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On the structure of the set of periodic points of a continuous map
of the interval with finitely many periodic points

By

Javyme Lrisre and Agusrr REVENTOS

L Introduction. T.et I denote a closed interval on the real line and let Co(I, I)
denote, the space of continuous maps from I into itself. For j e CO(I, I) let P(f)
Fhote the set of positive integers £ such that f has a periodic point of period %
(see section 2 for definitions).
From Sarkovskii’s theorem we know: (i) if P(f)is finite then P(f) = {1,2,4,...,2%}
for some Integer n =z 0 (see [3], [4] or [5]), (i1) if P is a periodic orbit of f of period 27,
hen f has a periodic orbit of period 2%, which is contained in [min £, max P{ for
®ach k= 0,1,...,m — 1 (see [5]). In this paper we study the relation between
these orhits,
Our main result is the following.

Theorem A. Let fe CO(I, I) and suppose P{fy = {1,2,4,...,27}. Then for any
Periodic orbit of period 2m, with m = n, there exist m + 1 periodic orbits of periods
52,4, om such that the 2k periodic points of period 2% are separated by the
I g b1 =9k 1 fixed points of 7, jor any k=1,2,...,m
(sce Fig. 1 for m = 3).

This theorem will be proved in section 3.
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Figure 1,

Let feCo(1, I) and suppose P(f) = {1,2,4,...,27}. If f has a unique periodic
Orbit of period 2% for any £ = 0, 1, ..., n (for instance the map given by Block in {1}),
then Theorem A give us the complete structure of the set of periodic points of j.

2. Preliminary definitions and results. Let f e C0(1, I). For any positive integer 2,
We define f» inductively by f' = f and f# = f o f»~1. We let 0 denote the identity
Map of I,

Let pe I. We say p is a fixed point of f if j(p) = p- If p is a fixed point of j»,
O some n € & (the set of positive integers), we say p is a periodic point of f. In
this case, the smallest element of {n & N: f?(p) = p} is called the period of p.
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We define the orbit of p to be {f*(p) n =0,1,2, }.If pis a periodic point of f
of period n, we say the orbit of p is a periodic orbit f period ». In this case the orbit
of p contains exactly » points each of which is a periodic point of period 7.

Let A = {I,, , Iy} be a partition of I into subintervals, that is, a family of
closed intervals such that I; U U Iy is I, and if 7 == 7 then I; N I; consists of at
most one point.

We say that an interval I f-covers J if there exists a closed subinterval K of I
such that f(K) = J We say that I f-covers J n times if there exist n closed subinter-
vals Ky, ,K, of I with pairwise disjoint interiors such that f(K;) = J for
s=12 . .5

An A-graph of f is an oriented generalized (i.e., possibly with several arrows joining
the same vertices) graph with vertices I;, , I; and such that if I; f-covers I;
n times, but no n-4-1 times, then there are # (but no n + 1 arrows from I; to I 7
In this paper a loop in the A-graph of f will be a loop without proper subloops. We
state the following lemma which will be used in the next section.

Lemma 1. (Lemma 1.4 of [3]). If Jo—>J1—  — Ju—1—>Joisaloop in the A-graph
of | then there exists a fixed point x of f such that fi(x) e Jy for i = 0,1, ,n 1.

Let P = {p1, ,pa} a periodic orbit of f e C0(1, I) of period n = 2m We define
a simple periodic orbit inductively If m = 1 then P is simple. Suppose m > 1,
then we say P is simple if the two subsets {p;, , Pus2} and {Prin2, , pn} of P
are simple periodic orbits of f2 and we have f {p1, , pui2} = {P1ns2, Pn}. The
definition of simple periodic orbit has given by Block in [2]. We conclude this section
by stating the following lemma.

Lemma 2. (See Theorem A of [2]). Let feCO(I,I) and suppose P =
{1,2,4, 27} Then any periodic orbit of f is simple.

3. Proof of Theorem A. In this section we assume that fe C0(I, I) and P(f) =
{1,2,4, ,27}. Also we suppose that f has a periodic orbit P = {p;, ,pen} of
period 27 where p; < p2 < << pan. Welet I}, = [pg, Pevrifork=1,2, ,2¢ 1,
and set A = {I1, , Izn_1} a partition of J = [p1, pan]. Finally, we define a map
geC%J,J) by g(p) = f(pi), fori = 1,2, , 27 and on each interval I, g is linear.

Lemma 3. If I; g2-covers Iy, with t << 2n-1, j << 27-1, then there exists an interval I %
with k > 27-1, such that I; g-covers Iy and Iy g-covers Iy, i.e. Iy — Iy — I;

Proof. Let K be a closed subinterval of I; such that g2(K) = I; Then there
exist @, b € g(K) c [pan — 141, pan] such that g(a) = p;, and ¢(b) = pj1 It is easy
to see that we can choose a, b such that (min (a, b), max (a, b)) N P = @. Therefore,
there exists Iy c f(I;) with a,b e I and so I; — I, — I; O

Since g has a periodic orbit of period 27 it follows, from Sarkovskii’s theorem,
that g has periodic points of periods 2% for k = 0,1, ,» 1

e —
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Lemma 4 (Existence). For each periodic point q of period 2% of g, there is a loop

Ia(O) = Ia(l) _ - Ia(zk)—> Ia(O)
i the A-graph of g, with fi(q) € Inw, i = 0,1, ,n.

Proof. By induction on k. As g is linear, the lemma is clearly true for k& = 0.
Suppose it is true for certain ¥ > 0. Let ¢ be a periodic point of period 2¥+1, By
lemma 2, the orbit of ¢ is simple. Therefore the sets {g, g%(g), , 9" =2(¢)} and
{9(0), 93(2), ,9*"~'(g)} are periodic orbits of period 2% of ¢2. By induction,
there are two loops

In) = Inq) >  — Ipory — Ipy and

Ic(O) o Ic(]_) - . Ic(2k) - Ic(O)

in the A-graph of g2 with g% (q) € Ipq) and g2i+l ohE Lot -IOF 457=.0, 4., 226s . 1;
From Lemma 3, we have the loop

To) > Leo) = = Iyory = Ioor) — Ingo)

in the 4-graph of g, and this proves the lemma. []
We can assume n = 2, because for n = 1 Theorem A is immediate. We say that
a loop in the 4-graph of g is an Ly-loop, for k=1, ,n 1, ifits 27—F vertices are
the intervals I,(;,x) where a(j, k) = 2+k-1 g2k for j = 0,1, ,27-%k 1, and the
loop has length 27-* Note that a(j, k) take each value of the set 11.3,3, ... 1}
{27-1} only once.

Lemma 5 (Uniqueness). If I, x) is a vertex of a loop in the A-graph of g, then this
loop is an Ly-loop, for all j = 0,1, ,2%%k 1 and all k — EETTS ~1]

Proof. We prove this lemma inductively on n. If n — 2, then P(g) = {1, 2, 4}
and a(j, k) € {1, 3}. Since the two unique simple periodic orbits of period 4 are
(by Lemma 2) g(p1) = ps, g(p2) = pa, g(ps) = P2, g(pa) = p1 and g(p1) = pa,
g(p2) = p3, 9(ps) = 1 ¢(ps) = p2, we have that I — I3 — I is the only loop
in the 4-graph of g which contains I; or I3 (note that the unique interval I; that
g-covers I3 is I3). Therefore, Lemma 4 follows for n — 2.

Let n > 2 and suppose that Lemma 4 is true for » 1. Let L be a loop in the
A-graph of g and suppose I,  is a vertex of L. Without loss of generality, we may
assume that a(j, k) < 271, From Lemma 1 and since P (f) is finite, the length of L
is even. Then I 4(;, 1) is a vertex of a loop M; in the Aj-graph of g2, where A; —
{I:, ,Inomn 1,;}and 43 = {Ian 14, , Isn} because P is simple. By induc-
tion, the loop M} is an Lg-loop in the A;-graph of g2.

Let Iy, — Iy, > — Iiyu_zx_y —> I, the loop My, where k; < 27-1 for each
1=1,2, ,2n%k-1 By Lemma 3, we have the following loop M in the A-graph of g-

I, — Iy, -1, —~ I,—~ — Liyn—p—1— Tpap—p—1—> Iy,

where h; > 27-1foreach ¢ = 1,2, ,27n—%-1, Note that thisis a loop in the 4-graph
of g, because if I}, = I for some 1 < i < j < 2n%-1 then the loop
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Ik«u S ¢ Ikun e = Ik;'_> Ik1+1

in the 4;-graph of g2 would have length smaller than 27-%-1, and this is impossible
since M is an Lg-loop. Therefore, by induction, the loop
Ly, —> I~ —>Inp-ik-1—>1In

in the As-graph of g2 is an Lg-loop denoted by Ms Hence, the vertices of M; are
the intervals Iyq, k), where A(j, k) = 2k-1 + 52k, for j=0,1, ,2n%1 1 and
the vertices of M are the intervals Io(, x) Where a(j, k) = 271 4 2k-1 4 j 2k, for
j=0,1, ,2n» %1 1. So the vertices of the loop M are the intervals Iy, 1)
where a(j, k) = 21 4 j2k, for j = 0,1, ,277% 1. Then M isan Lg-loop in the
A-graph of g. [

Proof of Theorem A. From lemma 4, there are loops of length 27—% for k =

1,2, ,n 1, and from Lemma 5 these loops are the Ly-loops. Since an Lg-loop
has 27—k vertices, from lemma 1, g has a periodic orbit of period 27~* Each periodic
point of this periodic orbit is in a unique Ig(, ) for some §==20, &, £ 0 R,

Furthermore, since the orbit P is simple (by lemma 2), there is a fixed point in
Isn 1. Hence, Theorem A is proved for the map g.
Since the A-graph of ¢ is a subgraph of the 4-graph of f, Theorem A follows. []

Remark. The referee has pointed out that we have proved in fact the following
slightly stronger theorem

Theorem B. Let f € CO(I, I) and suppose that | has a simple periodic orbit of period 2"
Then there exist n + 1 simple periodic orbits of periods 1,2,4, , 2" such that the 2k
periodic points of period 2% are separated by the 1 4+ 2 +  + 2F71 = 2k 1 fized
points of f** forany k=1,2, ,n.
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