~ (db,[3x30 A dy” ~ (aby Ay + b, by [ax )dy" A dy”

Hence L. = —(ab,/dx)dy".

As Lig =0 we obtain db, [dx = dgs/ix =0, e, B =1, . q

Thus, g is bundle-like, L8 =0 and do = —(ab,/dy™)dy* a dy* where
dby [dy© is independent of x This proves (a) and (¢).

Let L, be a leaf of # and z.€ Ly Let T denote the g-ball swept out by
geodesics orthogonal to L, at point z, and of length less than a small & > (1 Let
¢ R XM — M be the flow of the vector field £ Since ¢ is Killing, 1, (T )is also a
q-geodesic ball of the same radious ¢ and centered at p,(z,) In particular,
t (R T} is a saturated neighborhood of L.
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Set fy = inf{r > 05 u, {z4) = zo} Clearly p (T)=T and g, is a generator of the
cyclic group H (L) (the holonomy group of Lu) Since £ is 2 unit vector field, the
period and the length of its orbits coincide. Thus the volume of a regular leafl of
F through T i1s k 1, where k is the order of H(Ls) Thus, since the union of all
regular feaves is a connected set, part (h) is proved.

We lose no generality in assuming that the orientation of £ is the orientation
of F and that the volume of all regular leaves is | In this case f:8=1 and
xs = {7] (cf. Remark 1) and we say that (g & @) satisfy the condition C.

3.2 We recall that on a manifold of dimension 2k + 1, a 1-form w is said to be
a contact form if w A {dw )" # 0 at each point of M Then there is a unique vector
field Z such that w(Z)=1 and iydw = (.

DeriniTioN 3. A circle Hausdorf] foliation & on M, of even cadimension, is
said to be a contact foliation if there is 2 contact form w on M such that its
associated vector field Z is tangent to &

Concerning the existence of contact foliations we get:

o

ProposiTion 3. Let F be a contact foliation. Then x;7# (.

Proor. Let w be a contact form with associated vector field Z tangent to &
The function fsw is constant because izdw =0 implies d {0 = fsdw=0 As
izw =1 we can assume fsw =1 Since Lzdw =0 we have dw = 7*r and so
xs =[] {cf. Remark 1). Finally y;# 0 because w is a contact form.

We now prove the reciprocal of Proposition 3.

Tueorem 2. Let M be a compact oriented manifold and F an oriented
Hausdorff foliation by circles on M. The following conditions are equivalent:

(1) xs=0

(i1) There exists a Riemannian foliation complementary to F.

Prook  Let (g & 6) be a triple satisfying the condition C and let 7 € A*(B)
represent ys with df = ¥+

Assume ys =0. Then, there exists y & A'(B) such that T =dy Set §'=
f —w*y. Since 6'(£)=8(£)=1and d6’ =0, 8' defines a foliation F* transverse
to & and of codimension 1. Let § be the Riemannian metric on B induced by g
The Riemannian metric g’ = 6’ 6' -+ = *§ is then bundle-like with respect to F

Let (U, x, ") be a flat neighborhood of & with £ = &/dx In these coordinates
we have 6’ = dx + ¢,dy” and L8' = £(c.)dy" On the other hand, L' =0 and
s0 £{c.)=0.
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Next consider @ second coordinate neighborhood (U, x', y™* ) flat both with
respect to F and F'. We may assume y™ =y Then &/ax’ = (dx/ax')é and
diay™ =ajay" +(ax/dy'"" )& As 6'(d/dy" ) =0 we have dx/dy"™ = — ¢, Hence
dlay™ (axfax")=(ox{ax") £(~c.)=0. It follows that g', whose expression in
(U, 2", ') is given by

gl = (ax/ax'Yde @dy'+ 7* g,

1s bundie-like with respect to F~ and so F* is a Riemannian foliation
complementary to &

Finally, we consider the case where dim M =3 Recall that in this case an
orientable circle foliation is automatically Hausdorff [1].

Tneorem 3 Ler M be a compact orientable 3-manifold and let F be a circle
orientable foliation on M. The following conditions are equivalent:

(1) by(M) (the first Betti wmumnber of M) is even

{ii) {3
(i) F is a conwet foliation

S

-

(iv) F does not admit any Riemannian complementary.

Proor. The V-manifold B is locally of the form D/ where D is the unit
ball in R" and G is a finite subgroup of SO(2). Since D/G is homeomorphic to D,
B 15 an orientable compact 2-dimensional topological manifold (without bound-
ary) and so by(B) is zero or even If yz =0, H*(M)= H*(B)® H*(S") (cf.
Remark 2), and hence b(M)=b(B)+1 is odd. This proves (i) = (i).

Consider the Gysin exact sequence

0— H'(B)-S H'(M)-5 H'(B)=R— HY(B)—> -

I xe# 0 then @ is a monomorphism and #” an isomorphism. Hence b,(M) is
zero or even. This proves (i} = (i}

Since (1) < (tv) and (i) = (i1) are true for arbitrary dimension of M (cf
Proposition 5 and Theorem 2 above) it remains only to prove (ii) = (iii)

Let (g & 8) be a tern satisfying the condition C with df = 7%, 1 & AY(B),
and y» =[7]# 0. Since B is orientable there exists a 2— V-form 8 on B such
that 8# 0 at each point. Hence {8]5 0 and so there is r €R, r# 0 such that
rB]=1r]

Setw =80+ 7"y where dy =1 —1 Thenw{(£)= (&)= | and dw = ra*B It
follows that « 1s a contact form. Moreover iidw = r iw*B =0, so that £ is the
vector field associated to w. This proves (i) = (iii).
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Remari 4 Since S§7is simply connected, any foliation on $* is oriemtable.
Thus, each circie foliation on §7 is a contact foliation

ReEMARK 5 Let dimM =3 and b{M) odd Then M does not admit an
almost regular contact form in the sense of C. B. Thomas {9}, i.¢., & contact form
such that ali trajectories of the associated vector field are closed

§4. An integral formula

4.1 Let # be a Seifert bundle and let (g, & 8) be as in Proposition 4. Let {(£)
denote the volume of regular feaves of & Recall that g induces a Riemannian
metric § on the V-manifold B such that g = 6 @ 8 + #*g Our aim here is to
study the relation between the curvatures of the Riemannian connections of g
and g

Let (U, x, y") be a flat neighborhood such that U = V X W where V and W
are open sets of R and R* respectively; W is a uniformizing open set of the
V-manifold B and g is defined on W

There exists a basis of [-forms {e', -, 0%} on Wsuch that § =3, ¢" ® 0.
Let (wp) and {£13) denote the corresponding matrices of connection and
curvature forms. Let wy : U~ W be the canonical projection and set "= 6,
8" = w¥(e") Then {6, 8',- -, 8"} is an orthonormal hasis of {-forms on U that
we assume positively oriented On the other hand, it follows from Proposition 4
that d@" can be written as follows:

de" = wi{ A A ), Aap = = Ap..

Applying now the same arguments of Kobayashi in [4] we obtain the following
expressions for the connection forms (/) and for the curvature forms (W) of g
on U (i.j=0,1, - ,q):

dro= 0,
l!f;; = - !!fii - Z A“;;GB,
]

W= mi{w" )~ Aupb";

A I:: = (},

Wi= == — > A Awd® 28— A,ub® a0,
a3 fy

W= )~ 2 (AcaArs + Ay )8 A 0° =3 Aug” A 6
ra Y

th:l"e E-,. A"ﬂ:.“. @ Yo dAu,;; - Ey Aung o E‘;T Aygw:
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4.2 With the notation as in the above paragraph, if g = 2k, the Gauss-Bonnet
integrand on W can be written as

o (=)
Q. = TR T elan o) n A Qotey,

{:!|."'.u'i}

Remark 6. Since the forms wp and Qf are not, in general, invariant under
the action of the holonomy group they are not V-forms on the open set of B
corresponding to W Nevertheless, if we cover M by flat neighborhoods
U= Vx W as above, the family {Q} defines a V-form Q&€ AY(B) (cf. [713.
Then #5(Qy) = Tr*‘fl* U

Lessa 1 Let the notation be as above, Then

T(IE} J;: ) A 0=y (B)

where xv(B) is the Euler characteristic of B as V-manifold

Proor. We have (cf. [8])

L Q= xu(B)

Hence

L ﬂ'*(ﬂ) Af = Ju (J:! 'rr‘“(ﬂ) A 6) mL 0 A (J’; f}) = [(£)xv(B)

We finally consider the case where dim M =3 Let n be the volume element
and let R be the curvature tensor. Then % = 8" #' A 67 and we have

ProrositTion 6. Let dim M =3 Then

l
2ml(£)

where K (£7) means the sectional curvature of the plane orthogonal to & and K (§)

L- (K(£)+3K(E)m = xv(B)

means the sectional curvature of any plane containing &

Proof. It follows from §4 1 that the local expression of #*Q A @ in a fat
neighborhood U=V X W is

1
2

P

I

'.FTE(Q“-') A 6“ = - ﬁ ﬂ-t‘(zg'}?) A 8“ = - (‘\I{f - .3(A|3)262 A 82) M Bu.

Hence the integral formula of Lemma | can be written
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—1 2 nl 2 ]
mjm (‘I’I“““E;(A::)-G A )i’\ 7] =X\.»(B),

Let & X, X, be the dual basis of 8", 8', 6° We have
R(& X1, & Xa) = g(R(§ X)X, £) = Wi(g, X)) = (Ar),
R{& X2 & X3) = g(R(§ X2)Xa, £) = W24, Xo) = (A ),
R(& Xz, & X0)= g(R(£ X2) Xy, £) = W4, Xo) = 0

Thus, if Z = AX,+ pXa with A7+ g7 =1, then R(£ Z, & Z)=(A.), whence
(Ay) is the sectional curvature K{(£) of any plane containing £

On the other hand, Wia8"=R{.8°A8'A 8= ~Rin68"2a86'7 0" But
R (X, X2 X, Xt:) = S(R («Xh X-Z)X‘h Xls) = ‘Iré(xrl, X':J = - ‘I’f(}( I X‘z) = R:I!II s
R It follows that Wia 8%= — K(£°)0" A 6' A 6°

This result is a generalization of theorem 2 in [6].
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