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Abstract:We establish some relations between the perimeter, the area and the visual angle of a planar compact
convex set. Our first result states that Crofton’s formula is the unique universal formula relating the visual
angle, the length and the area. After that we give a characterization of convex sets of constant width by means
of the behavior of their isotopic sets at infinity. Also for this class of convex sets we prove that the existence of
an isotopic circle is enough to ensure that the considered set is a disc.

Keywords: Convex set, visual angle, isotopic set.

2010 Mathematics Subject Classification: 52A10


Communicated by:M. Henk

1 Introduction

In this paper we establish some relations between geometric quantities associated to a planar compact convex
set K with boundary of class C2. More precisely we consider the perimeter L, the area F of K and the visual
angle w = w(P) of K from a point P ∉ K. Remember that w(P) is the angle between the two tangents to the
boundary of K from the point P.

The starting point is the classical Crofton formula

∫
P∉K

(w − sinw)dP = 1
2
L2 − πF. (1)

This equality easily follows from standard arguments of Integral Geometry, see for instance [5]. Another ap-
proach to (1) is given in [1]. The natural question arises whether separate formulas for L2 , F alone exist, or
equivalently, whether replacing w − sinw by some other function f(w) one gets a different linear combination
of L2 , F. For specific domains this is indeed possible, for instance when K is a disc one has several formulas of
this type, like

L2 = ∫
P∉K

4
3
sin3 w dP, 4πF = ∫

P∉K

sin3 w
cos2(w/2)

dP,

see [5], p. 59.
Our first result is

Theorem 1. Let f : [0, π] → ℝ be a differentiable function with f(w) = O(w3) for w → 0 such that for every
compact convex set K one has

∫
P∉K

f(w(P))dP = aL2 + bF, (2)

where a, b ∈ ℝ are some constants not depending on K, and w(P) is the visual angle of K from the point P.
Then f is, up to a constant factor λ, the Crofton function f(ω) = ω − sinω. In this case a = λ/2, b = −πλ.
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A consequence of this result is that no integral formula of this type exists giving, say, the area F in terms of
the visual angle alone. We believe, though, that a formula like

F = ∫
P∉K

f(w(P))g(P) dP,

with f, g universal functions not depending on K might exist.
By the result in [3], K is completely determined by the visual angle w(P) outside a big ball containing K. It

is then natural to ask how specific properties of K can be read from this knowledge.
In our next results, we do so in terms of the asymptotic behavior of w(P) as P goes to infinity. Now, it is easy

to see that, denoting by w(R, θ) the visual angle of K from the point with polar coordinates (R, θ), the quantity
R w(R, θ) remains bounded and

lim
R→∞

R w(R, θ) = a(θ), (3)

where a(θ) is the width of K in the direction θ, meaning that the knowledge of the asymptotic behavior of w at
infinity amounts to know the width function. Let us recall that a(θ) is the distance between two parallel lines
of slope θ tangent to the boundary of K.

Whence, asymptotic statements can just involve quantities that depend only on the width function. For
instance, the perimeter of the convex set, which is related to the width by the Formula 2L = ∫2π0 a(θ) dθ, can be
known from the behavior of the visual angle at infinity as the following result states:

Theorem 2. Let K be a compact convex set of perimeter L and denote by w(R, φ) the visual angle of K from the
point P(R, φ). Then

2L = lim
R→∞

R
2π

∫
0

w(R, φ) dφ. (4)

For centrally symmetric convex sets, that is convex sets that are symmetric with respect to some point, the
area is determined by the width, and this enables us to obtain, in the spirit of (4), the following formula

lim
R→∞

2π

∫
0

R2[w(R, θ)2 − wθ(R, θ)2] dθ = 8F, (5)

wherewθ means partial derivative ofwwith respect to θ. In fact this equality characterizes centrally symmetric
convex sets (see Corollary 1 and Remark 1).

After that we deal with compact convex sets of constant width for which we obtain two results. To state the
first onewe note that formula (3) says that the convex set K has constant width a if and only if the visual anglew
behaves like a/R at infinity, which in turn roughly says that the isotopic sets C(α) = {P : w(P) = α} behave like
the circles of radius R = a/α. Our result provides a precise quantitative formulation of this fact by establishing
that C(α) tends to a circle in the sense that it tends to satisfy the equality in the isoperimetric inequality. More
precisely, we say that C(α) tends to a circle as α → 0, if

lim
α→0

L(α)2

4πF(α)
= 1,

where L(α), F(α) denote respectively the length and the area of C(α).
The result we obtain is the following one.

Theorem 4. Let K be a compact convex set. Then the isotopic sets Cα of K tend to a circle as α → 0, if and only if
K is of constant width.

The second result deals with isotopic sets that are actually circles, not just asymptotically. Green [2] proved
that if K has an isotopic circle Cα , with α an irrationalmultiple of π, or π−α = (m/n)π,m even,m and n relatively
prime, then K is a disc. In general K can have an isotopic circle without being a disc. Later on Nitsche [4] proved
that if K has two concentric isotopic circles, then K is a disc. We prove that if K has constant width, then one
isotopic circle is enough:
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Theorem 5. If a compact convex set K of constant width has an isotopic circle, then K is a disc.

At the end we give the relationship between the area F and the perimeter L of a convex set and the radius
of an isotopic circle, see (17) and (19). As a consequence we obtain the inequalities

F ≤ πR2 sin2(α
2
), L ≤ 2πR sin(α

2
),

where R is the radius of the isotopic circle and α is the constant visual angle on this circle.

2 On Crofton’s Function

Asmentioned in the Introduction, Crofton’s formula (1) is provenwith standard arguments of integral geometry,
but it is also a direct consequence of the general formula for integrating functions of the visual angle given in [1].
Concretely, Equation (16) in [1] says that for a differentiable function f : [0, π] → ℝ satisfying f(w) = O(w3) for
w → 0, one has

∫
P∉K

f(ω)dP = −f(π)F + L
2

2π
M(f) + π ∑

k≥2, even
c2k(M(f) + 2

k−1
∑

j=1, odd
αj) + π ∑

k≥3, odd
c2k(−2

k−1
∑

j=2, even
αj), (6)

with

αj =
π

∫
0

f 󸀠(ω)j cos(jω)dω, M(f) =
π

∫
0

f 󸀠(ω)
1 − cosω dω,

and c2k = a
2
k + b

2
k , where ak , bk are the Fourier coeficients of the support function p(φ) of the compact convex

set K. Recall that
p(φ) = sup{⟨x, u⟩ : x ∈ K} for u = (cos φ, sin φ).

Note that up to a constant, αj is the j-th Fourier coefficient of f 󸀠 in the basis {cos jw}. The above equality for
f(w) = w − sinw gives immediately Crofton’s formula.

We shall prove now that the function w − sinw is the only one that can provide a Crofton type formula.

Theorem 1. Let f : [0, π] → ℝ be a differentiable function with f(w) = O(w3) for w → 0, such that for every
compact convex set K one has

∫
P∉K

f(w(P))dP = aL2 + bF, (7)

where a, b ∈ ℝ are some constants not depending on K, and w(P) is the visual angle of K from the point P.
Then f is, up to a constant factor λ, the Crofton function f(ω) = ω − sinω. In this case a = λ/2, b = −πλ.

Proof. We consider the family of convex sets given by the support functions

p(φ) = 1 + t cos(mφ), 0 ≤ φ ≤ 2π, (8)

for m ∈ ℕ. The condition of convexity p + p󸀠󸀠 > 0 (see [5]) is satisfied if 0 < t < 1
m2−1 . Then, the perimeter L and

the area F of these convex sets are

L =
2π

∫
0

p dφ = 2π, F = 1
2

2π

∫
0

(p2 − p󸀠2) dφ = π − π
2
(m2 − 1)t2 .

Now we combine (6) and (7) to obtain, with m even,

a4π2 + b(π − π
2
(m2 − 1)t2) = −f(π)(π − π

2
(m2 − 1)t2) + 2πM(f) + πM(f)t2 + 2π(α1 + α3 + ⋅ ⋅ ⋅ + αm−1)t2 .

Equating the coefficients of t2 we obtain

(m2 − 1)(b + f(π)) + 2M(f) + 4(α1 + α3 + ⋅ ⋅ ⋅ + αm−1) = 0.
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Replacing m by m + 2 gives

((m + 2)2 − 1)(b + f(π)) + 2M(f) + 4(α1 + α3 + ⋅ ⋅ ⋅ + αm−1 + αm+1) = 0.

Subtracting these last two equalities we get for m ≥ 2, m even,

b + f(π) = − αm+1
m + 1
= −

π

∫
0

f 󸀠(w) cos((m + 1)w) dw.

From the Riemann–Lebesgue lemma it follows that b + f(π) = 0, and αj = 0 for j odd, j ≥ 3.
For odd m, we have from (6)

a4π2 + b(π − π
2
(m2 − 1)t2) = −f(π)(π − π

2
(m2 − 1)t2) + 2πM(f) − 2π(α2 + α4 + ⋅ ⋅ ⋅ + αm−1)t2 .

Equating the coefficients of t2 and using that b + f(π) = 0 we obtain

α2 + α4 + ⋅ ⋅ ⋅ + αm−1 = 0, m ≥ 3

and so αj = 0 for j even, j ≥ 2.
Hence

f 󸀠(ω) = a0 + a1 cos(ω) and f(ω) = a0 ω + a1 sin(ω) + c

for some constants a0 , a1 , c. Since f(w) = O(w3) for w → 0, we get f(0) = f 󸀠(0) = 0 and so c = 0, a0 + a1 = 0.
This proves the theorem with λ = a0. 2

3 Behavior of the visual angle at infinity

The goal of this section is to obtain information about a convex set by observing it from a point that goes to
infinity.

First of all we will see that the perimeter of a convex set can be evaluated by integrating the visual angle
on circles of increasing radius.

The circle CR centered at the origin with radius R can be parametrized by means of the support function
p(φ) of K in the following way. To each value of φ one associates the point P(R, φ) given by the intersection of
CR with the half straight line, taken in the direct sense, of slope φ + π/2, and at distance p(φ) of the origin.

Then we have
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Theorem 2. Let K be a compact convex set of perimeter L and denote by w(R, φ) the visual angle of K from the
point P(R, φ). Then

2L = lim
R→∞

R
2π

∫
0

w(R, φ) dφ.

Proof. The visual angle w = w(R, φ) satisfies the fundamental relation

arccos p(φ)
R
+ arccos p(φ + π − w)

R
= π − w(R, φ), 0 ≤ φ ≤ 2π,

for every R > 0 such that CR contains K, where p(φ) is the support function of K (see the picture).

From this equation it follows that

p2 + p21 + 2pp1 cos(w) = R
2 sin2(w), (9)

where p = p(φ), p1 = p(φ + π − w). Then from (9) we have that limR→∞ w(R, φ) = 0 and

lim
R→∞

R w(R, φ) = lim
R→∞

R sin(w(R, φ)) = a(φ), 0 ≤ φ ≤ 2π, (10)

where a(φ) = p(φ) + p(φ + π) is the width of K in the direction φ.
The limit in (10) is uniform in φ. In fact, w(R, φ) ≤ w̃(R)where w̃(R) is the visual angle of the smallest circle

centered at the origin and containing K from a point at distance R from the origin. So w(R, φ) tends to zero
uniformly in φ when R →∞ and we deduce, from (9) and the uniform continuity of p(φ), that the convergence
in (10) is uniform. Then the result follows by integration in (10). 2

Motivated by Theorem 2 we can ask if there is an analogous result involving the area of K. We can answer
this question for centrally symmetric compact convex sets. The basic result is

Theorem 3. Let K be a compact convex set and let w = w(R, φ) be the visual angle of K at the point P(R, φ).
Denote by a(φ) = p(φ) + p(φ + π), where p(φ) is the support function of K, the width of K in the direction φ. Then

lim
R→∞

2π

∫
0

R2(w(R, φ)2 − wφ(R, φ)2) dφ =
2π

∫
0

(a(φ)2 − a󸀠(φ)2) dφ,

where wφ denotes the derivative with respect to φ.

Proof. We begin by proving that
lim
R→∞

R wφ(R, φ) = a󸀠(φ) (11)
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uniformly on φ. In fact, differentiation of equation (9) with respect to φ gives

Rwφ =
R(pp󸀠 + p1p󸀠1 + (p󸀠p1 + pp

󸀠
1) cos(w))

R2 sin(w) cos(w) + p1p󸀠1 + pp
󸀠
1 + pp1

.

Taking limits and according (10) we have

lim
R→∞

Rwφ(R, φ) = lim
R→∞

Ra(φ)a󸀠(φ)
Ra(φ) + p󸀠(φ + π)a(φ) + p(φ)p(φ + π)

= a󸀠(φ).

Since the convergence in (10) is uniform and the functions p(φ) and p󸀠(φ) are uniformly continuous, the con-
vergence in (11) is also uniform.

As a consequence,

lim
R→∞

R2
2π

∫
0

(w(R, φ)2 − wφ(R, φ)2) dφ =
2π

∫
0

(a(φ)2 − a󸀠(φ)2) dφ,

as we wanted to prove. 2

We note that the integral on the right-hand side of the above equality is two times the area of the convex
set having a(φ) as its support function.

We can state the following relation between the width and the area of a convex set.

Proposition 1. Let K be a compact convex set of area F. Then

8F =
2π

∫
0

(a(φ)2 − a󸀠(φ)2) dφ

if and only if K is centrally symmetric.

Proof. Assume first that K is centrally symmetric with respect to the origin. Then one has p(φ) = p(φ + π),
0 ≤ φ ≤ 2π, and so a(φ) = 2p(φ) and a2 − a󸀠2 = 4(p2 − p󸀠2) that, integrating with respect to φ gives the desired
equality.

For the converse let us observe that the hypothesis is equivalent to

2π

∫
0

(p(φ)p(φ + π) − p󸀠(φ)p󸀠(φ + π)) dφ = 2F. (12)

Consider the Fourier series of the support function

p(φ) = a0 + ∑
k≥1

ak cos(kφ) + bk sin(kφ)

and recall that
F = L

2

4π
−
π
2
∑
k≥2
(k2 − 1)c2k , (13)

with c2k = a
2
k + b

2
k . From (12) and (13) we have

2πa20 + π∑
k≥2
(−1)k(1 − k2)c2k =

L2

2π
− π∑

k≥2
(k2 − 1)c2k

and since L = 2πa0 it follows that ck = 0 for k odd, k > 1. Changing the origin, the support function can be
written as

p(φ) = a0 + ∑
k even

ak cos(kφ) + bk sin(kφ),

which implies p(φ) = p(φ + π) and so K is centrally symmetric. 2
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Corollary 1. Let K be a compact convex set of area F. Then, with the notation in Theorem 3, one has

F = 1
8
lim
R→∞

2π

∫
0

R2(w(R, φ)2 − wφ(R, φ)2) dφ

if and only if K is centrally symmetric.

Remark 1. If we denote by w(R, θ) the visual angle of K from the point with polar coordinates (R, θ) we can
consider

2π

∫
0

Rw(R, θ) dθ

which is in general diferent from
2π

∫
0

Rw(R, φ) dφ.

The relation between θ and φ is θ = φ + arccos p(φ)
R .

So one has
2π

∫
0

Rω(R, θ) dθ =
2π

∫
0

Rw(R, φ)(1 − p󸀠(φ)

√R2 − p(φ)2
)dφ.

As a consequence, Theorem 2 gives

2L = lim
R→∞

2π

∫
0

Rw(R, θ)dθ,

as stated in the Introduction, and analogously Corollary 1 gives

lim
R→∞

2π

∫
0

R2[w(R, θ)2 − wθ(R, θ)2] dθ = 8F,

so that in these results we can use both polar coordinates (R, θ) and the coordinates (R, φ) associated to the
convex set K.
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4 A characterization of convex sets of constant width by means of
isotopic sets

Given a compact convex set K we denote by Cα the (isotopic) set of points in the plane from which K is seen
with angle α. In view of the isoperimetric inequality we will say that the sets Cα tend to a circle as α → 0, if

lim
α→0

L(α)2

4πF(α)
= 1,

where L(α) is the length of Cα and F(α) is the area enclosed by Cα .

Theorem 4. Let K be a compact convex set. Then the isotopic sets Cα of K tend to a circle as α → 0, if and only if
K is of constant width.

Proof. It is known, see for instance [1], that the points (X, Y) in Cα can be parametrized by φ as follows:

X = − 1
sin α
(p sin(φ − α) + p1 sin φ)

Y = 1
sin α
(p cos(φ − α) + p1 cos φ),

where p = p(φ) is the support function of K, and p1 = p(φ + π − α). Hence, the length L(α) of Cα is given by

L(α) =
2π

∫
0

√X󸀠2 + Y 󸀠2 dφ.

A direct computation shows that

L(α) = 1
sin(α)

2π

∫
0

√Δ(φ, α) dφ (14)

with
Δ(φ, α) = p2 + p21 + p

󸀠2 + p󸀠21 + 2(pp1 + p
󸀠p󸀠1) cos(α) + 2(pp

󸀠
1 − p
󸀠p1) sin(α).

So we have

lim
α→0

L(α) sin(α) =
2π

∫
0

√(p(φ) + p(φ + π))2 + (p󸀠(φ) + p󸀠(φ + π))2) dφ =
2π

∫
0

√a(φ)2 + a󸀠(φ)2 dφ,

where a(φ) is the width of K in the direction φ. Furthermore, the area F(α) enclosed by Cα satisfies (see [1])

lim
α→0
(F(α) sin2 α) = L

2

π
+ 2π ∑

k≥2, even
c2k .

Thus

lim
α→0

L(α)2

4πF(α)
= lim

α→0

L(α)2 sin2(α)
4πF(α) sin2(α)

=
[∫2π0 √a(φ)

2 + a󸀠(φ)2 dφ]2

4L2 + 8π2∑k even c2k
.

If K is a convex set of constant width a, L = πa and ck = 0 for k even, then

lim
α→0

L(α)2

4πF(α)
= 1,

which proves one of the implications of the theorem.
Before looking at the converse, we check that thewidth a(φ) satisfies 2π ∫2π0 a(φ)2 dφ = 4L2+8π2∑k even c2k .

Indeed,

2π
2π

∫
0

a(φ)2 dφ = 4π
2π

∫
0

p(φ)2 dφ + 4π
2π

∫
0

p(φ)p(φ + π) dφ

= 4π(2πa20 + π∑
k
c2k) + 4π(2πa

2
0 + π∑

k
(−1)kc2k) = 4L

2 + 8π2 ∑
k even

c2k ,
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hence

lim
α→0

L(α)2

4πF(α)
=
[∫2π0 √a

2 + a󸀠2 dφ]2

2π ∫2π0 a2 dφ
.

Now assuming that the above limit is equal to 1 we have

[
2π

∫
0

√a2 + a󸀠2 dφ]
2
= 2π

2π

∫
0

a2 dφ. (15)

But this equality implies that a(φ) is constant. In fact (15) says that equality holds in the isoperimetric inequality
applied to the curve given in polar coordinates by r = a(φ). 2

5 Isotopic circles

In this section we consider the particular case in which the isotopic set Cα of a compact convex set K is a circle.
We will say that Cα is an isotopic circle of K.

It is known that if a compact convex set K has two concentric isotopic circles, then K is a disc, see [4]. The
existence of only one isotopic circle is not enought to conclude that K is a disc, for instance all the ellipses have
an isotopic circle with α = π/2, see [2].

In fact we can provide a family of compact convex sets having an isotopic circle with visual angle α = π/2
and different from discs or ellipses. The examples given in [2] do not have this property. To construct this family
we remark that from (9) it follows that K has an isotopic circle Cπ/2 of radius R if p(φ)2 + p(φ + π/2) = R2. If we
write the Fourier series for the function p(φ)2 as p(φ)2 = ∑∞−∞ ckeikφ , it follows that

p(φ)2 + p(φ + π/2)2 =
∞
∑
−∞

cneinφ(1 + einπ/2),

so that this quantity is constant if and only if

ck = 0, k ̸= 2 + 4m, m integer.

Then, any positive 2π-periodic function p(φ)with p + p󸀠󸀠 > 0, such that the Fourier series of p(φ)2 has only
coefficients ck with k congruent to 2 module 4, will give rise to a convex set seen from angle π/2 from a circle.
For instance we can take

p(φ) = √15 + 9 cos2(φ) + 4 sin2(φ) + cos(6φ).
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5.1 Convex sets of constant width with an isotopic circle

For compact convex sets of constant width the above quoted result in [4], about convex sets with two isotopic
circles, can be improved. Concretely we have

Theorem 5. If a compact convex set K of constant width has an isotopic circle, then K is a disc.

Proof. Assume that K has an isotopic circle of radius Rwith visual angle α. Then equation (9) appliedwith angle
φ + π instead of φ gives

p(φ + π)2 + p(φ − α)2 + 2p(φ + π)p(φ − α) cos(α) = C,

where C is some constant. By the condition of constant width, p(φ) + p(φ + π) = a, one has

(a − p(φ))2 + p(φ − α)2 + 2(a − p(φ))p(φ − α) cos(α) = C.

Changing the constant one can write

p(φ)2 − 2ap(φ) + p(φ − α)2 + 2ap(φ − α) cos(α) − 2p(φ)p(φ − α) cos(α) = C.

Replacing φ by φ − α and taking into account that p(φ) is 2α-periodic (see [2]) it follows that

p(φ − α)2 − 2ap(φ − α) + p(φ)2 + 2ap(φ) cos(α) − 2p(φ − α)p(φ) cos(α) = C.

Subtracting the last two equalities we obtain 2a(p(φ − α) − p(φ) + (p(φ − α) − p(φ)) cos(α)) = 0 and so p(φ) =
p(φ − α), that is, p(φ) is α-periodic.

Then equation (9) reads

p(φ)2 + p(φ + π)2 + 2p(φ)p(φ + π) cos(α) = C,

which together with p(φ) + p(φ + π) = a gives

p(φ)2 + p(φ)2 − 2ap(φ) + 2ap(φ) cos(α) − 2p(φ)p(φ) cos(α) = C,

or
(2p(φ)2 − 2ap(φ))(1 − cos(α)) = C.

In conclusion p(φ) is, for 0 ≤ φ ≤ 2π, a solution of a second degree equation x2 +mx + n = 0 withm, n ∈ ℝ, and
hence it is constant and K is a disc. 2

In fact, this result can be considered as a consequence of Nitsche’s result that assumes the existence of
two isotopic circles, because in the case of constant width one of the isotopic circles is given at the infinity by
Theorem 4.

5.2 Relationship between the area of a convex set and the radius of an isotopic circle

We compare the area of the convex set K with the area enclosed by an isotopic circle of K.

Theorem 6. Let K be a compact convex set of area F that has an isotopic circle Cα of radius R. Then

F ≤ FR sin2(
α
2
),

with FR = πR2.

Proof. In [1] it is proved that one has the equality

F(α) sin2(α
2
) = F + π

4 cos2( α2 )
∑
k≥2
(2(k2 + 1) cos2(α

2
) + gk(α))c2k (16)
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expressing the area F(α) enclosed by the isotopic set Cα of a compact convex set K in terms of the area F of K,
the Fourier coefficients ak , bk of the support function of K (c2k = a

2
k + b

2
k), and Hurwitz’s functions gk(α) given

by

gk(α) = 1 +
(−1)k

2
((k + 1) cos(k − 1)α − (k − 1) cos(k + 1)α).

It is known from [2] that when Cα is a circle and K is not a disc then α = π − m
n π with (m, n) = 1 and m odd.

We will assume from now on that K is not a disk. In this case p(φ) is (2π/n)-periodic and so k = μn, μ ∈ ℕ,
and gk(α) = 1 + (−1)μ cos(α). So, equality (16) says

FR sin2(
α
2
) = F + π

4 cos2 α
2
∑
μ
(2(μ2n2 − 1) cos2(α

2
) + 1 + (−1)μ cos(α))c2nμ (17)

and since the coefficient of c2nμ is positive for each μ, we obtain the desired inequality. 2

5.3 Relationship between the perimeter of a convex set and the radius of an isotopic
circle

Now we compare the perimeter of a convex set with the length of one of its isotopic circles.

Theorem 7. Let K be a compact convex set of perimeter L that has an isotopic circle Cα of radius R. Then

L ≤ LR sin(
α
2
).

with LR = 2πR.

Proof. Let us consider the Fourier series of the functions p = p(φ) and p1 = p(φ + π − α) given by

p = a0 + ∑
k≥1

ak cos(kφ) + bk sin(kφ)

p1 = a0 + ∑
k≥1

Ak cos(kφ) + Bk sin(kφ)

with

Ak = (−1)k+1(−ak cos(kα) + bk sin(kα))
Bk = (−1)k+1(−ak sin(kα) − bk cos(kα)).

Then
2π

∫
0

pp1 dφ =
2π

∫
0

(a20 + ∑
k≥1
(akAk cos2(kφ) + bkBk sin2(kφ))) dφ,

and substituting the given values of Ak , Bk , it follows
2π

∫
0

pp1 dφ =
L2

2π
− π∑

k≥1
(−1)k+1c2k cos(kα). (18)

Assuming that Cα is an isotopic circle of radius R, integrating the equality (9) on this circle and taking into
account (18), we obtain

2L2(1 + cos(α)) + 4π2 ∑
k≥1
(1 + (−1)k cos(α) cos(kα))c2k = L

2
R sin

2(α),

where LR = 2πR. Considering, as in the previous section, that α = π − mn π with (m, n) = 1 and m odd, the above
equation reads

L2 + 2π2 ∑
μ, even

c2nμ + 2π2 tan2(
α
2
) ∑
μ, odd

c2nμ = L2R sin
2(
α
2
). (19)

In particular we have the inequality
L ≤ LR sin(

α
2
). 2
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