An Interesting Property of the Evolute

C. A. Escudero, A. Reventós and G. Solanes The American Mathematical Monthly 2006

1. INTRODUCTION

The starting point of this note is the following inequality: if $C = \partial K$ is the boundary of a compact, convex set K of area \mathbf{F} in \mathbb{R}^2 , then

$$\int_{C} \frac{1}{k} ds \geqslant 2\mathbf{F},\tag{1}$$

where k = k(s)(> 0) is the curvature function of C and ds signifies arclength measure on C. Equality holds if and only if C is a circle.

In this note we give a very short new proof of (1), which has the advantage of providing a geometric interpretation of the difference $2\mathbf{F} - \int_C k^{-1} ds$. To be precise, we prove that

$$\int_C \frac{1}{k} ds = 2(\mathbf{F} - \mathbf{F}_{\mathbf{e}}),$$

where $\mathbf{F}_{\mathbf{e}}(\leq 0)$ is the (algebraic) area of the domain bounded by the evolute of C. Inequality (1) is the two-dimensional analogue of Heintze and Karcher's inequality:

$$\int_{S} \frac{1}{H} dA \ge 3\mathbf{V},$$

4. THE EVOLUTE OF A CONVEX CURVE

The evolute of a curve is the envelope of its normals.

Let C be the boundary of a convex set K with support function $p = p(\phi)$. It can be seen that The evolute of C is the hedgehog of $-p'(\phi + \pi/2)$ Hence the (algebraic) area $\mathbf{F}_{\mathbf{e}}$ of the evolute of the convex curve supported by $p(\phi)$ is equal to the (algebraic) area $\mathbf{F}_{\mathbf{H}}$ of the hedgehog corresponding to $H(\phi) = -p'(\phi + \pi/2)$.

$$-1 \int^{2\pi} \frac{1}{1} \int$$

where H(>0) is the mean curvature of a compact embedded surface S in \mathbb{R}^3 bounding a domain D of volume \mathbf{V} . Equality holds if and only if S is a standard sphere. This raises the obvious question: Is there a geometric interpretation of the difference $3\mathbf{V} - \int_C H^{-1} dA$?

2. CONVEX SETS AND SUPPORT FUNCTIONS

The boundary of a convex set K is the envelope of its tangents.

In terms of the support function $p(\phi)$ (distance between the tangents and a fixed point) ∂K is given by

 $\begin{pmatrix} x(\phi) \\ y(\phi) \end{pmatrix} = R_{-\phi} \begin{pmatrix} p(\phi) \\ p'(\phi) \end{pmatrix}$

where $R_{-\phi}$ is the rotation of angle $-\phi$. Convexity implies p + p'' > 0. The length and area of the convex set K is expressed in terms of the support function by

$$\mathbf{L} = \int_{0}^{2\pi} p \, d\phi. \qquad \mathbf{F} = \frac{1}{2} \int_{\partial K} p \, ds = \frac{1}{2} \int_{0}^{2\pi} p(p + p'') \, d\phi$$

3. HEDGEHOGS

If $h : \mathbb{R} \to \mathbb{R}$ is a C^1 -function of period 2π , the hedgehog γ_h corresponding to h is defined by

$$\begin{pmatrix} x(\phi) \\ y(\phi) \end{pmatrix} = R_{-\phi} \begin{pmatrix} p(\phi) \\ p'(\phi) \end{pmatrix}$$

 $\mathbf{F}_{\mathbf{e}} = \frac{1}{2} \int_{0}^{\infty} H(H + H'') d\phi = \frac{1}{2} \int_{0}^{\infty} p'(p' + p''') d\phi.$

We have proved:

Theorem 1 The integral with respect to arclength of the radius of curvature of a plane convex curve is twice the area of the domain it bounds minus the (algebraic) area of the domain bounded by its evolute:

$$\int_C \rho \, ds = 2(\mathbf{F} - \mathbf{F}_{\mathbf{e}}).$$

As a consequence of the Wirtinger inequality we have

Corollary 1 If the boundary $C = \partial K$ of a convex set K in the plane is a C^2 -curve, then

$$\int_C \rho \, ds \ge 2\mathbf{F},$$

where ds is arclength measure on C, $\rho = \rho(s)$ is the radius of curvature of C, and **F** is the area of K. Equality holds if and only if C is a circle.

Remark 1 (Geometric interpretation of Wirtinger inequality) We prove that Wirtinger inequality is equivalent to the following statement:

where $\rho(x)$ is the curvature radius of C at x.

5. FOCAL SETS IN SPACE FORMS

Let X_c^2 be the 2-dimensional complete and simply connected riemannian manifold of constant curvature c, i.e. the sphere \mathbb{S}_c^2 of radius $R = \frac{1}{\sqrt{c}}$ for c > 0, or the hyperbolic plane \mathbb{H}_c^2 for c < 0 (the imaginary sphere of radius Ri). We obtain the following result, which coincides, for c = 0, with Theorem 1.

Theorem 2 Let K be a strongly convex set in X_c^2 , if $c \ge 0$, or strongly hconvex set if c < 0, with smooth regular boundary $M = \partial K$. Then

For instance, if $h(\phi) = \cos(25\phi)$, this envelope actually looks like a hedgehog (Figure 2).

The (algebraic) area $\mathbf{F}_{\mathbf{h}}$ of the hedgehog corresponding to h is given by

$$\mathbf{F_h} = \frac{1}{2} \int_0^{2\pi} h(h+h'') d\phi = \frac{1}{2} \int_0^{2\pi} (h^2 - h'^2) d\phi.$$

$$\int_M \tan_c(\frac{\rho(s)}{2}) ds = \mathbf{F} - \mathbf{F}_{\mathbf{e}},$$

where ds signifies arclength measure on M, \mathbf{F} is the area of K and $\mathbf{F}_{\mathbf{e}}$ is the (algebraic) area enclosed by the focal set F(M) of M.

6. HEINZE-KARCHER IN SPACE FORMS

Theorem 3 (with E. Gallego and E. Teufel) Let K be a strongly convex set in X_c^3 (strongly h-convex if c < 0) with smooth boundary $M = \partial K$ and volume **V**. Then

$$\mathbf{V} \le \int_{M} \frac{V(\rho_H)}{F(\rho_H)} dM_x \tag{2}$$

where $V(\rho_H)$ and $F(\rho_H)$ are the volume and area of the sphere of radius $\rho_H(x)$, the mean curvature radius of M at x.

For c = 0 is the classical Heinze and Karcher inequality.

C. A. Escudero, carlos10@utp.edu.co. UAB. and U. de Pereira, Colombia.

A. Reventós, agusti@mat.uab.cat. UAB. Barcelona, Spain.

G. Solanes, solanes@ub.edu. UB. Barcelona, Spain.