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ABSTRACT.

Let F, be a bouquet of n circles. For an arbitrary continuous map f:
Fa = Fn we shall define a non-negative integer m (f), easily computable in terms
of the induced homomorphism fy: m; (Fp) - m, (Fy). This integer is the best
lower bound of the number of fixed points for the homotopy class of f. This
result generalizes the well known fact that a continuous map f of the circle info
itself has at least m (f) ={1 — degree (f)| fixed points.

§ 1. INTRODUCTION.

Let F, be a bouquet of n circles, that is, the quotient space of [0,n] ob-
tained by identifying all points of integer coordinates to a single point p.

This paper is related with the following question. If f: F, - F; is a con-
tinuous map, what can be said about the number of fixed points of f? Theorem
A gives a complete answer for all maps homotopic to f rather than just for the
map f itself, as is usual in fixed point theory (see [1]). In fact, we gencralize to a
bouquet of circles the well known result ({1,p 107]) that a continuous map f of
the circle into intself has at least |1 — degree (f)| fixed points.

For an arbitrary continuous map f: F, - F,, we shall define a non-negative
integer m (f), easily computable in terms of the induced homomorphism

fa:m (Fo) » m (Fn) (see §2).

Let N(f) be the Nielsen number of the map f (see [1] or §4). Our main results
are the following.
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Theorem A. Let f: Fy, - Fy, be a continuous map. Then the following hold.

(i) The map f has at least m (f) fixed points.

(i) Letg: F,~ Fy be a continuous map homotopic to f, then m(g) = m(f).

(iti) There exists a continuous map g: F, — F, homotopic to f such that g
has exactly m (f) fixed points.

(ivj We have N (f) <m(f).

Theorem B. Let f: F; - F} be a continuous map. Then N (f) = m ().

FExample C. There exists a continuous map f: I3 - Fy such that N (f) <m (f).

From (iv) of Theorem A and Example C it follows that the number m (f) gi-
ves, for a map f: F,, - F,,, more information that the number N (f).

Let X; denote the quotient space of the interval [j — 1, j] identifying the
points j — 1 and j to the point p, and let 7j: [j — 1, j| - X; be the natural map
defined by this identification. Then, for any integer n > 1 we have that F,, is
homeomorphic to the union of n circles X;, X,, ..., Xp that intersect at a
point p and only at this point.

The fundamental group of Fj based at p, Il (Fy, p), is isomorphic to the
frce group on n generators. We denote by X;, X5, . .., Xp the n generators of
[T (Fn, p). We can assume that x; is represented by the loop

Tit[i - L jl1=Xj, ie xj={7j}.
Let a € Xj and b € Xj with a # b. We write [a, b] to denote the closed arc
from a counterclockwise to b. Suppose that f (p) + p and f (p) € Xj. Then, let
7: [0, 1] > X be a path such that

7(0)=p, vy (1)=1£(p) and v ([0, 1]) = [p, £ (P)].

If f (p) = p, then we define the path y: [0, 1] F, by v ([0, 1D = {p}-

Since F; is arcwise connected, the fundamental froup 1 (Fp, q) is iso-
morphic to 11 (Fy, p), for all q € F,,. We take as generators of Il (Fy, f(p)) the
classes { 7" 7y} where 1<j<n.

Let {: F;, > F,, be a continuous map. Then, we denote by

fs: T (Fy, p) ~ I (Fy, f(p))
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the usual homomorphism induced by f from IT (Fy, p) to Il (Fy, f (p)). This
homomorphism is known if we have, for all 1 <j < n, the unique expression of
fx (xj) (Whenever f,, (x;) is not the unit clement e = { ™! v} ) in the form:

i i1 i ma
where 7j x €{T;, T2, ..., 7n} and two consccutive loops 7j x are always dif-
ferents.

Theorem D. Let f: I, — Fy, be a continuous map. Suppose
felrpb =iyt i)
forallj=1,..., n, wherea(j)is an integer. Then N (f) = m (f).

A one-dimensional simplicial complex is called a graph. If the simplicial
complex is finite, then the graph is called finite. For a continuous map {: K - K,
where K is a finite connected graph, we shall definc a non-negative integer M’ (f)

(see § 6).

Theorem E. let K be a finite connected graph and let f: K -» K be a continuous
map. Then the following hold.

(i) The map f has at least M’ (f) fixed points.

(ii) Letg: K —~ K be a continuous map homotopic to f, then M’ (g)= M’ (f).

Theorem A follows from Theorem 1 and Lemma 2. Theorem 1 is announc-

ed in section 2 and proved in section 3. Theorem B, Example C, Theorem D
and E are proved in scctions 3, 4, 5 and 6, respectively.

§ 2. PRILIMINARY DEFINITIONS AND RESULTS.
We define a retraction rj of Fy to Xj by sending all of Fy, — X; to p.

We associate to each continuous map f: F, - F, a non-negative integer
M (f), defined by

M@ ,
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where
mz(l) M_:((f) if fu {15}#e,
=1
Mj(H=11 if f, {75} = eand5f(p)#p,
0 if f, {7j} =eandrf(p)=p.

The integers M}‘ (f) are defined in Table 1. Note that, essentially, M; (f) is the
number of fixed points of f on X;. Furthermore, we have introduced the conven-
tion

] .
1+ 2 M(®  iff(p)=p,
j=1

n
M) =
j=1

AYE

] M; () if f(p)#p.

The following theorem will be proved in the next section.

Theorem 1. Let f: Fy, - F, be a continuous map, Then the following hold.
(i) The map f has at least M (f) fixed points.
(ii) Letg: Fy, - F, be a continuous map homotopic to f, then

M(g) -M(fle|l-2,-1,012}.

(iii) There exists a continuous map g: I, — F, homotopic to fsuch that g
has exactly M (f} fixed points.

We define m (f) as the infimum of the numbers M (g), where g: F;, - Fy, is
a continuous map homotopic to f. Then, from Theorem 1 statements (i), (ii) and
(iii) of Theorem A follow immediately.

From the following lemma it follows statement (iv) of Theorem A.

Lemma 2. Let f: Iy, - Fy, be a continuous map. Then the following hold.
(i) The map f has at least N (f) fixed points.
(ii) Letg: Fy — Iy be a continuous map homotopic to f, then N(g)=N(f).

For a proof see |1} p. 87 and 95.
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Table 1
a(, k) | MF(D
> 2 [2--ag, k)
f(p)=p 0,1,2 |0
Tik=Tj <0 la (j, k)l
m=k= | £ (p) % p 11— a G, k)
f(p) ¢ X; la (j, k)l
nf(p)#p 1
Tj,k$Tj
5 f(p)=p 0
>0 i1 -ag, k)
f(p)=p
<0 la G, k)l
k=T _
i f(p)#p [1—a(, k)l
k=1
f(p)é Xj 1a @, k)l
5f(p)#p !
Tjik #7j
m>1 rT(p)=p 0
f(P=p >0 IT—a(, k)l
T3,k=Tj
k=m otherwise la G, Kl
Tik FTj 0
Tjk=Tj 1a (j, k)l
k¢{l,m}
’jk$7| 0
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Let deg f be the degree of the continuous map f: F; — F,. The degree of f is
an integer (for a definition, see [3] p. 196). We shall use the following lemma,
which is proved in [1] p. 107.

Lemma 3. Let f: F; - F; be a continuous map. Then N (f) = |1 - deg f].

From the definition of m (f) and Lemma 3 it follows Theorem B.

§ 3. PROOF OF THI:OREM 1.
We shall use the following lemma.

Lemma 4, Let f, g: F,, > F, be two continuous maps. Then f and g are homo-
topic if and only if £, is isomorphic to g.

The proof of this lemma follows easily from Theorem 8 of [3] p. 141.

Let f: F, - F,, a continuous map. We shall construct a continuous map
g: Fy - Fp, such that:

@ g=1(p)

(b) 8. isequalto f,,

(c) g has exactly M (f) fixed points.

From Lemma 4 and (b), we have that f and g are homotopic. Hence, state-
ment (iii) of Theorem 1 follows.

Let 7: [0, n]> Fy, be the continuous map defined by 'r(t)='rj @ iftefj— 1,jl.
We shall construct, for cach I <j <n, a continuous map g;: X; - Fy, such that:

(1) g @ G- D)=g r ()=o)

(2) Let M; be the number of fixed points of g; without counting the point
p, if p is a fixed point (note that we can define a fixed point of gj because X; is
contained in Fp,), then M; = M; (f),

(3) gix{Tit="HuiTj} .

We define the map g: F, » Fy by g (7 (t))=g; (r (t))ifte [j- 1, j]. From
(1), (2) and (3), it follows immediately that g satisfies (a), (b) and (c).

Now, we scparate, the construction of the map g;, into five cascs.

Case 1. f(p)=p.

Case 2. f(p)#p,f(p)€eXj,7j,, =7; and a(j, 1)>0.
Case 3. f(p)#p,f(p)e X, 7j,1 =7; and a(j, 1)<0.
Case 4. £(p)#p, f(p) e Xj,7j,1 #7j-

Case 5. f(p)#p, f(p) £ X;.
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Suppose f (p) = p. If f, {7;} = e, then we definc g by gj (x) = p for all
x € Xj. Now, we can assume that

f*{Tj}={Tﬁ(1j’l)... rj"(,!,"(?)"'))}

where a (j, k) # 0 for all 1 <k <m(j).

LetP={tg,t;,...,tq} apartition of the interval [j — 1, j] such that

m()

1=t <t <...<tg=j and g= ¥ aG, K.
=1

For a given integer 0 < i< q, there exists an unique integer 1 <3 (i) < m (j) such
that

s(i) s(i)-1
i< ¥ |la(, k) andif s(@)>1, then i> kX la (j, k)I.
k=1 =1

Let rik be the segment which joins the point (t;, k — 1) with the point (tj,, , k)
on the square Q = [0, n] x [0, n]. Similarly, the segment rjx joins the points
(ti, k) and (1j.,, k- 1). Then we definc a map gj: [j— 1, j] — P [0, n] in the
following way: g (t) is such that (t, g} (1)) e rik or (t, g (1)) € rik if t € (i, tjs 4 )s
7j, s(i) =Tk and a (j, s (0)) > 0 or a(j, s (i)) <O, respectively.

We definc gj:7 ([j 1,j])~ Fn by

7 (gi (1) ift¢Pp,
g (r ()=
f(p) ifteP.

It is clear that g; is a continuous map such that gj, {7;} = f, {7j}. Moreover,
M; equals the crossings of g with the diagonal of the squre Q. Then, from Table
1 we have M; = M (f). This completes the proof of case 1.

Now, suppose that we are in case 2. Then
fo frjt={v" Ti(ij’ D Ti%‘l&l)(')) i

where a (i, k) # 0 for all 1 <k < m (§). It is clear that there exists an unique
tp €( - 1,j) such that 7(ty) = £ (p).

LetP= {tg,l;,...,tq, } apartition of the interval [j - 1, jj such that
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m(j)

j=1=to<ti<...<tgn=janda= 2 faG k).
=1

We denote by r the segment which joins the point (to, tp) with the point (t;,j) on
the square Q. Similarly, the segment s joins the points (ty, j - 1) and (tq.q, tp)-
We define a map gj: [j — 1, j]-- P - [0, n] in the following way: gj (t) is such
that (t, g} (1)) belongs tor orsif L € (1, tjs;) and i=0 or i= 1, respectively; and
g(t) is such that (t, g} (t)) belongs to ri or rg if t € (t;, tjsy ), 7j, 5(i) = Tk and
a(j, s (i) > 0 or a(j, s(i)) <0, respectively. Here, rjk, rjx and s (i) are the
sames of the above case.

We define gjas in the preceding case. Then case 2 follows. The proofs of the
remaining threc cases are similar. In short, we have proved (iii) of Theorem 1.

From the proof of (iii) of Theorem 1, we have (roughly speaking) that the
number of the fixed points of f is equal to the crossings of the graph of { with
the diagonal of the square Q. Then, from the geometric interpretation of fi, (i)
of Theorem 1 follows.

Finally, from Lemma 4 and the definition of M (f) it is long but straight-
forward to obtain (ii) of Theorem 1.

§ 4. EXAMPLE C.

We recall here the definition of the Nielsen number (for more details see
{17 p. 87). The Nielsen number is usually defined for a continuous map on a
compact ANR (see [1] p. 37). Since a polyhedron is a compact ANR (see [1]
p. 39), we have that F, is a compact ANR.

Let f: F, > Fp be a continuous map, we say that fixed points x and y of f
are f-equivalent if there is a path C: [0, 1] » F;, such that C (0)=x,C(1)=y,
and for the path fC: [0, 1] F, we have {fC} = {C} , i.e. the paths fC and C
are homotopic. Let Fix(f) denote the sct of all fixed points of f. The equivalence
classes are called fixed points classes of f. It is known that f has a finite number
of fixed point classes. We denote by F,, . .., F, the fixed point classes of f,
then for each j= 1, ..., n there is an open set Uj in Fy such that Fj CUj and
cl (Uj) N Fix(f) = Fj, where “cI” denotes closure. Let i be the index on the
collection Cp of connected compact ANRs. Then we can consider the index of
the triple (X, f, Uj), i.e. i (X, f, Uj). We define the index i (F;) of the fixed points
class Fj by i (Fj) = i (X, £, Uj). The definition of i (F;) is independent of the
choice of the open Uj C X such that Fj  Uj and cl (Uj) N Fix (f) = Fj.

For a continuous map f: F, - Fp, a fixed point class F of f is said to be
essential if / (F) % 0 and inessential if / (F) = 0. The Niclsen number N (f) of the
map { is defined to be the number of fixed point classes of f that are essential.
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We know that N (f) < m (f). Now, we give an example with N (f) <m (f).
Let f: Fy - F, be a continuous map with

f(p)=pand f, {7,} = {727%727-11} » fu {m} = {7}

Thenwe have M (f) = 4. To compute m (f), let h: F, — F, be a continuous map
homotopic to f. If h (p) = p, then we have M (h)=4. If h(p) # pand h (p) € X;,
then h, {7,} ={v"' 7, 7 7, r{ytand h, {75} = {7y’ 7, v) wherey is
defined as above. We obtain M (h) = 4. Finally, if h (p) # p and h (p) € X, , then
we also obtain M (h) = 4. So, we have m (f) = 4.

To compute N (f) we consider the following map g homotopic to f. Let
P={t;,...,ts} apartition of [0, 2] such that

0<t1<t2 <t3<t4<1<t5 <2

Take g': [0, 2] - P~ [0, 2] defined by g’ (t) cquals

t
t, — 1t
S ift, <t<t,,
ty — 1,
ty -t
2t ift, <t<t,
ty - t3
t4 t
+ 2 ifl3<t<t4,
ty — t,
t—1
iftg <t<1,
g 1
1—1t
if 1 <1< tsg,
I — tg
1 ity <t <2

and consider g: F, - F, obtained from g as in the proof of Theorem A (sce
fig. 1). Clearly g is homotopic to f.



212 Jaume Llibre y Agusti Reventos

Let

ty -ty +1 2.t

We will now show that the fixed points 7(a) and 7(b) of g, are g-equivalent. Let
us first define

¥::10, a] - |0, 2], ¥2: [a, b] =[O, 2] and v4: {b, 2]~ [0, 2]

Yi(W)=a—t,v3 (t)=0 and v3 (t)=2+b—t.
Then,y; = 7. 7{,Y2 = T-y3 and 73 = 7.7j are paths on F,. Let

C=v1-72-73-

Then we have that C is a path on I, such that C (0) = a and C (1) =b (see fig.
2). Product of paths is defined as usually (see [2] p. 57). Hence, it is casy to see
that gC =0y . 03 - 03 . 04 - 05 - 6 where 0;=7.0}and 0;,...,d¢ arc paths
defined by:

t+t; —a

01:10,a— ;] - |0, 2] and o} (t) = I
1- b
a—t
oy:Ja—1,,a] - [0,2] and o3 (1) = + 1,
4
0%5:[a, b] = [0, 2] and o3 (t) = 1,
o3:1b,2+b—1t;]1 - |0, 2] and o} () = 1,
b -t+1
o5:[2+b 15,1 +b] - [0, 2] and o3 (1) = t 7
s -
b -t+1
0g: |1 +b,2] > [0, 2] and o (1) = 1
4 —

Note that {C}={g C} if and only if

foi' vt {ma} {73 06} = {02} {os} {oal {os}
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where each factor is an element of 1 (Fa, p). But {y,} = {03} ={04} =e¢,
the unit element of 11 (FF,, p). Therefore we must prove that

{6 11} {1306} = {02} {o5}.

For this, we consider the following diagrams, where in each case, h is a linear
homeomorphism.

[0,a—t;] —-» [02]-»1",

/ (1)
[0, a]

t
where h(t) = — (a—t;).
a

[a ty,4] [02]—>Fz

/ ¥))
4
[0, 1]

t(1—-b)+b3+h)- 2
where h(t) = " and a(t) = 2 - t.

[2+b—ts,1+b] —= [0,2] —s F,

/ (3)
(1, 2]

where h(t) = ¢ (t- 2)+3+b -t and f(t) = 2—1t.

[b,2] — [0,2] — F,

4

10,2 - b]
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where h(t) = t+b and p(t) = 2 - t.

-1

g T
[14b,2] —> [0,2] — F,

hof )
€
[2-1,2]
(1 -b)t+4b -2 y t.2
where h(1) = ———— " "7 c(t)=2-t and o}’ (t) = - ——-

b tg - 1

. Then we have {01} = {71} ,{0s} ={7 a},{os} ={7 B}, {rs}=lTp},
{0} = {7 e}and 7(a B)=7 (p €). Therefore {07' v,} =e, and

{o,} {ost={ral{rBl={r@pf)}=ir(e)l={rp} {Te}=1{rs} {05},
This completes the proof that {C}=!gC}.

Now, note that g has four fixed points, and that 7(a) and 7(b) arc g-cquiva-
lent. Therefore N (g) < 4. Since N (f)=N (g) and m (f) == 4, we have an example
with N (f) <m (f).

§ 5. PROOI O THLOREM D.

We shall use the following lemma, which is proved in [1] p. 127-128.

Lemma 5. lLet f- I, - Iy, be a continuous map and let x ¢ X;, x + p an isolated
fixed point. Suppose that U is a neighborhood of x such that f(U)CX; {p}.
Let U - { x| consist of components Uy and Up. Then we have:

(i) Iff{U;) ¢ Uy and f(U3) C Uy, then i(Fy, f x) = I

(i) Iff(U;) C Uy and f(Uy) C Uy, then i(Fy,, |, x) = - 1,

If f: F, - F, is a continuous map, then we denote by L () the Lefschetz
number of { (for a definition see [1] p. 25).

We say that a continuous map f: IF,, - I satisfies condition I if and only if
there exists 1 <i<'n such that aj= 1 and a; <O forall 1 <j<n,j+ i;where
f.{ri}={y"' 7y} forall I <i<n.From the proof of (iii) of Theorem 1, it
follows that there exists a continuous map g: I/, = F,, homotopic to { such that
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g () =p, g(X)C Xjforall 1 <i<n,and g hasexactly M (g) fixed points. For
these maps f and g, we have the following three lemmas.

Lemma 6. The map f satisfies condition F if and only if i (I, g p)=0.

Proof. Tt is known that L (g) = 1 — Tr (f*) where f* is the morphism induced by
f on the first homology group. Therefore

n
Li=1- Rk )
On the other hand, we recall that
M)
-L (g) = kz’ 1 ’(Fn: g, pk)a

where p, 1 <k <M (g), are the fixed points of g (for morc details see [1] p. 52).
Then, by Lemma 5, we obtain

L= 2 lal— = [2—a+i(Fn g D). 2
(&) 2 EX >2I 5| +7(Fn, g, p) 2

aj 0 aj#

From (1) and (2) it follows that i (Fy, g, p) = 0 if and only if

n
1- 2 a= z lajl — 2 12— ajl.
j=1 aj<o aj =1

This condition is cquivalent to

l-- X g=2m,
2j=1

where m is the number of a; 2 2. But this last condition is the same that condi-
tion F. This proves the lemma.

Lemma 7. Two arbitrary fixed points of g are not g-equivalent.

Proof. Let x and y be two fixed points of g and suppose that they are g-equiva-
lent, i.e. there is a path C: [0, 1] > F;, such that C(0)=x, C (1) =y, and for the
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pathgC: [0, 1] - F, we have {gC} = {C}. We separate the proof into two
cases.

Case 1. {x,y} C X, forsome 1<i<n.

Let gj be the restriction of g on Xj. Since g satisfies g (Xj) C Xj, we have
that g; is a continuous map of the circle into itself such that deg g; = a;. By
Theorem B, we obtain that a; # 0, 1 because g; has at least two fixed points.

From {gC| = {C} it follows that {rjgC} = {r;C}.Sincer;gC=gr; C,
we have that {gr;C} = {r; C}. Then x and y are gj-equivalent. But the number
of fixed points of g; is exactly N (g) =11 - g| (by Theorem B), and this is a con-
tradiction.

Case 2. xeXjyeXj, i#j.

Let H: {0, 1] x [0, 1] = F, be the homotopy map between gC and C. Then
rj 1 is a homotopy map between rj g C and rj C. This implies that x and p are
g-equivalent. By casc 1, this is a contradiction. This completes the proof of
Lemma 7.

Lemma 8 The following hold.
(i) If f satisfies condition F, then M (g)=m(f) + 1=N(g) + 1.
(ii) If f does not satisfy condition I, then M (g/=m (f}=N (g).

Proof. We consider n continuous maps hy: F, - Fy homotopic to f such that
hj (p) ¢ X;j and h;j (p) # p for all 1 <j < n. Then we have

n
M(b)= Z lal +11— gy,
i#j

M@E)= 2 la+ 2 [2- g +1

aj<o aj=12
It is clear that m (f)= min {M (h;),... .M (hy),M(g)} .
We prove statement (i). Let a; = 1. From Table 11 we obtain

M(g)=M(h)+ 1 and M (h)=M(h) +2 if j#i.
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Hence, M (g) = m (f) + 1. From Lemmas 5, 6 and 7, it follows that

M(g)=N(g) +1.

Note that we have construct Table II from the definition of M (f).

217

Table II
aj Mj (g) M; (hj)
<0 ajl EH
0 0 0
i 1 0 1
2 0 2
>2 12— ajl EH
<0 lal 1 —ajl
0 0 1
i=j 1 0 0
2 0 1
>2 [2 — ay [1— aj

Now, we prove statement (ii). We separate the proof into three cases.

Case 1. There exists | <i<'n such that a; = 2.
From Table 11, we obtain M (g) <M (h;) forall 1 <j <n, j#i, and

M () <M (hy).
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Case 2. There exist 1 <i,j<nsuchthataj=a;j=)and ay <] forall 1 <k <n,
k#1i,j.

From Table II, we have M (g) <M (h;), forall 1 <j<n.

Case 3. Forall ] <i<n,we have 3; <0.

Again from Table II, M (g) =M (h;), forall I <i<n.

In the three cases we obtain M (g) = m (f). From Lemmas 5, 6 and 7, it
follows that N (g) = M (g). This completes the proof of Lemma 8.

By Lemmas 8 and 2, Theorem D follows.

§ 6. PROOT OF THEORLM ..

The O-simpleces and I-simpleces of a graph are also known as vertices and
cdges, respectively. A tree is defined 10 be a simply connected graph. A maximal
tree is a tree which contains all of the vertices of the graph.

It is known that if K is a finite connected graph, and if T is a maximal tree
in K, then the fundamental group of K is isomorphic to a free group on n-gene-
rators in one-lo-one correspondence with the edges of K - T (see [3] p. 141).
It is also known that K is homotopy equivalent to Fy, for some positive integer
n (see [4] p. 95). Hence, there exist two continuous maps g: K - Fy and h:
Fn = K such that h - g and g - h are homotopic 1o the identity map of K and F,,,
respectively. We define Xj = h (X;).

From the proof of Theorem 1, it follows that a continuous map f: F, = F
has at least M; (f) fixed points in X; without to count the point p, if p is a fixed
point. In a similar way for a continuous map f: K - K we should prove that f has
at least M;j (f) fixed points on Xj. But now we cannot claim that a fixed point in
X is different of a fixed point in X} if' i+ j, because in general the intersection
of Xj with Xj is not a single point. In short, if we define M’ (f) = min {M; (f) b,
Theorem E follows. Hjn
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