An Interesting Property of the Evolute

C. A. Escudero, A. Reventós and G. Solanes
The American Mathematical Monthly 2006

1. INTRODUCTION

The starting point of this note is the following inequality: if $C=\partial K$ is the boundary of a compact, convex set K of area \mathbf{F} in \mathbb{R}^{2}, then

$$
\begin{equation*}
\int_{C} \frac{1}{k} d s \geqslant 2 \mathbf{F} \tag{1}
\end{equation*}
$$

where $k=k(s)(>0)$ is the curvature function of C and $d s$ signifies arclength measure on C. Equality holds if and only if C is a circle.
In this note we give a very short new proof of (1), which has the advantage of providing a geometric interpretation of the difference $2 \mathbf{F}-\int_{C} k^{-1} d s$. To be precise, we prove that

$$
\int_{C} \frac{1}{k} d s=2\left(\mathbf{F}-\mathbf{F}_{\mathbf{e}}\right),
$$

where $\mathbf{F}_{\mathbf{e}}(\leq 0)$ is the (algebraic) area of the domain bounded by the evolute of C. Inequality (1) is the two-dimensional analogue of Heintze and Karcher's inequality:

$$
\int_{S} \frac{1}{H} d A \geqslant 3 \mathbf{V}
$$

where $H(>0)$ is the mean curvature of a compact embedded surface S in \mathbb{R}^{3} bounding a domain D of volume \mathbf{V}. Equality holds if and only if S is a standard sphere. This raises the obvious question: Is there a geometric interpretation of the difference $3 \mathbf{V}-\int_{C} H^{-1} d A$?

2. CONVEX SETS AND SUPPORT FUNCTIONS

The boundary of a convex set K is the envelope of its tangents.

In terms of the support function $p(\phi)$ (distance between the tangents and a fixed point) ∂K is given by

$$
\binom{x(\phi)}{y(\phi)}=R_{-\phi}\binom{p(\phi)}{p^{\prime}(\phi)}
$$

where $R_{-\phi}$ is the rotation of angle $-\phi$. Convexity implies $p+p^{\prime \prime}>0$.
The length and area of the convex set K is expressed in terms of the support function by

$$
\mathbf{L}=\int_{0}^{2 \pi} p d \phi . \quad \mathbf{F}=\frac{1}{2} \int_{\partial K} p d s=\frac{1}{2} \int_{0}^{2 \pi} p\left(p+p^{\prime \prime}\right) d \phi
$$

3. HEDGEHOGS

If $h: \mathbb{R} \rightarrow \mathbb{R}$ is a C^{1}-function of period 2π, the hedgehog γ_{h} corresponding to h is defined by

$$
\binom{x(\phi)}{y(\phi)}=R_{-\phi}\binom{p(\phi)}{p^{\prime}(\phi)}
$$

For instance, if $h(\phi)=\cos (25 \phi)$, this envelope actually looks like a hedgehog (Figure 2).

The (algebraic) area $\mathbf{F}_{\mathbf{h}}$ of the hedgehog corresponding to h is given by

$$
\mathbf{F}_{\mathbf{h}}=\frac{1}{2} \int_{0}^{2 \pi} h\left(h+h^{\prime \prime}\right) d \phi=\frac{1}{2} \int_{0}^{2 \pi}\left(h^{2}-h^{\prime 2}\right) d \phi
$$

4. THE EVOLUTE OF A CONVEX CURVE

The evolute of a curve is the envelope of its normals

Let C be the boundary of a convex set K with support function $p=p(\phi)$.
It can be seen that The evolute of C is the hedgehog of $-p^{\prime}(\phi+\pi / 2)$
Hence the (algebraic) area $\mathbf{F}_{\mathbf{e}}$ of the evolute of the convex curve supported by $p(\phi)$ is equal to the (algebraic) area $\mathbf{F}_{\mathbf{H}}$ of the hedgehog corresponding to $H(\phi)=$ $-p^{\prime}(\phi+\pi / 2)$.

$$
\mathbf{F}_{\mathbf{e}}=\frac{1}{2} \int_{0}^{2 \pi} H\left(H+H^{\prime \prime}\right) d \phi=\frac{1}{2} \int_{0}^{2 \pi} p^{\prime}\left(p^{\prime}+p^{\prime \prime \prime}\right) d \phi
$$

We have proved:
Theorem 1 The integral with respect to arclength of the radius of curvature of a plane convex curve is twice the area of the domain it bounds minus the (algebraic) area of the domain bounded by its evolute:

$$
\int_{C} \rho d s=2\left(\mathbf{F}-\mathbf{F}_{\mathbf{e}}\right) .
$$

As a consequence of the Wirtinger inequality we have
Corollary 1 If the boundary $C=\partial K$ of a convex set K in the plane is a C^{2}-curve, then

$$
\int_{C} \rho d s \geq 2 \mathbf{F}
$$

where ds is arclength measure on $C, \rho=\rho(s)$ is the radius of curvature of C, and \mathbf{F} is the area of K. Equality holds if and only if C is a circle.

Remark 1 (Geometric interpretation of Wirtinger inequality) We prove that Wirtinger inequality is equivalent to the following statement:

$$
\forall y \in K, \exists x \in C \quad \text { such that } \quad d(x, y)<\rho(x)
$$

where $\rho(x)$ is the curvature radius of C at x.

5. FOCAL SETS IN SPACE FORMS

Let X_{c}^{2} be the 2-dimensional complete and simply connected riemannian manifold of constant curvature c, i.e. the sphere \mathbb{S}_{c}^{2} of radius $R=\frac{1}{\sqrt{c}}$ for $c>0$, or the hyperbolic plane \mathbb{H}_{c}^{2} for $c<0$ (the imaginary sphere of radius $R i$). We obtain the following result, which coincides, for $c=0$, with Theorem 1 .
Theorem 2 Let K be a strongly convex set in X_{c}^{2}, if $c \geq 0$, or strongly h convex set if $c<0$, with smooth regular boundary $M=\partial K$. Then

$$
\int_{M} \tan _{c}\left(\frac{\rho(s)}{2}\right) d s=\mathbf{F}-\mathbf{F}_{\mathbf{e}},
$$

where ds signifies arclength measure on M, \mathbf{F} is the area of K and $\mathbf{F}_{\mathbf{e}}$ is the (algebraic) area enclosed by the focal set $F(M)$ of M.

6. HEINZE-KARCHER IN SPACE FORMS

Theorem 3 (with E. Gallego and E. Teufel) Let K be a strongly convex set in X_{c}^{3} (strongly h-convex if $c<0$) with smooth boundary $M=\partial K$ and volume \mathbf{V}. Then

$$
\begin{equation*}
\mathbf{V} \leq \int_{M} \frac{V\left(\rho_{H}\right)}{F\left(\rho_{H}\right)} d M_{x} \tag{2}
\end{equation*}
$$

where $V\left(\rho_{H}\right)$ and $F\left(\rho_{H}\right)$ are the volume and area of the sphere of radius $\rho_{H}(x)$, the mean curvature radius of M at x.
For $c=0$ is the classical Heinze and Karcher inequality.
C. A. Escudero, carlos10@utp.edu.co. UAB. and U. de Pereira, Colombia.
A. Reventós, agusti@mat.uab.cat. UAB. Barcelona, Spain
G. Solanes, solanes@ub.edu. UB. Barcelona, Spain

