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Abstract

This thesis is dedicated to the study of rectifiable measures, quan-
titative rectifiability, and to a lesser degree, the boundedness of sin-
gular integral operators defined with respect to measures with poly-
nomial growth. It consists of seven chapters. The first chapter is a
general introduction to the area of quantitative rectifiability, and the
second contains various preliminary lemmas used throughout the the-
sis. The remaining five chapters are largely self-contained, as they
are based on articles written by the author during his PhD studies:
[Dab19b, Dab19a, Dab20a, Dab20b, AD20, DV20] (the last two were
co-authored by Jonas Azzam and Michele Villa, respectively).

In Chapters III and IV we show that a Radon measure p is n-
rectifiable if and only if

1 dr
/ aua(r,r)? — < oo for prae. xR
0 r

where o 2(x,r) are coefficients quantifying local flatness of p using
the Wasserstein distance W5. This provides an as counterpart to
recent results of Azzam-Tolsa and Azzam-Tolsa-Toro, where similar
characterizations where shown in terms of other coefficients, the so-called
B2 and « numbers. Contrary to their results, the ay characterization
requires no additional assumptions on densities or doubling properties
of .

In Chapter V we introduce conical energies, which can be seen as a
quantification of the notion of approximate tangent plane. We then use
these energies to prove several results: a characterization of rectifiable
measures, a characterization of sets containing big pieces of Lipschitz
graps, and finally, a sufficient condition for boundedness of SIOs valid
for measures with polynomial growth.

In Chapter VI we use a square function involving a numbers to
characterize LP functions defined on uniformly rectifiable sets. This
can be seen as an extension of Tolsa’s characterization of uniformly
rectifiable sets in terms of the same square function.

Finally, in Chapter VII we prove a Heisenberg group counterpart
of a lemma due to Guy David which asserts that non-atomic measures
that define L? bounded Riesz transform have polynomial growth.
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Introduction |

The main goal of this introduction is to sketch out the history of the quantitative
rectifiability area, as well as provide background and motivation for results
obtained in the thesis. A brief overview of the new results is given in Section 8.

1 Rectifiability

At its very core, this thesis is dedicated to the study of rectifiable sets and
measures.

Definition 1.1. Let 1 < n < d. We say that a Borel set E C R? is n-rectifiable
if there exists a countable number of Lipschitz maps g; : R® — R? such that

10 (8 () =0,

where H" denotes the n-dimensional Hausdorff measure.

More generally, we say that a Radon measure i on R? is n-rectifiable if
p < H™ and there exists an n-rectifiable set F C R? such that u(R?\ E) = 0.
Throughout most of the thesis we will be working with n-dimensional objects
in R?, and so we will usually write “rectifiable” instead of “n-rectifiable”.

The polar opposite of rectifiable sets are purely unrectifiable sets.

Definition 1.2. We say that a Borel set F' C R? is purely n-unrectifiable if
for any Lipschitz map ¢ : R — R? we have

H™(F N g(R")) = 0.

The history of these objects goes back almost a hundred years. The
foundation stone for the study of rectifiability was laid by Besicovitch in his

1
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Fl F2 F3 F4

F1GURE 1.1: The first four steps of the construction of the four-corner Cantor
set

1928 paper “On the fundamental geometrical properties of linearly measurable
plane sets of points” [Bes28]. In the article, Besicovitch defined 1-rectifiable and
purely l-unrectifiable sets (in his terminology, “regular” and “irregular” sets)
and proved their characterizations using densities and approximate tangents.
A new discipline was born, one that would eventually come to be known as
geometric measure theory.

One could think of rectifiable sets as a very weak measure-theoretic coun-
terpart of C''-manifolds. Compared to smooth surfaces they are very rough,
and they may contain complex singularities. However, they still possess some
crucial regularity properties that make them very useful.

Things go south once we lose rectifiability. It is purely unrectifiable sets that
are the villains of this story. They exhibit numerous pathological behaviours:
for example, suppose that F' is a purely unrectifiable set with H"(F) > 0.
Then, for almost all n-dimensional planes V', the projection of F' onto V is
H"-null. This is truly baffling, and at first rather hard to imagine, since the
set we started with had positive H" measure! To get an idea of how this can
be, let us take a look at the most classical example of a purely 1-unrectifiable
set, the four-corner Cantor set in the plane.

Example 1.3. The four-corner Cantor set F' C R? is defined as F' := ;> Fj,
where the sets F}, are defined as follows (see also Figure I.1). We start with a
set F} consisting of four squares, all of sidelength 47!, located in the corners
of a unit square. In the next step, we replace each of the squares by a copy of
F}, rescaled by a factor of 471, so that we get a set I, consisting of 4% squares
of sidelength 472. In general, to construct Fj,; we replace all the 4% squares
comprising F}, by copies of F}, rescaled by a factor of 47*.

It is relatively easy to show that 0 < H!'(F) < oo, see e.g. [Toll4, p. 35] *.
At the same time, it can be shown that for almost all lines V', the projection
of F' onto V has zero length. See [Mat15, Chapter 10] for two different proofs
of this fact. It then follows by the Besicovitch-Federer projection theorem (see
Theorem 2.5) that F' is purely l-unrectifiable.

*With some more effort, one may actually prove that H!(F) = v/2, see [XZ05].
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The example above gives us a good idea of how purely unrectifiable sets
look. They are very non-flat, very sparse, like a mist. Now, it is easy to show
that for any Borel set £ C R? with 0 < H"(FE) < oo one can decompose it
into two parts E, and E,, such that £ = F, U E,,, E, is rectifiable, and E,,
is purely unrectifiable. For the proof see [Mat95, Theorem 15.6]. In other
words, each set as above has a “nice”, rectifiable part, and an “ugly”, purely
unrectifiable part. It is then important to be able to distinguish between these
two parts, or to verify whether the entire set is rectifiable or purely unrectifiable.
To do that, many criteria have been developed throughout the years. Before
we review some of them, let us say a few words about why rectifiable sets are
useful.

There are at least two big, overarching motivations to study rectifiability.
The first one comes from the calculus of variations. Suppose we wish to
minimize a functional F(¥) among a class of competitors ¥ € C' satisfying
some additional constraints. For example, in the classical Plateau problem
F would be the area, while C would be a class of surfaces with a given fixed
boundary. Of course, one has to be more precise when defining C, and it
turns out that for F' as above (but also for many other important geometric
functionals) the class of smooth manifolds is too restrictive. There are two
main reasons: firstly, the solutions to some problems may contain singularities.
Secondly, in calculus of variations one often wishes to pass to the limit, in
which case it is desirable for the class of objects we are working with to have
good compactness properties. Note that both reasons are reminiscent of the
motivation for introducing Sobolev functions when studying PDEs!

An incredibly rich theory has been developed to propose alternative classes
of “generalised surfaces”, better suited for variational problems. Perhaps
the most important are the sets of finite perimeter, rectifiable currents, and
rectifiable varifolds. All three classes are closely connected to rectifiable sets
discussed before, essentially using them as building blocks. For an introduction
to geometric measure theory oriented at calculus of variations see for example
[Mor16], [Mag12], or [Sim14].

The second big motivation for the study of rectifiability comes from its
connection to singular integral operators (often abbreviated as “SIOs”). This
connection will be explored more in depth later on, for now let us just say that,
due to omnipresence and importance of SIOs, rectifiability also plays a role in
the study of removable sets for bounded analytic function, LP solvability of
the Dirichlet problem in rough domains, and the study of harmonic measure.

2 Classical rectifiability criteria

The key intuition necessary to understand rectifiability is the following: n-
rectifiable sets are precisely those that resemble n-dimensional planes as you
zoom in on them. Similarly, n-rectifiable measures should behave like (a
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constant times) n-dimensional Lebesgue measure on R™, on infinitesimal scales.
These flatness properties are made more precise by the four classical char-
acterizations of rectifiability: in terms of densities, approximate tangents,
projections, and tangent measures. We will briefly overview them below, for a
more in-depth discussion and proofs we refer the reader to [Mat95, Chapters
15-18].

Densities

Definition 2.1. Given a Radon measure i on R? and = € supp y, the lower
and upper n-dimensional densities of p at x are defined as
(B(z,7))

B
Olp, 2) = lim fnf : and  ©™"(u,z) = limsup M

T r—0 rr

If at some point = the upper and lower densities are equal, we say that the
n-dimensional density exists at x, and we denote it by ©"(u,x) := O%(u, z) =
©"*(p, z). In the special case p = H"|,, we will write ©"(E, z) instead of
O™ (u, z), and similarly for upper and lower densities.

The idea behind densities is the following: we are comparing the p-measure
of infinitesimal balls with the Lebesgue measure of n-dimensional balls of
the same radius. If at many points the two quantities agree (that is, the
n-dimensional density of u exists), then one may hope that p behaves like
Lebesgue measure on infinitesimal scales, and so it is rectifiable. This is indeed
the case.

Theorem 2.2. Let p be a finite Radon measure. Then, u is n-rectifiable if
and only if for u-a.e. x € supp p the density O"(u, x) exists, and is positive
and finite.

First result of this type was obtained by Besicovitch in [Bes38], in the
case n =1, d =2, and p = H"|,. Morse and Randolph [MR44] obtained the
result for general measures p, still under the assumption n = 1, d = 2. The
case n = 1 and arbitrary d is due to Moore [Moo50]. The theorem in its full
generality remained an open problem for many years. It was finally solved by
Preiss in his famous paper [Pre87]. An accessible version of Preiss’ proof can
also be found in the lecture notes of De Lellis [DLO0S].

Approximate tangent planes

Let V' € G(d,m), where G(d,m) denotes the Grassmanian space of m-
dimensional linear subspaces of R? (we will always consider either m = n
or m =d—n). Given a point x € R? and a € (0,1), we define

K(z,V,a) ={y € R* : dist(y,V +z) < ajz —y|}.
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That is, K(x,V,«) is an open cone centered at x, with direction V', and
aperture a.. For r > 0 we define also the truncated cone

K(x,V,a,r) = K(z,V,a) 0 B(z,7),

Recall that an n-plane W € G(d, n) is a tangent plane to a set E if for every
a € (0,1) there exists some r = r(a) > 0 such that EN K(x, W+ a,r) = 2.
While this notion is very useful if E is a smooth manifold, in the context of
general rectifiable sets it makes more sense to consider a relaxed definition.

Definition 2.3. We say that an n-plane W € G(d,n) is an approzimate
tangent plane to a Radon measure p at x € supp p if ©™*(u, z) > 0 and for
every o € (0,1)

r—0 rn

~0. (2.1)

Clearly, the existence of approximate tangents is a form of local flatness.
Besicovitch used this property to characterize rectifiability in the case of
n =1, d = 2 [Bes28|, while the remaining cases are due to Federer [Fed47].

Theorem 2.4. Let j1 be finite Radon measure on R? satisfying 0 < O™*(u, z) <
oo for p-a.e. x € RE. Then, the following are equivalent:

(i) w is n-rectifiable,
(ii) for p-a.e. x € R? there is a unique approzimate tangent plane to p at x,

(iii) for p-a.e. x € RY there is W, € G(d,n) and o, € (0,1) such that

1
lim sup 5 (x’% ) e ) O (), (2.2)
r—0

where €(n) is a small dimensional constant.

Projections

Given an n-dimensional plane V, we denote by 7 : R? — V the orthogonal
projection onto V. Consider some n-plane W, and a set A C W with 0 <
H"(A) < oo. It is trivial to see that for such a perfectly flat set we have
H™(my (A)) > 0 for y4,-a.e. V € G(d,n), where 74, denotes the Haar measure
on G(d,n). Tt is easy to see that the same is true also for subsets of C*
surfaces, or subsets of Lipschitz graphs. The celebrated Besicovitch-Federer
projections theorem asserts that this property characterizes rectifiable sets of
finite measure.

Theorem 2.5. Let E C R? be a Borel set satisfying 0 < H"(E) < oo. Then,
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e FE is n-rectifiable if and only if every Borel subset A C E with H™(A) > 0
satisfies

H"(my(A)) >0 for van-a.e. V€ G(d,n).
o FE is purely n-unrectifiable if and only if

H"(my(A)) =0 for van-a.e. V€ G(d,n).

The case n = 1,d = 2 was shown by Besicovitch [Bes39], and the general
theorem is due to Federer [Fed47].

Tangent measures

Perhaps the most literal way of understanding the expression “asymptotically
flat” is the one given by tangent measures.

Definition 2.6. Let ; be a Radon measure on R%. Given x € R? and r > 0
define T, . (y) = (y — x)/r. Denote by (1}, ).p the image measure of p by T, ,,
so that

(Tpp)upt(A) = p(rA+2), AcCRL

We will say that a non-zero Radon measure v is a tangent measure to y at x if
there exists sequences r, — 0 and ¢ of positive numbers such that

Ck<Taz,rk )>s<,u —w_> v,

where the convergence is understood in the sense of weak convergence of
measures. The set of all tangent measures as above will be denoted by
Tan(u, ).

The idea is the following: the maps 7T}, zoom in on the measure around
the point z, so that when passing to the limit (along some subsequence 7y,
and with ¢, acting as normalizing factors) we get information about the local
behaviour of p around x. This notion of tangent measures was introduced
by Preiss in [Pre87], where he also proved the following characterization of
rectifiability.

Theorem 2.7. Suppose that i is a Radon measure satisfying 0 < O%(u, x) <
O™*(u,x) < oo for p-a.e. x. Then p is n-rectifiable if and only if for p-a.e. x
all v € Tan(p, z) are of the form v = cH™|,, for some ¢ >0 and V € G(d, n).

The four characterizations of rectifiability from above are nowadays con-
sidered classical. Let us move on to more recent results, and the field of
quantitative rectifiability.
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3 The Analyst’s Traveling Salesman
Theorem

Recall that the classical Traveling Salesman Problem consists of finding the
shortest path connecting a finite number of points in the plane. An analyst’s
variant of the problem would be the following: given some set £ C R2, not
necessarily finite, what is the shortest curve containing E? Here, by curve we
mean a Lipschitz image of an interval. Obviously, if H!(E) = oo there can be
no finite length curve containing £, and so the second question is: what are
the conditions ensuring that such a curve exists? In the language of GMT, this
can be recast as a problem of finding a characterization of 1-rectifiable sets of
finite length, along with some quantitative length estimates. This problem was
solved by Peter Jones in [Jon90]. Along the way Jones laid the first building
blocks for the quantitative rectifiability area. To state his result, we need to
introduce his famous  numers.

Definition 3.1. Let £ C R? be a Borel set, z € R? and r > 0. If B(z,r)NE #

& we define q
ist(y, L
BEc(x,7) =1inf  sup Ly,)’
L yeEENB(z,r) r
where the infimum is taken over all lines L intersecting B(x,r). For B(z,r)N
E = @ we set fpoo(x,7) =0. If B= B(x,r), we will also write g «(B) 1=

BE.co(z,T).

In other words, Bg o (x,7) - 7 is the radius of the thinnest tube containing
E N B(xz,r), see Figure 1.2. Hence, fg (2, ) measures how flat the set £ is
inside the ball B(z,r). The normalization by r ensures that 5 numbers are
scale invariant: if £’ = (E — x)/r, then we have Bg o (2,7) = Br00(0,1).

Let D denote the standard dyadic grid on R?) and for @ € D let By be
the ball with the same center as @ and of radius 5/(Q), where ¢(Q) is the
sidelength of (). Define

B(E) = 3. Brec(Ba) Q).

QeD

Summing over all dyadic cubes gives us information about flatness of E at
all scales and locations. The main result of [Jon90] is the following Analyst’s
Traveling Salesman Theorem (abbreviated as TST).

Theorem 3.2 (TST). Let E C R? be Borel. If f*(E) < oo, then there exists
a curve I' such that E C T", and

HY(T) < diam(E) + 5%(E).
Conversely, if T is a curve satisfying H'(T') < oo, then
p*I) S HU(D). (3.1)
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B(z,r)

FIGURE 1.2: The definition of Bg o (2, 7).

Two remarks are in order.

Remark 3.3. Note that the curve I' given by the theorem is, up to a constant,
optimal, in the sense that for any curve I'y containing £ we have

(3.1)
diam(E) + B*(E) < diam(E) + (o) < HYT).
Hence, if T is a shortest curve containing E, we have H!(T') =~ H(Ty).

Remark 3.4. Observe that if F is a bounded subset of a line, then 5%(E) = 0,
and the shortest curve containing F is a segment of length diam(F). Hence, the
sum %(E) captures the information about the curvature of set £. The reason
for using squares of 3 numbers in $%(E) is, roughly speaking, Pythagorean
theorem. To see that, suppose E C R? is the union of segments [(—1,0), (0, ¢)]
and [(0,¢), (1,0)] for some small € > 0. By Pythagorean theorem,

HYE) =2V1+e2 =2+ + o(e?).

Note that g «(0,2) = €/2, and so H'(F) < diam(F) + 605 0 (0, 2)?, assuming
e is small enough. As we see, compared to the line segment [(—1,0), (1,0)],
the increase in length related to the curvature at a given scale is controlled by
the sum of squares of 8 numbers of that same scale.

Theorem 3.2 has found many application, for example in [BJ90], [BJ94],
[BJO7], see also [Jon91]. It is natural then that much effort has been put into
generalizing it. By “generalizing” one might understand two things: either
proving a similar statement about curves in some metric space X, or considering
coverings by higher dimensional objects instead of curves. A lot of progress has
been made in both directions. In [Oki92] Okikiolu proved TST for curves in R,
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and in [Sch07b] Schul further generalized it to the Hilbert space setting. Some
results are also available for the Heisenberg group [FSSC06, LS16a, L.S16b],
Carnot groups [CLZ19], graph inverse limits spaces [DS17], ¢, spaces [BM20],
and general metric spaces [Hah05, Sch07a, DS19]. In the other direction, i.e.
finding a TST for higher dimensional sets, there are results related to covering
sets by Holder curves [BNV19] or by so-called topologically stable surfaces, see
[AS18, AV19, Vill9a, Hyd20].

The original motivation for the Traveling Salesman Theorem came from
the study of the Cauchy transform on Lipschitz curves, see [Jon90, p. 4].
This connection between geometry of sets and singular integral operators
(abbreviated as SIOs) has been explored in great depth by Guy David and
Stephen Semmes in their theory of uniform rectifiability.

4 Singular integral operators

To motivate the definition of uniform rectifiability, let us first make a brief
detour into the world of singular integral operators. As the name suggests, they
are operators given by integration against a kernel possessing some singularity:.
The most archetypical example is the Hilbert transform on R, formally defined

as
1
_ 1 /) dy.
TJRT —Y

H f(x)

The higher dimensional analogue is the (vector valued) n-dimensional Riesz
transform
Rf) = [ i () dy.
B o =yl

Observe that the kernels above are not integrable (even locally), and so the
definitions as stated make little sense, even for very nice functions. There
are several standard ways of dealing with this problem, either by considering
principal values, or by using truncated operators (see Definition 4.1). In any
case, due to the antisymmetry of kernels, a lot of cancellations take place. In
consequence, the modified definitions make sense for smooth and compactly
supported f, and the operators can be extended to bounded operators on
L? for 1 < p < oo. Operators of this type naturally arise in many different
contexts, including the study of convergence of Fourier series, partial differential
equations, and others. For the introduction to the singular integral operators
theory in this standard setting we refer the reader to [Ste70], [Duo01] or
[Gralda, Graldb].

Observe that in the examples above the singularity of the kernel is of
the same order as the dimension of the space. One could say that they are
n-dimensional SIOs defined with respect to the Lebesgue measure on R"™. In
the sequel we will be concerned with the study of n-dimensional SIOs in
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d-dimensional spaces defined with respect to more general measures (think of
‘H™ restricted to n-dimensional sets). Let us fix some notation.

We are intersted in n-dimensional singular integral operators of convolution
type, with odd C? kernels k : R?\ {0} — R satisfying for some constant Cj > 0

Vik(a)] <

— ’x‘nJrj

forx #0 and j e {0,1,2}. (4.1)

We will denote the class of all such kernels by K"(R?).

Definition 4.1. Given a kernel £ € K*(R%), a constant £ > 0, and a (possibly
complex) Radon measure v, we set

Tov(x) = /|xy|>€ k(y — ) dv(y), x€R%

For a fixed positive Radon measure p and all functions f € L}, (1) we define

T,u,ef(x) = Ts(f:u) (l‘)

We say that T}, is bounded in L?(p) if all T}, . are bounded in L?(p), uniformly
in e > 0. Let M(R?) denote the space of all finite real Borel measures on R?.
When endowed with total variation norm |-||7v, this is a Banach space. We
say that T is bounded from M (R?) to L1*°(u) if there exists a constant C
such that for all v € M(R%) and all A > 0

Clvlrv
pl{r €RY ¢ Tv(a)] > A}) < ATV,
uniformly in £ > 0.
To motivate our interest in SIOs defined with respect to general measures,
we give two applications.

Removable sets

Other than Hilbert transform and Riesz transform, perhaps the most classical
SIO is the Cauchy transform. Given a finite complex valued Radon measure p
on C, and z ¢ supp i we define

Cu(z) = [C dp(w)

w—z

The importance of Cauchy transform in complex analysis comes from the fact
that Cp defines an analytic function on C \ supp p. This fact made Cauchy
transform a perfect tool for the study of removable sets for bounded analytic
functions.

We say that a compact set £ C C is removable for bounded analytic
functions if for every open U D E and any bounded analytic function f :
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U\ E — C, f can be extended to an analytic function on U. The Painlevé
problem consists of finding geometric criteria for removability. It is not too
difficult to show that if #*(F) = 0, then E is removable. Conversely, if the
Hausdorft dimension of E is larger than 1, then E is not removable. The
case of 1-dimensional sets F with H'(FE) > 0 is much more delicate, and is
closely related to the so-called analytic capacity, introduced by Ahlfors [Ahl47].
After decades of collective effort from many mathematicians it was finally
settled by Mattila, Melnikov, Verdera [MMV96] and David [Dav98] that if we
additionally assume that H'(E) < oo, then E is removable if and only if F
is purely 1-unrectifiable. We refer the reader to books [Paj02] and [Tol14] for
the complete story and proofs of these beautiful results.

The results mentioned above rely deeply on identifying the measures p on
C such that the Cauchy transform with respect to u is bounded on L*(p), in
the sense that the truncated operators

Cuefl)= [ W

lw—z|>e W — 2

dpu(w) (4.2)

are bounded on L?(j1) uniformly in ¢ > 0. Without delving into the proofs of the
previous results, the connection between removability and Cauchy transform
becomes evident thanks to a theorem of Xavier Tolsa. In [Tol99] and [Tol03]
he showed that a set £/ C C is non-removable for bounded anaylytic functions
if and only if there exists a (non-atomic) measure p with supp u C E such
that C,, is bounded on L?(p) (in fact, he showed a quantitative version of this
result involving analytic capacity, see also [Toll4, Theorems 4.14, 6.1]). This is
essentially the only solution to the Painlevé problem available for 1-dimensional
sets with H(E) = occ.

Method of layer potentials

Suppose a domain £ C R""! is given, and we are interested in solving the
Laplace equation Au = 0 in €2, with either Dirichlet or Neumann L? boundary
condition on 9€). One of the ways to do it is by using the so-called method of
layer potentials. Without going into details, let us just say that it consists of
studying integral operators of the form

SH@)=C [ fly) M), € B\ 00

o0 |z —y[*~!

v(y) - (z —y) |
D =Ch —_ dH"(y), e R"\ 09,
f(z) b0 |z — g fy) dH"(y), « \
where f € LP(H"|,,) and v(y) denotes the inward unit normal of 9Q at y.
These operators are the so called single and double layer potentials, and their
kernels originate from the fundamental solution for the Laplace equation. An
elementary computation shows that the functions Sf and Df are harmonic

11
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in R?\ 992. Hence, they may be treated as candidates for the solutions of
the problem — Df is used in the Dirichlet problem, and Sf in the Neumann
problem. Of course, to solve the boundary value problem one needs to study
the behaviour of Df(z) and VSf(x) as x approaches 0f), which inevitably
leads to the study of n-dimensional singular integral operators defined with
respect to the surface measure on 0€2. For an introduction to the method of
layer potentials see [DK96], [Ken94], or [Vanl4].

In the case of domains with C1%regular boundaries, the scheme sketched
above can be implemented rather easily. In the case of C* domains, it was first
achieved in [FJR78]. A few years later a generalization to Lipschitz domains
was obtained [Ver84]. The method of layer potentials has also been applied to
a variety of other problems, including more general elliptic equation [HMT10],
the heat equation [FR79, Bro89, LM95, HL96, Wat97], the Stokes systems
[MMS09], or the sub-elliptic Kohn-Laplace equation [OV20]. All these results
rely on a careful analysis of certain singular integral operators, whose definition
depends on the problem.

With the hope that the two applications above were enough to stoke reader’s
curiosity and enthusiasm for the study of SIOs defined with respect to general
measures, the natural question that comes to mind is the following: what are
the measures p such that reasonable n-dimensional SIOs (say, with kernels in
K™(R%)) are bounded on L?(1)?

5 Uniform rectifiability

First, let us look at the Cauchy transform (4.2). In the case of u being the
arclength measure on a C* curve, the L?(p) boundedness of C,, can be easily
derived from the boundedness of Hilbert transform on R. The reason for that
is the following: C1“ curves can be very well approximated by lines, we have
uniform control over the errors made by the approximation, and the Cauchy
transform over a straight line is essentially the Hilbert transform. As it turns
out, this idea of approximating measures by lines (or planes) is crucial for the
understanding of singular integral operators with respect to general measures.
The question is, just how good the approximation has to be?

Contrary to the C** case, proving L? boundedness of Cauchy transform
over Lipschitz graphs is a delicate matter. It was first obtained by Calderén
in the case of graphs with small Lipschitz constants [Cal77], and the general
case was solved by Coifman, McIntosh and Meyer [CMMS&2]. Since then, many
other proofs have been found [Dav&4, Mur88, CJS89, Chr90, MV95]. In fact,
in [Dav84] David showed that the Cauchy transform is bounded on any curve
I satisfying

H (T N B(x,r)<Cr, z&T,r>0.
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He called such curves “regular”. A few years later it was shown that regular
curves provide just the right framework for the study of 1-dimensional SIOs.
To explain this, let us introduce more definitions.

Definition 5.1. We say that a Radon measure p on R? is n-Ahlfors-David
regular (n-ADR) if there exists some constant A > 0 such that for all x € supp p
and 0 < r < diam(supp p) we have

A7 < p(B(z, 7)) < Ar™.
We say that a Borel set E is n-ADR if the measure H"| is n-ADR.

It is easy to show (using e.g. [Mat95, Theorem 6.9]) that any n-ADR
measure u can be represented as p = gH"|,, where A™! < g(z) < A and F is
n-ADR. Hence, it usually does not make much difference whether one studies
ADR sets or ADR measures. The ADR property should be thought of as
“quantitative n-dimensionality”. Note that regular curves are 1-ADR.

The ADR condition alone cannot imply boundedness of Cauchy transform
(or SIOs in general). Note that the four-corner Cantor set F' from Example 1.3
is 1-ADR, but it has been known for a long time that Cauchy transform is not
L? bounded on F (this essentially follows from [Gar70], see also [Tol14, Section
4.7]). The reader may recall, however, that the set F' is purely l-unrectifiable.
Together with our earlier remarks on the kinds of sets for which the Cauchy
transform is bounded (Lipschitz graphs, regular curves), one could hope that
rectifiability together with ADR condition suffice for the boundedness of SIOs.
That is not the case. Observe that rectifiability, as defined in Definition 1.1,
is a qualitative condition, while the boundedness of SIOs is a quantitative
property. For this reason, one could construct a rectifiable, 1-ADR set E that
approximates the four-corner Cantor set arbitrarily well, and in consequence
the Cauchy transform would not be L? bounded on FE.

The appropriate quantitative notion of rectifiability has been defined and
studied by Guy David and Stephen Semmes in their monumental monographs
[DS91] and [DS93a].

Definition 5.2. Suppose £ C R? is n-ADR. We say that F is uniformly
n-rectifiable (abbreviated as UR) if there exist constants £ > 0 and L > 0

such that for every # € E and 0 < r < diam(FE) there exists a Lipchitz map
g : R" — R? with Lip(g) < L such that

H"(E N B(x,r)Ng(B"(0,7))) > kr",

where B"(0, ) is the n-dimensional ball in R". In other words, F is UR if and
only if every ball B centered at E contains a “big piece of Lipschitz image”
(BPLI).

"It was communicated to the author by Guy David that Ahlfors already called such
curves “regular” in the 30s.
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Analogously, we will say that p is uniformly n-rectifiable if p is n-ADR and
(RN E) = 0 for some UR set E.

This somewhat technical definition becomes much simpler in the case of
n = 1: uniformly 1-rectifiable sets are precisely 1-ADR subsets of regular
curves. Observe also that any UR set is rectifiable, but the converse is not
true.

David and Semmes proved in [DS91] the following fundamental result.

Theorem 5.3. Suppose E is n-ADR. Then, it is uniformly n-rectifiable if
and only if for all kernels k € K"(R%)* the singular integral operator Ty,
associated to k is bounded on L*(H"|,).

Thus, David and Semmes gave an almost complete answer to the problem
of characterizing measures for which the SIOs are L? bounded. They also
proved in [DS91] and [DS93a] a dazzling number of geometric and analytic
characterizations of UR sets; throughout the years the list of criteria for
uniform rectifiability has been further expanded by many authors, and to this
day it is an active area of research. Later on we will mention some of the
characterizations, but now let us make a few remarks concerning the sharpness
of the theorem above.

Remark 5.4. How restrictive is the ADR assumption in this context? Not
too much. Recall that the (truncated) n-dimensional Riesz transform R, is
given by
r—y
Ruef@)= [ o W) duty)

yloe |7 —

David has shown in [Dav91, Part III, Proposition 1.4] that if R, is bounded
on L*(p1) (in the sense of Definition 4.1), and p is atomless (all singletons have
zero p-measure), then p satisfies the so-called n-polynomial growth condition,
i.e. there exists some constant C' such that

w(B(z,r) <Cr*, xeRY r>0. (5.1)

In other words, if we disregard measures containing atoms, the upper bound
from the ADR condition is necessary for the boundedness of reasonable SIOs.

Concerning the lower bound from the ADR condition, it can be seen as a sort
of non-degeneracy condition. It ensures that the measure is n-dimensional in a
strong sense. If we consider a measure i that does not satisfy the lower bound,
the SIOs may still be bounded on L?(y), but it may be not too interesting.
That is for example the case for pu equal to Lebesgue measure on a compact
subset of R? — if n < d, then of course all SIOs with kernels in K"(R?) are

tOriginally David and Semmes assumed that kernels are C>°, with appropriate estimates
on the derivatives. The assumptions were relaxed to C?, as in the definition of K" (R%), by
Tolsa [Tol09).
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bounded on L?(y), but this is simply because the order of singularity is smaller
than dimension of u, and so the kernel is integrable.

However, there are interesting measures that are not ADR but that define
bounded SIOs. For example, certain probability measures on Cantor-type
sets, such as the one described in Section V.125. See also the discussion in
Subsection V.1.3 for available results related to L? boundedness of SIOs in
non-ADR setting.

Remark 5.5. One of the implications of Theorem 5.3 is the following: if all
SIOs with kernels in K"(R%) are bounded, and F is AD regular, then E is
UR. However, David and Semmes conjectured that it should be enough to
assume boundedness of a single (vectorial) SIO - the Riesz transform. The
David-Semmes conjecture is one of the most famous problems in the field, and
this far it has been shown to be true only for n = 1 by Mattila, Melnikov and
Verdera [MMV96] and for n = d — 1 by Nazarov, Tolsa and Volberg [NTV14a].

6 Quantifying flatness

In this section we finally introduce the whole menagerie of flatness quantifying
coefficients which play a central role in this thesis. Recall that in Section 3
we defined Jones’ 8 numbers that quantified local flatness of sets in a scale-
invariant way. In fact, even before proving the Traveling Salesman Theorem,
Jones showed the following.

Theorem 6.1 ([Jon89]). Suppose that I' C R? is a 1-dimensional Lipschitz
graph. Then, there exists C' > 0 such that for any z € I' and R > 0

/B(z,R) /oR Pr.o(,7)’ Cﬁnd}[llr(ﬂﬁ) < CR.

We will call an estimate as above a Carleson condition. Jones used the
theorem above in his proof of the L? boundedness of Cauchy integral over
Lipschitz graphs. Interestingly, a more general version of Theorem 6.1 was
proved earlier by Dorronsoro [Dor85] while studying affine approximations of
Sobolev functions. However, Dorronsoro did not relate it to geometry or SIOs.

Note that the definition of fr(z,7) makes perfect sense also for n-
dimensional sets, as long as we replace in Definition 3.1 lines by n-planes.
However, the estimate above is not true for n-dimensional Lipschitz graphs
if n > 1, and the counterexample is due to Fang [Fan90]. One can fix this
problem by considering a modified version of 5 numbers.

SThat is, Section 12 in Chapter V. We explain the cross-referencing system used through-
out the thesis on p. 25.
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6.1 (3, numbers
Definition 6.2. For 1 < p < co and a Radon measure 1 on R set?

1/p

Bup(w,r) = inf (rln /B(x,r) (W)p dM(?J)) , (6.1)

where the infimum runs over all n-planes L intersecting B(x,r). If p = H"|,
for some set E, we will write fg,(z, ) instead of 5, ,(x, ). Furthermore, given
a ball B = B(z,r), we set f5,,(B) := f,,(x,7), and the same convention will
be used with all the other coefficients.

Thus, 8, numbers can be seen as LP variants of Jones’ ., numbers. It
follows immediately by Holder inequality that if p < ¢ then

1/p—1/q
ﬁu,p(x,r) < <H<B(W> qu(xﬂ")-

T’N/

Hence, for measures with polynomial growth (5.1) we have f§,,(z,r) <
CPuglz,T).

Fang used 3, numbers to prove a modification of Theorem 6.1 valid for
n-dimensional Lipschitz graphs (though again, it follows from [Dor85]). This
result was soon extended by the following theorem of David and Semmes.

Theorem 6.3 ([DS91]). Let u be n-AD regular. If n =1 let 1 < p < oo, and
if n > 2 assume that 1 < p < % Then, p is uniformly n-rectifiable if and
only if there exists C' > 0 such that for any ball B = B(z, R) with z € supp u

and R >0 n J
L Buale.r? Sdnta) < Cu().

Together with Theorem 5.3 this answers the question we posed at the
beginning of Section 5: how well should a set £ be approximated by planes in
order for SIOs to be L? bounded on E.

Due to their natural definition, coefficients 3, found many more applications.
In [Toll5] Tolsa showed that for a rectifiable measure p we have

d
T e for p-a.e. v € R (6.2)
”

1
/ BM,Q(x7T)2
0

On the other hand, Azzam and Tolsa proved in [AT15] that if a Radon
measure 4 satisfies (6.2) and

0< O™ (r,u) <oco  for p-ae. x€RY (6.3)

YThe definitions of By.,p and other coefficients may vary slightly between different chapters,
see Remark I1.3.1
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then p is n-rectifiable. More recently, Edelen, Naber and Valtorta [ENV16]
managed to weaken the assumption (6.3) to

O™ (x,u) >0 and OF(x,u) < oo for p-a.e. x € RY. (6.4)

Theorem 6.4 ([Toll5, AT15, ENV16]). Let u be a Radon measure on R
Then, u is n-rectifiable if and only if (6.2) and (6.4) hold for u-a.e. v € RY,

Further generalization of this result to Hilbert and Banach spaces was
achieved in [ENV19].

Remark 6.5. Measures of the form u = H"|, for E C R? with 0 < H"(E) <
oo automatically satisfy (6.3) (see [Mat95, Theorem 6.2]), and so in this
special case, by the results of Azzam and Tolsa, we get a particularly clean
characterization: E is n-rectifiable if and only if (6.2) holds.

Going back to general measures, it is well known that (6.3) implies p < H",
which is included in our definition of rectifiable measures. However, (6.4) does
not imply p < H™ on its own, and so it is remarkable that together with (6.2)
it gives rectifiability. An alternative proof of this fact is also given in [Tol19].

Remark 6.6. Note that in Theorem 6.3 we have some liberty when choosing
p in B, numbers. In the case of qualitative rectifiability, the choice of p = 2
is the best possible. Condition (6.2) with §,2(z,r) replaced by B, ,(z, ) is
necessary for rectifiability only for 1 < p < 2. On the other hand, (6.2)
together with (6.3) imply rectifiability only for p > 2. See [Tol19] for relevant
counterexamples. Still, if instead of (6.3) we assume that O”(u,z) > 0 and
O™*(u, z) < oo for p-a.e. x € RY then the finiteness of 3, square function for
certain p < 2 becomes sufficient for rectifiability, see [Paj97, BS16].

Let us mention that modified versions of g numbers are also used to
study a competing notion of rectifiability for measures, the so-called Federer
rectifiability. We say that a measure p is n-rectifiable in the sense of Federer
if there exists a countable number of Lipschitz images of R", denoted by I,
such that p(R?\ U;T;) = 0. No absolute continuity with respect to H" is
required. Dropping the absolute continuity assumption makes such measures
very difficult to characterize: a surprising example of a doubling, Federer
1-rectifiable measure supported on the whole plane was found by Garnett,
Killip and Schul [GKS10]. Nevertheless, for n = 1 significant progress has
been achieved in [Ler03, BS15, BS16, AM16, BS17, MO18a, Nap20]. See also
a recent survey of Badger [Bad19].

Finally, let us remark that if a set £ C R? satisfies faster decay of Sz,
numbers than (6.2), then it is actually C™ rectifiable, in the sense that it can
be covered H"-a.e. by Ch* surfaces. See [Ghi20] and [DNI19] for details.
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6.2 «o numbers

We would like to stress that S numbers were originally introduced to study
sets, and they do have some limitations when applied to general measures.
They capture the shape of the support of measures, but they do not see the
distribution of mass within the support. Observe that any measure with support
contained in an n-dimensional plane has all 5 numbers equal to 0, but of course
such measure may be very far from being rectifiable - think of Dirac deltas. For
this reason, some assumptions on densities in Theorem 6.4 are unavoidable.

Tolsa’s a numbers, introduced in [Tol09], offer a way to solve the issue
mentioned above. To define them, we need a distance on the space of measures.
Given Radon measures p and v, and an open ball B, we set

F3<u,u>—sup{\/¢du—/¢ v

NS Lipl(B)} ,

where
Lip;(B) = {¢ : Lip(¢) <1, supp¢ C B}.

Note that Fp(u, ) measures the distance between p and v inside the ball B.
See [Mat95, Chapter 14] for more information about this distance.

Definition 6.7. Given a Radon measure p and a ball B = B(z,r) we define

. 1 n
o(w,r) = inf WFB(M, ML),

where the infimum runs over all ¢ > 0 and all n-planes L.

The idea is the following: o, (B) quantifies how far p is from flat measures
(i.e. measures of the form ¢H"|;, L an n-plane) inside B. Tolsa characterized
uniform rectifiability in terms of a Carleson condition imposed on a numbers.

Theorem 6.8 ([Tol09]). Let u be n-AD regular. Then, p is uniformly n-
rectifiable if and only if there exists C' > 0 such that for any ball B = B(z, R)
with z € suppp and R >0

// a(z,7) ﬂzu( ) < Cu(B). (6.5)

Concerning the qualitative notion of rectifiability, one might expect that a
condition of the form
! o dr d
/oc#(x,r) RS for p-a.e. z € R (6.6)
0
could characterize rectifiable measures. Tolsa showed in [Toll5] that (6.6)
is necessary for rectifiability. But is it sufficient? Azzam, David, and Toro
proved in [ADT16] that if 4 is doubling, then some condition related to (6.6)
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is sufficient for rectifiability. In [Orpl8a] Orponen showed that for n =d =1
a variant of (6.6) is sufficient for rectifiability (which in this case is equivalent
to absolute continuity with respect to H'). Finally, Azzam, Tolsa and Toro
[ATT20] proved that a measure u satisfying (6.6) which is also pointwise
doubling, i.e. such that

B(x,2
lim sup pB(z, 2r)) <oo  for prae. v € RY (6.7)

root u(B(z,7))
is rectifiable.

Theorem 6.9 ([Toll5, ATT20]). Let 1 be a Radon measure on RY. Then, p
is m-rectifiable if and only if (6.6) and (6.7) hold for u-a.e. x € RY,

Also in [ATT20], the authors construct a purely l-unrectifiable measure on
R? satisfying (6.6). This shows that, for general n and d, (6.6) on its own is
not a sufficient condition for rectifiability.

To mention a few other applications of o« numbers, in [Tol08] they are used
to characterize rectifiability of sets of finite measure in terms of existence of
principal values for the Riesz transform, and in [DEM18, Fen20, DM20] they
are used to study higher co-dimensional analogues of harmonic measure.

6.3 «, numbers

Coefficients «, were introduced by Tolsa in [Tol12]. They can be thought of as
a generalization of @ numbers — in fact, under relatively mild assumptions, one
has o, (B) = «a,,1(B), see [Tol12, Lemma 5.1]. As in the case of a coefficients,
in order to define o, numbers we need a metric on the space of measures.

Let 1 < p < oo, and let u, v be two probability Borel measures on R?
satisfying [ |z|P dp < oo, [ |x|? dv < co. The Wasserstein distance W), between
w and v is defined as

T JRIXR

1/p
Wy(p,v) = (inf |z — y|? d7r(:c,y)> :

where the infimum is taken over all transport plans between p and v, i.e.

Borel probability measures 7 on R? x R? satisfying 7(A x RY) = p(A) and
7(R? x A) = v(A) for all measurable A C R?. The same definition makes sense
if instead of probability measures we consider u, v, and 7 of the same total
mass. For more information on Wasserstein distance see for example [Vil03,
Chapter 7] or [Vil08, Chapter 6.

Similarly as a numbers, o, numbers quantify how far is a given measure
from being a flat measure, that is, from being of the form ¢H"|, for some
constant ¢ > 0 and some n-plane L. In order to measure it locally (say, in a
ball B), we introduce the following auxiliary function.
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Let ¢ : R — [0, 1] be a radial Lipschitz function satisfying ¢ = 1 in B(0, 2),
supp ¢ C B(0,3), and for all = € B(0, 3)

¢ Hdist(z, 0B(0,3))? < o(z) < edist(z, 0B(0,3))?,
V(o) < cdist(z, 0B(0, 3)),
for some constant ¢ > 0. For example, one could take ¢(x) = ¢(|x|) where

¢ :[0,00) — [0,1] is such that ¢(r) =1 for 0 <r <2, ¢(r) =0 for r > 3, and
P(r) = (3 —r)% for 2 < r < 3. Given a ball B = B(x,r) C R? we set

r

oY) = ¢ (y — x) : (6.8)

wp should be thought as a regularized characteristic function of B.

Definition 6.10. For 1 < p < oo, a Radon measure p on R? and a ball
B = B(z,r), we define

1
a,p(x,r) = inf

0 WWp(SOBM, ap,resM"|;),

where the infimum is taken over all n-planes L intersecting B, and

. [ep du

apL = 7,1 -
[ B dHn|L

Even though their definition is more involved than that of o numbers, a,
numbers have some advantages. Under mild assumptions on the measure, one
can show that, on the one hand,

Bup(B) S aup(B),

and on the other hand, if p < ¢, then

aup(B) S auq(B),

see Lemma I1.3.2. Thus, recalling that o, ~ «,, 1, coefficients c,, simultaneously
capture information given by /5, and o numbers.

Tolsa introduced «;, numbers in [Tol12] with the aim of characterizing
uniformly rectifiable measures.

Theorem 6.11 ([Tol12]). Let p be an n-AD reqular measure on R?, and
suppose that 1 < p < 2. Then, u is uniformly n-rectifiable if and only if there
exists C' > 0 such that for any ball B = B(z, R) with z € suppp and R >0

/B /OR App(@,7)° drdu(x) < Cu(B).

r
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6.4 Other coefficients

Finally, let us briefly mention that a few other kinds of coefficients have been
used in the study of rectifiability.

Menger curvature (and its higher dimensional counterparts) was studied in
[Lég99, LW09, LW11, Koll7, Meul8, Goel8, GG20]. A coefficient involving
center of mass is developed in [Vil19b]. In [TT15, Toll7] rectifiable sets

and measures are characterized using A numbers, defined as A, (z,7) =

|u(B(xﬂ“)) _ M(B(x,%))|
rn (2r)m .

7 Recent trends

Despite our best efforts to make this introduction broad and inclusive, there
are many important developments in quantitative rectifiability and related
topics that we were not able to describe, simply due to the vast size of the
subject matter. Nevertheless, we feel obliged to at least hint at some of them,
to give the reader an idea of how diverse and active this research area is. The
references below are by no means complete, they should be seen merely as an
invitation to explore the topic further.

Firstly, there is the connection between rectifiability and harmonic measure.
Given a domain 2 C R™*! and a continuous function f € C(99), let us denote
the harmonic function on €2 with boundary values f. Fixing some X € €,
f — up(X) becomes a positive functional on C(0€2), and so by the Riesz
representation theorem, it defines a measure on 9§2. We denote it by w¥, and
we call it the harmonic measure on 0f) with a pole at X. As it turns out, there
is a deep connection between rectifiability of 9, the relation between w* and
H" |50, and the L? solvability of the Dirichlet problem on 2. This has been
explored in depth by many authors and by now it is very well understood. See
e.g. [HMUT14, AHM"16, AHM*20].

The harmonic measure was defined using the Laplace operator A. More
generally, given a suitable elliptic operators L we may define the elliptic
measure wy. A lot of effort has been put into replicating the results obtained
for harmonic measure to this more general setting, see e.g. [KP01, PPTIS,
HMM"20]. On the other hand, one can also study the caloric measure related
to the heat equation. This introduces further complications due to the parabolic
geometry: one has to define parabolic counterparts to uniform rectifiability
and other GMT notions. See e.g. [HLNO04, NS17, MP20].

As demonstrated above, and also by our remarks from the end of Section
1, one of the main motivations for the study of rectifiability are PDEs and
calculus of variations. However, the natural setup for certain problems is not
the Euclidean space, but another metric space (e.g. R"™! with parabolic metric
in the case of heat equation, the Heisenberg group in the case of Kohn-Laplace
operator). This led to a flurry of activity aiming at generalizing classical
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notions and results of (Euclidean) GMT to this metric space setting. See e.g.
[AK00, FO19, Bat20, AM20].

Finally, we would like to mention a trend of “quantification” of well-known
qualitative results. A nice example, lying at the intersection of fractal geometry
and GMT, is obtaining bounds for the Favard length of the four-corner Cantor
set. Recall that in Example 1.3 we defined the four-corner Cantor set I’ as an
intersection of sets F}, which can be seen as better and better approximations
of F. Recall that by Theorem 2.5 H'(my (F)) = 0 for vy1-a.e. line V. Thus, if
we define the Favard length of F' as

Fav(F) = /G oy MOV () o (V),

we have Fav(F) = 0. In particular, Fav(F;) — 0 as K — oo. That is a

qualitative result. Its quantitative counterpart is: what is the rate of decay of
Fav(Fy) as k — 0o? See e.g. [Tao09, NPV11, BLV14, CDT20].

8 New results and structure of the thesis

In this section we give a short overview of the results obtained in the thesis.
Full presentations are given in the introduction to each chapter, together with
an explanation of how they relate to previously known results.

Chapter II is dedicated to some preliminary definitions and estimates used
throughout the thesis. We recall the definition of David-Mattila cubes, used in
Chapters Il and V, and we prove some basic estimates of o and § numbers.

In Chapters III and IV we show that a Radon measure p is n-rectifiable if

and only if
! o dr d

/0 a2z, ) <o for p-a.e. x € R,
see Theorem II1.1.4 and Theorem IV.1.1. Thus, we provide an as counterpart
to Theorem 6.4 and Theorem 6.9. This characterization is especially satisfying
due to no additional assumptions on densities or doubling properties of pu.
Along the way we show a sufficient condition for rectifiability in terms of «
and [, numbers, see Theorem II1.1.2. These chapters contain the results from
[Dab19b, Dab19al.

In Chapter V we introduce conical energies, which can be seen as a quan-
tification of the notion of approximate tangent plane. We then use these
energies to prove several results: a characterization of rectifiable measures
Theorem V.1.3, a characterization of sets containing big pieces of Lipschitz
graps (which is a stronger condition than UR) in Theorem V.1.9, and finally,
a sufficient condition for the boundedness of SIOs valid for measures with
polynomial growth (not necessarily ADR), see Theorem V.1.14. This chapter
is based on [Dabh20a, Dab20b].



8. New results and structure of the thesis

In Chapter VI we use a square function involving o numbers, similar to
that from (6.5), to characterize L? functions defined on uniformly rectifiable
sets, see Theorem VI.1.3. Based on joint work with Jonas Azzam [AD20].

Finally, recall that in Remark 5.4 we mentioned David’s lemma which
asserted that non-atomic measures defining L? bounded Riesz transform have
polynomial growth. In Chapter VII we prove a counterpart of this result for
Heisenberg groups, see Theorem VII.1.1. This chapter is based on [DV20],
co-authored by Michele Villa.
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1 Notation

The notation given below will be used in Chapters [1I-VI. We may use slightly
different notation in Chapter VII due to the non-Euclidean, Heisenberg group
setting.

Cross-referencing

Since the chapters are mostly self-contained, we decided to adapt the following
system for cross-references: each object (theorem, lemma etc.) is assigned only
two numbers, the first standing for section. When referencing content withing
the same chapter, only those two numbers are used; when referencing an object
from another chapter, three numbers are used, with the number of the chapter
given at the beginning. For example, Lemma 2.1 references a lemma from the
second section of the current chapter, but Lemma VI.2.2 denotes Lemma 2.2
from the second section of Chapter VI.

Estimates

Throughout the paper we will write A < B whenever A < CB for some
constant C, the so-called “implicit constant”. All such implicit constants
may depend on dimensions n, d, and we will not track this dependence. If the
implicit constant depends also on some other parameter ¢, we will write A <; B.
The notation A ~ B means A < B < A, and A ~; B means A <, B <; A.
Moreover, if symbols < or & appear in the assumptions of a lemma, then the
implicit constant of the proven estimate will depend on the implicit constants
from the assumptions (see Lemma 3.4 for example).
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Balls

We denote by B(z,7) C R? an open ball with center at z € R? and radius
r > 0. Given a ball B, its center and radius are denoted by z(B) and r(B),
respectively. If A > 0, then AB is defined as a ball centered at z(B) of radius

Ar(B).
For a ball B and measure pu, we define the n-dimensional density of y at B
as
pu(B)
@u(B ) =

Planes

Given two n-planes Ly, Lo, let L] and L} be the respective parallel n-planes
passing through 0. Then,

L(Ly, Ly) = disty (L}, N B(0,1), L,N B(0,1)),

where disty stands for Hausdorff distance between two sets. Clearly, we always
have £(Ly, Ly) € [0, 1], and £(Ly, Ls) = 0 if and only if Ly and Lo are parallel.
Note that if L; and Lo are lines in the plane, then £(Lq, Ls) is the sine of the
angle between L, and L.

Given an affine subspace L C R?, we will denote the orthogonal projection
onto L by 7. The orthogonal projection onto L+ will be denoted by 7.

Sets

Given a set A C R?, we denote by 1,4 : R — {0, 1} the characteristic function
of A, and by #A the cardinality of A. If f:R? — R is a function, then f]|,
denotes its restriction to A. Similarly, u| , will denote the measure y restricted
to A.

For sets A, B C RY we define

dist(A, B) = inf inf |a — b|,
acAbeB
while disty (A, B) will stand for the Hausdorff distance between A and B.

Dyadic lattices

Throughout all of the thesis, dyadic techniques are heavily used. However,
usually we won’t be able to work with “true” dyadic cubes, relying instead on
certain “generalized dyadic cubes”. The most classical constructions of this
kind are due to Chirst [Chr90] and David [Dav88a]. Since then many other
constructions of this type has been done, and depending on the context it is
convenient to use different kinds of cubes. To avoid confusion, we use different
fonts to distinguish between them:



2. David-Mattila cubes

D denotes the David-Mattila lattice [DMO00], defined in Section 2 below,
and used in Chapters IIT and V.

e Dgn and Dga denote the true dyadic grids on R™ and R? respectively,
as defined in Subsection IV.2.2 and used in Chapter IV. In the same
subsection a few other grids are derived from them, e.g. Dr, Df, Dr.

e 9(w) denote the adjacent systems of cubes of Hyténen and Tapiola
[HT14], see VI.2.2. They are used in Chapter VI.

e © denotes the cubes of Kédenméki, Rajala and Suomala [KRS12], used
in Chapter VII. See Subsection VII.2.3.

2 David-Mattila cubes

In Chapters IIT and V we will use the lattice of “dyadic cubes” constructed by
David and Mattila [DMOO].

Lemma 2.1 ([DMO00, Theorem 3.2]). Let p be a Radon measure on R, E =
supp p. For any constants Cy > 1, Ay > 5000C, there exists a sequence of
partitions of E into Borel subsets (), Q) € Dy, with the following properties:

(a) For each integer k > 0, E is the disjoint union of the “cubes” Q, Q) € Dy,
and if k <1, Q € Dy, and R € Dy, then either QN R = & or else R C Q.

(b) The general position of the cubes QQ can be described as follows. For each
k >0 and each cube Q) € Dy, there is a ball B(Q) = B(zq,7(Q)), such
that

20 €Q, Ayt <r(Q) < CoAy*,
ENB(Q)CQ C EN28B(Q) = EN B(zg,287(Q)),

and the balls 5B(Q), Q € Dy, are disjoint.

Remark 2.2. The cubes of David and Mattila have many other useful prop-
erties, most notably the so-called small boundaries. We will not need them,
however.

For any @ € D := U0 Dr we denote by D(Q) the family of P € D such
that P C Q. Given Q € Dy we set J(Q) = k and £(Q) = 56Cy Ay *. Note that
r(Q) = £(Q). We define also Bg = 28B(Q) = B(zg,287(Q)), so that

EN %BQ cQcC BQ.
Denote by D% the family of doubling cubes, i.e. @ € D satisfying
H(100B(Q)) < Con(B(Q)). (2.1)

27



II.

PRELIMINARIES

28

One of the most useful properties of the David-Mattila lattice is that it
provides a lot of information about doubling cubes. If the constants Cy, Ay
in Lemma 2.1 are chosen of the form Ay = C(C()'%, and Cy = Cy(n, d) large
enough, then it follows from the construction of the lattice that the following
lemmas hold.

Lemma 2.3 ([DMO00, Lemma 5.28)). For any R € D there exists a family
{Qi}ier € DP such that Q; C R and u(R\ U; Qi) = 0.

Lemma 2.4 ([DMO00, Lemma 5.31]). Let R € D and Q C R be cubes such that
all the intermediate cubes S, Q C S C R, are non-doubling, i.e. S € D\ DP.
Then,

p(100B(Q)) < Ay V@D (100B(R)). (2:2)

Remark 2.5. The constant 10d in (2.2) can be replaced by any positive
constant if Cy is chosen big enough. See [DMO00, (5.30)] for details.

As a simple corollary we get the following:

Lemma 2.6 ([AT15, Lemma 2.4]). Suppose the cubes Q € D, R € D, Q) C R,
are such that all the intermediate cubes Q@ € S C R are non-doubling, i.e.
S ¢ D®. Then

0,(100B(Q)) < (Co)" A, P~ =Vg (100B(R)), (2.3)

and

> 0,(100B(S)) < ©,(100B(R)).
SeD:QCSCR

In Chapter V we will use the following lemma.

Lemma 2.7 ([CT17, Lemma 4.5]). Let R € D®. Then, there exists another
doubling cube Q C R, Q € D%, such that

@) = p(R) and £(Q) = ((R).

In Chapter III it will be convenient for us to work with cubes satisfying a
doubling condition stronger than (2.1). To introduce them we need a version
of [Toll4, Lemma 2.8]. For reader’s convenience, we provide the proof below.

Lemma 2.8. Let i be a Radon measure on R and oo > 1 be some constant.
Then, for u-a.e. x € R? there exists a sequence r; — 0 such that for every j
we have

w(B(x,ar;)) < 2a%u(B(z,r;)). (2.4)
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Proof. Consider the set Z C supp u of points such that for x € Z there does
not exist a sequence of radii r; — 0 satisfying (2.4). We want to show that
w(Z) =0. Let

Z; = {w € suppjt : p(Bla,ar)) > 2a’u(B(,r)) for all r < 277},

Clearly Z = U; Z;, and so it suffices to prove p(Z;) = 0 for all j > 0.

Let By be an arbitrary ball of radius 277 centered at Z;, and choose some
integer k > d. For each = € Z; N By we set B, = B(x,a "277). Observe that,
by the definition of Z;, for h = 0,...,k — 1 we have

p(@"1B,) > 2a%pu(a" By).
Thus,
(2a") ™ u(B(z,277))
(2aY)7*u(2By). (2.5)

Now, we use Besicovitch covering theorem to choose points {z,,} C Z;N By
such that U,, B,,, covers Z; N By, and moreover ), 1p, < Cy. The bounded
intersection property implies that N := #{x,,} < oo, and more precisely

W(B,) < (2a%)p(aB,) < --- < (2a%) Fu(a*B,)

IN

Nwd ZHd < CdH (230) = CdewdQ_jd,

where w, stands for the volume of a d-dimensional ball. Hence,
N < C2%".
Consequently, we may use (2.5) and the fact that U, B,,, D Z; N By to obtain

w(Z; N By) <ZM )< N@2ah) T u(2By) < C297*u(2By).

Since k can be chosen as large as we wish, this gives p(Z; N By) = 0. But By
was an arbitrary ball, and so p(Z;) = 0. O

We may use the lemma above to show the following.

Lemma 2.9. There exists a constant C = C(d, Cy, Ag) such that for u-a.e.
x € R there exists a sequence of cubes Q; € DP satisfying v € Q;, £(Q;) — 0,
and

H(100Bq,) < C u(B(Q,)). (2.6)

Proof. Let a = 2C2 Af™, where k is a constant that will be fixed later on.

Consider a sequence of balls B(x,r;) given by Lemma 2.8. Fix some j. Let Q)
be the smallest cube satisfying x € @ and B(z,r;) C 100B(Q). We have

T2A;'Cy r(Q) <1y < 1007(Q).
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It is easy to check that, with the choice of & we made at the beginning, we
have
B(z,arj) D 100B(R),

where R is the k-th ancestor of @, i.e. @ C R and J(Q) — J(R) = k.
Now, if all the intermediate cubes S, @) € S C R, were non-doubling, then
by (2.2) and Lemma 2.8 we would have

(2.2)
p(B(z,r;)) < p(100B(Q)) < Ay Vpu(100B(R))
< A (B, ary)) < AgED2(203 AFTY u(B(x, 1))
— 2d—|—1OgdAa%k—i—llalu(B(x7 Tj)).

For k = k(d, Cy, Ag) big enough the constant on the right hand side is smaller
than 1, and so we reach a contradiction. It follows that one of the intermediate
cubes S is doubling. Thus,

#(100Bs) < u(100B(R)) < p(B(x,ary)) < 2au(B(z,1;))
< 2au(100B(Q)) < 2a’u(100B(S)) < 2Cyau(B(9)).

Setting ); = S finishes the proof. O

We will call the cubes satisfying (2.6) strongly doubling, and the family of
all such cubes will be denoted by D*®. We fix constants Cy and Aj so that all
of the above holds, and from now on we will treat them as absolute constants.
We will not mention dependence on them in our estimates.

3 Estimates of a and S numbers

In this section we provide some estimates of a and /3 coefficients used throughout
the thesis.

Remark 3.1. In different parts of the thesis the definitions of @ and S numbers
vary slightly — the coefficients «,(B), «,,(B), and §,,(B) are normalized
either using u(B), u(3B), or r(B)™. However, within each chapter the normal-
izing factor is the same for all coefficients. Since the choice of normalization
does not typically alter the proofs of lemmas below, we chose not to specify the
normalizing factor at this point. Instead, we will simply denote it by “n(B)”,

so that . dist(z. L) »
b ist(z,
/6M7P(B) - I%f II(B) /B < T(B) ) d#@)a

and so on. Unless stated otherwise, the lemmas hold for n(B) = u(B),
n(B) = u(3B), or n(B) = r(B)".

We begin by showing that as numbers bound from above oo and 5 numbers.
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Lemma 3.2. Suppose that i1 is a Radon measure, and B is a ball intersecting
supp p. Then

Bu2(B) < a,a(B), (3.1)
and

0u(B) < apa(B). (32)
Furthermore, if n(B) = u(3B), then

a,1(B) < a,q(B). (3.3)

Remark 3.3. The fact that (3.3) only holds for n(B) = u(3B) is precisely
the reason why we choose this normalization in Chapter III.

Proof. To see (,2(B) < a,2(B), let L be a minimizing plane for a,2(B)
and 7 be a minimizing transport plan between ¢pu and ap ppH"|;, where
ap,r, = ([ dn)/([ ¢ dH"|;) is as in the definition of «,2(B). Then, by
the definition of a transport plan, and the fact that g =1 on B,

a2(B)r(B)n(B) = [ lo =y dn(a,y)

> /Bdist(x,L)2 dup > BM,Q(B)Z n(B)r(B)*.

For the estimate (3.2) we will use the so-called Kantorovich duality for W,
Wasserstein distance. It states that
| pan [ 1,

see [Vil08, Remark 6.5] for more information.
Let L be a minimizing plane for o, 1(B), and let ap 1, be as in the definition
of a,,1(B). Since g =1 in B, it follows from the definition of «,, that

Wi(u,v) = sup
Lip(f

a,(B)r(B)n(B) < Fg(u,ap H"|;) = sup

Lip(f
Supp(f)CB
o |fre
Lip(f)<1
supp(f)CB
< SHP dp — /fSOB apLdH"|,
Llp

= Wiesp, aprppt”|,) = au(B)r(B)n(B).

Finally, suppose that n(B) = p(3B). In that case the estimate o, ;(B) <
a,2(B) follows immediately by the Cauchy-Schwarz inequality and the fact
that [ @p du < u(3B). O
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If we assume more on the ball B, then we can improve (3.1) to an estimate
of the bilateral § numbers, defined as

| <W>2 dp(y)

.
1 (dist(y, supp /1) > ’
T

rh B(z,r)

dH"|(y).

Lemma 3.4. Suppose that p is a Radon measure, B is a ball satisfying
w(B) = r(B)* = n(B), and L is a plane minimizing o, »(B). Then

bB,2(B)? < r(B) "2 /B dist(z, L)? dp < aa(B).

Proof. Let m be a minimizing transport plan between ¢pu and ap ropH"|;
(where ap y, is as in the definition of a,, 2(B); note that ap 2 1 since p(B) ~
r(B)™). Then, by the definition of a transport plan, and the fact that pp =1
on B,

a2(B)r(BYw(B) = [ |a =yl dr(a,y)
> ;/ dist(z, L)* du(z )—1-7/ dist(y, supp p)? dH"|, (y)
2 bBu2(B)*r(B)* n(B).

O

The following lemma allows us to control 8; numbers in terms of 5y and «
numbers. We also show that if By C By and they have comparable radii, then
the coefficients of By bound those of B;.

Lemma 3.5. Suppose that j is a Radon measure on R, and that B C R? is
a ball satisfying nw(B) ~ n(2B). Then

Bu,l(B) S B,u,2(B)v (34)
and

Bui(B) S au(2B). (3.5)
Moreover, given balls By C By such that r(By) ~ r(Bs) and n(B;) ~ n(Bs) we

have

Bu2(B1) S Buaz(Bsa), (3.6)
au(Br) S au(Bz). (3.7)
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Proof. The first estimate is a direct consequence of the Cauchy-Schwarz in-
equality.

In order to prove the second estimate, let Lp be the minimizing plane
for 5,1(B). The estimate follows if we consider the 1-Lipschitz function
é(x) = (x)dist(z, L), where v is r(B) !-Lipschitz, v» = 1 on B, and
supp(¢) C 2B.

The last two inequalities follow immediately from the definitions of 3,9
and ay,. O

Remark 3.6. Under suitable assumptions, an analogue of (3.6) and (3.7) is
true also for as. However, the proof is much more involved, and we will only
use it in Chapter IV in a very specific context. See Lemma 1V.3.3, or [Tol12,
Lemma 5.4].

Lemma 3.7. Suppose that p is a Radon measure, B is a ball with u(B) > 0,
L an n-plane intersecting 0.9B, and assume that ¢ minimizes Fg(u, cH™|,).
Then

c 5 M(B) . (3.8)

Furthermore, there exists ¢ > 0 such that if (1(0.9B) ~ p(B), and Fg(p, cH"|;) <
ep(B)r(B), then

p(B)
> , 3.9
Proof. Let r = r(B) and consider ®(z) = (r— |z —2(B)|)+ € Lip;(B). It is not
difficult to see that on a significant portion (say, a half) of the n-dimensional
ball L N B we have ®(z) ~ r, and so

C/CD(:U) dH"|, (z) = ™t
If we had ¢ > Mu(B)r=" for some large M > 100, then

Folu,cH"|,) = ¢ [ (@) dH"|y(x) = [ @) du(@) = Ca™ = u(B)r
> (MC —1)u(B)r.

But in that case, if M > 3C~!, the constant ¢ = 0 would be better than c,
since we always have Fp(u,0) < p(B)r, and thus we reach a contradiction
with optimality of ¢. Hence, ¢ < Mu(B)r—".

Now, assume further that Fg(u, cH"|;) < ep(B)r, and p(0.98) ~ u(B),
so that [ ®(x) du(x) ~ u(B)r. If we had ¢ < M~1u(B)r—, then

Fp(u,cH"|;) > /CI)(x) du(z) — c/q)(x) dH" | (z) > Cu(3B)r — Cor™ !

> Cu(B)r — AC;M(B)T > SM(BW
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assuming M large enough. This contradicts the assumption Fg(u, cH™|;) <
ep(B)r. O

The following lemma shows that if a and S numbers are simultaneously
small, then the minimizing planes for both of them are close to each other and
can be used interchangeably.

Lemma 3.8. Suppose that p is a Radon measure on R, and that By, B, C RY
are concentric balls satisfying By C 0.9By and

w(By) = p(By) = r(By)" = r(By)" = n(By).

Let Lg be the n-plane minimizing B,2(B2), and Lo, ¢ > 0, be the n-plane
and constant minimizing o, (Bs). Suppose further that L., Lg intersect 0.9B;.
Then

BBy (11, H"|,) S Bua(Ba) + u(Ba). (3.10)

Proof. Set r = r(By). It follows easily by (3.8) that ¢ S u(B2)r(By)™" ~ 1,
and so Fg, (p, cH"| LB) < ru(By). Thus, without loss of generality, we may

assume that [, 2(Bs) + o, (Bsy) < ¢ for some small € > 0.
By the triangle inequality, we have

FBl(:ua CHnlLﬂ) < FB1(M76HH|LQ) + FBl(CHn|La7CHn|Lﬁ)
< Fp,(u, CH”|LQ) + FB1(CHn|LaaC%n|LB)~

The first term on the right hand side is precisely «,(Bs) n(B2)r(Bs) ~ a,(Bs)u(By)r,
and so what remains to show is that
1

p(By)r

Let 2, € L, N By and xg € Lg be such that

Fp (M|}, cH"|;,) S Bua(B2) + au(Bs).

|z — xp| = dist(z,, Lg) = m€£2£B1 dist(z, Lg).

Without loss of generality we may assume that x, = 0, so that L, is a linear
subspace. Denote Ly = Lg — x5. It follows by basic linear algebra that for
S La N B1

dist(z, L) = |z — I, (2)] = |z — x5 — Iy (2 — 2p)]
= |l (z — ap)| = Mg () — 2g]. (3.11)

Note that by the above and the triangle inequality
dist(z, Ly) = |1If, (x) — 5] < |arg| + 1T}, ()]
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On the other hand, by our choice of x3, |x5| < dist(x, Lg) for all x € L, N B;.
Together with the triangle inequality and the identity (3.11) this gives

25| + [Ty, (2)] < 2lap] + [T () — @5] < 3dist(w, Ls).
We put the two estimates above together to get
lzg| + |Hf% (x)] = dist(z, Lg). (3.12)

Now, observe that, by the definition of (L, Lg), for every x € L, we have
|Hl/ﬂ ()| < |z|4£(La, Lg). Moreover, there exists a subspace ¢ C L, on which

the equality is achieved, i.e. for all z € ¢ we have ]Hfﬁ ()| = |z|£(La, Lg).
Consider a cone around ¢:

4
K = {xERd D |(z)| > 5|x|}

Since 0 € By N K N L,, it is easy to see that H"(B; N K N L,) 2 r™, which
in turn implies that for some small constant 0 < § < 1 (depending on the
implicit constant in the previous inequality and dimension) we have

H' (BiNKNL,\ B(0,0r)) 2 r". (3.13)
Moreover, for z € Bi N K N L, \ B(0,0r) we have
T, (@)] = [T, (L) + TT, (I ()| = (1T, (T ()] — |11, (IT (@)
€K 4 3
> ()| &L L) — 0 (@) (L, L) S 3ol & (L, L) — 2l £(La L)
1
= g|{L‘|K(La, Lﬁ) ~ TK(LO” ng)

Hence, using the above, (3.13), and (3.12) yields

dist(z, L
sl v Lo, L) 5 [ LD e,
(39 dist(z, L
< c/ IS(“:ﬂ) dH"|, (z). (3.14)
B *

Now, consider ¢ € Lip,(B;) such that ¢(z) ~ dist(z, Lg) in By, and
¢(z) < dist(x, L) in By. Then,

di L
o LD ey, @y s e [ M e, (o)

< [ @)

i dp(x) + 17 Fp, (1, cH"|,) S (Bu2(B2) + au(B2)) n(Ba). (3.15)
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The estimate (3.14) and the calculation above give £(L,, Lg) S Bu2(B2) +
a,(By) < e. Let II : L, — R? be the orthogonal projection onto L), and
i: Lo — RY an embedding. We have

T —il[op = [|TT = @|| Lo (LanB0,1)) S Bu2(B2) + ap(Bs) < e. (3.16)
Thus, II is a linear isomorphism onto L/, with a bound on Jacobian
11— [JI|| S Buz(B2) + au(Bs). (3.17)
It follows that for any f € Lip,(B;) we have

[ @) el @) - [ @) )
\/f ) ar|,, (@) = [ flas+ T@)IT)| dH, (2)
< [1f@)=flap+Ti()] dH), @)+ [ [ (za+T1@)] |1 = | JT()]| a1, (2)
< 2]+ & = T(z)| dH") , (2)

Blul_[*l(Bl —a:g)

oo |1 — |JII "
o Wl U= LT a7, )

(3.16),(3.17) .
S sl + (Bua(Be) + au(Be))r" .

Taking supremum over all f € Lip,(By), dividing by r"*1, using (3.14), (3.15),
the fact that u(B;) ~ r™, and that ¢ < 1, yields the desired inequality:

1

WFBI (cH"[1,, H"[1,) S Bu2(B2) + au(Ba).

]

We finish this section by showing that, for rectifiable measures, the planes

minimizing 5, 2(x, ) converge to approximate tangent planes as r — 0. Since
the choice of normalization does not affect the minimizing planes, without loss
of generality we may assume n(B) = r(B)".
Lemma 3.9. Let p be a n-rectifiable measure. For x € supppu and r > 0
let Ly, denote a minimizing plane for p,o(x,r), let W, be the approximate
tangent plane to p at x, whenever it exists, and let W, = W 4+ x. Then for
[-a.e. T € supp u we have

disty(Ly, N Bz, ), W, N B(z,7)) -0
r

0. (3.18)

Proof. Recall that since p is n-rectifiable, the density ©™(u,x) exists and
satisfies 0 < ©"(u, z) < oo for p-a.e. x. Let M > 100 be some big constant.
Define

Ey:={x €suppp : M1 <O0"(u,x) < M}.
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Note that for any My > 1 we have pu(R? \ Ups>as, Ear) = 0, and so it suffices
to show that for all sufficiently large M (3.18) holds for p-a.e. x € Ey;. Fix
some big M, and set v = |y . It is well-known that

M1 <0"(v,z) =0"(u,x) < M for v-a.e. x € suppv, (3.19)
which can be shown e.g. using [Mat95, Corollary 6.3] in conjunction with the

Lebesgue differentiation theorem. For v-a.e. x the plane W, is well defined by
Theorem [.2.4, and also by Theorem [.6.4

1 d
/ Bua(z,7)? T« for pae. x € R (3.20)
0 r

Fix x € Ej; such that (3.20) and (3.19) hold, and such that W, is well-defined.

Once we show that (3.18) holds at x, the proof will be finished. From now on
we will suppress the subscript z, so that L, =: L,,, W := W,. By applying
an appropriate translation, we may assume that x = 0.

Given some small r > 0, let A,(y) = ¥, so that A,.(B(0,7)) = B(0,1). Set
L = A.(L,). It is easy to see that (3.18) is equivalent to showing

disty (L. N B(0,1), W N B(0,1)) =% 0.

We will prove that the convergence above holds by contradiction. Suppose it
is not true, so that there is € > 0 and a sequence r, — 0 such that for all k£ we
have

disty(L,, N B(0,1),W N B(0,1)) > e. (3.21)

Let n > 0 be some tiny constant. Observe that by (3.20) for k > ko(n, M)
large enough we have

3
Ui
Bual0,m)* < 77 (3.22)

Indeed, otherwise one could use the fact that 5,2(0,7) < 5,.2(0,2r) (by (3.6))
to conclude that f; B,2(0,7)? dr/r = co. Moreover, let us remark that for

every 0 < 0 < 1/2,if k = k() is large enough, then we have L;, N B(0,0) # @.

This can be shown easily using the fact that ©"(u,z) > M~!, that L, are
minimizers of f,2(0,7), and the fact that 8, 2(0,7,) — 0. We leave checking
the details to the reader.

Now, we use the fact that for & large enough L, N B(0,9) # & and the
compactness properties of the Hausdorff distance to conclude that there exists
some subsequence (again denoted by ;) such that L;. N B(0,1) converges in

Hausdorff distance to a compact set of the form V' N B(0,1), where V is an
n-plane intersecting B(0,d). Since § > 0 can be chosen arbitrarily small, we
get that V' passes through 0. Note that by (3.21)

distz(V N B(0,1), W N B(0,1)) > e. (3.23)
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Let B,,, (V) denote the nrg-neighbourhood of V. We will show now that a
large portion of measure v in B(0, ;) is concentrated at the intersection of
Bﬂrk(v) and B”]"‘k (W)

Since V passes through 0, for every r > 0 we have A '(V) = V. Thus,

disty (Ly, N B(0,7),V N B(0,7%)) koo
Tk

0. (3.24)

Note that for & big enough

V(B((lJﬂ”k))/Bw,m) <dlst7(i‘/)> dv(y)

1 dist(y, Ly,) ?
= v(B(0,71)) /B(O,rk) ( Tk ) dv(y)

+CMW@%QMQ%MVQB@%w»2
Tk

(3.22)

(3.24) TZ 9 3 (3.19) 2 3 3
6M72(0,Tk-) +n < 2M5M72(O,7“k) +n < 37’] .

D L
— v(B(0,11))
It follows from Chebyshev’s inequality and the estimate above that

dist(y, V)

Tk

BN\ B ) < [ (D) ) < sp0.0)

Hence, v(B(0,7%) N By (V) > (1 — 3nry)v(B(0,75)). On the other hand,
by the definition of the approximate tangent plane W and (3.19), for any
0 < a <1 we have

V(K(0,W,a,ri)) = v(B(0,74)) — v(K(0, W, V1 — a2 1))

> v(B(0,11)) = 517 = (L=n)r(B(0,0)),

if k is large enough (depending on «, n and M). Note that K (0, W, a,ry) C
B, (W) N B(0,ry). Thus, choosing o = 0, if we define

S = S(k.m) = B(0,74) () By, (V) 1 By, (W),

then by the two previous estimates we have
v(S) > (1 —4n)v(B(0,1x)) > ——ry, (3.25)

where in the second inequality we used (3.19).

We will show that if 7 is chosen small enough (depending on €, the constant
from (3.23)), then the estimate above leads to a contradiction. Roughly
speaking, (3.25) means that a lot of measure is concentrated in the intersection
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of By, (V) and B,,, (W), but since V' and W are somewhat well-separated by
(3.23), this intersection behaves approximately like an (n — 1)-dimensional set.
Let us start by exploiting (3.23). By the definition of Hausdorff distance and
the fact that V and W are n-planes, it follows from easy linear algebra that there
exists some w € W+ with |w| = 1 and |my(w)| > . Let v; = 7y (w) /|y (w)],
and let Vo C V be the orthogonal complement of span(v;) in V.
We define T' = T'(k,n) to be a tube-like set defined as

T=T(k,n) ={z R : |z-v| <2 ry, |my(2)| <7y |7 (2)] < 1k

We claim that S(k,n) C T'(k,n). Indeed, let z € S. The estimate |my,(z)| < 7
is trivial since S C B(0, 7). The estimate |mi:(2)| < nry follows from the fact
that z € B, (V). Concerning |z-v1|, note that since z € B,,, (W) and w € W+,
we have |z - w| < nrg. We can use our choice of w and v; = 7y (w) /|7y (w)| to
get

nry > |z-w| =z 1y (w) + 2 - ﬂ‘%(wﬂ
> |z my(w)| — |z - 7 (w)| = |2 - oy (w)| — |7 (2) - 7y (w))]

> |z - vile — |y (2)l |7y (w)] = |2 - vile =,

where in the last inequality we used again z € B,, (V). Thus, we have
|z - v1| < 2ne~!ry, and the proof of S(k,n) C T'(k,n) is finished.

Choose n = ~e for some tiny v = y(M) > 0, and let k be large enough
for (3.25) to hold. It follows from the definition of 7" that we can cover T’
with a family of balls {B;}ic; such that r(B;) = nr, and #1 < et~ ("1,
It is well-known that (3.19) implies that for all y € R? and r > 0 we have
v(B(y,r)) < Mr"™. In particular, for each ¢ € I we have v(B;) < M (nry)".
Thus,

1 (3.25)
—rp < v(S) <u(T) <D w(B;) < #IM(nry)"
2M el
Set UM (gry)™ = e My
That is,

M2<elp=y.

This is a contradiction for v = v(M) small enough. Hence, (3.21) is false, and
so (3.18) holds for p-a.e. x € E)y. Taking M — oo finishes the proof. O
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Sufficient condition for rectifiability involving
Wasserstein distance Ws I11

1 Introduction

In this chapter we prove a sufficient condition for rectifiability involving the
a coefficients. In fact, we will show a bit more: a sufficient condition for
rectifiability involving v and [ numbers. Let us recall some definitions.

For 1 < p < oo and a Radon measure p on RY we define

. 1 dist(y, L)\”
Bup(z, ) = 1%f (u(B(:B,i%T)) /B(x,r‘) ( , ) dﬂ(y))

Remark 1.1. Note that in this chapter we use u(B(z,3r)) as the normalizing
factor. This choice is explained in Remark 1.6 and Remark 11.3.3.

1/p

Let us also recall the definition of @ numbers. Given Radon measures u
and v, and an open ball B, we set

FB(N?”):SUP{’/¢ du—/¢dv

HNORS Lipl(B)} ,

where
Lip,(B) ={¢ : Lip(¢) <1, supp¢ C B}.
The coefficient a of a measure p in B is defined as
1
B)=inf ———
) = Bu(EB)

where the infimum runs over all ¢ > 0 and all n-planes L.
We prove the following sufficient condition for rectifiability in terms of «
and [5 square functions.

FB(M? CH”’L))
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III. A SUFFICIENT CONDITION FOR RECTIFIABILITY VIA W,

Theorem 1.2. Let pu be a Radon measure on R, Suppose that

1 d
/ o (z,7)? T % for p-a.e. x € R, (1.1)
0 r

and . p
/ ﬁu,z(:c,r)Z a < 0 for p-a.e. x € RY. (1.2)
0 r

Then p is n-rectifiable.

Since Tolsa has shown in [Toll5] that (1.1) and (1.2) are also necessary
conditions for rectifiability, we immediately get the following characterization.

Corollary 1.3. Let 1 be a Radon measure on R, Then, u is n-rectifiable if
and only if (1.1) and (1.2) hold for u-a.e. x € RY,

Our main motivation for proving Theorem 1.2 was to get a sufficient
condition for rectifiability in terms of ay numbers. Recall that a, numbers
were defined in Subsection 1.6.3 using the Wasserstein distance W,. Just as
a quick reminder, given 1 < p < oo, a Radon measure 1 on R, and a ball
B C R?, we defined

| | .
Qup(B) = llgf W”@(@BM ap,resH"|;),

where the infimum is taken over all n-planes L intersecting B, ¢p is a “regu-
larized characteristic function of B”, and

_ [ du
Sy dH"|,

ap,r
Since ae numbers bound from above both v and S numbers (see Lemma 11.3.2),

Theorem 1.2 implies the following.

Theorem 1.4. Let pu be a Radon measure on R?. Suppose that

1 d
/ (T, r)? 7 < for p-a.e. v € R (1.3)
0 r

Then p is n-rectifiable.

In Chapter IV we show that (1.3) is also a necessary condition for rectifia-
bility, and so we get the following characterization.

Corollary 1.5. Let i be a Radon measure on R?. Then, u is n-rectifiable if
and only if for p-a.e. x € R we have

dr

1
/0 (T, r)? <00
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2. Sketch of the proof

We would like to stress that, compared to Theorem 1.6.4 and Theorem 1.6.9,
the characterization above does not make any additional assumptions on
densities or on doubling properties of the measure.

The organization of the paper, as well as the general strategy of the proof,
are outlined in Section 2. For now, let us just say that Lemma 3.1, our main
lemma, can be seen as a technical, more quantitative version of Theorem 1.2.

Remark 1.6. Suppose one prefers to work with homogeneous coefficients

", and ol that is coefficients where the normalizing factor is ™" (i.e.

" o(w,r) = Mﬁw(aj,r) and of)(z,7) = Wau(:r,r)). Then, a pos-
sible “homogenized” modification of Lemma 3.1 is discussed in Remark 3.4.
However, it is clear that “homogenized” (i.e. with o and /3 numbers replaced
by their homogeneous counterparts) versions of Theorem 1.2 and Theorem 1.4
are not true (unless we assume more about densities) — think of Lebesgue

measure on RY.

2 Sketch of the proof

The proof of Theorem 1.2 is organized as follows. In Section 3 we formulate
the main lemma. Given an appropriate David-Mattila cube Ry, the main
lemma provides us with a Lipschitz graph I' such that we have y < H"|;. on a
large chunk of I' N Ry, and u(I'N Ry) > u(Ro). In the same section we show
how to use the main lemma to prove Theorem 1.2. Everything that follows is
dedicated to proving the main lemma.

In Section 4 we perform the usual stopping time argument. We define the
family of stopping cubes Stop, comprising high density cubes HD, low density
cubes LD, big angle cubes BA (cubes whose best approximating planes form a
big angle with Ly, the best approximating plane of Ry), big square function
cubes BS (cubes with a big portion of points for which the square functions are
larger than a certain threshold), and far cubes F (cubes with a big portion of
RE.r, points that are far from certain best approximating planes). Cubes not
contained in any of the stopping cubes form the Tree. Next, we show various
good properties of cubes from the Tree, as well as estimate the measure of
cubes from BS and F (it is easy).

Section 5 is devoted to constructing the Lipschitz graph I'. One possible
way to do it would be to use the tools from [DT'12] — this was done for example
in [AT15, ATT20]. In this paper we decided to use another well-known method,
dating back at least to [DS91] and [Lég99]. We follow the way it was applied in
[CMT18] and [Tol14]. It consists of showing that Ry \ Ugesiop @ forms a graph
of a Lipschitz map F' defined on a subset of Lj, and then carefully extending
F' to the whole Ly. The remaining part of the paper is dedicated to showing
that the measure of stopping cubes is small.
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In Section 6 we first show that cubes from Tree lie close to I' (the graph
of F'), and then use this property to estimate the measure of low density
cubes. Roughly speaking, we may cover (almost all) LD cubes with a family of
(almost) disjoint balls satisfying B N I" ~ r(B)", and such that the densities
©,(B) are low. Small measure of LD easily follows. It is crucial that we have
the finiteness of the [y square function (1.2), as it lets us estimate the size of
R, (see Lemma 4.6). This approach to bounding the measure of low density
cubes comes from [AT15].

In Section 7 we define a measure v supported on I'. We show that v is
very close to p for the distance F(u,v), so that the o, numbers are close to
a,,. The measure v is then used in Section 8 to estimate the size of the high
density set. The general idea is to consider f — the density of v with respect
to H"|;, and then to bound the L? norm of |f — co|, where ¢ is a certain
constant. We do it using the smallness of a,, square function (1.1), the fact
that v approximates p well, and an appropriate type of Paley-Littlewood result
(see (8.8)). Estimating ||f — col/z2 requires a lot of work, but once we have it,
it is not very difficult to bound the measure of HD cubes. Roughly speaking,
high density cubes correspond to big values of f, and those we can control
since ||f — col|z2 is small. This method of estimating HD is due to [ATT20],
where a similar approach from [Tol17] was refined and simplified.

Finally, in Section 9 we bound the size of big angle cubes BA. First, we
show that this amounts to estimating ||V F'| 2 (recall that F' is the Lipschitz
map whose graph is I'). Using Dorronsoro’s theorem, this reduces to estimating
the 8,1 square function, where o is the surface measure on I'. This could be
done using the smallness of either 3, or a,, square functions. For us it was
easier to deal with «,,, due to all the estimates from Section 7.

Thus, having estimated the measure of the stopping region, the proof of
the main lemma is finished.

3 Main Lemma

Given € > 0 and r > 0 let us define the set of “good points™:

10007 ds
e _ . 2 2 2
G = {x € supp p : /0 (au(x, $)* + Buz(z, s) ) ~ <¢ } : (3.1)

Let D denote the David-Mattila lattice corresponding to measure p, as in §I1.2.
Recall that D*® is the family of strongly doubling cubes satisfying

1(100Bq) < Cu(B(Q)),

with C' as in Lemma [1.2.9. Using this notation we may formulate our main
lemma.



3. Main Lemma

Lemma 3.1. Let i be a finite Radon measure on R. There exists a small
dimensional constant ¢y > 0 such that the following holds: suppose that
Ry € D% satisfies

% (RO \ Gi(()Ro)) S o M(3BRO) (32)

Then, there exists a set R C Ry, and a Lipschitz map F': Lg, — LJRO (recall
that Ly, denotes the n-dimensional plane minimizing (,2(3Br,)), such that

for
I'= {(x,F(x)) NS LRO}
we have Rg C T,

1(Ro)
5

and p Re IS absolutely continuous with respect to H".

1(Re) > (3.3)
Several remarks are in order.

Remark 3.2. Assumption (3.2) is implied by a somewhat more natural con-
dition

10007 (Ro) ds
/R /0 (ozu(x‘, )2 + Bual(r, s)2> ?d,u(:r:) < &l u(3Bp,).
0

Remark 3.3. The constant 1 in (3.3) can be replaced by any é§ € (0,1), as
long as we allow £y to depend on . Naturally, e9(0) — 0 as § — 1.

Remark 3.4. Recall that we defined homogeneous § and a numbers in
Remark 1.6. A careful inspection of the proof of Lemma 3.1 (see Remark 3.6)
shows the following. If instead of (3.1) we define for @ € D

. 1000r(Q) ds
o= {;1; cqQ : /0 aZ(:z;,s)2 ~ <e?0,(3Bg)* and
10007 (Q) ds
/0 5272(15, s)? - < g @“<3BQ)}7

and we replace the assumption (3.2) by u (Ro \ Gfgog < o (3Bg,), then the
conclusion of Lemma 3.1 still holds. In other words, if the homogeneous square
functions in some initial cube Ry are small relative to density of p in the initial
cube, then p is rectifiable on a large chunk of R,.

Let us show how Lemma 3.1 may be used to prove Theorem 1.2.

Proof of Theorem 1.2 using Lemma 5.1. To show that p is n-rectifiable it suf-
fices to show that for any F C R? satisfying u(E) > 0 there exists F' C E with
w(F) > 0 and such that p|, is rectifiable. Let us fix £ C R? with p(E) > 0.
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Let €9 > 0 be so small that Lemma 3.1 holds. Note that by the assumption
on the finiteness of @ and 3 square functions (1.1), (1.2), we have

p(R1\ GE0) 225 0,
In particular, p-almost all of E is contained in U,-oG:°. By the Lebesgue
differentiation theorem, for p-almost every x € E'N G5°
p(B(x,s) N ENGS) 50, .
p(B(z,s)) '

Taking into account that for s < r we have G5 D G:°, it follows that for
p-almost every x € F

w(B(x,r)NENG) 0
w(B(z,r))

Choose some = € E such that the above and the property of Lemma I1.2.9
hold. Let ro > 0 be so small that pu(B(z,r) N ENGL) > (1 — eo)u(B(z, 1))
for all r < ry.

Using Lemma I1.2.9 we may choose Ry € D*® such that z € R, and
7 :=2r(Bg,) < ro. We have Ry C B(z,7) C 3Bg,, and so

> 1.

H(Ro\ Gl < (R \ G22) < p(B(,7) \ G2°) < o(Bla, 7)) < op(3Br,).

Hence, Ry satisfies the assumptions of Lemma 3.1. We obtain a Lipschitz
graph I' and a set Rg C Ro NI such that u(Rg) > 0.5u(Ro), and plp . is
absolutely continuous with respect to H™. On the other hand, arguing as above,
and using the fact that Ry is doubling, we see that u(Ry \ E) < eou(3Bg,) <
Cocopt(Ro) < 0.5u(Ry), assuming gy < 0.5 Cy*.
It follows that u(Rg N E) > u(Re) — w(Ro \ E) > 0, and plg g is n-
rectifiable. Setting F' = R N E concludes the proof.
O

The rest of the paper is dedicated to proving Lemma 3.1. We fix R, € D%
satisfying (3.2). The constant £y will be chosen later on. To simplify notation,
we set G = Gi‘()RO), By = Bg,, 7o =7(By), 20 = 2Ry, Co = Cr, (where cg, is a
constant minimizing «,,(3By)), Lo = Lg,, (where L, is an n-plane minimizing
/6N72(BBO)), and HO = HLO-

Remark 3.5. Without loss of generality we may (and will) assume that
©,(3By) =1,
so that (using the strong doubling property of Ry (I11.2.6))

1(100By) ~ p(Ro) =~ ry ~ {(Ro)". (3.4)
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Indeed, if we consider the normalized measure v = 11/0,,(3By), then: 0,(3B)) =
1; for any ball B with p(B) > 0 we have a,(B) = a,(B), Bu2(B) = Bu2(B);
and if the assumptions of Lemma 3.1 were satisfied for u, then they are also
satisfied for v. Sets I' and Rg constructed for v will also have all the desired
properties when applied to pu.

Remark 3.6. The reduction to case ©,(35,) = 1 performed above is one of the
main reasons why we decided to work with non-homogeneous (i.e. normalized
by 1(3B)) o and B coefficients. If we assumed a priori that ©,(3By) = 1, then
we could replace a,, and 3, » numbers in (3.1) by ozﬁ and 52,2’ and then carry
on with the proof without making any changes. Roughly speaking, throughout
most of the proof we work with cubes @ satisfying (1(3Bg) ~ ((Q)"©,(3By),
so that o’ (3Bg) ~ a,(3Bq)0,(3By) and 51 ,(3Bg) ~ 3,2(3Bq)0,(3By)"/? -
see Remark 4.2.

Now, the claim we made in Remark 3.4 follows because the modified

assumption (involving Gg) allows us to make the reduction ©,(3B,) = 1.

4 Stopping cubes

This section is dedicated to performing the stopping time argument. We will
show basic properties of the resulting tree of cubes, and estimate the size of
two families of stopping cubes.

The stopping conditions involve parameters A > 1, 7 < 1, # < 1, which
depend on dimension and which will be fixed later on. The constant &y is fixed
at the very end of the proof, and depends on A, 7, 6.

We define the following subfamilies of D(Ry):

e HD, (“high density”), which contains cubes @ € D(Ry) satisfying
#(3Bq) > AUQ)",

e LDy (“low density”), which contains cubes Q) € D(Ry) satisfying
u(15Bq) < Q)"

e BS) (“big square functions”), which contains cubes Q) € D(Ry) \ (LD U
HD,) satisfying

HQ\G) > (@) (@)

Let Stop, be the family of maximal (and thus disjoint) cubes from HDyU LD U
BSy, and let Treey C D(Ry) be the family of cubes that are not contained in
any () € Stop,. In particular, Stop, ¢ Treey.

Recall that Lg is an n-plane minimizing 3, 2(3Bg). We define

Reo = {z € 3By : dist(x, Lg) > /eol(Q) for some () € Treey s.t. x € 3Bg}.

We introduce two more families of stopping cubes:
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e BA; (“big angles”), which contains cubes @ € D(Ry) \ Stop, satisfying
A£(Lg, Lo) > 0, (4.2)

e Fo (“far”), which consists of @ € D(Ry) \ (Stop, U BA) satisfying
1(3Bg N Rear) > &5/ 1(3By). (4.3)

Let Stop C D(Ry) be the family of maximal (and thus disjoint) cubes from
Stop, U BAg U Fy. Set HD = HDy N Stop, LD = LDy N Stop, BS = BSy N
Stop, BA = BAy N Stop, F = Fy N Stop. We define Tree C Treey as the family
of cubes that are not contained in any () € Stop. Note that Stop ¢ Tree. For
P € D we set Treeg(P) = Treeg N D(P), Tree(P) = Tree N D(P).

4.1 Properties of cubes in Tree

Lemma 4.1. The following estimates hold:

pu(1.5Bg) > T(Q)" YV Q € Treey U Stop, \ LDy, (4.4)

1(100Bg) < AUQ)" YV Q € Treey U Stop,, (4.5)
1

MR\ G) = Su(Q) V Q € Treey, (4.6)

L(Lg, Lo) <6 vV Q € Tree, (4.7)

1(3Bg N Rear) < 5(1)/4 1(3Bg) vV Q € Tree. (4.8)

Proof. All estimates except for (4.5) follow immediately from the stopping
time conditions. (4.5) holds for Ry because Ry € D%®. To see it for Q €
Treeg U Stop,, ) # Ry, note that the parent of (), denoted by R, satisfies
R € Treey, and so (100Bg) < u(3Bgr) < AUR)" = AL(Q)". O

Remark 4.2. Note that, by (4.4) and (4.5), for @ € Treeg U Stop,, \ LDy we
have ,2(3Bg) ~a - 212(3369) and o, (3Bg) ~ar aﬁ(?)BQ).

Lemma 4.3. Let R € Treeg. Then

> au3Bo)*UQ)" Sarsgl(R)", (4.9)
QETreeg(R)

Y Bu2(3Bo)H(Q)" Sar spl(R)". (4.10)
QETreeg(R)

Moreover, for any x € 3B

> a.(3Bg)? Sar e, (4.11)
QETreep
$€3BQ

> Bu2(3Be)’ Sar (4.12)

QETreeg
x€3BQ
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Proof. Let Q) € Treeg(R). By the definition of G, for any z € 4By NG we have
10007 (Ro) d
/0 " ap(z,r)? 77’ < (4.13)

It is easy to see that for 300r(Q) < r < 400r(Q) we have 3By C B(z,r) C
25Bg, and that ©(9Bg) ~a.r p(B(z,3r)) ~a, n(100Bg). Using (11.3.7) with
By = 3Bg and By, = B(z,r) yields

a,(3Bg) Sar au(B(z,7)).

Integrating with respect to r gives us for every z € 4By N G

4007(Q)
/?)OOr(Q) a,(z,7)° cir >a- a,(3Bg)*. (4.14)
To see (4.11), let x € 3B, and choose some P € Tree, satisfying = € 3Bp. By
(4.6) we may pick z € PN G. It is clear that for all cubes @) € Treey such that
0(Q) > ((P) and z € 3Bg we have z € 4B N G. Thus, summing (4.14) over
all such Q C Ry, and noticing that for any fixed sidelength ¢(Qg) > ¢(P) there
are only boundedly many @) with ¢(Q) = ¢(Qo) and 3Bg > z, yields

1000r(Ro) dr
> BBl sas [ el Se
QETreeg 0 r
2€3Bg, £(Q)>L(P)

Since the estimate holds for arbitrary P € Treey with x € 3Bp, (4.11) follows.
To see (4.9), we integrate (4.11) over x € 3Bp to get

SR Zas [ 3 0u(3B0)* Loy (@) dulx)

3Br QETreeg

= Y au3Be)l’u(38BoN3Br) Zar Y.  au(3Bg)*(Q)".
QETreeg QETreeg(R)

The estimates for 5, 2(3Bg) can be shown in the same way. O

Corollary 4.4. We have

Yo Fosng (s cqM",)P0Q) " Sar sgl(R)", (4.15)
QETreeg(R)
S Fasng (s cgMl,, )20Q) @D Sy 2 (4.16)
QETreey
Z‘€3BQ

Proof. Let () € Treeg. Recall that by (4.4), (4.5), we have p(2.5Bg) ~a.,
1(3Bg) ~ar (Q)". Moreover, it follows easily by (4.4) and the smallness of «
and / numbers (4.11),(4.12), that the best approximating planes for 3, 2(3Bg)
and «,(3Bg) intersect 2Bg,.

Hence, by Lemma I1.3.8 applied to By = 2.5B8g and By = 3B, and by
Lemma 4.3, we get the desired estimates. [
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Corollary 4.5. For every () € Treeg
co~arl. (4.17)

Proof. By (4.4), (4.5), we have u(1.5Bq) ~a, 11(9Bg) ~a ¢(Q)". Together
with the smallness of «,(3Bg) (4.11), this implies that the best approximating
plane for a,(3B() intersects 2Bg. Thus, Lemma I1.3.7 yields

cQ ~ar L.
O
Lemma 4.6. We have
11(Rrar) Sax vEop(Ro)". (4.18)

Proof. We begin by using the Chebyshev and Cauchy-Schwarz inequalities to
obtain

o\ 1/2
diSt(l’,LQ)
copb(RFar) < — du(x
VT B(@z( L )) u(z)
9 1/2
dist(z, Lg) ) 1/2
(/wowzmo( L ) w@)|  p3B)

$€3BQ
By Fubini, the right hand side is equal to

1/2

dist(x,LQ)>2d x) 3,1/
(Qz L, (w) w@)| (3B

1/2
§A,r< ) ﬁu,z(3BQ)2€(Q)”> p(Ro)".

QETreeg

We can estimate this using the smallness of f-numbers (4.10), and thus

Veor(Rrar) Saxr cop(Ro)".

4.2 Balanced balls

Lemma 4.7 ([AT15, Lemma 3.1, Remark 3.2]). Let p1 be a Radon measure on
R?, and let B C R? be some ball with radius r > 0 such that u(B) > 0. Let
0 <~ < 1. Then there exist constants p; = p1(7y) > 0 and ps = pa(y) > 0 such
that one of the following alternatives holds:
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(a) There are points xy, . ..,x, € B such that
u(B(zy, p1r) N B) = pop(B) - for 0 <k <m,

and for any yx € B(xy, p1r), k= 1,...,n, if we denote by L} the k-plane
passing through vy, . .., yx, then we have

dist(yx, LY 1) > ~yr. (4.19)

(b) There exists a family of balls {B;}icr,, with radii r(B;) = 4vyr, centered
on B, so that the balls {10B;};cr, are pairwise disjoint,

D B 2 w(B), (4.20)
and
0,(Bi) 2 7'0,(B). (4.21)

We will say that a ball B is vy-balanced if the alternative (a) holds.

Lemma 4.8. Let pu be a Radon measure on RY, B C R be a ball such that
w(B) = pu(1.1B) > 0. Suppose L is the n-plane minimizing o, (1.1B) and that
L intersects 0.9B. There ezist C = C(n,d) < 1, v =~v(n,d) <1 such that if
a,(1.1B) < Cv, then B is vy-balanced.

Proof. Proof by contradiction. Suppose that B is not y-balanced, i.e. that the
alternative (b) in Lemma 4.7 holds.

We will estimate «,(1.1B) from below. Let ¢ be the constant minimizing
a,(1.1B), so that by (I1.3.8)

¢S 0,(1.1B) = 0,(B).

Let balls {B;}ier, be as in Lemma 4.7 (b), with r(B;) = r; = 4yr(B). Let
f € Lip;(1.1B) be defined in such a way that f = r; on each B; and supp f C
UiEIB ZBZ C 1lB Then,

(4.20)

[ Fdn= Y uBor 2 yr(Bu(B).

i€l
On the other hand,
(IL3.8) ) .
C/f dH"[, < Ou(B) Z ri T =0,u(B) Z Ou(Bi)™ u(By)r;
i€l i€lp
(4.21) )
S > w(Biri S vr(B)u(B).

i€lp
The two estimates above imply that for some dimensional constants C, Cy
a,(1.1B) > Cyy — Coy* > O,
if we take v and C' = C(Cy, Cy) small enough. We reach a contradiction with
the assumption o, (1.1B) < C7. O
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Corollary 4.9. Let QQ € Treey. Then 2.5Bq is y-balanced, where v = y(n,d).
Proof. We know that u(1.5Bg) ~a, 11(9Bg), and that

(4.11)
au<3BQ) SJA,T €0,

which implies (for £y small enough) that the best approximating plane for 3B
intersects 2B¢g. Applying Lemma 4.8 to B = 2.5B, finishes the proof.
O

4.3 Small measure of cubes from BS and F

Lemma 4.10. We have

> 1(Q) < eop(Ro),
QeBS

Z ,u NAT 60 M(Ro)-

QeF

Proof. We start by estimating the measure of cubes from BS. We use the
definition of BS (4.1) to get

S uQ <2 Y m(Q\G) < 2R\ G) < 2e0u(3By) ~ cop(Ro).
QeBS QeBS

Concerning F, we use the 5R-covering lemma to get a countable family of
pairwise disjoint balls B; := 3Bg,, Q; € F, such that U;5B; D Uger Q- For
every i we have

(4.5) L A
u(5B) = u(15Bq,) < AUQ)" < “u(B).

Then
Dow@) D u5B;) Sar Y u(B;)
QEF 7 7
(43) 1 1 (4 18)
< 7 2 #(Bi N Bew) < —p(Bear) S eo " 1(Ry).
0 2 0

5 Construction of the Lipschitz graph

In this section we construct the Lipschitz graph I'. At the beginning of
Subsection 5.2 we define also the good set Rg C I' N Ry, and we show that
s o < H". We start by proving some auxiliary estimates.



5. Construction of the Lipschitz graph

5.1 Estimates involving best approximating planes
Lemma 5.1 ([AT15, Lemma 6.4]). Suppose Py, Py are n-planes in R¢, X =

{xo,...,x,} is a collection of n points, and

di = di(X) = diarrll(X) min { dist (mi, span(X \ {xl}))} €(0,1), (a)
dist(z;, Pj) < dy diam(X) for i=0,...,n and j=1,2, (b)

where dy < d1/(2d). Then fory € Py

2d
dist(y, P1) < dy (d dist(y, X) + diam(X)> : (5.1)
1

Lemma 5.2. Suppose Q1,Q2 € Treey are such that dist(Q1,Q2) S €(Q1) ~
0(Q2). Let P € Treey be the smallest cube such that 3Bp D 3Bg, U3Bg,. Then
U(P) = l(Q1), and for ally € Lg,

dist(y, Lo,) Sar Bu2(3Bp)(dist(y, @2) + £(Q2)).

In particular,
£(Lqg,, Lg,) Sar Bu2(3Bp) Sar €o. (5.2)

Proof. Since 3By D 3B, U3Bg, and R, € Treey, the cube P is well-defined.

The comparability £(P) = ¢(Q)3) holds due to the assumption dist(Q1, Q2) <
(Qy) ~ (Qs)

Since 1 € Treey, Corollary 4.9 tells us that 2.5B8¢, is v-balanced. Let
Zg, ..., T, € 2.5Bg, be the points from alternative (a) in Lemma 4.7. Thus,
we have a family of balls { By := B(xy, p17(2.5Bg,)) }k=o....n, such that p(Bj N

2.5Bq,) = p2i(2.5Bq,) ~ar p2l(Q1).
Since 7(By) = p17(2.5Bg,) = {(P), and By, C 3By, C 3Bp, it is clear that

,,,,,

1 dist(z, Lg,) 2 ) )
1 < B < B
N(Bk) /Bk ( ’I"(Bk) > dﬂ(l’) ~p2,A,7 6“’2(3 Ql) ~AT 5%2(3 P) )

and

1 dist(z, Lp)\’ ,
w(By,) /B;c < r(Bg) ) dp() Spoar Bp2(3Bp)”.

Keeping in mind that ps is a dimensional constant, we will not signal dependence
on it in further computations. We use the above estimates and the Chebyshev
inequality to find points yx € By such that

dist(yx, Lq,) Sar Bu2(3Bp)l(P),
dist(yk, Lp) Sar Bu23Bp)l(P).

We would like to apply Lemma 5.1 to n-planes Lg,, Lp and points X =
{Y0,---,yn}. We have d; 2 ~ thanks to (4.19). Furthermore, due to estimate

23
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(4.12) we know that (,2(3Bp) Sa,- €0, and so [,2(3Bp) ~a, do < di/(2d)
for €9 small enough. Thus,

dist(y, Lq,) Sar Bu2(3Bp)(dist(y, Q1) + £(Q1)) fory € Lp, (5.3)
dlSt(y7 LP) SA,T 6#,2(BBP)(diSt<y7 Ql) + E(Ql)) fOI" Yy € LQl-

Since the assumptions about cubes ()1 and ()5 are identical, it turns out that
the estimates above are also valid if we replace ()1 with @», i.e.

dist(y, Lq,) Sar Bu2(3Bp)(dist(y, Q2) +£(Q2)) fory € Lp,
dist(y, Lp) Sar Bu2(3Bp)(dist(y, Qa) + £(Q2)) for y € Lg,. (5.4)

Using the triangle inequality, estimates (5.4), (5.3), and the fact that (dist(y, Q1)+
0(Q)) =~ (dist(y, Q2) + £(Q2)) we finally reach the desired inequality

dist(y, Lg,) Sar Bu2(3Bp)(dist(y, Q2) + £(Q2)) for y € Lg,.
Il

Lemma 5.3. Let Q, P € Tree be such that £(Q) S ¢(P) and dist(Q, P) < U(P).
Then for any x € Lo N CBg we have

diSt($, LP> S./A,T,C @K(P)

Proof. Consider first the special case ) C P.

By Corollary 4.9, there exist balls By = B(xy, p17(Q)), k=0,...,n, such
that p(BrN2.5Bg) > papu(2.5Bg), and dist(yx, L} _1) 2 v(Q) for y, € By (see
(4.19)).

It follows by (4.8) that, for gy small enough, B; \ Rg., # @. Fix some
y; € B; \ REar for every i =0, ..., n, so that

dist(yi, Lq) S veol(Q),
dist(yi, Lp) < v/Eol(P).

Let z; be the orthogonal projection of y; onto Lg. Since £(Q) < ¢(P), the
triangle inequality yields

Furthermore, if € is small enough, |y; — 2| < /Eol(Q) and dist(yx, L]_) 2
0(Q) imply that dist(zx, L7_;) 2 €(Q), and that z; € 3Bg. Since Lg =
span(zg, ..., 2,), it follows by elementary geometry and (5.5) that for any
T e LQ N CBQ

dist(z, Lp) S¢ v/Eol(P),
which concludes the proof in the case () C P.

o4
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Now, the general case follows by the above and Lemma 5.2. Indeed,
take a cube R € Tree such that R D @ and ¢(R) = ¢(P). The assumption
dist(Q, P) < ¢(P) gives us dist(R, P) < ¢(P), and so we can apply Lemma 5.2
to get

dist(y, Lp) Sarc col(P), y € LrNCBg.

On the other hand, since ) C R, we already know that for x € Ly N C'Bg we
have

dist(z, Lr) So vEl(R) = Val(P).

Putting together the two inequalities above yields the desired result. O]

Lemma 5.4. Suppose the cubes Q1, Q2 € Treey satisfy 2.5Bg, C 2.5Bg,, {(Q1) ~
0(Q2). Then

|CQ1 - CQ2| SJA,T €o-

Proof. Set B; = 2.5B¢,, 1 = 1(B;), 2 = 2(B;), ¢ = cq,, Li = Lo, for i = 1,2.
Let ¢(z) = (r1 — |21 — 2|)+ € Lip;(B1). Then

/qb cdH"|, — /Qb codH"™ |,
< ‘/¢c1dH"|L1 —/¢ du‘+’/¢ du—/¢62dH”|L2

[oan,, ~ [oan,
< Fg, (1, ClHn’L1> + FBQ<M7CQHn‘L2) + G /¢ dHn’LQ - /Qb dHn|L1
(4.16),(4.17

)
She et | [ o ), - [oanly,).

The fact that the last term above can also be estimated by gor] follows easily
by the fact that L; and L, are close to each other, see Lemma 5.2. O

e — el S

+CQ

5.2 Lipschitz function F' corresponding to the good
part of R

Consider an auxiliary function

d(x) = inf (dist(x, Q) + diam(BQ)>, r € RY (5.6)

QETree
Let
Rg={z cR? : d(x)=0}.
Observe that, by the definition of function d, we have Ry \ Ugesiop @ C Re-
Lemma 5.5. We have p|p < H", and for x € Rg
O (1, x) mar O (,x) ~ar 1.

In consequence, d,u|RG = gd’H"|RG with g ~a, 1.
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Proof. Let x € Rg. Given some small h > 0 we use the fact that d(z) =0 to
find @ € Tree such that B(x,h) C 3B and ¢(Q) ~ h. Then

(4.5)

p(B(x,h)) < p(3Bq) Sa Q)" = h".
Now, let P € Tree be such that 3Bp C B(x,h) and ¢(P) ~ h. Then

(4.4)

u(B(x, h)) > p(3Bp) 2, {(P)" =~ h".

Letting h — 0 we get 1 <, OF(p,x) < O (u,x) Sy 1 for € Rg. The
upper density estimate and [Mat95, Theorem 6.9 (1)] imply p|p . < H"|g,
and p|p (B) Sa ", (B) for all B C R? Borel. The lower density estimate
together with [Mat95, Theorem 6.9 (2)] give H"| , < [, and H"| (B) S

~T

g, (B) (in particular, H"[,_ is a finite Radon measure). Putting it all
together, we use Radon-Nikodym theorem to get du| Re = gdH"| Re» With
g ~Ar 1. ]

In this subsection we will define F(x) for z € Ily(Rg) C Lo.
Lemma 5.6. If ¢y and 0 are small enough, then for any x|, s € R?
[y (1) — Iy (w2)] < 0o (1) — Mo(w2)| + d(x1) + d(w2). (5.7)
Proof. Fix some small h > 0. Let ()1, Q2 € Tree be such that
dist(z;, Q;) + diam(Bg,) < d(x;) + h, i=1,2.

Take any y; € @Q;. Note that |x; —y;| < d(z;) + h. The triangle inequality gives
us

g (1) — g (22))]
< [y (1) — My (yo)| + My (1) — gy (ya)| 4 g (22) — 15 ()]
< Mg (1) — g (y2)| + d(a1) + d(2) + 2h,

and similarly
o(y1) — Mo(y2)| < [Ho(1) — Ho(z2)| + d(x1) + d(22) + 2h.
Hence, if we show that
Ty (y1) — g (y2)| S O1To(y1) — Mo(y2)| + d(21) + d(x2) + 2h, (5.8)

use the two former inequalities, and let h — 0, we will get (5.7).
Let P; € Tree be the smallest cubes such that 3Bp, D By, and

UP) = "y — ol + > U(Q0).

o6
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We also take the smallest cube R € Tree such that 3Bz D 3Bp, U3Bp, and
U(R) = |y1 — y2| + Zan) (5.9)

We use the fact that 3Bgr D 3Bp, U 3Bp,, the estimates (4.4), (4.5), the
smallness of f numbers (4.12), and the bound gol(R)" < ((FP;)", to get

: 2 n 2 n -2
1 / (dlst(w, LR)> dp(w) <a ((R)"B,.2(3BR) <ar U(R)"eg <
:u(gBPz) 3Bp, K(R) K(Pl)n K(Pl)n
Hence, by Chebyshev’s inequality, there exist some z; € 3Bp, such that
dist(zi, Lr) = |2z = 7(2i)] Sar vEol(R) S veollyr — yal +d(21) + d(x2) + 2h),
(5.10)

where 7 denotes orthogonal projection onto Lg, and the second inequality is
due to (5.9). Note also that, since y;, z; € 3Bp,, we have

€o-

i — 21 SUP) S et lyn — vl + da1) + d(x2) + 2. (5.11)

Now, the triangle inequality and 1-Lipschitz property of Iy give us

[T (1) — My (y2)| < [Ty (7 (21)) — T (m(22))] + ; (12 = w20l + lyi — 2l)-

To estimate the first term from the right hand side we use the fact that
projections onto Lg and Ly are close to each other (4.7), the triangle inequality,
and 1-Lipschitz property of II:

[y (m(21)) — Mg (7(22))| S Olm(21)) — 7(22)| S O|To((21)) — o (m(22))]
< 9<|H0(y1) — o (ya2)| + Zl (|Zz' —m(z)| + |y — Zz|))

Putting together the two estimates above, as well as (5.10), (5.11), yields

T (1) — Ty (y2)| < O[T (y1) — To(ya)| + ; (’Zi —m(z)] + |y — Zz‘|)
< 0o (1) — To(yo)| + C(A,7)VEo (Jy1 — ol + d(w1) + d(ws) + 2)
+et/™y1 — yo| + d(z1) + d(z2) + 2h.

Since [y1 — yo| ~ [o(y1) — Io(y2)| + [y (y1) — g (32)], we may take eg =
e0(A, 7,0) so small that

(ClA )V + &) lyr = el < 0(1Mo(yr) — Mo(y2)| + g (1) — g (1))

Then, for § small enough, we obtain the desired inequality (5.8):
Ty (1) — g (y2)| S 0T (1) — To(yo)| + d(w1) + d(ws) + 2h.
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The lemma above gives us for any =,y € Rg
|y (2) — Iy (y)] < O[T () — Mo (y)-
This allows us to define a function F on Ig(Rg) C Ly as
F([y(x)) = Uy (x), 2z € Rg, (5.12)

with Lip(F') < 6. Note that the graph of such F' is precisely Rg.

5.3 Extension of F' to the whole L,

For any z € Lg let us define

D(z)= inf d(x)= inf (dist(zT1o(Q))+ diam(Bg)). (5.13)

mengl(z) QETree

For each z € Ly with D(z) > 0, i.e. z € Lo\ Ilp(Rg), we define J, as the
largest dyadic cube from Ly such that z € J, and

diam(J,) < 21 inf D(u).

ueld,

Let J;,7 € I, be a relabeling of the set of all such cubes J,, without repetition.
Lemma 5.7. The cubes {J;}ic; are disjoint and satisfy the following:

(a) If z € 15J;, then 5diam(J;) < D(z) < 50diam(.J;).

(b) If 15J; N 15Jy # &, then

(T ~ 0T,
(c) For each interval J; there are at most N intervals Jy such that 15.J; N
15Jy # 2.
(d) Lo\ o(Re) = Uies Ji = Uier 15

The proof is straightforward and follows directly from the definition of .J;,
see [Toll4, Lemma 7.20].

Note that, since 3, 2(3By) is very small (4.12) and R, is doubling, we have
dist(zo, Lo) < 2r(Ry) = ﬁro. It follows that

Io(Ro) C Io(By) C o(1.01By) C 1.1B, N L. (5.14)
We define the set of indices

o8
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Lemma 5.8. The following holds:
(a) Ifi € Iy, then diam(J;) < 0.2rg, and 3J; C Lo N 1.9B,.
(b) If J;N1.4By = @ (in particular if i & 1y), then

0(J;) =~ dist(zo, J;) =~ |20 — 2| 2 U(Ro) for all z € J;.

Proof. We begin by proving (a). Suppose i € Iy. Then J; N 1.5B8y # @ and
3J; C Lo N B(2p, 1.5rg + 2diam(.J;)).

We need to estimate diam(J;). By the definition of .J;, we have

1
diam(J;) < o inf D(u).

ueJ;

Since J; N 1.5By # @ we have inf,c;, D(u) < maxyer,nis8, D(u), and so it
suffices to estimate the latter quantity. Note that the definition of d (5.6) gives
for x € 1.5B,

d(z) < dist(z, Ry) + diam(By) < 1.5rg + 2r¢ = 3.57.
Hence, by the definition of D (5.13)

max  D(u) < max d(z) < 3.5r.

ueLoN1.5Bg z€1.5By

It follows that diam(J;) < {5ro, and

3Jz C LQ N B(Zo, 1857”0)

Now, let us prove (b). Suppose J; N1 1.4By = @ and z € J;. Clearly,
|20 — z| > 1.4r. Together with the definition of D (5.13) this gives

D(z) < |Uy(z0) — 2| + diam(By) < 3|zg — 2.
On the other hand, by (5.14) we have
3
D(z) > dist(z, Iy (Ry)) > dist(z,1.1By) = |20 — 2| — 1.1rg > ﬁ|zo —z|.

Putting together the two estimates above gives for z € J;

1

5|z0 —z| < D(2) <3|z — 2|
Applying Lemma 5.7 (a) yields

gdiam(Ji) < |z — 2| < 250diam(.J;).
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Moreover, since
|20 — z| — diam(.J;) < dist(zo, J;) < |20 — 2|,

we finally obtain

2
3 diam(.J;) < dist(zg, J;) < 250 diam(J;).

Lemma 5.9. Given i € Iy, there exists a cube ); € Tree such that

((J;) = Q)

Proof. Let i € Iy and z € J;. We know by Lemma 5.7 (a) that D(z) =~ ¢(.J;).
Thus, by the definition of D (5.13) we may find @) € Tree such that

dist(z, [I(Q)) + diam(Bg) ~ £(J;).

Clearly, £(Q) < 0(J;), and dist(J;, [1o(Q)) < 4(J;). I Q) 2 4(J;), we set
Q; = @ and we are done. If that is not the case, then we define (); as the
ancestor P D @ satisfying ((P) 2 ¢(J;) (we can always do that because
0(J;) S U(Ry) by Lemma 5.8 (a)). O

For all © € Iy we define F; : Ly — L& as the affine function whose graph
is the n-plane Lg,. Since £(Lg,, Ly) < 6 by (4.7), we have Lip(F;) < 6. For
i & Iy set F; =0, so that the graph of F; is the plane Lj.

Lemma 5.10. Suppose 10J; N 10.Jy # . We have:
(a) if i,i" € Iy, then
diSt(Qi’ Q%’) ,S g(*]'i)a
(b) for x € 100J;
|Fi(2) — Fu(@)] S VEol( i),
(c) IVF; = VFi|lw S V/Zo-

Proof. Let us start with (a). We know by Lemma 5.7(b) and Lemma 5.9
that 0(Q;) ~ Q) ~ ((J;) = ((Jy). Let z; € Qi, 20 € Qr be such that
|H0(21) — HQ(ZQ)| ~ dlSt(HQ(QZ),Ho(Qz/)) Note that d(Zl) SJ E(Qz), d(ZQ) 5
0(Qy). Tt follows that

dist(Qs, Qi) < |21 — 20| < [y (21) — Iy (22)| + [Mo(z1) — Mo(z2)]
5.7)
(5 [Tlo(21) — Mo(22)| + d(21) + d(22) S dist(Ilo(Qs), To(Qir)) + £(J;).
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On the other hand, we have by Lemma 5.9

The two estimates together give us (a).

Now, (b) and (c) for i, i" € Iy follow immediately because we can apply
Lemma 5.2 to @; and Q. If i, i’ ¢ Iy, then (b) and (c) are trivially true, since
F; = F;; = 0. The only remaining case is ¢ € Iy, i’ ¢ I.

Since 10.J; N 10J; # &, we know by Lemma 5.7 (b) and Lemma 5.8 that
0(J;) = L(Jy) = £(Ry). We apply Lemma 5.2 to ); and Ry, and the result
follows.. O

Now, to define function F' on Ly \Ily(R¢) we consider the following partition
of unity: for each ¢ € [ let ¢; € C*(Ly) be such that ¢; = 1 on 2J;,
supp ¢; C 3J;, and

IV@illo S €(T)7H
1D?@illoe S £(Ti) 72
Now, we set B
Pi
Yier Pi
Clearly, the family {y;}ics is a partition of unity subordinated to sets {3.J; }icr.

Moreover, the inequalities above together with Lemma 5.7 imply that each ¢;
satisfies

Yi =

IVeillo S €77,

~

D¢l S 0(J3) 72

~Y

Recall that in (5.12) we defined F(z) for z € IIy(Rg). Concerning Lo \
IIy(Rg), by Lemma 5.7 (d) we have Ly \ Ilo(Rg) = Uier Ji = Uier 3J;- Thus,
for z € Ly \ llp(Rg) we may set

F(z) = ¥ ei(2)Fi2). (5.16)

i€ly
Using Lemmas 5.7-5.10, one may follow the proofs of [Toll4, Lemma 7.24,
Remark 7.26, Lemma 7.27] to get the following.

Lemma 5.11. The function F : Ly — LOL is supported on Ly N 1.9By and
is CO-Lipschitz, where C' > 0 is an absolute constant. Furthermore, for
z€15J,1 €1,

IVE(z) = VFi(2)] < v/eo. (5.17)
and
> VEo
DR S 35
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We denote the graph of F' as I', and we define a function f: Ly — I as

f(x) = (2, F(x)).

We set also

o=H"|.
Lemma 5.12. Leti € Iy. Then B(f(z,,),2diam(J;)) C 2.3B,.

Proof. By the definition of I, we have J; N1.5By # &. We know by Lemma 5.8
that diam(J;) < 0.2rg, and so z;, € 1.7By. Moreover, since F' is supported on
LoN1.9By and is Lipschitz continuous with constant comparable to 8, we have

dist(f(z.,), z) = |[F ()| < Oro.
It follows easily that B(f(zy,),2diam(J;)) C 2.3By. O

We have defined a Lipschitz graph I', and a set Rg C I' N Ry such that
flp, < H". Clearly, the measure p|p . is n-rectifiable. What remains to
be shown is that j(Re) > 0.5u(Ry). Since R contains Ry \ Ugestop @, it is
enough to estimate the measure of the stopping cubes — this is what we will
do in the remaining part of the article.

6 Small measure of cubes from LD

In this section we will bound the measure of low density cubes. First, let us
prove some additional estimates.

6.1 I lies close to Ry

Lemma 6.1. There exists a constant Cy such that for any x € 3B,
dist(z,I") < C d(x).

Proof. First, notice that if x € 3B, \ 1.01By, then d(z) 2 9, and so the
estimate dist(z,I') < C; d(z) is trivial. Now, assume = € 1.01B,.
Let £ =y(x) € Lo, y = (&, F(§)) € I'. Lemma 5.6 gives us

dist(z,T) < | —y| = |y (2) - My (y)| S d(@) +d(y). (6.1)

If ¢ € Ilo(Re), then y € R¢, which means that d(y) = 0 and we get dist(z, ') <
d(x).

Now suppose £ & Ily(Rg). Let i € I be such that £ € J;. Note that since
x € 1.01By, then by (5.14) £ € 1.1By, and so J; N 1.5By # @&. Hence, i € .
Let QQ; € Tree be the cube from Lemma 5.9 corresponding to J;. It follows that

d(y) < dist(y, Q;) + £(Q;) < dist(y, Q) + £(J;). (6.2)
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Now we will estimate dist(y, Q;). Let z = (£, F;(€)) € Lg,. We have

ly—2| = [FE)=F©)| = | X 0, F(©)-Fi(&)] = | X ¢ () (F3(&)=Fi(9))|

j€lp j€lp

< Y (O|F(©) - B9

j€lo

Since ¢;(€) # 0 only for j € Iy such that £ € 3J;, we get from Lemma 5.10 (b)
that |F;(&) — Fi(§)| < 4(J;). Hence,

ly — 2| S L)

We use the smallness of (3,2(3Bg,) and Chebyshev inequality to find
p € 2Bg,, q € Lg, such that |p —¢| < ¢(J;). We know from Lemma 5.9 (b)
that |IIo(p) —&| < 4(J;), and so |IIy(q) —&| < €(J;). Together with the fact that
both ¢ and z belong to Lg,, and that £(Lg, Lg,) < @ by (4.7), this implies

|z —q| S 0(Js).

Thus,
dist(y, Q) < [y — 2[ + [z — ¢ + [¢ — p| S ().

From this, (6.2), Lemma 5.7 (a), and the definition od D, we get

d(y) S €(Ji) = D(E) < d(x).

The estimate above together with (6.1) conclude the proof. O

Corollary 6.2. For every Q € Tree we have

dist(Q.T) < ¢(Q).

Moreover, fori € Iy we have
dist(Qs, f (/i) < 0(Q:)- (6.3)

Proof. Since ) C Ry C By, the first inequality follows immediately by
Lemma 6.1 and the definition of function d.

The second inequality is implied by the first one, the fact that dist(ITo(Q;), J;) <
0(Q;) by Lemma 5.9, and that T is a Lipschitz graph with a small Lipschitz
constant. [

Lemma 6.3. Let C > 0. If ¢ is chosen small enough, then for each () € Tree
and x € 'NCBg

dist(z, Lg) Sarc vVeol(Q).
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Proof. There are three cases to consider.

Case 1. z € Rg, i.e. d(z) = 0.

Fix some small A > 0. Let P € Tree be such that (dist(z, P)+diam(Bp)) <
h < 0(Q). Since x € I'NC By, we have dist(P, Q) < ¢(Q). Setting y = I, (x),
we clearly have |z — y| < h, and in consequence y € Lp N C'Bg with C' = C.
Thus, we may apply Lemma 5.3 to get

dist(y, Lg) Sarc vVEol(Q).

Thus, dist(z, Lg) Sarc vEol(Q) + h. Letting h — 0 ends the proof in this
case.

Case 2. z = (¢, F(()) for ¢ € Ly \ lIx(Rg), and

Z %:(C) = 1.

i€lp

Since F(¢) =Y, vi(C)F;(¢), we get that x is a convex combination of points
{(¢, Fi(C)) }ier,, where I} C Iy consists of indices 7 such that ¢;(¢) # 0. Thus,
it suffices to show that for each 7 € I;

dist ((Q, F;(0)), LQ) Sarc Vel (Q).

First, note that since x € C'By,

Let Jy be the dyadic cube containing ¢, ' € I;. Then
1
diam(Jy) < 2=D(C) Se Q). (6.4)

Moreover, as each ; is supported in 3.J;, we necessarily have 3.J; N J;y # @ for
i € I;. Thus, by Lemma 5.7 (b) and by Lemma 5.9,

(6.4)

UQw) = U(Jy) = U(J;) = U(Q;) Se Q). (6.5)
Furthermore, Lemma 5.10 (a) implies
dist(IIp(Qy), Ip(Qi)) < dist(Qi, Qi) S 4(J;).

Taking into account Lemma 5.9 and the fact that ( € Jy NII;(C'Bg) we obtain

dlSt(Ho(QZ/), Ho(Q>> S dlSt(Ho(Qy), Jz’) + dlam((]z/) + dlSt(Ho(Q), Jz’)
So (i) + Q).
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The three estimates above yield

dist(Io(Qs), o(Q)) < dist(ITo(Qs), o(Qx)) + diam(Iy(Qy))
+ dist(Io(Qw ), o (Q)) Sc Q).

Applying Lemma 5.6 to any y; € Q;,y2 € () gives us

dist(Qs, Q) Sa,r dist(Ilo(Q;), Ho(Q)) + £(Q) + £(Qs) Sc Q). (6.6)

Note that (¢, Fi(()) € Lo, N C'Bg, for some C' = C'(n,d) > 0. Indeed:
(¢, F;(¢)) € Lg, by the definition of F}; to see that ((, Fi(¢)) € C'Bg, ob-
serve that ¢;(¢) # 0, and so ¢ € 3J;, which together with Lemma 5.9 gives

(¢, Fi(¢)) € C'Bg;.
Due to the observation above and (6.5), (6.6), we can use Lemma 5.3 to
get the desired inequality:

dist ((C, F;(Q)), LQ) Sarc Vell(Q).

Case 3. = = ((, F(Q)) for ¢ € Lo\ IIy(R¢), and

Z pi(¢) <1

1€l

It follows that there exists some k & I such that ¢ € 3J;. Hence, by Lemma 5.8

(b)
() ~ dist(TTo(20), Ji) = €(Ry).

Furthermore, if J; is the cube containing ¢ = Iy(x), then using the definition
of functions d and D yields

((Jr) S D(Mo(z)) < d(x) < dist(z, Q) + diam(Bg) < U(Q) < £(Ro).
Since Ji N 3Jy # &, Lemma 5.7 (b) gives us ¢(J) ~ {(Ji). Thus,
((Jy) = U(Q) = {(Ro),

and again using Lemma 5.7 (b) we get that ((J;) ~ ((Ry) for all i € I,
where [; C I are indices such that ¢ € 3J;. By the definition of cubes @); in
Lemma 5.9, we also have £(Q;) = ((Ry).

It is clear that dist(Q;, Ry) = 0, and so the assumptions of Lemma 5.2 are
satisfied for @; and Ry. Since dist((¢, F;(€)), Qi) S U(Ro) =~ £(Q;), we get that

[F(O)] = dist (¢, Fi(C)), Lo) Sar 20l (Ro) = 2l(Q)

for + € 1. Hence,

dist (¢, F(¢)), Lo) = [F(O)| < > ¢il¢ | Sar 20l(Q) S 0i(C) < £0l(Q).

i€l i€l
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At the same time, the planes Ly and L, are close to each other due to
Lemma 5.2, and so

dist ((¢, F(€)), Lg) Sar £0l(Q).
]

Corollary 6.4. Let 0 and ¢y be small enough. Suppose () € Tree satisfies
10Bo NI # @. Then fory € Lo N10Bg

dist(y, I') Sar vVeol(Q).

Proof. Let F : Lo — Lé be defined in such a way that T is the graph of F.
This definition makes sense because £(Lg, Ly) < 6. Moreover, Lip(F) < 6
implies that Lip(F) < 6.

Let x € Lg be such that (z, F(z)) € 10Bo NT. By the triangle inequality
and Lemma 6.3 we have for y € Lo N 10B¢

[F)| < [Fy) = F(2)| + |F(2)] £ 06Q) + C(A, 7)VEl(Q).

Thus, for § and ¢y small enough, we have (y, F'(y)) € 11Bo NI and we may
use Lemma 6.3 once again to conclude that

dist(y,T) < [F(y)| = dist (s, F(1)), Lg) Sa- VEl(Q).

Recall that
Reae = {x € 3By : dist(z, Lg) > eol(Q) for some () € Treey s.t. © € 3Bg}.
Lemma 6.5. For all x € 3By \ Rrar
dist(z,I') Sar Veod(z).

Proof. 1f d(x) = 0, then x € Rg C I" and we are done. Suppose that d(z) > 0.
Let @ € Tree be such that

dist(z, Q) + diam(Bg) < 2d(x).

Fix some z € @ and note that |z — z| < 2d(x).

Let C be the constant from Lemma 6.1. If we have B(z,2(Cy + 2)d(z)) C
3By, then let P € Tree be the smallest cube satisfying B(z,2(C; + 2)d(z)) C
3Bp; otherwise, set P = Rj.

In both cases we have ¢(P) = d(z), as well as x € 3Bp. Moreover, we know
from Lemma 6.1 that

dist(z,I") < |z — x| + dist(z,I") < (24 Cy)d(x).
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Hence, 3Bp NT" # @& (for P = Ry this is obvious, and for P C Ry it follows
from the fact that B(z,2(C + 2)d(z)) C 3Bp).

The assumption x € R, gives us
2~ Ty (@) < VEUP),
and so Il (x) € 4Bp N Lp. We apply Corollary 6.4 to II; . (x) to get
dist(Il,, (2),I") Sar Veol(P).

The two inequalities above and the fact that ¢(P) &~ d(x) imply

dist(z,I') Sar eod(x).

Lemma 6.6. For every x € I' we have D(Ily(z)) < d(z) < D(Il(x)).
Proof. The inequality D(IIy(z)) < d(x) follows directly from the definition of
D (5.13).
To see that d(x) < D(Ily(z)), let Q@ € Tree be such that
diam(Bg) + dist(ITo(Q). Iy () < D(Tlo(x)) + h (6.7

for some small h > 0. Take any y € 3Bg \ Rrar, then by Lemma 6.5 we have
some z € [' such that

(6.7)
dist(y,T) = |y — 2| Sar Vaud(y) S VEsdiam(Bg) < D(Io(a)) + h.

Using the fact that x,z € I', that y € 3Bg, and the inequality above, we have

6.7)
|z —2| < 2| (2)—o(2)| < 2|Tlo(z)—Tlo(y)[+2[Ho(y)—1lo(2)| < D(g(x))+h,
and so

lz —y| <z —2[+ [z —y| S D(l(z)) + h.
It follows that

d(r) < dy) + | — o] < diam(Bg) + D(o(x)) + h & D(To(x)) + h.

Letting h — 0 ends the proof. m
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6.2 Estimating the measure of LD

Lemma 6.7. If ¢y and 7 are small enough, with g = £o(7) < 7, then

> Q) S Tu(Ry). (6.8)

QeLD

Proof. Recall that by Lemma 4.6 we have p(Rrar) Sa,- /Eopt(Ro). Hence, for
o small enough we get u(Rea) < Tp(Rp), and so to show (6.8) it suffices to
prove

(Rip) S Ti(Ro),

where Rip = Ugelp @ \ RFar-
We use Besicovitch covering theorem to find a countable collection of points

x; € Rip such that z; € Q; \ Rrar, Q; € LD, and
RLD C U B(.ZUZ, T(QZ))?

Z ]lB(xm"(Qz')) <N,

where N is a dimensional constant.
Observe that B(x;,r(Q;)) C 1.5B¢,. It follows that

p(Rip) < ZM(B(%T(QD)) < ZM(1-5BQi) S TZT(Qi)”v

where the last inequality was obtained using the fact that @); € LD. Further-
more, since z; ¢ Rr, we may use Lemma 6.5 to get dist(x;,I') Sar /€0 d(z).
Note also that d(z;) < r(Q;). Hence,

dist(z;, ') Sar Veor(@i).

So, if &¢ is small enough, I" passes close to the center of B(x;,r(Q;)). Since T
is a Lipschitz graph with small Lipschitz constant we get

r(Q:)" S H" (TN B(xi, 7(Qi)))-
Thus,

n(Rip) ST Q)" S TZ%"(F N B(x;,7(Qi)))

i

ST N U Blas, r(Q)) < TH"(I'N1.5By) & TU(Ry)".

We have ((Ry)" ~ 1(3By) ~ pu(Ro) because ©,(3By) = 1, see Remark 3.5, and
Ry is doubling. Hence,

p(Rip) S Ti(Ro).
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7 Approximating measure v

In order to estimate the measure of high density cubes, we need to introduce a
measure v supported on I' which will approximate pu.

7.1 Definition and properties of v

Let n < 1/1000 be a small dimensional constant which will be fixed in the

proof of Lemma 7.1 (c). For every i € I (the set of indices from Section 5.3)

consider a finite collection of points {z, trex, C Ji, #K; <, 1, such that the

balls B(z,,0.5n((J;)) cover the whole J;. We set K = U; K;, Ko = U;eg, K-
For k € K; we define

2, = f(z,) €T,
e = nl(J;),
Bk = B(Zk,Tk).

The following lemma collects basic properties of Bj.
Lemma 7.1. We have the following:

(a) Fork € K;
Mo(3By) C 2Ji. (7.1)

(b) For k € K there exist at most C = C(n) indices k' € K such that
I1y(3Bx) N Iy(3By) # @ (in particular, there are at most C' indices
k' € K such that 3By, N 3By # & ). Moreover, for all such k' we have

T = T (72)

(¢c) For k € K and x € 3By, we have

i < d(z) < 732 (7.3)

(d) For k € K
3B, C 2.3B,. (7.4)

(e) For k ¢ Ky
T ~ ’Zk — Z()’ Z g(Ro) (75)

If additionally 3B, N 3By # &, then

re ~ ((Ro). (7.6)
(f) Finally,
U B«nT = {J3B:NT =T\ Re. (7.7)
keK keK
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Proof. (a) follows immediately by the definition of Bj.

Concerning (b), suppose k € K; and I15(3By) N 1y(3By) # @ for some
k' € Ky. By (a) we know that 2J; N 2J; # &, and there are at most N such
indices ', see Lemma 5.7) (c). Since #K; <, 1 by the definition, we get that

there are at most C'(n, N) indices k" satisfying I1y(3By) N1ly(3By) # @. The
estimate ry ~ s follows by Lemma 5.7 (b).

To prove (c), recall that zy is the center of By. By the definition, I1y(2x) € J;
for i € I such that r, = nf(J;). Lemma 5.7 (a) gives us D(Ily(z)) =~y €(J;).
Hence, by Lemma 6.6 we get

d(z) = 0(J;) = 0 'ry.

Now, for an arbitrary x € 3B we have by the 1-Lipschitz property of function
d that

|d(x) — d(z)] < |z — 2| < 3y,
Since d(z;) ~ n~'ry, choosing 1 small enough we arrive at d(z) ~ n~1r;, and
so for 1 small enough 7, < d(x) < n73/?r,.

Concerning (d), let i € Iy be such that IIy(zx) € J;. We know by Lemma 5.12
that B(f(zy,),2diam(J;)) C 2.3By. Since 3By, C B(f(z,,),2diam(.J;)), we get
3By C 2.3DB,.

To show (e), let k € K\ Ko. Let i € I\ Iy be such that k € K;, i.e.
[Iy(zx) € J;. By (c) and Lemma 6.6 we have d(z) =~ D(Ilg(z;)) ~ . At the
same time, |TIo(zx) — 20| = €(J;) Z ¢(Ry) by Lemma 5.8 (b). Recall also that
| F|loo S 04(Ry) due to Lipschitz continuity and the fact that supp(F') C 1.9B,,
see Lemma 5.11. It follows that

|z — 20| < |2x—Tlo(2x) [+ [Ho(2k) — 20| S [F(20)[+4(Ji) < OL(Ro)+L(J;) S (i),
and on the other hand
|zk—20] > [To(21) =20 — |2 —Tlo(2x)| > C €(J5)—|F(z1)] > CU(J;)—C" 0L(Ry)
> CU(J;) = C"OLT;) = 4 Jy),

for # small enough. Hence, |z — 20| = £(J;) = 1 2 ((Ry).

Now, assume also 3B, N 3By # &, and suppose x € 3By N 3B,. We
have Ilp(x) € 2J; by (7.1). Clearly, D(Ilp(z)) < d(z) < ¢(Rp), and so
r &~ 0(J;) = D(Ily(z)) < U(Rp) by Lemma 5.7 (a).

Finally, to see (7.7) note that by the definition of By and by (a) we have

f(l;)c U Benl C | 3BynT C f(24).

k?EKi k‘eKi

Together with Lemma 5.7 (d) this implies (7.7). O
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Since 7 is a dimensional constant, we will usually not mention dependence
on it in our further estimates.

Due to bounded superposition of 3B (Lemma 7.1 (b)) we may define a
partition of unity {hy}rex such that 0 < hy <1, supp hy, C 3By, Lip(hy) =~
((J;)~!, and

keK keK

Again, by the bounded superposition of 3B we may assume

Recall that ¢ = H"|}, and that ¢, is a constant minimizing o, (3By). We set

[ die e ke K,

cp =4 J e do (7.10)
Co for k & K.
We define the approximating measure as
v=plp, + > crhio. (7.11)
k

Note that, since y re < 0 by Lemma 5.5, we also have v < 0. To simplify
the notation, we introduce

MG = M’Rcv
UB = U — Ha,

Vg =V — lig = chhkda.
&

Note that by Lemma 7.1 (d), (7.7), and the fact that Rg C By, we get

r \ (2330) = L \ (23B0) cI'n U By,
kKo

and so by the definition of v we have

V’(2.3Bo)c = COH”‘LO\(ZB;BO)' (7.12)

Lemma 7.2. For each k € K, there exists P, € Tree such that 3By, C 2.5Bp,,
and ((Py) = 1.

Proof. We know by (7.4) that 3B), C 2.3By. Thus, we may define P, as the
smallest cube in Tree such that 3B, C 2.5Bp,. We have {(Py) ~ rj due to
(7.3). O
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We will write for k € K

B, =2.5Bp,, (7.13)
Ek — CPk7
Lk = LPka

and for k & K set By, = 2.5By, ¢ = ¢o, and Ly, = Lo.
Note that for every k € K

diSt(Zk, Lk) rSA,T \/e_ork. (714)

Indeed, for k € K, it follows by Lemma 6.3 applied to z; and P,. For k & K,
but such that 2z, € 1.9By, again it follows by Lemma 6.3 applied to z; and
Ry. Finally, for k ¢ K, such that z, € 1.9B; this is trivially true because
'\ (1.9By) = Lo \ (1.9By), and so dist(zx, Lo) = 0.

Lemma 7.3. For k € K the set I' N 3By, is a Lipschitz graph over Ly, with a
Lipschitz constant at most C'\/g.

Proof. Suppose k € K, i.e. that k € K; for some i € I,. We know by (5.17)
that f(15J;) is a C'\/eg-Lipschitz graph over Lg, (recall that F; is an affine
function whose graph is Ly, ).

At the same time, since Py satisfies dist( Py, Q;) < €(Q;) (see (6.3) and the
definition of Py) and ((Py) ~ rp ~ ((Q;), we can apply Lemma 5.2 to get
L(Lg,, L) Sa- €0 It follows that f(15J;) is a C'\/gp-Lipschitz graph over Lj.
The same is true for k ¢ Kjy: since Ly, = Lo = graph(F;), it follows immediately
by (5.17). We conclude by noting that

(7.1)
I'N3B, C f(15).

O
Lemma 7.3 and (7.14) imply that for every k € K
Fp, (0, H", ) Sar VEorpth (7.15)
Furthermore, by (4.16) we have
F5 (a1 ,) Sar eori ™ (7.16)
Lemma 7.4. For k € K we have
ek — Ck| Sar veo. (7.17)
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Proof. For k ¢ Ky we have ¢, = ¢y = ¢, so the claim is trivially true. Suppose
k € Ky. Recall that hy, &~ 1 in By (7.9), Lip(hy) = 7", and ¢ ~4, 1 by (4.17).
It follows that

~ (7.9) - ~
|Ck—Ck|TZ ~ |Ck_ck’/hk dO':’/hk d,u—/hkck dO"

[t = [zl | ] [ anel, - s

N L | (715),(7.16)
< Fg (waH | )re + absp (o, K, )re Sar Veory

< + Cg

]

An immediate corollary of (4.17) and the lemma above is that for & € K
e ~ar L. (7.18)

Lemma 7.5. The measure v is n-AD-reqular, that is, forx € I', r >0
v(B(z,r)) ~ar 1"

Proof. We know by (7.7), the definition of h (7.8), and (7.18) that

da\F\RG = Z hrdo =4 - Z crhido.
k k

Together with Lemma 5.5 this gives

dv =dug + Z ckhido =4, do.
e

Lemma 7.6. If k,j € K satisfy 3B, N 3B; # @, then
ek — ¢j| Sar Veo
Proof. 1f 3B, N3B; # @&, then by (7.1) and Lemma 5.7 (b) it follows that
TE R T

Now, since 3By N 3B; # & and r & 1;, we get that there exists R € Tree
such that 2.5Br D B, U B; and ¢(R) ~ rj. Hence, we may use Lemma 5.4 and
Lemma 7.4 to obtain

ek — ¢ <k — | + Gk — cr| + |er — G| + [¢5 — ¢ Sar veo
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7.2 v approximates u well
Lemma 7.7. We have
3By \ (RG U RFar) C U 2B;.

keK

In consequence, for every v € 3By \ (R U Rear) we have h(z) = 1.

Proof. Let x € 3By \ (Rg U Rear). We will find k € K such that « € 2By.
By Lemma 6.5 we have y € " such that

|z =yl Sar VEod(). (7.19)

Since x ¢ Rg, we have d(x) > 0. Moreover, since d(z) < d(y) + |z —y| <
d(y) + 0.5d(z), we get that 0 < d(z) < 2d(y). In particular, y ¢ R and by
(7.7) there exists k € K such that y € By NT". It follows by Lemma 7.1 (c)
that

d(x) < 2d(y) =~ 1.
Together with (7.19) this gives |z — y| < 11/2, for £y small enough. Since

y € By, we get that x € 2By.
n

Lemma 7.8. Suppose that x € 2.5By, r > Cd(z) for some C > 0, and that
B(z,r) C 3By. Then,

FB(x,r)(,UB, h/,L) SJA,C 5(1)/47"n+1,

Proof. Since B(xz,r) C 3By, and r > Cd(x), there exists a cube @) € Tree such
that B(z,r) C 3Bg and £(Q) ~¢ r. In consequence, using the properties of
Tree yields

(48) 44 ST
p(B(z,7) N Rear) < p(3Bg N Rrar) < €' p(3Bg) Sac &’ 1™

Thus, given any ¢ € Lip,(B(z,r)) we have

[ 6 dun~ [ 6 dusl s,

1
and so Fp( ) (1B: 1B g, 1e) Sac €0
81/47"n+1

0 .

< ru(B(z,r) N Rear) Sac 6(1)/47“"“,

Myt Similarly, Fp (o) (hit, hitl g, 1) Sac

Now, observe that hy = hup by the definition of h. Moreover, inside
B(z,r) we have
hlJLB|(}%Falr)C - MB|(RFar)C
because h = 1 on 3By \ (RgU Rear) by Lemma 7.7. Thus, the triangle inequality
yields

1/4 n
FB(ac,r) (,U/Bv h,u) < FB(ac,r) (MB7 h,u‘(RFar)c) + FB(:L’,T)<h,U/7 h’u|(RFar)C) SA,C E;0/ r +1-

]



7. Approximating measure v

Lemma 7.9. If x € 2.5By and r > 0 satisfy B(x,r) C 2.5B, then

Fpn(ve, hit) Sax Ve >, rith (7.20)

3B,NB(x,r) £
Proof. Since vg = Y; cphyo, our aim is estimating F (3, ckhio, hp). Set
K(xz,r)={ke K : 3B,N B(x,r) # o}.
First, we will deal with k € K(z,r) \ K. For such k by (7.6) we have
ri ~ L(Rp). (7.21)
In particular, r < 7, and so given ¢ € Lip,(B(z, 7)) we have Lip(¢hy) <

1, supp(phy) C B(xz,r) N 3By C 2.5B8.
Moreover, recall that

. (4.16),(4.5) PR R
Fospy(psco”"|L,)  Sa eol(Ro)"™ = eory™ . (7.22)

In consequence, since ¢ = ¢ by (7.10), we have for any ¢ € Lip,(B(z,r))

Shico do — / Sh du)

kEK (z,7)\ Ko

N </¢hkCo dH"|,, — /¢hk d,u’ + <o /¢hk dH"|,, — /(bhk dUD
kEKmr Ko
<

Z <F2.5Bo (:uv COHn|LO) + COF3Bk (J’ HnlLo))

keK (z,r)\Ko

(7.22),(7.15),(4.17)

51477_ Z \/_Tn+1.

keK (z,r)\Ko

Now, we turn our attention to k € Ky(z,r) = K(z,r) N Ky. For any
¢ € Lip,(B(z,r)) we have

( / derhy do — / Sh dﬂ>

<| 5 ([ ot do— [0 ol)h dn)

keKo(z,r)

keKo(z,r)

1Y o) (/ crhu, do — /h;C du) =: I + L.

keKo(.Z’J‘)
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We start by estimating I;. Observe that setting @ = (¢ — ¢(2x))hi. we have
Lip(®x) < 1 and supp @, C 3By. Hence,

L= S ([ededo~ [ dn)

keKo(z,r)

(7.15),(7.18)

< (’/ck%d% L /cbk du’ +O(A T)fr"H)

kGKo (z,r)
(7.17) "
< ‘/cktbkd”;’-[ L, /@k dp‘ + C(A, T)\/eorp
keKo(zr
(7.16) T
Sar Y. Veorpth
keKo(z,r)

Concerning I, note that for k € Ky(z,r) we have by the definition of ¢
(7.10)

/ckhkda—/hkd,uzo,

and so
IQ == 0

Putting together the estimates for k € K(z,r) \ Ky and for k € Ky(z,r), and
taking supremum over ¢ € Lip,(B(x,r)), we finally get

F (z,r) (VByh,u) ~A,T \/_ Z n—&-l.

keK(x,r)

]

The previous two lemmas, and the fact that Fg(v, u) = Fp(vp, up), imply
the following:

Lemma 7.10. For x € 2.5By and r 2, d(x) such that B(x,r) C 2.5By we have

Fpem (i) Sared '+ e Y ot (7.23)

3ByNB(z,r)£2
In particular, we have
Fospe (v 1) Sar e 0(Ro)™ . (7.24)
Lemma 7.11. For x € I' and r Z ((Ry) such that B(xz,r) N 3By # & we have
Fparn(v,co”"|,) Sax 60 “rO(Ry)™. (7.25)
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Proof. Recall that by (7.12) we have

_ n
V|(2.3BO)C = coH |L0ﬂ(2.3B0)C‘

To take advantage of this equality, we define an auxiliary function 1 such that
® =1 on 2.3By, supp(¢)) C 2.5By, and Lip(¢)) < (Ry)~!. Then,

’/@bdu—co/@de”lLo

(7.24)

S + e U(Ro)"

/w du—co/@b M|,

(4.16

)
< C(A, T)eol(Ro)™ + ey "U(Ro)™ < e/ *€(Ro)™.  (7.26)

Recall that zy = zg,. It follows that for ¢ € Lip,(B(z,7)) we have

’/¢ (dv — codH"|},))
- ‘/ (¢ = D(20) + ¢(20)¢ + G(1 — 1)) (dv — CUdHn‘LO)‘

(7.12)

< Fuany () + Fasn (M1, ) + 6(0)] | [ @ (dv = codh"],)| +0

(7.24),(4.16)

Sar e R + ol(Ro)™ ™ + (o0l | [ 4 (dv = cotit?],)|

< e (R 4 reg U(Ro)™ < et rU(Ro)™.

]

8 Small measure of cubes from HD

For brevity of notation let us denote by Il the image measure of v by Ilj,
that is the measure such that IL,v(A) = v(II;*(A)). Set

dll, v

f= dH"|,,

The key estimate necessary to bound the measure of high density cubes is the
following.

Lemma 8.1. We have
1/8
If = colliar,) Sar o n(Ro): (8.1)

We postpone the proof of the above lemma to the next subsection. Let us
show now how we can use it to estimate the measure of cubes in HD.
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Lemma 8.2. We have

S Q) Sax ey u(Ro). (8.2)
Q€eHD

Proof. Recall that by Lemma 4.6 we have pu(Rrar) Sa,- /Eopt(Ro). Thus, to
show (8.2) it suffices to prove

11(Rup) S e0/* u(Ro),

where RHD = UQEHD Q \ RFar.
For every x € Ryp we define B, = B(x,r(Q,)/100), where @, € HD is

such that © € ;. We use the 5r-covering theorem to choose {z;};es such

that all B, are pairwise disjoint and U; 5B, covers Uyep,, Bz- Observe that
5By, C 3Bgq,,, and so by (4.5)

u(5B,,) Sa r(Bo)" (83)

1BIJ,QJ Qq;, and let P; € Tree be the parent of

For every j set B; =
~ ((Q;) ~ r(Bj). Since x; € Rrar, we can use Lemma 6.5

Q;. We have ((P))

to obtain

dist(z;, 1) Sar veod(z;) S VEol(F;) ~ar v/eor(B;).

Since 2B; are disjoint, the centers of B; are close to I', and I' is a graph of
function F' with Lip(F) < 6 < 1, it follows that IIy(B;) are disjoint as well.
We use the above to get

(8:3)
n(Rep) < 3" p(5Ba,) Sa Yr(By)" = > H (Mo(B;)) = H"( | To(B))).

jeJ jeJ jeJ jeJ

We claim that
U IIy(B;) C BM, (8.5)

jeJ

where

BM={x€Ly : M(f—co) > 1},

and M is the Hardy-Littlewood maximal function on Ly. BM stands for “big
M. Before we prove (8.5), note that due to the weak type (2,2) estimate for
M we have

H"(BM) SIf - COHZLQ(HMLO)'

Putting this together with (8.4), (8.5), and our key estimate from Lemma 8.1,
we get that

11(Rup) Sar e/ “u(Ro).

Therefore, all that remains is to show (8.5).
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Let j € J, y € ly(B;). Since |y — ()| < r(B;) < r(Bg,) and Ily(z;) €
Iy(Byg,), we have B(y, 257’(BQJ)) D II(10By, ). Clearly, for some C' = C(n) >

MUf = c)(0) 2~ TLv(Bly,25r(Ba,))) — o

H*V(H()(lOBQJ)) — Cp Z

2 (B ~1v(10Bq;) — cp. (8.6)

Recall that by (I1.3.8) and Remark 3.5 we have

T<BQ]')

0051.

Thus, if we show that v(10Bg,) 2 Ar(Bg,)", for A big enough we will have
M(f —co)(y) > 1, and so we will be done.
Let us define

Mz) = (r(10Bq,) — |2 — 2,])+.
Note that A is 1-Lipschitz and that supp(A) C 108, C 2.5By. Moreover,

Tr(Bo,)Lsp,, < A < 10r(Bg,)Liosq, -

Note that r(Bg,) 2 d(zq,). We get that

r(Bg,)v(10Bg,) 2 /A(z) dv(z)
(7;3) Mz) du(z) — C(A, T>(€0 4r(BQ yrtt +E(l)/z Z rgﬂ)

3BkﬂIOBQj E3%)

> Tr(Bq,)n(3Bq,) — C(A,7) (e 'r(Bg,)" ™ +252 Y it

3BkﬁloBQ . FED

Note that for all k£ such that 35, N 1OBQ # @ we have 1, Sa - 7(Bg,). Indeed,
for 2 € 10Bg, it holds that d(x) Sa, 7(Bg,), and for x E 3By we have
7 < d(x) by Lemma 7.1 (¢). Moreover, since the balls I1y(3By) are of bounded
intersection by Lemma 7.1 (b), we get

> i < > i Saqrr(Bg;)"

3BxN10Bg, # o (3By) Nl (10Bq ;) 2
Hence, using the above and the fact that Q); € HD
r(Bg,)v(10Bg,) 2 r(Bo, u(3Bq,) — C(A, 1)z r(Bo,)"!
2 Ar(Bg, )" = C(A, )y 'r(Bg,)" ™ 2 Ar(Bg, )™,
for £y small enough. Thus, v(10Bg,) 2 Ar(Bg,)" and by (8.6) we get
M(f = co)(y) > L.
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8.1 A-estimates

The aim of this section is to prove the crucial estimate from Lemma 8.1, i.e.
1/8
If = colliae,) Sar 0 n(Ro): (8.7)

From now on we will denote by ¢ : R — R a radial C* function such that
¢ =1on B(0,1/2), supp(¢) C B(0,1), and

orlw) =170 (4).

We also set
¢r(x) = Qﬁ,«(l‘) - ¢2r(l‘)-

A classical result of harmonic analysis (see [Ste93, Sections 1.6.3, 1.8.23])
states that

o0 dr
17 = gy = [ [ W o@PT a9

and so we will work with the latter expression.
For > 0 and x € R? let us define

De(x) = 0 Thy(x) - ¢ (5‘”) .

Given a measure A on R? we set

Ax(@,r) = [ty = M)
Lemma 8.3. We have for all x € I’
Ay(z,7) = |t * v (Io(x))]. (8.9)

Proof. By the definition of A, it suffices to show that for all =,y € I' we have

&T‘(SE - y) = wr(HO(x) - HO(y))

Hence, by the definition of v, we need to check that ¢((5r) ' (z —y)) = 1

whenever 1, (Ilp(x) — y(y)) # 0.
Since supp(¢,) C B(0,2r), we get that |IIg(x) — IIy(y)| < 2r. Thus, due to
the fact that I' is a C'6-Lipschitz graph, we have

|z —y| <2(1+ CO)r < ;T.

Hence, y € B(z,5r/2), which gives ¢((57) ' (x —y)) = 1. O
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The lemma above and the fact that Il is bilipschitz between I' and Ly
imply that

/LO/ [ % T (2 )|2 e / / [y TL(2 )|27 I.o(2)

_// —do()

In consequence of (8.8) and the above, to prove Lemma 8.1 it suffices to
show that

// o da( ) Sar & 1(Ro). (8.10)

We start with the following snnple calculation.
Lemma 8.4. For x € I' we have

A(z,7) Saqr oz, 2r). (8.11)

Moreover, for x € I'N2.5By and d(x) S r < nro we have
Au(z,1) Sar au(3Bg), (8.12)

for some @ € Tree such that B(x,5r) C 3Bg and r ~ {(Q).

Proof. First, we will prove (8.11). Let B = B(xz,2r), and Lp,cp be the
minimizing plane and constant for «,(B). Using the fact that A, (z,r) =
[t TL(TTo(2))] we et

= | [ 4 (llow) = Tia(y) dv(y)|
< | [ 0 (Mo(a) = Mo(y) d(v = cu?|, ) ) 4] [ 0 (To(@) = To(y)) dlea”],,)(w)
SV F(v,epM,,) +0.
Hence, by n-AD-regularity of v we arrive at
A7) Sar e, 20)

Now, let us look at (8.12). Since z € I' N 2.5B and d(z) < r < nrg, we
may find @ € Tree such that B(x,5r) C 3Bg and ((Q) ~a, r. We use the
fact that |VL/J,,| < =L and supp ¢, C B(x,5r) to get

1 < | [ e = il = cqt?l,)| + o [ e = parrly,
[ onla = parel,,

Sar au(3Bo) + cq | [ (o — it

< T_("+1)FB(:¢,5r) (k, CQHn|LQ) +cq
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We claim that the last integral above is equal to 0. To prove this, it suffices
to show that for x € I' and y € Lg we have ,.(z — y) = ¢,.(Ig(x) — Io(y)),
because

[ 4e(To(y) = To()) d(H"|,,)) () = 0.
Since ¢, (x — y) = ¥, (Io(y) — o(2))d((5r) " (x — y)), we only have to check
that ¢((57) ' (z—y)) = 1 for Il(y) —p(z) € supp ¥,. In other words, knowing
that [[Io(y) — Ilo(x)| < 2r, we expect that |z —y| < 3r.

Indeed, the fact that I' is a C6-Lipschitz graph, that £(Lg,Lo) < 6,
[T (y) — o(z)] < 2r, and Lemma 6.3, imply

My (y) — T (2)] S Or

Hence,

5
lx —y| < 2r+ C(A,7)0r < 57‘,
as expected. O

Before we proceed, let us state the following auxiliary result. Recall that
given a ball B, z(B) denotes the center of B.

Lemma 8.5 ([ATT20, Lemma 6.11]). Let B be a ball centered on an e-Lipschitz
graph T, and f a function such that

If = F(z(B)l| =3By S €

and f(z) =~ 1 uniformly for x € 3BNT. Then

/ / afe(x,r) —da( ) S e*r(B)",

where o denotes the surface measure on I'.

We split the area of integration from (8.10) into several pieces. We will
estimate each of them separately.

Lemma 8.6. For every k € K we have

/Bk/ d—da( ) Sar oy

Proof. By Lemma 7.1 (c) we know that for x € By, we have n?d(x) < n'/?r,,
Hence,

/Bk/ —da -/Bk/ o )| a:arda(x).



8. Small measure of cubes from HD

Let g(x) = Xjex cjhj(z). Note that for z € 3B, N T we have h(z) = 1, due
o (7.7) and the definition of h (7.8). Thus, by Lemma 7.6,

) — ol = | D (e; — e)hy(@)| Sar vEo D hy() = Vo,
jEK jEK
Hence, by (7.18), g(x) ~a, 1. Since v|yp = golyp , and I'N 3By is a C'\/2¢-
Lipschitz graph by Lemma 7.3, we can apply Lemma 8.5 and get

Tk A 2 d <8.11) 771/2’I‘k 9 9 drd < n

LI P Caota) Sar [ [ kw20l o) Sar cu
(8.13)

O

Let M(R?) denote the space of finite Borel measures on R
Lemma 8.7 ([ATT20, Lemma 8.2]). For A\ € M(R?) we define

TA(z) = (/Om Ax(w, 1)’ dT)m,

r

and for f € L*(o) set T,f = T(fo). Then T, is bounded in LF(c) for
1 < p < oo, and T is bounded from M(R?) to LV*(c). Furthermore, the
norms || 15| Lr(o)—Lr(0) and ||T'||prray—r1.00(0) are bounded above by some abso-
lute constants depending only on p,n and d.

Lemma 8.8. We have

nro d
Lo o Al Ldo(@) Sar (R0
I'N2.4By

Proof. Since v = (vp — h,u) (hi — pp) + w1, for each x € I' N 2.4B, we split

/777"0 A, (z, 'r) dr

n?d(z) r

o dr o dr
Lo ) = M) St [ Ay

2d(x 2d(x)

nro dr
A 2. (8.14
F L A T (s19)

AN

Let

nr d
H:{xeFﬂ2.4Bo : /2(())A#Bhu(x,r) Tse /4}
n?d(x

We divide our area of integration into two parts:

o dr
fd
/Fﬂ? 4Bg / J( )
nro dr

- , dr
//” 2 Ldo(r)+ / Ao, r)? do(a) = L+ I
I'N2.4Bo\H Jn2d(z)

(8.15)
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In order to estimate 1, note that for x € 2.4By and r < nry we have B(z,5r) C
2.5B,. Since suppt, C 5B(0,7) we get A, ,_pu(x,7) = A (x,r).

Hence, by Lemma 8.7 applied to A = (yup — hit)|, 55,

(“B_h”)|2.530

o(H)<o({z el : T((up—hp)lysp,) > ") S e (us — hp)(25B0).

Since h =1 on 3By \ (Rgar U Rg) by Lemma 7.7, ug(Rg) = (hu)(Rg) = 0 by
their definition and (7.7), and u(Rga) is small by Lemma 4.6, we have

(115 — hit)(25B0) < pp(Rear) = pu(Rear) Sar 20/ U Ro)"

Thus, for g small enough
o(H) < O(A, )y ey U(Ro)" < i/ "U(Ro)"

d
Now, consider the density ¢ = %. Arguing as before we see that for

r € 24By and r < nry we have A, (x,r) = Ay (z,7). By n-AD-regularity
of v (Lemma 7.5) we get [|gl|74(,) Sar 0(2.58)) = £(Ry)". Using the L(c)
boundedness of T, yields

I </ Toq(@)” do(x) < o(H)I|To(a)|[20) Sar s "€(Ro)".  (8.16)

We move on to estimating /. Observe that by the definition of H we have

nro dr 14
A, 2 —d < (R
/FQMBO\H /n?d(x) ps—hp (2, 7) " o(z) S ey U(Ro)

Thus, by (8.14),

= o M7 @dom
TM2.4Bo\H Jy2d(z) r
ST ()~ Ao r)? Ldota) + < By
TM2.4Bo de) s r 0 0
+/ /mo d—d (@) = Loy + e/ 0(Ro)" + Ip. (8.17)
I'N2.4Bo Jn2d(z) ? S f21 T o 0 S

To handle I, we use (8.12) to get for x € ' N 2.4B,.

nro dr (4 11)
[ Mo 5, Y au3Ba)? Saq el
n?d(x) r QETree

z€3Bg

Hence,
L _/ /m Ay, r)? @d (z) < et (Ro)" (8.18)
27 Jrroasy Jppawy 7 0TS '
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Finally, we deal with the integral I5;. Observe that, since A, (z,7) —
App(x, 1) =y xvp(x) — ¢y % hu(z), and [Vih,| <"1 we have

, ) 5 (7.20) prtl
|AVB (:L‘7 T)_Ahﬂ(x7 T)| 5 (T_n_ FB(CE,5T)(VB7 hM)) SA,’T €0 Z ntl .
3ByNB(z,51) 42 |
Note that for k¥ € K such that 3B, N B(x,5r) # @, for n?d(x) < r < nry, and
for any y € 3B, N B(x, 5r), we have

(7.3)
r, < d(y) <d(x)+5r < (72 +5)r. (8.19)

Thus, 7. < 737, and for some big C" = C'(A,7) we have B, C C'By. It
follows by the Cauchy-Schwarz inequality, the fact that By are centered on I,
and that they are of bounded intersection, that

2
n+1 n+2 n
Tk Tk Tk
2 am) S| 2 2. ] (820
(3BkﬂB(:p,5r)7é® r +1> (SBkﬁB(x,E)r);éZ r +2) (BBkﬂB(w,E)r);éZ r )

n+2
Tk

< > prret (8.21)
3BxNB(x,5r)#2

Together with the fact that r, < n~3r this implies

Iy = /F o /"m (Auy (2,7) — App(, 7))? d:da(x)

2d

.
/ /n ’ 7",2”2 dTSda(m)
I'N2.4By rnt

BBkﬂB(a: 5r)#
= 50 Z 7“”+2/

nro dT’
oy T'N2.4B, / (@snsBio (T )mdg(x)

nro dr
<e T”+2/ / 155 r)——=do(x).
- BkCZC’Bo M JrreaB Jose BlesrnaBizel )r”+3 (z)
Now, note that if B(x,5r) N 3By # &, then

(8.19) L
x € B(zg,br +3ry) C B(zk,n °r).

Hence,

nro dr

[21 < €0 Tn+2/ / do(x
~ Z g n®r J B(zk,n~37) ( )rn+3

B, CC’'By
o dr
n+2
< €o E, Tk / 3
mrg T

S €0 Z T'Z 5 EQU(C/B()) 5 €0€(R0)n.
B, CC'By

Together with (8.15), (8.16), (8.17), and (8.18), this concludes the proof. [
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We are finally ready to complete the proof of (8.10). Let us split the area
of integration into four subsets:

Ay ={(x,r) : B(z,2r)N2.3By, = o},
(x,r) : B(z,2r)N2.3By # @, r > nre},
As ={(z,7) : B(z,2r)N2.3By # @, n*d(z) <r < nro},
(z,7) : B(z,2r)N2.3By # @, 0 <r < min(n*d(z), nro)},
we also set
I = / / —da( ).
Since v, 55y = coH" |L0m(2.330)c by (7.12), for (z,r) € A; we have
A (z,7r) = CoAH”\LO (x,r) =0,

and so I} = 0.
Now let (z,7) € As. Since B(z,2r)N2.3By # &, r > nry, we have

|z — 20| < 27 +2.3r0 < 0?1,
so that r > max(nrg, n?|z — 2o]). It follows that

00 d
I, S// A,,(:L‘,?“) lda( )
I’ Jmax(nro,n?|z—z0|)
(8.11) 0o d
S | / (.20 Yo
max 777"0 772|2? 20|)

(7.25) - dr
n
<AT 50 / / 2n+1d o(x)
max(nro, 172\:15 2l) T

~ el 0(Ry)?" / do ()

r max(ro, 77‘35 — z|)?"

1 1
~e iR ([ [ o do@) ) ~ e e(Ro)”
e ([ s o)+ [ doto)) (R

where we used in the last line that '\ 1.9By = Lo \ 1.9By, see Lemma 5.11.
Concerning (z,7) € Az, note that necessarily x € 2.4B;, and so by

Lemma 8.8
170 dr
I < Lo Mla,r)? Sdo(a) Sar il “0(Ro)"
TM2.4B, Jn2d(z)
Finally, for (z,r) € Ay, we only need to consider x such that d(z) > 0 and
x € 24ByN T, and since all such x are contained in some B} we get

W[ e s 5 [T e it

BiN2. 4B #+o
Lemma 8.6 Lemma 7.1
§A,T Z 807’2 ~ Z 800’(Bk) 5 600’(CB0) ~ €0€(R0>n.

BN2.4By#2 BN2.4By#

Putting together all the estimates above finishes the proof of (8.10) and
Lemma 8.1.
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9 Small measure of cubes from BA

We know by Lemma 4.6 that (1(Rrar) Sar /Eoft(Ro). Thus, in order to estimate
the measure of Ugega @, it suffices to bound the measure of

RBA = U Q \ RFar'

QEBA

Lemma 9.1. We have
p1(Ren) Sa 072(|VF|7..

Proof. For every x € Rga we define B, = B(z,7(Q.)/100), where @, € BA is
such that x € Q.. We use the 5r-covering theorem to choose {z;};c; such that
all B,, are pairwise disjoint and (J; 5B, covers U,cg,, Bz. Observe that

Set B; = %Bmi, Q; = Q.,, and let P, € Tree be the parent of ;. We have
U(P) = £(Q;) = r(B;). Since z; ¢ Rrar, we can use Lemma 6.5 to obtain

dist(:,T) Sar VEod(z:) S VEl(P) ~ v (By).
Hence, for small gy, we get that iBi NI # @. It follows that for each i € J we
can choose balls B; 1, B; 2 C B; centered at I', with 7(B;1) = r(B;2) = r(B;),
and such that dist(B; 1, B;2) 2 r(B;). Then, for any points y, € B, NI, k =
1,2, we have
r(Bi) S lyr — y2| < [Ho(y1) — o(y2)l- (9.2)
Since y1,y2 € I' N B; C I' N Bp,, we have by Lemma 6.3

diSt(yka LPi) SAJ \/56(131)7 k=1,2.

Let wy = I, (yx). By the estimate above we have |y, — wi| Sar /Eol(F).
Moreover, it is easy to see that wy, € Bp,.

Since £(Lg,, Lo) > 6 and @Q); € Treey by the definition of BA (4.2), ¢(Q;) ~
((P;), and dist(Q;, P;) = 0, we may use Lemma 5.2 with Q;, P; to get

K(pr LO) = K(LQN LO) - A(LPH LQi) >0 - C(A, 7—)80 Z 0.
Thus,

|F(To(y1)) — F(o(y2))| = Ty (1) — Ty (32)]

2 2
> |y (w1) — My (wa)| = > |y — wi| 2 0| (wr) — Ho(wa)| — > |y — wyl
k=1 k=1

2
> 0o (y1) — Ho(y2)| — 2> |y — wa
k=1
(9:2)
2 0r(B;) — (A, 7)\/eor(B;) 2 0r(B;),
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for 9 small enough.
Now, denoting by m; the mean of F' over the ball I1y(B;), we have

[F(Io(y1)) — F(o(y2))| < [F(Ho(y1)) — ma| + |F'(o(y2)) — ml
< ka:% | F' (Lo (y)) — mul.

Hence, the estimates above give us for some k € {1,2}

|F (o (yw)) — mi| 2 0r(B). (9.3)
Since the estimate above holds for all points y; € B, NI, and (B, NT) ~
r(B;)", we can use Poincaré’s inequality to get

rBY [ IVFOP aH O Z [ IF(E) —mif? dH1(€) 2 0°r(B)

To(B;)
for all 7 € J.

We claim that the n-dimensional balls {IIy(B;)}ic; are pairwise disjoint.
This follows easily by the fact that 2B; = B,, are pairwise disjoint, %Biﬂf #* O,
and I is a graph of a Lipschitz function with a small Lipschitz constant.

Hence, we may sum the inequality above over all i € J to finally get

IVFIE =3 [ VPP Rt 2 Y 6% (By)"
ieJ /o(Bi) ieJ
(4.5) ©.1)

2 AT?Y uB3Bq,) 2a 07 1(5B:,) = 07 u(Rea).

i€J icJ
[l

To estimate |V F |2 we will use a well-known theorem due to Dorronsoro.
We reformulate it slightly for the sake of convenience.

Theorem 9.2 ([Dor85, Theorem 2]). Let F : R™ — R*¥™ be an L-Lipschitz
function, with L sufficiently small, and let T C R? be the graph of F, and
o=H"|p. Then

* d
| [ Baalar)? Zdo ~ |VF
rJo r

To estimate the integral above we split the area of integration into four
subfamilies:

Ay = {(z,r) : B(z,r)N1.9By = @},

Ay ={(x,r) : B(z,r)N1.9By # @, r > 0.1ry},

Az = {(z,r) + B(z,7)N1.9By # @, n’d(z) <r < 0.1},
Ag={(@,r) + Ble,r)N19By # 2, 7 < min(ifd(r),0.170)},
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we also set J
r
]’i = /Ai 60.71(%', T)Q 7d0‘<$)

Firstly, note that for (z,r) € A; we have B(z,r) N [' = B(z,r) N Ly because
supp(F') C 1.9By, and so
I =0 (9.4)

Lemma 9.3. We have
IQ SA?T 5(1)/26(R0)n

Proof. Let (x,r) € As. Observe that since o ~4 , v, we have

(11.3.5) (7 25) VR,
5071(3:’7") NAT 5%1(1’,74) < C]51/(1‘ QT) ~SAT € (1)/4 (rrob) :

Note that if B(x,r) N 1.9By # @, then necessarily x € B(zp,1.9r9 + 1) C
B(zp,20r). Hence,

[2 S/ / Bgl($,7“) dU* <A‘r 1/2/ / dO’dT
0.179 J B(20,20r) 0.1rg J B(z0,20r) 7”2n+1

sel? [7 BT g
0

0
~ Arg rn+1

O

Lemma 9.4. We have
13 SJA7T €0€(R0)n.

Proof. Let (x,r) € As. Since B(x,7) N 1.9By # @ and n*d(z) < r < 0.1r, it
is clear that B(z,2r) C 2.1B, and we may find a cube P = P(z,r) € Tree such
that B(x,2r) C 3Bp and r = ((P). We will estimate the average distance of
B(z,r)NT to Lp.

Bounding the part corresponding to B(z,7) N Rg C 3Bp N R is straight-
forward: Lemma 5.5 states that d,u|RG = gd’H”|RG with g ~4, 1, and so

dist(y, Lp) dist(y, Lp)
S 2P) o (y) <an / SN, 2p) g
/B(a:,r)ﬂRG r oY) 34 3BpnRe  L(P) Hy)

) 2 1/2
Sar (/33me@ (W) du(y)) UP)"? <; Bua(3Bp)(P)". (9.5)

Dealing with the part outside of R is a bit more delicate. By (7.7) and
the definition of functions hy (7.8),

dist(y,Lp / dist(y, Lp)
_— —=h d
/B e =2, k() do(y)

r K (z,r) r
(7.18
%A Z/

dist(y, Lp)
ek Y B@r) r

dist(y, Lp)
r

ai(y) doly)= [ v ).
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Consider the 1-Lipschitz function ®(y) = ¢ (y)dist(y, Lp), where 1 is r~'-
Lipschitz, ¥ = 1 on B(x,r), [¢| < 1, and supp(¢) C B(z, 2r).

dist(y, L dist(y, L
/ 1S (y P) dVB(y) S/ ¢(y) 18 (y P) dVB(y)
B(z,r) r B(x,2r)

r
_ [ bty Le)
 JB(x,2r) r

() dut) +r7 | [ () dlvs —ha)(y)

Since |9, |h| < 1, the first term on the right hand side above can be
bounded by 3,,2(3Bp)l(P)", just as in (9.5). Concerning the second term,

(7.20)

SA,T \/%7‘_1 Z T]ZH_I

3BNB(z,2r)£0

T‘_l

Ly B ) A2 = i)

Gathering all the calculations above we get that

n+1

2
60,1(37,7”)2 SA,T 5,u,2(3BP>2 + o ( Z :]:H_l) . (96)

3ByNB(z,2r)#0

Integrating the first term over As, since each P(z, ) has sidelength comparable
to r and dist(P(x,r),x) Sa, 7, it is easy to see that

~

(4.10)

dr
J], BusBren) Tdo Sas 30 Bua3Be)UP)" Sas (R

PeETree

Moving on to the second term from (9.6), note that if y € 3B, N B(x,2r) #
@, then by (7.3) we have r;, < d(y) < 2r + d(z) < (2 + n*)r. Thus, following
calculations from the proof of Lemma 8.8 (more precisely (8.19) and onwards),
we get that

it ) dr
wff | ] T S col(Ro)®

3BiNB(z,2r)#2
Hence, I5 Sar eol(Ro)™. H

Lemma 9.5. We have
Iy Sel(Ro)"™.

Proof. Let (x,1) € Ay, so that n?d(z) > r > 0. It follows by (7.7) that x € By,

for some k € K. Then,

(7.3)
r<nfd(z) < n'Pry.
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Note also that x € 2B,. Thus,

I < /Bk/ Tkﬁglxr —da()

By, ﬁ?Bo #0

Lemma 7.5 ry,
NAr /B / Bua(w,r) de( )
k

BkHQBo;ﬁz

3 2, ,d (8.13)
< / / k (z,2r) —Tda( ) Sar Z ey S eol(Ro)".
By

Bkﬂ2Bo75® BiN2By#2

Putting together the estimates for Iy, I, I3 and I, we get that

[ ] Bt fda Sar VEL(Ry)" & Eou(Ro).
Thus, Lemma 9.1 and Theorem 9.2 give us

w(Rea) Saro Veor(Ro).

Taking into account the estimates for other stopping cubes, we arrive at

( 0)
(QGLSJtOP Q)

Thus, u(Rg) > 0.5u(Ryp), and since R is a subset of the Lipschitz graph I’
and | R 18 n-rectifiable, the proof of Lemma 3.1 is finished.
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Necessary condition for rectifiability involving
Wasserstein distance Ws IV

1 Introduction

The aim of this chapter is to prove a necessary condition for rectifiability
involving the ay coefficients. The complete definition was given in Subsection
[.6.3, now let us fix the notation specific to this chapter: for 1 < p < o0, a
Radon measure p on R a ball B = B(z,r) C R? with u(B) > 0, and an
n-plane L intersecting B, we define

1

= WWID(@BM,@B,L@BH”IL), (1.1)

Qup,1.(B)

where ¢p is a “regularized characteristic function”, and

iy = B
' [ dH"|;

We will usually omit the subscripts and just write a. We define also
aup(B) = iILlf ¥ p,r(B),

where the infimum is taken over all n-planes L intersecting B. For a ball
B = B(x,r) we will sometimes write o, ,(x,r) instead of «,,(B).
Our goal is to show the following.

Theorem 1.1. Let p be an n-rectifiable measure on R:. Then for u-a.e.

x € RY
dr

1
/0 (T, r)? <00 (1.2)
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Remark 1.2. Note that in this chapter we chose the normalizing factor u(B).
However, in this case it is not really important: for rectifiable measure u the
density ©"(u,r) exists, and is positive and finite, for p-a.e. x. Thus, the
condition (1.2) satisfied by as numbers normalized by u(B) is equivalent to
that same condition satisfied by r~™ or p(3B)-normalized as numbers.

In Theorem II1.1.4 we showed that (1.2) is also a sufficient condition for
rectifiability (we used a different normalization of as, but it does not matter,
see Remark 1.5). Putting the two results together, we get the following
characterization.

Corollary 1.3. Let y1 be a Radon measure on R:. Then 1 is n-rectifiable if
and only if for p-a.e. x € R we have

dr

1
/0 au,g(x,r)2 - < 00.

Remark 1.4. The characterization above is sharp in the following sense.
Suppose 1 < p < g < oo. Then it follows easily by Hoélder’s inequality,
definition of a,, numbers, and the fact that supp ¢p C 3B, that

1/p—1/q
aup(B) < (l:f(if))) g(B).

Hence, for doubling measures, o, numbers are increasing in p. It is well known
that rectifiable measures are pointwise doubling, i.e.

B(x,2
lim sup (B, 2r)) < 00 for p-a.e. x € RY,

rsot p(B(z,7))
and so the finiteness of ay square function (1.2) implies finiteness of «, square
function for any 1 < p < 2. However, in general one cannot expect finiteness
of o, square function for p > 2, see Remark 1.6. In other words, Theorem 1.1
cannot be improved.

Remark 1.5. For technical reasons, in Chapter III we defined «;,, numbers
normalizing by n(3B) (i.e. in (1.1) we replace p(B) with u(3B)). Of course,
the 3B-normalized coefficients are smaller than the B-normalized variant used
here. Hence, if (1.2) is finite for B-normalized as numbers, then it is finite
for 3B-normalized as numbers, and so Theorem I11.1.4 may be applied to get
Corollary 1.3.

Remark 1.6. The example from [Tol19] shows that one cannot expect finite-
ness of the a,, square function when p > 2. Indeed, it is easy to see that a,
numbers bound from above [, numbers (see Lemma I1.3.2, the same proof
works with arbitrary 1 < p < oo). Tolsa gave an example of a rectifiable
measure such that for all p > 2 the square function involving (3, in infinite
almost everywhere. Hence, the «,, square function of that measure is also
infinite almost everywhere.



1. Introduction

Theorem 1.1 yields an easy corollary involving bilateral S numbers. Set
1 dist(y, L)\’
2 _ )
DBy, r)” = inf = /B o) (r ) du(y)

. 2
L (dlst(y,jupp u)) B (),

rm B(z,r)

As shown in Lemma I1.3.4, if a ball B(z,r) satisfies u(B(z,r)) ~ r", then
a,2(x,r) bound from above b3, 2(x,r). Since for n-rectifiable measure p we
have 0 < ©"(u, x) < oo p-almost everywhere, we immediately get the following.

Corollary 1.7. Let pu be an n-rectifiable measure on R?. Then for p-a.e.
r € R? we have

L dr
/0 bBua(z,1)? o< oo.

1.1 Localizing Theorem 1.1 and Organization of the
Paper

Theorem 1.1 follows easily from the following lemma.

Lemma 1.8. Let p1 be an n-rectifiable measure on R?, and let T C R? be an
n-dimensional 1-Lipschitz graph. Suppose R € Dr with ¢(R) =1 (see (2.2) for
the defintion of Dr). Then, for any 0 < e < 1, there exists a set R' C R such
that p(R') > (1 — e)u(R) and

1 o dr
///0 auo(z,r) . du(z) < oo. (1.3)
Proof of Theorem 1.1 using Lemma 1.8. Let u be n-rectifiable. It is well known
that in the definition of rectifiability (Definition I.1.1) one may replace Lipschitz
images by Lipschitz graphs, or by C! manifolds, see e.g. [Mat95, Theorem
15.21]. Each C' manifold is contained in a countable union of (possibly rotated)
Lipschitz graphs I' with Lip(I") < 1. Hence, there exists a countable family of
n-dimensional 1-Lipschitz graphs I'; such that

M(Rd\UFi) = 0.

Each I'; is a countable union of dyadic T';-cubes R/ € Dy, satisfying ¢(R}) = 1
Clearly, u(R?\ U;,; RY) = 0.

Now, denote the set of x where (1.2) does not hold by B, and suppose that
1(B) > 0. Then, there exists R} such that u(BN R}) > 0. Let £ > 0 be such
that (BN R!) > 2eu(R!). Applying Lemma 1.8 to R} and ¢ as above we
reach a contradiction. Thus, p(B) = 0. O

95



IV. A NECESSARY CONDITION FOR RECTIFIABILITY VIA W,

96

The rest of the article is dedicated to proving Lemma 1.8. Let us give a
brief outline of the proof.

We introduce the necessary tools in Section 2. In Section 3 we show various
estimates of ay coefficients, usually relying heavily on the results from [Tol12].
In Section 4 we define a family of measures {vg}gen., where vy < H"|p,
and each v approximates ;v in some ball around (). Roughly speaking, v
is defined by projecting the measure of Whitney cubes onto the graph I —
but only those Whitney cubes whose sidelength is not much bigger than /(Q).
Then, we construct a tree of good cubes satisfying

Z auQ,Q(EQ)Qé(Q)n < 00,

Q€ETree

where éQ are balls with the same center as the corresponding cube (). The
stopping region of the tree of good cubes is small. In Section 5 we use the
estimate above to show that actually

Z QMQ(EQ)QE(Q)TI < 00.

QETree

Using the inequality above, we prove (1.3) with R’ = R\ Ugestop(Tree) @ This
finishes the proof of Lemma 1.8.

2 Preliminaries

2.1 Notation

For a Borel measure v on R? and a Borel map T : R? — R¢, we denote by T,v
the pushforward of v, that is, a measure on R? such that for all Borel A C R?

T.v(A) = u(T~'(A)).

In expressions of the form W),(uy, aps), the letter a will always mean the
unique constant for which the total mass of aus is equal to that of py. In other
words,

(R
pi2(R7)
It may happen that a appears in the same line several times, and every time
refers to a different quantity. We hope that this will not cause too much
confusion.

Let us once and for all fix a measure p, an n-dimensional 1-Lipschitz graph
I', and a constant 0 < € < 1 for which we are proving Lemma 1.8. We fix
also a coordinate system such that I' = {(z, A(z)) : x € R"} C R% where
A :R" — R%" is a 1-Lipschitz map.




2. Preliminaries

We will denote by L the subspace of R? formed by the points whose last
d — n coordinates are zeros, so that I' is a graph over Ly. We will write 11

and IIr to denote projections onto Ly and I', respectively, orthogonal to L.

For the sake of convenience, instead of dealing with the usual surface measure
on I' we will work with

which is comparable to H"|. (note that for € I' we have o(B(z,r)) ~ ™).
Given a ball B C R? centered at I' denote by Lz an n-plane minimizing

ay2(B) (note that for an open ball B, it could happen that Ly N B = ).

Concerning the existence of minimizers, it follows easily from the fact that W5

metrizes weak convergence of measures (see e.g. [Vil08, Theorem 6.9]), from

good compactness properties of weak convergence, and from the fact that the

minimizing sequence is of the special form ¢pag , H"| r,- There may be more

than one minimizing plane; if that happens, we simply choose one of them.
For any Radon measure v such that v(B) > 0 we set

au,Q(B) = 0p2 Lg (B)

Clearly, a, 2(B) > oy, 2(B). We will show that

/,/01 Gala, ) L du(x) < oo, (2.1)

-
which implies (1.3).

2.2 [I'-cubes

We denote by Dgn, Dra the dyadic lattices on Ly and R?, respectively. We
assume the cubes to be half open-closed, i.e. of the form

by k41 ki ki1
BYRNEDY 2 T )

|

where ¢ = n for Dgn, ¢ = d for Dga, and ky, ..., k;, j, are arbitrary integers.

The sidelength of @ as above will be denoted by £(Q) = 277.
The dyadic lattice on I' is defined as

]D)F = {HF<Q0) : Qo € ]D)Rn} (22)

The elements of Dr will be called I'-cubes, or just cubes. For every () € Dr and
the corresponding )y € Dr» we define the sidelength of @ as ((Q) = ¢(Qy),
and the center of @ as zg = IIr(zg,), where zg, is the center of Q)y. We set
Bg = B(zg,3diam(Q)),
Bo = ABq,
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98

where A = A(n) > 1 is a constant fixed during the proof. We define also

YQ = SOBQv
Lg = LBQ7

V(Q) ={x e R*: II(z) € Q1.

Recall that Lp, is the n-plane minimizing a,2(Bg), and that ¢, was defined
in (1.6.8). The “V” in V(Q) stands for “vertical”, since V(Q) is a sort of
vertical cube. Note also that Q C By C By and r(Bg) ~ £(Q).

Given P € Dr, we will write Dr(P) to denote the family of ) € Dr such
that Q C P.

Remark 2.1. Let us fix R € Dr with ¢(R) = 1 for which we are proving
Lemma 1.8. Note that for z € R and 0 < r < 1 computing «,, »(z, ) involves
only p|,, where B is some ball containing R. Thus, when proving (2.1), we
may and will assume that p is a finite, compactly supported measure.

For every e € {0, 1}" consider the translated dyadic grid on Lg

1
D = 5(€,0...,0) + Dz,

and the corresponding translated dyadic grid on I
Df = {IIr(Q) : Q € Dg. }.
Let us also define the translated dyadic lattice on R?

1
%d = §(€,0,...,O) —{—DRd.
The union of all translated dyadic grids on I' will be called an extended grid
on I B
Dr = U Df.
ec{0,1}"

For each Q € Dr we define Bg, g etc. in the same way as for () € Dr.

The main reason for introducing the extended grid is to use a variant of the

well-known one-third trick, which was already used in this context by Okikiolu
[0ki92].

Lemma 2.2. There exists ko = ko(n, A) > 0 such that for every Q € Dr with
Q) < 27k there exists Py € Dr satisfying ((Pg) = 2*¢(Q) and 3By C
V(Pg).

Proof. First, we remark that for every 7 > 0 and for every x € Ly there exists
e € {0,1}" and P € D§, with ¢(P) =277 and « € 2P. For a nice proof of this
fact see [Ler03, Section 3].



2. Preliminaries

Now, consider the point [Iy(zg). If we take P € D%, with ((P) = 2k/(Q)

such that ITo(zq) € 2P, we see that the n-dimensional ball B"(ITy(zq), 9A diam(Q))

is contained in P as soon as %K(Q) > 9A diam(Q).
It follows that for Py € D§ such that IIo(Py) = P we have 3By C
V(Py). O

It may happen that the cube Py € Dr from the lemma above is not
unique, so let us just fix one for each @ € Dr. The direction e € {0, 1}"
such that Py € Df will be denoted by e(Q), and the integer k such that
((Pg) = 2¢(Q) = 27% will be denoted by k(Q).

We will use later on the fact that

9diam(Q) < 2F¢(Q) = 27%Q), (2.3)

2.3 Whitney cubes

A very useful tool for approximating the measure p close to I' are Whitney
cubes. For each e € {0,1}" we consider the decomposition of R% \ T' into
a family W¢° of Whitney dyadic cubes from Dg,. That is, the elements of
We C Dgq are pairwise disjoint, their union equals R\ T', and there exist
dimensional constants K > 20, Dy > 1 such that for every @) € W*¢

a) 10Q C RY\T,
b) KQNT # @,

c¢) there are at most Dy cubes @)’ € W* such that 10Q N 10Q" # @. Fur-
thermore, for such cubes @' we have ((Q’) = ¢(Q).

For the proof see [Ste70, Chapter VI, §1] or [Gral4a, Appendix J]. Moreover, it
is not difficult to construct Whitney cubes in such a way that if y € I';, Q € W*
and B(y,r) N Q # &, then

diam(Q) <,

Q C B(y,3r),
see [Toll5, Section 2.3] for details. We set

(2.4)

Wi ={Q e W 4(Q) <27},
and also, for every Q € Dr satisfying £(Q) < 27,
e(Q
Wo = Wiia).

Remark 2.3. It follows immediately from the definition of k(Q) that if
Pe WQ, then
((P) < 27FQ) = gkoy(().
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2.4 Constants and Parameters

For reader’s convenience, we collect here all the constants that appear in
the proof. We indicate what depends on what, and when each constant gets
fixed. As usually, the notation “C} = C1(Cs)” means that C is a constant
whose precise value depends on some parameter C;. An absolute constant is a
constant that does not depend on any other parameter.

Recall that the measure p, the Lipschitz graph I', and the constant 0 < e < 1
were fixed at the very beginning, in Subsection 2.1, and also that Lip(I") < 1.
Moreover, in Remark 2.1 we fixed R € Dr with ¢(R) = 1, and without loss of
generality we assumed that p is finite and compactly supported.

e A is an absolute constant from the definition of EQ = ADBy, it is fixed in
(5.2) (actually, one can take A = 9v/2);

o ko = ko(n,A) is an integer from Lemma 2.2;
e 59 = £9(n) is the constant from Lemma 3.1;

e K and Dy are dimensional constants from the definition of Whitney
cubes;

o \ = A(ko, K,n,d) > 3 is fixed in Lemma 5.1, more precisely in equation
(5.1) (one can choose e.g. A = C(n,d) K 2*);

o M = M(e,\,A,n,d, ) > 100 is chosen in Lemma 4.2.

3 Estimates of oy coefficients

Recall that I" is an n-dimensional 1-Lipschitz graph that was fixed in Subsection
2.1, 0 = (). H"|,,, and that Lgq is the plane minimizing o, 2(Bgq). The next
lemma states that I'-cubes () whose best approximating planes Ly form big
angle with Ly have large as numbers. In consequence, there are very few cubes
of this kind (in fact, they form a Carleson family).

Lemma 3.1. There exists g = €o(n) > 0 such that for every Q € Dr with
&£(Lg, Lo) > 1 —¢€g we have

04072(BQ) Z 1.

Proof. Suppose @) € Dr. Take x; € 0.5Bg NI, k = 1,...,n, such that
|z, — 2g| = 0.57(Bg), and the vectors {IIy(x; — 2¢) }x form an orthogonal basis
of Ly. Set By = B(zg,nr(Bg)), Br = B(z,nr(Bg)), where n = n(n) < 0.01
is a small dimensional constant that will be chosen later. Clearly, for all
k=0,...,n we have By, C By.
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If Lg does not intersect one of the balls, say By, then by Lemma 11.3.2

o2(Bo)?r(Bo)™? = /B dist(z, Lo)? do
Q

> [ dist(z, Lo)? do Z n""r(Bg)" .
3Bk
Now suppose that L¢ intersects all By. Then, since By, are all centered at
I, T' is 1-Lipschitz, and x; were chosen appropriately, it is easy to see that for
n =mn(n) and g9 = £¢(n) small enough we have £(Lg, Ly) < 1 — ¢. O

The following two lemmas will let us compare ay coefficients at similar
scales, so that we can pass from the integral form of ay square function (1.2)
to its dyadic variant.

Lemma 3.2 ([Tol12, Lemma 5.3]). Let v be a finite measure supported inside
the ball B' ¢ RY. Let B C R? be another ball such that 3B C B', with
r(B) = r(B') andv(B) =~ v(B') = r(B)". Let L be an n-plane which intersects

B and let f: L — [0,1] be a function such that f =1 on 3B, f =0 on L\ B'.

Then
Walesv,appH"|,) S Walv,afH"|,).

Recall that &, 2(B) = a2, (B).

Lemma 3.3. Let v be a Radon measure on R, By, By C R be balls centered
at T with 3By C Bs, 1(By) =~ 1r(By), v(B1) =~ v(3Bs) ~ r(Bs)"™. Then we have

ay’g(Bl) 5 6[1,,2(32) + O[U’Q(BQ). (31)

Proof. We begin by noting that since v(3B;) S v(By), we have a,2(B;) < 1.

As a result, it suffices to prove the lemma under the assumption a,2(Bs) < §
for some small constant 6 > 0 which will be fixed later on.

For brevity of notation set ¢; = ¢p,, L, = Lp, for i = 1,2. We want to
apply Lemma 3.2 with B = By, B' = 3B,, v = v, L = Ly, f = s|,. What
needs to be checked is that By N Ly # &. If this intersection were empty, we
would have by Lemma I1.3.4

Qo o(Bs)?r(By)" 2 > ; dist(x, Ly)* do > ; dist(x, Ly)? do
2 1

1
> [ Sr(B? o~ (B & r(By)"
1B, 2

Thus, if By N Ly = @, then a,2(B2) 2 1 and we arrive at a contradiction with
Qy2(By) < § for 0 small enough.
So the assumptions of Lemma 3.2 are met and we get

Walprv,api i) S Wa(pav, apa ") (3.2)
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Similarly, taking v = @90 and B = By, B' = 3By, L = Lo, f = s, it
follows that
Walpio,aprH"|;,) S Walpeo, apa ") (3.3)

Using the triangle inequality, the scaling of W5, the fact that L; minimizes
a,2(By), and the inequalities above, we arrive at

Wa(prv, ap H"| ) < Walerv, apH"|,)

J 1 dv
+
(f% do

L1 minimizer " I/(SBl) 1/2 .
S Walpw,apH™|;,) + (r(BQ”) Wa(p10,ap1H"|;,)

S Walpw, aprH"[,) + Walpio, apr H"| )
(3.2),(3.3)

S Walpav, apaH"| 1)) + Walpeo, apaH"| ). (3.4)

Y

1/2
) (Walgro.apiH?|,,) + Walpro.apiH'],,))

Dividing both sides by 7(B;)'*™/? yields
Qp2(B1) S Qu2(Bs) + o 2(Ba).
]

For technical reasons we define a modified version of as coefficients. For
any @) € Dr set
1 if K(LQ,L()) > 1— ey,

541/,2(@) = {K(Q)_(1+3)W2(¢QV7 G¢Q7-["|LQ) otherwise,

where ¢ is as in Lemma 3.1, and

Vg = Ly (),
a0 — f¢Q dl/
I@Z)Q dH”|LQ

Recall that o = (IIr ). H"|,, = H"|p.

Lemma 3.4. Let v < o, B C R% be a ball, Q € Dr. Suppose they satisfy
3B CV(Q)N DBy, r(B)=Q), v(B) =v(Q)~ Q)" Then

u2(B) Sey Aw2(Q) + o 2(Bg).

Proof. Since v(B) > 0 and suppv C I', we certainly have o(3B) ~ r(B)".
Moreover, our assumptions imply that v(3B) ~ v(B), and so &, 2(B) < 1.
Thus, we may argue in the same way as in the beginning of the proof of
Lemma 3.3 to conclude that, without loss of generality, Lo N B # @. Similarly,
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we may assume that £(Lg, Lg) < 1 — gy, because otherwise it would follow
from Lemma 3.1 that a,2(Bg) is big.

Now, since £(Lg, Lg) < 1 — &g, we get that V(Q) N Lg C kBg for some
constant x depending on y; we may assume k > 10.

We use Lemma 3.2 twice, first with B = B, B’ = kBg, v = ¢gv, L =
Lo, f =10 L and then with B = B, B' = kBg, v = ¢go, L = Lo, [ = ¢g
to obtain

L7

WZ(SOBVa a";OBHn‘LQ> Sn W2(¢QV7 a¢QHn|LQ)7
Wa(ppo, GSOBHn|LQ) Sk Walpqo, GSOQHR|LQ)-

By the triangle inequality, the scaling of W,, the fact that Lz minimizes
a,2(B), and the estimates above we get

Walesr,apst"|,,) < Walppr, apst"|,,)

[ B dv
+
<f%03 do

1/2
) (W2<90307 apsM"(;,) + Walpso, WBH"’LQ))

. v(3B))"* "
S Walepy, appH"|,,,) + (B)" Wa(ppo, apst”(;,)

S Walvigu, avigH'| ) + Waligo, apoH' ).

Dividing both sides by r(B)'*"/2 yields the desired result. O

We will need an estimate which is a slight modification of [Tol12, Lemma
6.2]. In order to formulate it, let us introduce the usual martingale difference
operator. Recall that if P € D¢ for some e € {0,1}", then P’ € D{ is a child of
Pif P’ C P and {(P') = {(P). Children of P € D%, are defined analogously.

-2
Given g € L}, (o) and P € D% we set

loc

f ;9 do f g do . , , .
A%g(z) = 4 sy~ em @ E€P, Prachidof P,

0 cx & P.

Given h € Lj,.(H"|,,) and P € D, we define analogously Aph(z):

Jorhan® [ R dH™ R ‘
Aph(z) = | “@Py ~ e v € P, Plachildof P,

0 cx & P.

Recall that for g € L?(o) we have

g= Y, A%y,

PeDg
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in the sense of L*(c), and

91220 = 2= 1A%917200);
PeDg

for details see e.g. [Dav9l, Part I] or [Gral4a, Section 6.4.2].
Let us introduce also some additional vocabulary. We will say that a family
of cubes Tree C DY, is a tree with root R, if it satisfies:

(T1) Ry € Tree, and for every ) € Tree we have Q) C Ry,

(T2) for every @ € Tree such that Q # Ry, the parent of () also belongs to
Tree.

By iterating (T2), we can actually see that if @) € Tree, then all the intermediate
cubes Q C P C Ry also belong to Tree.

The stopping region of Tree, denoted by Stop(Tree), is the family of all the
cubes P € Df.(Ry) satisfying:

(S) P ¢ Tree, but the parent of P belongs to Tree.

It is easy to see that the cubes from Stop(Tree) are pairwise disjoint, and that
they are maximal descendants of Ry not belonging to Tree. Moreover, for
every € Ry we have either x € P for some P € Stop(Tree), or x € @y for a

k—o0

sequence of cubes {Qy}r C Tree satisfying £(Q) — 0.

The following lemma is a modified version of [Tol12, Lemma 6.2].
Lemma 3.5. Let v be a Radon measure on I' of the form v = go, with
ge L' (o), 0< g <C for some C > 1. Consider a cube Q € Dr and a tree
Tree with root Q. Suppose that for all P € Tree we have C~Y(P)" < v(P) <
CYU(P)"™. Then, we have

&M (Q)2 580, A, (B )2+ ||Agg||22 N T V(S)a
’ ¢ B Pgee P )K(Q)n—i_l SeStop(Tree) f(Q)n-ﬁ-Z
(3.5)
and
> 1A%gl22) < Cligllre) = Cv(D). (3.6)

PcTree

In the proof we will use [Tol12, Remark 3.14]. It can be thought of as a flat
counterpart of Lemma 3.5 — it is valid for more general measures v (even more
general then what we state below), but at the price of assuming I' = Ly ~ R".

Lemma 3.6 (simplified [Tol12, Remark 3.14]). Suppose Q € Dgn is a dyadic
cube in R™ and Tree is a tree with root (). Consider a measure v = gH”\Q
such that v(P) =~ £(P)" for P € Tree. Then,

Wa(v,at"g) S D0 I1ArglLeam((P)U@) +  >°  US)*w(S).

PcTree SeStop(Tree)
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Remark 3.7. The definition of a tree of dyadic cubes in [Toll2, p. 492] is
slightly more restrictive than the one we adopted. Apart from conditions (T'1)
and (T2), they also satisfy

(T3) if @ € Tree, then either all the children of @ belong to Tree, or none of
them.

Equivalently, if @) € Tree, and @ is not the root, then all the brothers of ) also
belong to Tree. To underline the difference between the two notions, sometimes
the terms coherent and semicoherent family of cubes are used. The former
refers to trees satisfying (T1-T3), the latter to those satisfying (T1-T2).

Nevertheless, [Tol12, Remark 3.14] cited above is true for both coherent
and semicoherent families of cubes. That is, property (T3) is never used in
the proof of either [Toll12, Remark 3.14] or the preceding “key lemma” [Tol12,
Lemma 3.13].

We are finally ready to prove Lemma 3.5.

Proof of Lemma 3.5. Let L = Lg. If £(L,Ly) > 1 — €p, then by Lemma 3.1
and the definition of @, 2(Q)

551/,2(@)2 =1 5 aU,Q(BQ)Qv

and we are done. Now assume that £(L, Ly) < 1 — €.
Let II; be the projection from R? onto L, orthogonal to Ly. We also
consider the flat measure o, = (II.),0 = (HL) 7-[”|L = c,H"|; (recall that IIp

is a projection orthogonal to Ly, so that II; o ITp = HL) Define go : Lo — R
as go — go HF.
By triangle inequality

Wa(vqu, apoH"| ) = Wa(Yqr, avgor)
< Wa(vou, Yo (IlL).w) + Wa(to(ly)wv, avgor). (3.7)

The first term from the right hand side is estimated by a,2(Bg):

Wi(tbqr, o(T1L).v) </ o — T (@) du(a /dlst (2, L) du(x)

gc/lest x,L)? do(r) < ap2(Bgo)*(Q)" .

We estimate the second term from the right hand side of (3.7) using the
fact that o[y ) * LNV(Q) = Lo NV(Q) is bilipschitz, with a constant
depending on g (because £(L, Ly) <1 —¢€p):

Wa(o(IL)wv, atbgor) ey Wt (o). (1)), atig(Tlp).or)
= Wa(ggoH" ‘L()’ anHn|L0>~
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By Lemma 3.6 we have

Wa (Yoo "1, atbgH"|,,)?
S Y 1ApgollZanlPHU@) + Y US)*u(S),

P’eTreegn SeStop(Tree)

where Treegn C Dgn is the tree formed by cubes P’ = IIy(P), P € Tree, and
L*(Lo) = L*(H"|L,)-
Using (3.7) and the estimates above we get

Wa (e, anHn’L>2
Seo Wo2(Bo)MQ)" 2+ Y ApgollZorg (PHUQ)+ > £(S)*w(S).

P’'eTreegpn S€Stop(Tree)

We conclude the proof of (3.5) by noting that for each P € Tree

1AR9l22(0) = I Anio(p) 9ol 2(Lo)-

The estimate (3.6) follows trivially from the fact that if e € {0,1}" is such
that @) € Df, then

Z HAUP9H2L2(U) < Z HA}'DQH%%@ = HQH%Z(U) < CHQHLI(U)-
PeTree PeDy

]

We would like to use Lemma 3.5 also on measures with unbounded density.
An approximation argument allows us to get rid of the boundedness assumption,
at least if we assume additionally that v(Bp) < CU(P)" for P € Tree.

Lemma 3.8. Let v = go with g € L'(0), g > 0. Consider a cube Q € Dr and
a tree Tree with root (). Suppose there exists C' > 1 such that for all P € Tree
we have C~Y(P)* < v(P) < v(Bp) < CU(P)". Then, we have

_ ((P) 0(9)?
y2(Q)? Seo.c o2(Bo)*+ 1AS9 720y 77 At T =v(5),
P;ee P )E(Q) i SEStoZp(Tree) K(Q) 2
(3.8)
and
Y 1A%9l720) < Cliglliioy = Cv(T). (3.9)

P€Tree

We divide the proof into smaller pieces. Let Stop = Stop(Tree). First, we
define the set of good points as

G=Q\ U P

PeStop
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Note that the points from z € G are not contained in any stopping cube, and
so there are arbitrarily small cubes P € Tree containing x. We introduce the
following approximating measure:

v=uvls+ Z

SeStop

v(S)
O_(S)U|S’
It is clear that for ) € Tree U Stop we have 7(Q) = v(Q). Moreover, for
Q € Tree

CTHQ)" < 7(Q) = r(Q) < CUQ)". (3.10)
On the other hand, each S € Stop is a child of some () € Tree, so that
v(S) =v(S) <v(Q) <CUQ)" =2"CL(S)". (3.11)
Lemma 3.9. We have 3
‘ ol <o
do L5o(0)

Proof. 1t is trivial that for x € S € Stop the density is constant and

dv, . v(S) w(S) 61 _|
©O =5 Tweyr S VC

On the other hand, by the definition of 7, for g-a.e. x € G we have Z—Z(az) =

() = g(x). Moreover, for o-a.e. z € G we have a sequence of cubes

Q; € Tree such that ¢(Q;) = 277 and = € ;. Note that there exists some
integer jo > 0 (depending on dimension) such that

Qj+j0 C B(Qf,Q—j) C BQ]..

It follows that

dv dv . v(B(z,279)) _ . v(Bog) o CuQ;)" :
il - - = lim —2~ 77 < lim ——%_ < lim —2.  — (™o,
da(x) da(x) jggoa(B(x,Z‘J))_J‘EEOO(QJ'HO)_ﬂ’ggoﬁ(Qﬂjo)” ¢
Thus,

’d” <c

do Loo(0)

]

Let g € L'(0) N L>(0) be such that o = go. Applying Lemma 3.5 to &
yields
((P)

) ) £(S)?
] 9 < 2 o 22 R
Oé,,g(Q) ~eo,C a0’2<BQ> + PezTr:eeHAPgHL (o) g(Q)n—s—l + Sgop g(Q)n-‘rQ

D(S>7
(3.12)
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and
Y 1A%GI72 () < Cllgllre) = Co(I) = Cu(T). (3.13)

PcTree

Observe that for P € Tree we have
A%G = A%g. (3.14)

Indeed, for = ¢ P both quantities are equal to zero. For x € P’ C P, where P’
is a child of P, we have P’ € Tree U Stop, and so

oo Jwgdo  Jpgdo _#(P) _HP)_w(P)_uP)_
ArI) =B T T (P) o) o(P) o(P) o(p)  OPY

Hence, (3.9) follows immediately from (3.13).

Since for S € Stop we have 7(S) = v(S), we can use (3.14) to transform
(3.12) into

- o(P) ((S)?
aD,Q(Q) 580 C aUQ(BQ * Pez‘l':ree”A g||L2 (Q)n+1 " SEZSt:oP E(Q)n+2

v(9).

(3.15)
In order to reach (3.8) and finish the proof of Lemma 3.8, we only need to
show how to pass from the estimate on &;2(Q) (3.15) to one on &, 2(Q).

Proof of Lemma 5.8. Recall that if £(Lg, Lg) > 1 — &g, then &, 2(Q) = 1, but
at the same time a,2(Bg) 2 1 by Lemma 3.1, so this case is trivial. Suppose
£(Lg, Lo) <1 —¢g. We define a transport plan between ¢ and yqu:

dn(,y) = Lona(@)dv(@)dd, () + 3 W 4oy,

S€eStop U( )

and we estimate

(wa,wQu </]:1: y|? dr(x,y) < Z 0(S)v(S).

SeStop
From the triangle inequality, the bound above, and (3.15), we get that
a@,2(Q)? = Q)" Wa(vgr, aoH"|,,)?
SUQ)™ D (Wa(tho, hgr)* + Walthgw, apoH|,, )?)
S

((P) ((S)?
<8() ez A 2 .
Seo.C Qo2(Bg)? +P€ZT,;€|| 29ll72(s QT Sgopg(Q)n+2u(S)

108



4. Approximating measures

4 Approximating measures

We will construct a family of measures on I' that will approximate p. For every
Whitney cube P € W¢ we define gp : I' = R as

gr(x) = ;((]f)l]lnr(m(x).

Note that [ gp do = p(P).
Given e € {0,1}", k € Z, we define the following measures supported on I':

Vezu\p+(2 gp) o,

Pewe

Vi = plp + Z gp | 0.
Pews

Moreover, for every @ € Dr with £(Q) < 2750 we set

e(Q
VQ:VkEQ;:/”F—}_ Pg/:v gp | o
Q

Note that, since we assume p is finite and compactly supported (see Remark
2.1), all the measures v°, vg, are also finite and compactly supported.
We defined v in such a way that, for “good” @) € Dr, the measures y Bo

and I/Q‘B are close in the W; distance. This will be shown in Section 5. The
Q

rest of this section is dedicated to the construction of a tree of “good cubes”.
Recall that R € Dr is a I'-cube fixed in Remark 2.1, and 0 < e < 1is a
small constant fixed in Subsection 2.1.

Lemma 4.1. Let A > 3. Then, there exist a big constant M = M (e, \, A, n,d, ) >

1 and a tree of good cubes Tree = Tree(\,e, M) C Dr(R) with root R, such
that for every ) € Tree we have

(ABg) < ME(Q)",
n@Q) > MHQ)",
the stopping region Stop = Stop(Tree) is small:
u( U Q) <e,
QEStop

and @,,ng(éQ)z satisfy the packing condition:

> i 2(Bo)U(Q)" < oo (4.1)

Q€ETree
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We split the proof into several small lemmas. First, we define auxiliary
families of good cubes in Df. using a standard stopping time argument.

For each e € {0,1}" there exists a finite collection of cubes {R¢} C D%
such that /(Rf) =1, RN R # &. Set R® = J; R. Let M > 1 be constant to
be fixed later on, and set

HD;, ={Q e Df: QC R, v°(ABg) > MU(Q)"},
HD:,={Q e Df: Q C R, u(ABq) > M{(Q)"},
LDf ={Q €Df: Q C R, n(Q) < M~H(Q)"}.

‘HD and LD stand for “high density” and “low density”. Let Stop® C D$. be the
family of maximal with respect to inclusion cubes from HD; o UHDy, , U LDg,
and set HD;, = HDy, N Stop®, HD;, = HD; , N Stop®, LD = LDg N Stop”.
Note that cubes from Stop® are pairwise disjoint. We define Tree® as the family
of those cubes from |J; Dg(R¢) which are not contained in any cube from Stop®.
Actually, this might not be a tree, but it is a finite collection of trees with
roots 5.

Lemma 4.2. For M = M(e,\,A,n,d,u) big enough, we have for all e €

0.1}
o U Q)<s (1.2

Q€Stop®

Proof. Let e € {0,1}". It is easy to see that the measure of LD is small: for
every ) € LD® we have u(Q) < M~ 'o(Q), so

u( U Q> <M 'o(RY)~ M. (4.3)
QELD®
To estimate the measure of HDj, define for some big N > 1

Hy ={z € RY: u(B(z,r)) > Nr" for some r € (0,1)}.

Since p is n-rectifiable, the density ©"(z, u) exists, and is positive and finite
p-a.e. Moreover, recall that ;(R?) is finite. This implies that for N = N (u, e, n)
big enough

’u(HN) = on+2°

We will show that, if M is chosen big enough, then for all ) € HDj, we
have @ C Hy. Indeed, let z € Q € HDy,. Then B(z, 2)\7(Bg)) D ABg, and so
W(B(,22r(BQ))) = (\Bq) > MUQ)" > N(6A diam(Q))" = N(2r(Bq))",
for M big enough with respect to N, A, A, n. Moreover, note that for Q) € HD;,
we have ;

(R
M

> Q)" = 7(Bg)",
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and so taking M big enough (depending on (R, X, A, n) we can ensure that
all Q € HDy, satisfy 2Ar(Bg) < 1. Thus, ¥ € Hy, and we conclude that

W U @) st < 5o (a.)
Q

€MD,

Since v° is a finite n-rectifiable measure, we can argue in the same way as

above to get
( U Q) - 2n+2

QeHDE

Smallness of u(Ugeype @) follows from the fact that |, < v°. Putting this
together with (4.3) and (4.4) we get

o Y.9)<s

We take M so big that the above holds for all e € {0,1}", and the proof is
finished. u

For each e € {0,1}", k=0,1,2,..., let g be the density of v with respect
to 0. Note that, due to the definition of Tree®, for any ) € Tree® we have

M=H0(Q)" < 1i(Q) < vi(Bg) < M U(Q)".

Hence, given a cube @ € Tree® with £(Q) = 27, we can estimate 54,,2,2(@)2

using Lemma 3.8 (applied to vf and Tree = {P € Tree® : P C Q}) to get

oP S

5[1/;,2(@)2 SeoM QGQ(BQ + Z ]ApngLz U)g( n+1—|— Z NIG) n+2 vi(S).
7 =1

(4.5)
The following lemma states that the right hand side of this estimate can
be made independent of k.

Lemma 4.3. For all Q € Tree® with £(Q) =27% k>0, we have

_ 0P 0(S)?
&VE»Z(Q) SEOM C(U?(BQ + Z ‘APgOHLQ( ( )n—i—l + Z (Q)n+2 S)
PcTree® SeStop®
PcCQ SCQ
(4.6)
Moreover,
> 1A%l 720) S Mllgslliiey = Myg(T) < Mpu(R?). (4.7)
PcTree®
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Proof. We claim that for P € Tree® with ¢(P) < 27% (in particular, for
P € Tree® such that P C @) we have

Abgi = Apgs- (4.8)

Indeed, for = € P both sides of (4.8) are zero. For x € P’ C P, where
P’ € Tree® U Stop® is a child of P, we have

A%go(r) — Abgi(z) = Vg(P;)(;/;g(Pl) - V8<P€)<;)Z]§(P)

ww( > ggilammw»)

SEWS\Wr

— Py ( 3 Zgla(zﬂ N HF(S))) .

SEWS\Wr

The Whitney cubes S in the sums above above satisfy £(S) > 27% > ((P),
and moreover we have IIr(S) € Df. Hence, we either have P NII(S) = P or
PNIIp(S) = @. The same is true for P’. Moreover, we have P NIIp(S) # @ if
and only if P'NIIp(S) # . It follows that the right hand side above is equal
to

S S
Sews\wg Sews\wg
P'NIr(S)#2 PN (S)#£2
Thus A%g; = A%gs. Using this equality, and also the fact that v < v°¢, we
transform (4.5) into

(P ((P)?

~ o e ) e
allﬁ,Q(Q>2 Sgo,M aU,2(BQ)2+ Z HAP90’|%2(0’)£(Q)”+1+ Z K(Q)n+2y (P)
P]ED—gg)ee PIGD%EQPE
(4.9)

Concerning (4.7), it is an immediate consequence of (3.9) when we apply
Lemma 3.8 to v§ and the trees {Q € Tree® : @ C Rf} (recall that the union
of such trees gives the entire Tree®). ]

We finally define Tree as the collection of cubes () € Dr such that for every
e € {0,1}" there exists P € Tree® satsfying {(P) = ¢(Q) and PN Q # @.
It is easy to check that Tree is indeed a tree, and that the stopping cubes
Stop = Stop(Tree) satisfy Ugesiop @ C Ue Ugestope @- Thus,

p( U @)g > u( U @)(?e.

QeStop ec{0,1}n QEeStop®
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Moreover, Tree C Tree(, . ), so for all ) € Tree

1(ABg) < MU(Q)™,
n(Q) = MH(Q)"™.

The only thing that remains to be shown is the packing condition (4.1).
Lemma 4.4. We have

> &VQ,Q(BQ)QE(Q)” < 00.
QETree

Proof. Recall that in Lemma 2.2 we defined a constant ky > 0 such that for
any ) € Dr, £(Q) < 27% there exists a cube Py € Dr satisfying SEQ C
V(Pg), U(Pg) = 2k ¢(Q). Since there are only finitely many @ € Tree with
£(Q) > 27% we may ignore them in the estimates that follow.

Suppose Q € Tree and ((Q) < 2% let Py be as above. Recall that
Vg = y;gg;, where e = ¢(Q), k = k(Q) are such that Py € D¢ and ¢(Pg) = 27

We defined Tree in such a way that necessarily Py € Tree®. It follows from
Lemma 3.4 applied with v = v, B = BQ, Q = Py, that

Quo2(BQ) SeoMko Qg 2(Pq) + ag2(Bp,).

We use (4.6) and the inequality above to obtain

aVQ72(‘§Q)2

((P) (s)*

< g € e
SeoMko Qo2(Bry)® + E, |A%g o||L2 + E ————v°(S5).
’ ’ ¢ PcTree® (PQ)n+1 S€EStop® K(P)Q)TH—2
PCPq SCPg

Taking into account that each Py € Tree® may correspond to only a bounded
number of @) € Tree, and that ¢(Q) ~y, ((Pg), we get

Z aVQ 2(BQ)2£(Q> ~eo,M,ko Z aU,Q(BQ’)2€<Q,)n

QETree: Pg & Tree® Q' €Tree®

(P

+ Z Z ’APgOHLQ(O')£ Q/ + Z Z

/
Q' €Tree® PcTree® Q' €Tree® SeStop® (Q
Pcq’ ScqQ’

The first sum from the right hand side is finite because ¢ is uniformly rectifiable,
see Theorem 1.6.8. We estimate the second sum by changing the order of
summation:

((P) ((P)
[N [ = 1A% 95172
Q’Ez'l';ee Pe'l'z;:e IR )g(Q,) Pe'l'z;:e I )Q/Ez'l';eee K(Ql>
pcw’ Q>oP
(4.7) 4
S Z ||AP90||L2(0') S Mp(R?) < oo

PcTree®
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The third sum is treated similarly:

> X (S)= Y (9 X < Y A(S) < oo
Q' €Tree® SeStop® (Q SeStop® Q' €Tree® K(Q/)2 SeStop®
ScqQ’ QDS

Thus,
> A a(B)(Q)" = Y S Guga(B)(Q)" < o

QETree e€{0,1}" Q€Tree: Py Tree®

5 From approximating measures to u

To prove Lemma 1.8 we need to pass from the estimates on ayQVQ(EQ) shown
in Lemma 4.1 to estimates on &, 2(Bg).

Recall that K > 20 is the constant such that for all Whitney cubes ) € W*
we have KQNT # &, and kg = ko(n, A) is an integer from Lemma 2.2.

Lemma 5.1. There exists A = A(ko, K,n,d) > 3 such that if M = M (e, A\, A,n,d, n)
and Tree = Tree(\, M, ¢) are as in Lemma 4.1, then for all QQ € Tree with

0Q) <27
,2(Bg)” Saan Gug2(Bg)® + aga(Bg)® + Qe > P
PEWQ
PCABg

Proof. Let Q € Tree with £(Q) < 27%. We will define an auxiliary measure
HQ- Set _
]Q:{PEWQZHF(P)QSBQ 7&@}

It is easy to check that
J P c ABy, (5.1)
Pelg

for A = A(ko, K, n,d) big enough (e.g. A = C(n,d)K2* works). It is crucial
that all cubes in I have sidelength bounded by 2%¢(Q), otherwise no such A
would exist.

Recall that the functions gp(x) = Z(;)zl]lnr(p)( z), P € Wy, were used to
define v at the beginning of Section 4. Let

Jyp,9p do
ap = —————
p(P)

Note that for P € Wy \ I we have ap = 0. The measure p is defined as

Hg =5, ke + Y applp.
Q PGIQ
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First, let us show that if A (the constant from the definition of By = ABg)
is big enough, then ,u\SBQ = HQ’3B . We need to check the following: if
Q

P € W@ is such that PN 3Bg # @, then P € I and ap = 1.
Note that for all such P we have

(2.4) (2.3)
((P) < diam(P) < r(3Bg) = 9diam(Q) < 27%@

9

and so P € Wy. Furthermore, the fact that P N 3By # @ and (2.4) imply
that P C 9B¢. Since Iy is V/2-Lipschitz continuous, and By is centered at I,
we get that for A big enough (e.g. A = 9v/2)

I (P) C ABg = By. (5.2)

We conclude that P € I and ap = 1, and so,

Mg = Hal,p, - (5.3)

Set L = Lg@. We will apply Lemma 3.2 with v = pg, B1 = Bg, By =

)\éQ, L=1L,and f = Phy Notice that supp pg C )\éQ by (5.1). Moreover,
using the same trick as in the beginning of the proof of Lemma 3.3, we
may assume that L N Bg # @. Since ug(Bgo) =~y no(ABg) =~y £(Q)" by
Lemma 4.1, and r(ABg) = Mr(Bg), the assumptions of Lemma 3.2 are met,
and we get that

Walequq, apoM”|,) Suaa Walug, avg, H"|L)- (5.4)

Applying the triangle inequality yields

Wa(pq, a%@?‘l"h)g S Walpg, SOEQVQ)2 + Walep, vo, (ng”H"h)Q
~u Wk, 05,10)° + Gug2(Bo) Q). (5.5)

To estimate Wy (g, ¢ Bo vg) we define the following transport plan:

dr(z,y) = ¢, (@)dulr( + > — uQ] )¢5, W)gry)do(y).
Pelg po(P
Then,
Walpia, 95,10)° < [ |v =y dr(@,y) S 30 6P [ o5, Wary)do(y)
PE[Q
(5.1

< D PP < Y u(P)UP)?

Pelg PeWg

PCABg
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Putting together (5.3), (5.4), (5.5), and the estimate above, we get

Walpqu, apqM™|;) Sman Qug, 2(Bo)* Q)"+ > w(P)((P)?
PeWwq
PC)\EQ

Finally, we use the triangle inequality, the estimate (3Bg) ~u o(Bg) ~
r(Bg)", and the fact that Ly minimizes a,2(Bg), to get

Gu2(B)* Q)" = Walpqu, apoH”|,,) < Walpou. apgt”(;)

+ f(de:u V2 W( Hn| )+W( an|>
f(pQ dO_ 2 SDQCT? CLSOQ LQ 2 QDQO-’ a’sDQ L

S Wapou, apH™| ) + Walpgo, apoH"| ;)
< Wapgp, apgHM”|) + s 2(Bg)*(Q)" 2,

and so the proof is complete. O

We are ready to finish the proof of Lemma 1.8.

Proof of Lemma 1.8. Recall that R is a I'-cube with ¢(R) = 1, and € > 0 is
an arbitrary small constant, and that they were both fixed in Subsection 2.1.
Let A\, M, Tree, and Stop be as in Lemma 5.1 and Lemma 4.1. Set

~R\ | P

PeStop

By Lemma 4.1, we have u(R') > (1 — ¢)u(R). Our aim is to show that

///OC#Q,IT —d,u() 0.

For any x € R’ we have arbitrarily small cubes from Tree containing .
Hence, for any k > ko + 3, r € (27% 27%+1] we have 3B(z,r) C Bg for the
cube Q € Tree containing z and satisfying £(Q) = 27%"3. Thus, by Lemma 3.3,

p2(B(,1)* S aue(Bg) + as2(Bg)®.

Integrating both sides with respect to r yields

L Gua(Bler)® = Su [ (@2(Ba)’ + a02(Ba)’) —

~ Q,0(Bg)” + aga(Bg).
The inequality above holds for all z € Q N R/, so

—k —k
/2 + dr 27k dr
2

/QﬂR’ /22 . Gy2(Blw,7))’ @ dp(x) Sar (@2(Bg)® + aoa(Bo)*)m(Q)
~ar (Qp2(Bo)? + ag2(Bg) ) Q)"
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Summing over all Q € Tree with £(Q) = 27%"3, and then over all k > ko + 3,
we get

fehh

—kg—2

- dr

G2 (B, 1)) = du(a)

S Y Gua(BeHQ)"+ Y. asa(Be)*Q)". (5.6)
QETree QETree
{(Q)<27%0 0Q)<2—ko

On the other hand, for any » > 0 we have

Gua(B(z,1))* <

" ! 4 (B o dr J
/,/ﬂo,z ap(B(x,r)) g w(z) < oo.

Thus, in order to prove Lemma 1.8, it suffices to show that the sums on the
right hand side of (5.6) are finite.
The finiteness of

Z Oéa,z(BQ)Qg(Q)n

QeDr, QCR

follows by Theorem 1.6.8. To estimate the other sum we apply Lemma 5.1:

Z am?(BQ)%(Q)nS Z aVQQ(BQ)%(Q)n

QETree QETree
(Q)<2ro ((Q)<27ko
D \2 n g(P>2
£ Y Bl Y Y uP)os
QETree QETree  PeWqg
(Q)<2ho (Q)<2 M0 PcABy

The first sum is finite by Lemma 4.1, the second by Theorem 1.6.8. Concerning
the last sum, we may estimate it in the following way:

(P)? (P>
>, > uP) S D > wP) Y
QcTree  PeWg K(Q)Q ec{0,1}» Pew* QETree g(Q)Z
K(Q)§27k0 PC)\BQ PCABgr )\BQDP
S S wP < Y pABr) = 2u(\By) < oo.
ec{0,1}n PeWw* ec{0,1}"
PCABgr

Thus,
Y. u2(Bo)M(Q)" < oo

QETree
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Cones, rectifiability, and singular integral
operators V

1 Introduction

Let m < d be positive integers. Given an m-plane V' € G(d, m), a point € R?,
and a € (0,1), we define

K(z,V,a) ={y € R? : dist(y,V +z) < alz —y|}.

That is, K(z,V,«a) is an open cone centered at x, with direction V, and
aperture .

Let 0 < n < d. It is well-known that if a set £ C R? satisfies for some
Ve G(d,d—n), a€(0,1), the condition

rel = ENK(z,V,a) =2, (1.1)

then E is contained in some n-dimensional Lipschitz graph I, and Lip(I') < £,

see e.g. [Mat95, Proof of Lemma 15.13].

To what extent can we weaken the condition (1.1) and still get meaningful
information about the geometry of E7 It depends on what we mean by
“meaningful information”, naturally. One could ask for the rectifiability of
E or if F contains big pieces of Lipschitz graphs, or whether nice singular
integral operators are bounded on L?(E). In this chapter we answer these
three questions.

1.1 Rectifiability

A measure-theoretic analogue of (1.1), well-suited to the study of rectifiability, is
that of an approximate tangent plane from Section [.2. For reader’s convenience
we recall the definition below.

119



V. CONES, RECTIFIABILITY AND SIOS

120

For r > 0 we define the truncated cone
K(z,V,a,r) = K(z,V,a) N B(zx,7),
and for 0 < r < R we define the doubly truncated cone
K(z,V,a,r,R) = K(z,V,a, R) \ K(z,V,a,r).

Definition 1.1. We say that an n-plane W € G(d,n) is an approzimate
tangent plane to a Radon measure p at x € supp p if ©™*(u, x) > 0 and for
every a € (0,1)

oy P (2, W @, 7))

r—0 rn

~0. (1.2)

Recall that a classical result of Federer characterizes rectifiable measures
in terms of existence of approximate tangent planes, see Theorem [.2.4.

The results we prove in this paper are of similar nature. More precisely, we
introduce and study conical energies.

Definition 1.2. Suppose p is a Radon measure on R?, and z € supp . Let
Ve G(d,d—n), a€(0,1), 1 <p<ooand R> 0. We define the (V,«, p)-

conical energy of u at x up to scale R as

R <ﬂ(K($, V,a,r)))p dr

rn r

SM,P(xa Va OZ, R) = /

0
For E C R? we set also g, (7, V,a, R) = Eynlpp(2, V0, R).

The conical energies can be seen as a “quantification” of the notion of
approximate tangent plane. We are ready to state our first result.

Theorem 1.3. Let 1 < p < co. Suppose ju is a Radon measure on RY satisfying
O™ (u,x) > 0 and O™ (u,x) < 0o for p-a.e. x € RL. Assume that for u-a.e.
x € R? there exists some V, € G(d,d —n) and a, € (0,1) such that

Eup(x, Vg, 1) < 00, (1.3)

and the mapping x — (Vy, ) is measurable. Then, u is n-rectifiable.
Conversely, if i is n-rectifiable, then for p-a.e. x € R? there exists V, €
G(d,d — n) such that for all « € (0,1) we have

Eupx, Ve, o, 1) < o0. (1.4)

Remark 1.4. The “necessary” part of Theorem 1.3 improves on Theorem 1.2.4
in the following way. Existence of approximate tangents means that the conical
density simply converges to 0, while (1.4) means that the conical density
satisfies a Dini-type condition, and converges to 0 rather fast.
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Remark 1.5. Concerning the “sufficient” part of Theorem 1.3: clearly, con-
dition (I.2.2) is weaker than (1.3). However, Theorem 1.3 has the following
advantage over Theorem 1.2.4: we only require ©™*(u, x) > 0 and ©7 (i, x) < oo
for our criterion to hold. In particular, we do not assume p << H"™. It is not
clear to the author how to show a criterion involving (1.2.2) or (1.2) without
assuming a priori p << H".

Question 1.6. Suppose y is a Radon measure on R? satisfying ©™*(u, z) > 0
and ©"(p, z) < oo for p-a.e. & € R% Assume that for p-a.e. x € R? there is an
approximate tangent plane to p at x. Does this imply that p is n-rectifiable?

Let us mention related results. The behaviour of conical densities on purely
unrectifiable sets is studied in [CKRS10] and [Kéel0, §5]. In [Mat88, KS08,
CKRS10, KS11] the relation between conical densities for higher dimensional
sets and their porosity is investigated.

Higher order rectifiability in terms of approximate differentiability of sets
is studied in [San19]. In [DNI19] the authors characterize C' rectifiable
sets using approximate tangents paraboloids, essentially obtaining a C1©
counterpart of Theorem [.2.4. See also [Ghi20] and [GG20] for related results.

We would also like to mention recent results of Badger and Naples that
nicely complement Theorem 1.3. In [Nap20, Theorem D] Naples showed that
a modified version of (1.2) can be used to characterize pointwise doubling
measures carried by Lipschitz graphs, that is measures vanishing outside of a
countable union of n-dimensional Lipschitz graphs. In an even more recent pa-
per [BN20] the authors completely describe measures carried by n-dimensional
Lipschitz graphs on R?. They use a Dini condition imposed on the so-called
conical defect, and their condition is closely related to (1.3). Note the absence
of densities in the assumptions (and conclusion) of their results.

1.2 Big pieces of Lipschitz graphs
Before stating our next theorem, we need to recall some definitions.

Definition 1.7. We say that an n-ADR set E C R? has big pieces of Lipschitz
graphs (BPLG) if there exist constants k, L > 0, such that the following holds.

For all balls B centered at F, 0 < r(B) < diam(FE), there exists a Lipschitz
graph I'g with Lip(I'p) < L, such that

H'(ENBNTR) > kr(B)".

Sets with BPLG were studied e.g. in [Dav88b, DS93a, DS93b] as one of the
possible quantitative counterparts of rectifiability. Let us point out that the
class of sets with BPLG is strictly smaller than the class of uniformly rectifiable
sets — sets containing BPLG are uniformly rectifiable, but the converse is not
true. An example of a uniformly rectifiable set that does not contain BPLG is
due to Hrycak, although he never wrote it down, see [Azz19, Appendix].
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While many characterizations of uniformly rectifiable sets are available, the
sets containing BPLG are not as well understood. David and Semmes showed
in [DS93b] that a set contains BPLG if and only if it has big projections and
satisfies the weak geometric lemma. We refer the reader to [DS93b] or [DS93a,
§1.1.5] for details. In a very recent paper [Orp20] Orponen characterized the
BPLG property in terms of having plenty of big projections, which settled a
problem going back to [DS93b].

In another recent paper, Martikainen and Orponen [MO18b] managed
to characterize sets with BPLG in terms of L? norms of their projections.
Interestingly, the authors use the information about projections of an n-ADR
set F to draw conclusions about intersections with cones of some subset £/ C E
with H"(E') ~ H"(E). This in turn allows them to find a Lipschitz graph
intersecting an ample portion of E’. We will use some of their techniques to
prove a characterization of sets containing BPLG in terms of the following

property.

Definition 1.8. Let 1 < p < oco. We say that a measure p has big pieces
of bounded energy for p, abbreviated as BPBE(p), if there exist constants
a, k, My > 0 such that the following holds.

For all balls B centered at supp p, 0 < r(B) < diam(supp p), there exist
a set Gp C B with u(Gp) > ku(B), and a direction Vg € G(d,d — n), such
that for all z € Gp

£, (2. V.o r(B)) = /OT(B) (u(K(x,V,oz,T))>p dr < M,. (1.5)

rh T

Theorem 1.9. Let 1 < p < co. Suppose E C R? is n-ADR. Then E has
BPLG if and only if H"|, has BPBE(p).

Remark 1.10. In particular, for n-ADR sets, the condition BPBE(p) is
equivalent to BPBE(q) for all 1 < p,q < 0.

Remark 1.11. In fact, one can show that an a priori slightly weaker condition
than BPBE is already sufficient for BPLG. To be more precise, in (1.5) replace
K(z,V,a,r) with K(z,V,a,7) N Gp, so that we get

B (H (K B v
/ (H ( (x’v’o;’:) i mGB)) Offﬂ < M,. (1.6)
0

We show that this “weak” BPBE is sufficient for BPLG in Proposition 9.1. It
is obvious that (1.6) is also necessary for BPLG: if E contains BPLG, then
choosing Gg = I'g as in Definition 1.7, one can pick the corresponding V' and
a so that K(z,V,a,r)NT'g = @.

It is tempting to consider also the following definition.
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Definition 1.12. Let 1 < p < co. We say that a measure u has bounded
mean energy (BME) for p if there exist constants a, My > 0, and for every
x € supp u there exists a direction V,, € G(d,d — n), such that the following
holds.

For all balls B centered at supp i, 0 < r(B) < diam(supp p), we have

], Eualw, Vs a7(B) dp(e)

B /B/OMB) (MMx,%,a,r)))p Cfﬂrdu(x) < My u(B).

rn

In other words we require p(K (z, Vo, r))Pr=""dyu(z) to be a Carleson
measure. This condition looks quite natural due to many similar charac-
terizations of uniform rectifiability, e.g. Theorem 1.6.3, Theorem [.6.8 or
Theorem 1.6.11.

It is easy to see, using the compactness of G(d,d — n) and Chebyshev’s
inequality, that BME for p implies BPBE(p). However, the reverse implication
does not hold. In Section 11 we give an example of a set containing BPLG
that does not satisfy BME. The problem is the following. In the definition
above, the plane V, is fixed for every = € supp p once and for all, and we do
not allow it to change between different scales. This is too rigid.

Question 1.13. Can one modify the definition of BME, allowing the planes
V. to depend on r, but with some additional control on the oscillation of V.,
so that the modified BME could be used to characterize BPLG, or uniform
rectifiability?

1.3 Boundedness of SIOs

Recall that in Section 1.4 we introduced K"(R?), the class of odd C? kernels
k: R4\ {0} — R satisfying for some constant Cy > 0

Ck

|x|n+j

IVik(x)| < forz #0 and j€{0,1,2}. (1.7)

A singular integral operator applied to a Radon measure v, with a kernel
k € K"(R?), and a truncation parameter ¢ > 0, was defined as

Tov(x) = /|;t—y|>6 k(y — ) dv(y), x€R%

1

Le(1t) we also set

For a fixed positive Radon measure p and a function f € L

Tyef(x) = Te(f ) ().

If 11 is n-ADR, the necessary and sufficient conditions for L?(u) boundedness
of T, were discussed in Section I.5. In the non-ADR setting less is known. A
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necessary condition for the boundedness of SIOs in L?(p), where 1 is Radon
and non-atomic, is the polynomial growth condition:

w(B(x,r)) < Cyr" for all € supppu, r > 0, (1.8)

see [Dav91l, Proposition 1.4 in Part ITI]. Eiderman, Nazarov and Volberg showed
in [ENV14] that if g has vanishing lower density, then the Riesz transform is
unbounded. Their result was generalized to SIOs associated to gradients of
single layer potentials in [CAMT19]. Nazarov, Tolsa and Volberg proved in
[NTV14b] that if £ C R™*! satisfies H"(E) < oo and the n-dimensional Riesz
transform is bounded in L?*(H"|,), then E is n-rectifiable. That the same is
true for gradients of single layer potentials was shown by Prat, Puliatti and
Tolsa in [PPT18].

Concerning sufficient conditions for boundedness of SIOs, in [AT15] Azzam
and Tolsa estimated the Cauchy transform of a measure using its  numbers.
Their method was further developed by Girela-Sarrién [GS19]. He gives a
sufficient condition for boundedness of singular integral operators with kernels
in £"(RY) in terms of B numbers. We use the main lemma from [GS19] to
prove the following criterion involving 2-conical energy.

Theorem 1.14. Let i be a Radon measure on R? satisfying the polynomial
growth condition (1.8). Suppose that u has BPBE(2) Then, all singular inte-
gral operators T,, with kernels k € K"(R?) are bounded in L*(u), with norm
depending only on BPBE constants, the polynomial growth constant Cy, and
the constant Cy, from (1.7).

Remark 1.15. A similar result, with BPBE(2) condition replaced by BPBE(1)
condition, has already been shown in [CT17, Theorem 10.2]. It is easy to see
that for measures satisfying polynomial growth (1.8) we have

Euo(x,V,a, R) < C1E,1(x,V,a, R),

and so BPBE(2) is a weaker assumption than BPBE(1). Moreover, in Section
12 we show that the measure constructed in [JM00] does not satisfy BPBE(1),

but it trivially satisfies BPBE(2). Hence, Theorem 1.14 really does improve
on [CT17, Theorem 10.2].

Remark 1.16. Recall that for n-ADR sets the condition BPBE(p) was equiv-
alent to BPLG, regardless of p. By the remark above, it is clear that if we
replace the n-ADR condition with polynomial growth (i.e. if we drop the lower
regularity assumption), then the condition BPBE(p) is no longer independent
of p. In general we only have one implication: for 1 <p < g < 00

BPBE(p) = BPBE(q).
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Remark 1.17. Theorem 1.14 is sharp in the following sense. If one tried
to weaken the assumption BPBE(2) to BPBE(p) for some p > 2, then the
theorem would no longer hold. The reason is that for any p > 2 one may
construct a Cantor-like probability measure p, say on a unit square in R?, that
has linear growth and such that for all € supp p

[ (u(B(:% >>> L

(that is, a much stronger version of BPBE(p) holds), but nevertheless, the
Cauchy transform is not bounded on L?(u1). See [Toll4, Chapter 4.7].

Sadly, the implication of Theorem 1.14 cannot be reversed. Let E C R?
be the previously mentioned example of a 1-ADR uniformly rectifiable set
that does not contain BPLG. In particular, by Theorem 1.9 FE does not
satisfy BPBE(p) for any p. Nevertheless, by the results of David and Semmes
Theorem 1.5.3, all nice singular integral operators are bounded on L?(E).

1.4 Cones and projections

Let us note that [CT17, Theorem 10.2] was merely a tool to prove the main
result of [CT17]: a lower bound on analytic capacity involving L? norms of
projections. Chang and Tolsa proved also an interesting inequality showing
the connection between 1-conical energy and L? norms of projections. We
introduce additional notation before stating their result.

Definition 1.18. Suppose V € G(d,d —n), a € (0,1), and 1 < p < co. Let
B be a ball. The (V| «, p)-conical energy of j in B is

E,un(B.V.0) = //B)( xv‘””) @dum

We define also
(x,V,a,r))\" dr
Eup(RYV, ) = /Rd/ < ) *dﬂ( )-

We will often suppress the arguments V, o, and write simply &, ,(B), &,,(R?).

Remark 1.19. For p = 1 we have

< (K (z,V,a,r)) / / 1Y)
rm  Jk@ve) Jje—yl 7“"“

1
=n" du(y), (1.9
/K(xVa |z —y|» #y), (L9)
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and so
1

Eni(REVia) =t [ [ du(y)dp(x). 1.10
/,L,l( ’ 7&) n Re J K (2,V,0) ’I—y’n M(y) /L(I) ( )

In their paper Chang and Tolsa were working with the expression from the
right hand side above.

Given V € G(d,m) we will denote by 7, : RY — V the orthogonal
projection onto V, and by 7> : R — V' the orthogonal projection onto V.
We endow G(d,m) with the natural probability measure v,,,, see [Mat95,
Chapter 3], and with a metric d(V,W) = |7y — 7w ||op, Where |||, is the
operator norm. We write myu to denote the image measure of u by the
projection my. If myu < H"|,,, then we identify myp with its density with
respect to H"|,,, and ||y || 12(1) denotes the L? norm of this density. Otherwise,
we set ||7TV,U||L2(V) = OQ.

Proposition 1.20 ([CT17, Corollary 3.11)). Let Vi € G(d,n) and a > 0.
Then, there exist constants A\, C' > 1 such that for any finite Borel measure p
in R?,

(1.10) 1
EREVE o) '~ / / —Fd d
1 o) wt i @vita) |2 — | 1u(y)dp(zx)
< C/ (l 22 d n V).
> (O’M)H villr (v) @7d, (V)

Let us note that a variant of this estimate was also proved in [MO18b], for
a measure of the form y = H"|,, with E a suitable set.

The inequality converse to that of Proposition 1.20 in general is not true,
but it is not far off. Additional assumptions on p are necessary, and one has
to add another term to the left hand side. See [CT17, Remark 3.12, Appendix
Al.

In the light of results mentioned above, as well as the characterization of
sets with BPLG from [MO18b], the connection between L? norms of projections
and cones is quite striking. Note that the proof of the Besicovitch-Federer
projection theorem also involves careful analysis of measure in cones, see
[Mat95, Chapter 18]. Exploring further the relationship between cones and
projections would be very interesting.

Question 1.21. Is it possible to obtain an inequality similar to that of Propo-
sition 1.20, but with &, > on the left hand side, and some quantity involving
7y on the right hand side?

1.5 Organization of the chapter

In Section 2 we state our main lemma, a corona decomposition-like result.
Roughly speaking, it says that if a measure p has polynomial growth, and for
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some V € G(d,d —n), a € (0,1) we have &,,(R% V,a) < oo, then we can
decompose D into a family of trees such that:

o for every tree, p is “well-behaved” at the scales and locations of the tree,
e we have a good control on the number of trees (see (2.2)).

We prove the main lemma in Sections 3-5. Let us point out that in the case
p = 1 an analogous corona decomposition was already shown in [CT17, Lemma
5.1]. Our proof follows the same general strategy, but some key estimates had
to be done differently (most notably the estimates in Section 4).

In Section 6 we show how to use the main lemma and results from [GS19] to

get Theorem 1.14. Sections 7 and 8 are dedicated to the proof of Theorem 1.3.

The “sufficient part” follows from our main lemma, while the “necessary
part” is deduced from the corresponding (5 result of Tolsa [Toll15]. We prove
Theorem 1.9 in Sections 9 and 10. To show the “sufficient part” we use the
results from [MO18b], whereas the “necessary part” follows from a simple
geometric argument. Finally, in Section 11 we construct a set with BPLG that
does not satisfy BME condition, and in Section 12 we show that the measure
from [JMO00] satisfies BPBE(2), but not BPBE(1).

2 Main lemma

In order to formulate our main lemma we need to introduce some additional
notation.

Let p be a compactly supported Radon measure with polynomial growth
(1.8). Suppose D is the associated David-Mattila lattice, as in Lemma I1.2.1,
and assume that

Ry =suppu €D

is the biggest cube.
Given a family of cubes Top C D% satisfying R, € Top we define the
following families associated to each R € Top:

e Next(R) is the family of maximal cubes () € Top strictly contained in R,

e Tr(R) is the family of cubes ) € D contained in R, but not contained in
any P € Next(R).

Clearly, D = Ugetop Tr(R). Define

Good(R)=R\ |J @.

Q€ENext(R)
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Lemma 2.1 (main lemma). Let u be a compactly supported Radon measure
on RY. Suppose there exists ry > 0 such that for all x € supppu, 0 < r < rg,

we have
w(B(x,r)) < Cir". (2.1)

Assume further that for some V € G(d,d —n), a € (0,1), and 1 < p < 00, we
have &, ,(R%, V, o) < oo.

Then, there exists a family of cubes Top C DP, and a corresponding family
of Lipschitz graphs {I g} retop, satisfying:

(i) the Lipschitz constants of I'r are uniformly bounded by a constant de-
pending on «,

(i) p-almost all Good(R) is contained in I'g,
(iii) for all Q € Tr(R) we have ©,(2Bg) < ©,(2Bg).
Moreover, the following packing condition holds:

>~ 0u2Br)’ u(R) Sa (C1) u(RY) + &R, V, ). (2.2)

ReTop
The implicit constant does not depend on ry.

We prove the lemma above in Sections 3-5. From this point on, until the
end of Section 5, we assume that u is a compactly supported Radon measure
satisfying the growth condition (2.1), and that there exist V € G(d,d—n), a €
(0,1), 1 < p < o0, such that

Ep(RLV @) < oo

For simplicity, in our notation we will suppress the parameters V and «.
That is, we will write &,,(RY) = £,,(R%,V, ), as well as K = K(0,V, a),
K(z) = K(z,V,a), and K(z,r) = K(z,V,«a,r). Finally, given 0 < r < R, set

K(xz,r,R) = K(z,R)\ K(z,).

Parameters

In the proof of Lemma 2.1 we will use a number of parameters. To make
it easier to keep track of what depends on what, and at which point the
parameters get fixed, we list them below. Recall that “C; = C1(C5)” means
that “the value of C'; depends the value of C5.”

e A= A(p) > 1is the “HD” constant, it is fixed in Lemma 5.1.
e 7 =7(q,t) is the “LD” constant, it is fixed in (4.1).

e M = M(a) > 11is the “key estimate” constant, it is chosen in Lemma 3.3.
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o n=mn(M,t) € (0,1) is the constant from the definition of &£, ,(Q) in (3.1),

it is fixed in the proof of Lemma 4.4.

o t =t(M,a) > M is the “t-neighbour” constant, see Section 3.3. It is
fixed just below (4.7), but depends also on Lemma 3.5 and Lemma 3.7.

e A=A(M) > 2M is the constant from Lemma 3.8.

o c =¢(1,a,m) € (0,1) is the “BCE” constant, it is fixed in Lemma 4.4.

3 Construction of a Lipschitz graph 'y

Suppose R € D%, In this section we will construct a corresponding tree of
cubes Tree(R), and a Lipschitz graph I'g that “approximates p at scales and
locations from Tree(R)”; see Lemma 3.8.

3.1 Stopping cubes

Consider constants A > 1, 0 < e < 7 < 1, and 0 < n < 1, which will be
fixed later on. Given () € D we set

1 @) (K (z, 7))\ dr
Eup(Q) = Q) /23Q /nr(Q) < s ) Tdu(m). (3.1)

For any R € D% we define the following families of cubes:

e BCEy(R), the family of big conical energy cubes, consisting of Q) € D(R)

such that
S £.,(P)> < 0,(2Bx).
QCPCR
e HD((R), the high density family, consisting of Q € D%®(R) \ BCEy(R)
such that

@“<QBQ) > A @u(2BR)

e LDy(R), the low density family, consisting of @) € D(R) \ BCEy(R) such
that
©,.(2Bg) < 710,(2Bg).

We denote by Stop(R) the family of maximal (hence, disjoint) cubes from
BCEy(R) U HDo(R) U LDo(R), and we set BCE(R) = BCEq(R) N Stop(R),
HD(R) = HDo(R) N Stop(R), LD(R) = LDy(R) N Stop(R).

Note that the cubes in HD(R) are doubling (by the definition), while the
cubes from LD(R) and BCE(R) may be non-doubling.

We define Tree(R) as the family of cubes from D(R) which are not strictly
contained in any cube from Stop(R) (in particular, Stop(R) C Tree(R)). Note
that it may happen that R € BCE(R), in which case Tree(R) = { R}.

Basic properties of cubes in Tree(R) are collected in the lemma below.
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Lemma 3.1. Suppose Q) € Tree(R). Then,
0,(2Bg) S A©,(2Bg). (3.2)

Moreover, for @ € Tree(R) \ Stop(R)

T@u(QBR) S @u(QBQ), (33)
S Eup(P) <26,(2B)".
QCPCR

Finally, for every Q) € Tree(R) there ezists a doubling cube P(Q) € Tree(R) N
D® such that Q C P(Q) and ((P(Q)) Sa- U(Q). If R ¢ Stop(R), we have
P(Q) € Tree(R) N D%\ Stop(R).

Proof. First, note that if R € Stop(R), then Tree(R) = {R} and the lemma
above is trivial. Assume that R ¢ Stop(R).

Inequalities (3.3) and (3.4) are obvious by the definition LD(R) and BCE(R).

Concerning (3.2), note that for Q € Tree(R) N D% \ Stop(R) we have
©,.(2Bg) < ABO,(2Bg) by the high density stopping condition. In general,
given Q € Tree(R), let P(Q) be the smallest doubling cube containing @,
other than ). Since R € D® and R ¢ Stop(Q), we certainly have P(Q) €
Tree(R) N D%\ Stop(R), and so ©,(2Bp(g)) < AO,(2Bg).

Denote by Py, Ps, ..., P, all the intermediate cubes, so that Q C P, C
-+ C P, C P(Q). Since P; are non-doubling, we have by Lemma I1.2.6

6,(2Bq) £ 0,(2Bp) S 6,(100B(P1)) < (Codo) 4,°"* V6, (100B(P(Q)))
5 @u(2BP(Q)) < A@u(QBR)7

which proves (3.2).

Finally, to see that /(P(Q)) Sar ¢(Q), note that P, € Tree(R) \ Stop(R),
and so 70,(2Bg) < ©,(2Bp,). On the other hand, a minor modification of
the computation above shows that

Ou(2Bp,) Scoa Ay "V A0, (2Br).
It follows that k& <a - 1. O

The following estimate of the measure of cubes in BCE(R) will be used
later on in the proof of the packing estimate (2.2).

Lemma 3.2. We have

> W< g Eun(P)i(P). (3.5)

QEeBCE(R) PcTree(R)
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Proof. We use the fact that for @) € BCE(R) we have

Y Eup(P)>e0,(2Bp)

QCPCR
to conclude that
1
©,.(2BR)" Z 1Q) < - Z Eup(P
QEBCE(R) QEBCE(R) Qg}e)gR
1 1
== > &pP) > w@Q <= Y Ep(P)u(P).
€ PeTree(R) QEBCE(R) € pPeTree(R)

QcCPp

3.2 Key estimate

We introduce some additional notation. Given z € R? and \ > 0 set
KMz) = K(x,V, \a).

For ) € D, we denote

Kg = |J K*z)
z€eQ

If A =1, we will write K¢ instead of K}

Lemma 3.3. There exists a constant M = M («) > 1 such that, if Q) € Tree(R)
and P € D(R) satisfy

PNKY*\ MBq # @ (3.6)

and

dist(Q, P) > Mr(P),
then P & Tree(R).

Proof. Taking M = M («) > 1 big enough, we can choose cubes P', ) € D(R)
such that

e PCP CR, PPCKY* and ¢(P) =~ dist(P,Q),
e QCQ CR, Q) ~ M Y(P), and dist(P', Q") ~ {(P").
Moreover, if M is taken big enough, we have for all x € 2B
2Bp C K(x).
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Thus, if 7 is taken small enough (say, n < M), we have

p(2Bp) \" @) (K () \" dr
( Py ) w(2Bg) <y /23Q, /nr(Q/) ( s ) 7d,u(x)
= 5,11,,]9(@,)#(@/)' (37)
Since @ € Tree(R) and Q C @', we have @)’ € Tree(R) \ Stop(R), and so

1(2Bp) )p B9 (@) (34)

0,207 = ( £upl@) < E,(@) < 0,28

WPy ) ™ By
It follows that, for € small enough, P’ € LDy(R). Since P C P’, we get that
P ¢ Tree(R). O
We set
QeStop(R) k=1 Q€cTree(R)
r(Q)<A4y "

Note that G C Gr.

Lemma 3.4. For all z,y € G we have y & K'2(x). Thus, Gg is contained
in an n-dimensional Lipschitz graph with Lipschitz constant depending only on
a.

Proof. Proof by contradiction. Suppose that z,y € Gg and  — y € K2
Let @, P € Tree(R) be such that x € 2M Bg, y € 2M Bp, with sidelength so
small that P N (Ky°\ MBg) # @ and dist(Q, P) > Mr(P). It follows by
Lemma 3.3 that P ¢ Tree(R), and so we reach a contradiction. O

3.3 Construction of I'y

The Lipschitz graph from Lemma 3.4 can be thought of as a first approximation
of I'g. It contains the “good set” G R, but we would also like for I'g to lie close
to cubes from Tree(R). In this subsection we show how to do it.

Given t > 1, we say that cubes ), P € D are t-neighbours if they satisfy

' r(Q) < r(P) < tr(Q) (3.9)

and

dist(@, P) < t(r(Q) + r(P)). (3.10)

If at least one of the conditions above does not hold, we say that () and P are
t-separated. We will also say that a family of cubes is t-separated if the cubes
from that family are pairwise t-separated.
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Consider a big constant ¢t = ¢(M, «) > M which will be fixed later on. We
denote by Sep(R) a maximal t-separated subfamily of Stop(R) (it exists by
Zorn’s lemma). Clearly, for every @) € Stop(R) there exists some P € Sep(R)
which is a t-neighbour of Q).

Furthermore, we define Sep”(R) as the family of all cubes @) € Sep(R)
satisfying the following two conditions:

2MBoNGr =@, (3.11)
and for all P € Sep(R), P # @, we have

2MBp ¢ 2M Bo. (3.12)

Lemma 3.5. Supposet = t(M) is big enough. Then, for all@Q, P € Sep"(R), Q #

P, we have QQ ¢ 1.5M Bp.

Proof. Suppose ) € Sep”(R), and Q C 1.5M Bp. We will show that P ¢
Sep*(R).

Firstly, if 7(Q) > ¢t 'r(P), then Q C 1.5M Bp implies that Q and P
are t-neighbours (for ¢ big enough), and so P ¢ Sep”(R). On the other
hand, if 7(Q) < ¢~ 'r(P), then (if ¢ is big enough) Q C 1.5M Bp implies
2M By C 2M Bp, contradicting (3.12). O

Lemma 3.6. For every Q) € Sep(R) at least one of the following is true:
(a) 2MBoNGr # @,
(b) there exists P € Sep™(R) such that 2M Bp C 2M By,.

Proof. 1f @ € Sep™(R), then of course (b) holds (with P = ). Suppose that
Q ¢ Sep*(R), and that (a) does not hold (i.e. 2M Bo N Gr = @). We will find
P € Sep®™(R) such that 2M Bp C 2M By,.

Since @ ¢ Sep™(R) and (3.11) holds, condition (3.12) must be false. Thus,
we get a cube ()1 € Sep(R) such that 2M By, C 2M Bg. If )1 € Sep™(R), we
get (b) with P = ;. Otherwise, we continue as follows.

Reasoning as before, Q; € Sep(R) \ Sep*(R) and 2M By, NG = & ensures
that there exists a cube Q2 € Sep(R) such that 2M By, C 2M By, . Iterating
this process, we get a (perhaps infinite) sequence of cubes Qg := @, Q1, Q2, - ..
satisfying 2M Bg.,, C 2M Bg, .

If the algorithm never stops, then (2, 2M Bg, # @. But, by the definition
of Gp (3.8) we have N2, 2M Bg, C Gr, and so we get a contradiction with

2MBg N Gr=0. Thus, the algorithm stops at some cube @),,, which means
that @,, € Sep™(R). Setting P = @,, finishes the proof. ]

Lemma 3.7. Suppose t = t(M) is big enough. Then:
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(a) for all Q, P € Sep"(R), Q # P, we have

QNK*=PnKY’ =2, (3.13)

(b) for all z € Ggr and for all Q € Sep*(R) we have

¢ Ky° and QNKY(z) =0, (3.14)

Proof of (a). Proof by contradiction. Suppose @ N Kllg/ ‘L oy (which by
symmetry of cones implies P N K, é/ 2 # &). Without loss of generality, assume
r(Q) < r(P). Since @ and P are t-separated, at least one of the conditions
(3.9), (3.10) fails, i.e.

r(Q) <t 'r(P) or dist(Q,P) > t(r(Q) + r(P)).

We know by Lemma 3.5 that @ ¢ 1.5M Bp. It is easy to see that in either
of the cases considered above, this implies ) N 1.2M Bp = &. It follows that
Qﬂ(K};/z\MBp) # @ and 7(Q) < r(P) < M~'dist(Q, P). Hence, we can use
Lemma 3.3 to conclude that @ ¢ Tree(R). This contradicts @ € Sep™(R). O

Proof of (b). Proof by contradiction. Suppose x € Kclgﬂ. We have © ¢ 2M By,
by (3.11). Since € G, we can find an arbitrarily small cube P € Tree(R)
such that © € 2MBp. Taking r(P) small enough we will have r(P) <
M~'dist(Q, P) and PN Ky*\ MBg # @ (because = € K°\ 2MBg).
Lemma 3.3 yields P ¢ Tree, a contradiction. [

Lemma 3.8. There exists a Lipschitz graph U'g, with Lipschitz constant de-
pending only on o, such that B
Gpr C I'p.

Moreover, there exists a big constant A = A(M,t) > 1 such that for every
Q) € Tree(R) we have
ABoNTg # @. (3.15)

Proof. Recall that for each cube ) € D we have a “center” denoted by z¢ € Q.
Set F = {zg : Q € Sep™(R)} UGk. It follows by Lemma 3.4 and Lemma 3.7
that for any =,y € F we have x —y ¢ K'/2. Thus, there exists a Lipschitz
graph I'g, with slope depending only on «, such that F' C I'p.

Concerning the second statement, it is clearly true for Q € Sep™(R) (even

with A = 1). For () € Sep(R), we have by Lemma 3.6 that either 2M BoNGg #
@ or there exists P € Sep*(R) with 2M Bp C 2M Bg. Thus, (3.15) holds if
A>2M.

If @ € Stop(R), there exists some P € Sep(R) which is a t-neighbour of
@), so that for some A = A(t, M) > 1 we have ABy D 2M Bp, and 2M Bp
intersects I'g. Finally, for a general () € Tree(R), either ) contains some cube
from Stop(R), or Q C Gg. In any case, ABo NT'x # @. O



4. Small measure of cubes from LD(R)

Remark 3.9. Note that while for a general cube @ € Tree(R) we only have
ABg NT'r # &, we have a better estimate for the root R:

BrNT'g # 2. (3.16)

Indeed, (3.16) is clear if the set Gr is non-empty. If G = @, then Sep*(R) # @,
so that for some P € Sep™(R) we have zp € I'r N Bp.

4 Small measure of cubes from LD(R)

In the proof of the packing estimate (2.2) it will be crucial to have a bound on
the measure of low density cubes.

Lemma 4.1. We have

> Q) See TH(R).

QELD(R)

In particular, for 7 small enough we have

> w@Q) < 7u(R). (4.1)

QELD(R)
We begin by defining some auxiliary subfamilies of LD(R).

Lemma 4.2. There ezists a t-separated family LDsep(R) C LD(R) such that

Y. M@ > Q).

QELD(R) QELDsep(R)

Proof. We construct the family LDse,(R) in the following way. Define LD;(R)
as a maximal t-separated subfamily of LD(R). Next, define LDy(R) as a
maximal t-separated subfamily of LD(R) \ LD;(R). In general, having defined
LD,(R), we define LD;1(R) to be a maximal t-separated subfamily of LD(R) \
(LD1(R)U---ULD,(R)).

We claim that there is only a bounded number of non-empty families
LD;(R), with the bound depending on t. Indeed, if @ € LD;(R), then @ has
at least one t-neighbour in each family LDy(R), k < j. It follows easily from
the definition of t-neighbours that the number of t-neighbours of any given
cube is bounded by a constant C(t). Hence, j < C(t).

Set LDsep(R) to be the family LD;(R) maximizing Y geip,(r) #(Q). Then,

> @ <o) Y Q).

QELD(R) QELDsep(R)
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We define also a family LDg.,(R) C LDse,(R) in the following way: we
remove from LDse,(R) all the cubes P for which there exists some ) € LDgep(R)
such that

1.1BoN1.1Bp # @ and  7(Q) <r(P). (4.2)

Lemma 4.3. For each Q) € LDse,(R) at least one of the following is true:
(a) 1.2BoNGr+# @
(b) There exists some P € LDg.,(R) such that 1.2Bp C 1.2Bg.

Proof. Suppose () € LDse,(R), and that (a) does not hold. We will find P
such that (b) is satisfied.
If Q ¢ LDg, (1), then there exists some cube @)1 € LDsep(RR) such that

1.1BoN1.1Bg, # @ and r(Q1) < r(Q). (4.3)

Since @ and Q) are t-separated, and (3.10) holds, it follows that ¢ r(Q1) < r(Q).
Thus, Q1 is tiny compared to @ and we have 1.2B, C 1.2Bq. If Q1 € LD (R),
we set P = ()1 and we are done. Otherwise, we iterate as in Lemma 3.6 (with
2M replaced by 1.2) to find a finite sequence @i, Qs,..., @Q,, satisfying
1.2Bq,., C 1.2Bq,, and such that Q,, € LDg.,(R). O

Lemma 4.4. For each Q € LDg (R) we have

(@0 U (K \MBp)) Sra (@), (4.4)

PeELDE, (R)

In particular, if € is small enough, then for each Q € LDg.,(R) we can choose
a point

weeQ\ U (K¥*\MBp). (4.5)
PeLDg, (R)

Proof. Suppose @ € LDg.,(R) and that we have QnKY? \ M Bp # @ for some
P € LDs,,(R). Note that if we had Mr(Q) < dist(Q, P), then the assumptions
of Lemma 3.3 would be satisfied, and we would arrive at @ ¢ Tree(R), a
contradiction. Thus,

dist(Q, P) < Mr(Q) < tr(Q). (4.6)

It follows that (3.10) — one of the t-neigbourhood conditions — is satisfied. Since
() and P are t-separated, we necessarily have t(Q) < r(P) or tr(P) < r(Q).
If we had tr(Q) < r(P), then (4.6) implies dist(Q, P) < r(P). Hence,
1.1BoN1.1Bp # <. But this cannot be true, by the definition of LDg,(R). It

follows that
tr(P) <r(Q). (4.7)
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Let S D P be the biggest ancestor of P satisfying r(S) < 6r(Q) for some
small constant § = d(«) which will be fixed in a few lines. If ¢ is big enough,
then S # P. Thus, r(S) =5 r(Q), and S € Tree(R) \ Stop(R). Recall that
by the definition of LDg,,(R) we have 1.1Bo N 1.1Bp = @. It follows that
it 6 < 0.001, then 4Bs N 1.05By = @. Now, using this separation, it is not

difficult to check that for 6 = d(a) small enough, for any = € K 113/ >N Q we have
2Bg C K(ZL‘)

Observe also that, due to (4.6) and the fact that r(S5) < dr(Q), we have

2Bs C B(x,r) for r € (77;7“<Q)7 77_17“<Q)> ;

provided that 7 is small enough (say, n~! > t). Putting together the two
estimates above, we get that

1(2Bs) < p(K(z,r))

for any z € K]lg/2 NP >N K}Dﬂ \ MBp and all r € (n7'r(Q)/2, n7'r(Q)).
Integrating the above over all z € A, where A C @ N K}13/2 \ MBp is an
arbitrary measurable subset, yields

H(AOLBP < 7 H(AOLBS) S p(A) (ﬁ;«(f@B)i))

Sn /A/nj(:):(@ <W>pcindu(a:). (4.8)

r

Now, let P; be some ordering of cubes P € LDg,,(R) satisfying Q N Kllg/2 \
MBp # @. We define A, = QN KY*\ MBp,, and for i > 1

i—1
A= QNEY\ (MBPZ. U Aj>.

Jj=1

Observe that A; are pairwise disjoint and their union is @ N PeLDE, ( R)(K}D/ 2 \

M Bp). Thus,

M(Q n U K\ MBP) 0,(2BR)" = 3 n(A;)0,(2BR)"

PELDE,, (R)

(4.8) 0@ (K (z,7))\" dr
S .0, /UiAi /m“(Q) (7’”) 7du(m) < Ep(Q)(Q).

Note that since @ ¢ BCE(R), we have &£, ,(Q)u(Q) < €0,(2Br)Pu(Q). So the
estimate (4.4) holds. O
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Lemma 4.5. There exists an n-dimensional Lipschitz graph U'\p passing
through all the points wp, P € LDg.(R). The Lipschitz constant of I'\p
depends only on «.

Proof. 1t suffices to show that for any Q, P € LDg,(R), Q # P, we have

wo — wp ¢ K2, (4.9)
Without loss of generality assume r(P) < r(Q). By (4.5) we have

wo & K§*\ MBp.

In particular,
wq ¢ K1/2(U)p) \ MBP

So, to prove (4.9), it is enough to show that
wg ¢ MBp. (4.10)
Assume the contrary, i.e. wg € M Bp. Then,
dist(Q, P) < CMr(P) < t(r(Q) + r(P)).

That is, (3.10) holds. But @ and P are t-separated, and so (3.9) must fail.
Hence,

r(P) <t7'r(Q).
@ and P belong to LDg.,(R), so by (4.2) we have 1.1Bo N 1.1Bp = &. Thus,

dist(wg, Bp) > 0.1r(Bg) > Ctr(Bp) > Mr(Bp).
So (4.10) holds. O
We can finally finish the proof of Lemma 4.1.

Proof of Lemma 4.1. By Lemma 4.2 it suffices to estimate the measure of
cubes from LDse,(R). Let G denote an arbitrary finite subfamily of LDse,(R).
We use the covering lemma [Tol14, Theorem 9.31] to choose a subfamily F C G

such that
U 1.5Bo ¢ | 2By,
Qeg QeF

and the balls {1.5B¢}ger are of bounded superposition.
The above and the LD stopping condition give

> (@) < Y u(2Bg) STOu(2BR) Y r(Bg)". (4.11)

Qeg QEF QEF

Now, it follows from Lemma 4.3 and Lemma 4.5 that for each Q) € G C LDse,(R)
there exists either wg € I''\pN1.2Bg or x € GrN1.2Bg C I'rN1.2Bg. Hence,

Hn(15BQ N (FLD U FR)) X T(BQ)”.
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Now, using the bounded superposition property of F we get

> r(Bo)" ma Y. H'(1.5BoN (o UTR)) SH"( U 15BN (N UTk))
QeF QEF QeF
_1 ReD _
< H*(2BrN(CLpUl'R)) ~a r(R)" &~ u(2Br)0,(2Br) ™" "= u(R)O,(2Br)".
Together with (4.11), this gives

3 Q) Sa Tr(R).

QEeG

Since G was an arbitrary finite subfamily of LDse,(R), we finally arrive at

Y. Q) SaTu(R).

QELDSep(R)

5 Top cubes and packing estimate

5.1 Definition of Top

In order to define the Top family, we need to introduce some additional
notation. Given @ € D, let MD(Q) denote the family of maximal cubes from
D®(Q)\{Q}. Tt follows from Lemma I1.2.3 that the cubes from MD(Q) cover
p-almost all of Q.

Given R € D% set

Next(R) = |J MD(Q).

QeStop(R)

Since we always have MD(Q) # {Q}, it is clear that Next(R) # {R}.
Observe that if P € Next(R), then by Lemma 3.1 and Lemma I1.2.6 we
have for all intermediate cubes S € D, P C S C R,

0,(2Bs) <a ©,(2Bp). (5.1)

We are finally ready to define Top. It is defined inductively as Top =
Ukso Topy. First, set
Topo = {R0}7

where Ry was defined as supp p. Having defined Top,,, we set

Top,1 = |J Next(R).

ReTop,,

Note that for each £ > 0 the cubes from Top, are pairwise disjoint.
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5.2 Definition of ID

We distinguish a special type of Top cubes. We say that R € Top is increasing
density, R € ID, if

M<Q€|EJD @) L),

Lemma 5.1. If A is big enough, then for all R € ID

1

O,2Br)’u(R) < 5 3. Ou(2Bo)"n(@Q). (5.2)
Q€ENext(R)

Proof. The definition of ID and the HD stopping condition imply that for any
RelD

0,(2Br)’ u(R) <20,(2Br)’ > wQ) <2477 > 0,(2Bo)u(Q).

QeHD(R) QeHD(R)

Note that all @ € HD(R) are doubling, and so by Lemma I1.2.7

0,2Be (@) < D ©u2Bp)'u(P)= > ©.2Bp)'u(P).

PeMD(Q) PeNext(R)
PCQ
If A is taken big enough, then the estimates above yield (5.2). O

5.3 Packing condition

We will now establish the packing condition (2.2). For S € Top set Top(S) =
Top ND(S) and Top,(S) = Top; N D(S). For k > 0 we also define

Top§(S) = |J Top,(9),
0<5<k

IDE(S) = ID N Topf(9).

Recall that p satisfies the following polynomial growth condition: there exist
C7 > 0 and ry > 0 such that for all x € supp p, 0 < r < ry, we have

u(B(x,r)) < Cir™. (5.3)

Lemma 5.2. For all S € Top we have

Y. ©u(2Br)"u(R)

ReTop(S)
e (K () dr
< -
e (CPU(S) + /Z N / ( = ) Cdu(z). (5.4)

The implicit constant does not depend on ry.
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Proof. First, we deal with ID cubes. Note that

(52) 1
Y 0.2BaVuR) < 5 Y Y 0,280 mQ)
RecIDE(S) ReIDE(S) QENext(R)
1
<5 > 6u2Be)luQ),
QeTopg T1(S)

where the last inequality follows from the fact that Uperopr Next(R) = Topp ™.

Now, observe that for @ € Top,,; we have r(Q) < CoAy*r(Ry), and so if k is
big enough, then r(2Bg) < ro. Thus, by (5.3)

©,.(2Bg) < (4. (5.5)
Hence,
> 0u2Brlu(R)= > ©,2Br)’u(R)+ Y ©.(2Br)u(R)
RETopk (S) RETopk (S)\ID ReIDE(S)
1
< 2 6u@BefuR)+5 Y. ©.(2Br)’u(R)
ReTop;($)\ID ReTopg ™ (S)
» 1 » (Cl)p
< 2 6uEBeuB)+5 X Ou2Br)u(R) + ().
ReTopk (S)\ID ReTopk(S)
(5.6)

Note that for small cubes @ € Topf(S) (i.e. satisfying r(2Bg) < ) we have
(5.5), while for big cubes the trivial estimate ©,(2Bg) < u(2Bg)ry" holds. It
follows that

> 0u2BrPPu(R) < (k+1) ((C1)" + p(2Bs)'rg ™) u(S) < oo,

ReTopk(S)

and so we may deduce from (5.6) that

Yo 0u@2BrlPu(R) <2 Y O©u(2Br)Pu(R) + (Cr)Pu(S).

ReTopk(S) ReTopk(S)\ID

Letting k — oo we arrive at

S 0B HR <2 Y OB u(R)+ (CYu(s).  (57)
ReTop(S) ReTop(S)\ID

Now, we need to estimate the sum from the right hand side. By the definition
of ID we have for all R € Top(S) \ ID

u(m U, Q) > juth)

QeHD
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and so by Lemma I1.2.1 (c) we get

u(R)§2u<R\ U Q>+2u< Q)
QeStop(R) QeStop(R)\HD(R)

—2M<R\ U @)+2 X a2 %)

QeNext(R) QELD(R QEBCE(R)

The measure of low density cubes is small due to (4.1), and so for 7 small
enough we have

u(R)Si%u(R\ U Q>+3 > @)

QeNext(R) QEBCE(R)
Thus,

> 0.2Br)’u(R) <3 > @H(2BR)”M<R\ U Q)

ReTop(S)\ID ReTop(S) Q€ENext(R)
3% Q0EY T Q). 69
ReTop(S)\ID QEBCE(R

Concerning the first sum, notice that if /L(R\ UgeNext(Rr) Q) > (), then we
have arbitrarily small cubes P belonging to Tree(R). In particular, by (3.3) and
(5.3), we have ©,(2Bg) < 77'0,(2Bp) < 77'C}, taking P € Tree(R)\ Stop(R)
small enough. Recall also that for R € Top(S), the sets R\ Ugenex(r) @ are
pairwise disjoint. Hence,

¥ e,emru(R\ U Q) (rarus.  (69)

ReTop(S) Q€ENext(R)

To estimate the second sum from (5.8), we apply (3.5) to get

Y o0.2Br Y w@<= Y Y Eu(P)u(P)

ReTop(S) QEeBCE(R) ReTop(S) PeTree(R)

(LI

<

i Z Eup(P)p(P)

PeD(S)

By the definition of &£, ,(P), and the bounded intersection property of the balls
2Bp for cubes P of the same generation, we have

S e (P _y Z /BP/nn(PrP)< (z, T))>pcir

PeD(S) k PeD,,

sz/ws ()
Nn/QBS/ 1COT(S (ﬂ R, ))> *du(x)-
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Consequently,
nCor(S) (K (z,r))\" dr
Y emy X w@s, [, [0 (MEE) T,
ReTop(S) QEBCE(R) 2Bs /O r r
Together with (5.7), (5.8), and (5.9), this gives (5.4). O

Let us put together all the ingredients of the proof of the main lemma.

Proof of Lemma 2.1. Let Top C D% be as above, and {['g}retop be as in
Lemma 3.8. Then, properties (i) and (ii) are ensured by Lemma 3.8. Property
(iii) follows from (5.1). We get the packing estimate (2.2) from (5.4) by taking
S = Ry. O

6 Application to singular integral operators

To prove Theorem 1.14, we will use geometric characterizations of boundedness
of operators from K"(R%) shown in [GS19, Sections 4, 5, 9]. Forn =1, d = 2,
a variant of this characterization valid for the Cauchy transform was already
proved in [Tol05].

For Q,S €D, Q C S, we set

u(@.9) = | 1

2Bs\2Bq |y — xQ|n

dp(y).

The notation Good(R), Tr(R), Next(R) used below was introduced in Section
2.

Lemma 6.1 ([GS19]). Let u be a compactly supported Radon measure on
R? satisfying the growth condition (1.8). Assume there exists a family of
cubes Top C DP, and a corresponding family of Lipschitz graphs {T g} reTop,
satisfying:

(i) Lipschitz constants of I'r are uniformly bounded by some absolute con-
stant,

(i7) p-almost all Good(R) is contained in I'g,
(7i7) for all Q € Tr(R) we have ©,(2Bg) < ©,(2BR).

(i) for all @ € Next(R) there exists S € D, Q C S, such that §,(Q,S) S
@“<2BR), and QBS N FR 7A .

Then, for every singular integral operator T with kernel k € K"(R?) we have

Sup ITeull 2y S D ©Ou(2Br)*u(R),

ReTop

with the implicit constant depending on Cy and the constant Cy, from (1.7).
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We are going to use Lemma 2.1 together with Lemma 3.8 and Lemma 6.1
to get the following.

Lemma 6.2. Let u be a compactly supported Radon measure on R? satisfying
the growth condition (1.8). Assume further that for some V € G(d,d — n),
a € (0,1), we have £,5(R%,V, o) < 0.

Then, for every singular integral operator T with kernel k € K™(R?) we
have

sup Tl S (R + E2(RV, ), (6.1)
15
with the implicit constant depending on Cy,« and the constant Cy from (1.7).

Proof. Using Lemma 2.1 (with p = 2), it is clear that the assumptions (i)-(iii)
of Lemma 6.1 are satisfied. We still have to check if (iv) holds. Once we do
that, the packing estimate (2.2) together with Lemma 6.1 will ensure that (6.1)
holds.

Suppose R € Top, @ € Next(R). We are looking for S € D such that
0,(Q,5) S ©,(2Bg), and 2Bs NI'y # @. Let P € Stop(R) be such that
@ C P. By Lemma 3.8 we have some constant A such that

ABpNTgp # 2.

Together with (3.16), this implies that there exists S € Tree(R) such that
P cC S, r(S) =, r(P), and

2BsNT'g # @.
We split
5.(Q.9) = [ LIRSy ——
pArer 2Bg\2Bp |y —xQ]” Ky 2Bp\2Bg |y _xQ|n I

Concerning the first integral, for y € 2Bg \ 2Bp we have |y — x| = r(S) =x
r(P), and so

1 (3.2)
——d < 0,(2Bs) <a 0,(2BgR).
Joposany Ty = aa ) S ©u(2Bs) 54 0,(2B5)
To deal with the second integral, observe that there are no doubling cubes
between () and P. Then, it follows from Lemma I1.2.6 that

1
—d < 0,(100B(P)).
Jospvom, Ty —saT ) S ©.(100B(P)
If P = R, then P is doubling and we have ©,(100B(P)) < ©,(2Bg). Otherwise,
the parent of P, denoted by P’, belongs to Tree(R)\ Stop(R). Since 100B(P) C
2Bp/, we get
(3.2)
6,(100B(P)) < 0,(2Bp) <4 ©,(25r).

Either way, we get that §,(Q,S) Sa ©,(2Br), and so the assumption (iv) of
Lemma 6.1 is satisfied. O



6. Application to singular integral operators

Lemma 6.2 allows us to use the non-homogeneous 7’1 theorem of Nazarov,
Treil and Volberg [NTV97] to prove a version of Theorem 1.14 in the case of a
fixed direction V', i.e. if for all x € supp u we have V, = V.

Lemma 6.3. Let i be a Radon measure on R? satisfying the polynomial growth
condition (1.8). Suppose that there exist My > 1, a € (0,1), V € G(d,d — n),
such that for every ball B we have

E.2(B,V,a) < Mou(B). (6.2)

Then, all singular integral operators T, with kernels in K"(R?) are bounded in
L*(ui). The bound on the operator norm of T, depends only on C4, a, My, and
the constant Cy, from (1.7).

Proof. We apply Lemma 6.2 to |5, where B is an arbitrary ball, and get that
5 71 ) ) Sevnce 10B) + Eutya(RE V. ).

It is easy to see that, using the assumptions (1.8) and (6.2), we have

Eulp2 RV, Q) S Eua(B,V.a) + Ciu(B) < (1+ CH)u(B).

5>

Hence,
Sli%) ”T6(M|B)||%2(MB) SCLQ,Ck,Mo :U'(B) (63>

The L? boundedness of T}, follows by the non-homogeneous 7'1 theorem from
INTV97]. The condition (6.3) is slightly weaker than the original assumption
in [NTV97], but this is not a problem, see the discussion in [Toll4, §3.7.2]. O

We are ready to finish the proof of Theorem 1.14.

Proof of Theorem 1.1/4. Let B be an arbitrary ball intersecting supp p. Recall
that, by the definition of BPBE(2), there exist My > 1, k > 0, Vg € G(d,d—n),
and Gp C B such that u(Gp) > ku(B) and for all z € G

/w%mmmwﬂm§2m<M
Ly
0

rm T

By the polynomial growth condition (1.8) we also have

/oo <u(K(x,VB,a,r))>2 dr _ = (B _ p(B)’ <c2

(B) rn r = Jrpy rintl

Hence, for all z € G

/oo (u(K(x, VB,a,r))>2 dr

— <
rn r Sonm L

145



V. CONES, RECTIFIABILITY AND SIOS

146

Set v = plg,, . The estimate above implies that for all balls B’ C R? we have

a8 Vs = [ [ (TN L) <8,

Clearly, v = ,u|GB has polynomial growth, and so we may apply Lemma 6.3

to conclude that all singular integral operators 7T, with kernels in X*(R¢) are
bounded in L?(v). Thus, the corresponding maximal operators 7T}, defined as

T.v(x) = sup |T.v(z)| for v € M(RY), z € RY,
e>0
are bounded from M (R?) to LY*°(v), see [Tol14, Theorem 2.21].
Recall that for all balls B we have u(Gp) ~, p(B). For any fixed T, the
operator norm of Ty, . : L*(plg,) — L*(plg,,) is bounded uniformly in B and

e, and so the same is true for the operator norm of T, : M(R%) — LM (ulg,,)-
Hence, we may use the good lambda method [Tol14, Theorem 2.22] to conclude
that 7}, is bounded in L?(u). O

7 Sufficient condition for rectifiability

The aim of this section is to prove the following sufficient condition for rectifia-
bility.

Proposition 7.1. Suppose p is a Radon measure on R satisfying ©™*(u, x) >
0 and O™ (u, ) < oo for u-a.e. x € R Assume further that for y-a.e. x € R?
there exists some V,, € G(d,d —n) and o, € (0,1) such that

/01 (M(K(%‘/x,amr)))p o (7.1)

rm r

and the mapping x — (Vy, ) is p-measurable. Then, p is n-rectifiable.
We reduce the proposition above to the following lemma.

Lemma 7.2. Suppose u is a Radon measure on B(0,1) C R?, and assume
that there exists a constant Cy, > 0 such that O (u,z) < C. and ©™*(u,x) > 0
for p-a.e. x € RL. Assume further that there exist My >0, V € G(d,d — n)
and o € (0,1) such that for p-a.e. x € RY

/01 (M(K(x, V,a,r))>p Cﬁ’ < My, (7.2)

Tn

Then, 1 is n-rectifiable.
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Proof of Proposition 7.1 using Lemma 7.2. To show that u is rectifiable, it
suffices to prove that for any bounded E C supp p of positive measure there
exists F' C E, u(F') > 0, such that u| is rectifiable. Given any such E we
may rescale it and translate it, so without loss of generality £ C B(0,1).

Since 0 < ©™*(u, z) and OF(u, z) < oo for p-a.e. x € E, choosing C, > 1
big enough, we get that the set

E'={zxeFE : 0" (u,x) >0, O%(u,z) <C,} (7.3)

has positive py-measure.
Let a; — 0 be a decreasing sequence of numbers, and let {V,,}en be
a countable and dense subset of G(d,d — n). It is clear that for any a €
(0,1), V € G(d,d—n), there exist o, V,,,, such that K(0,V,,,a;) C K(0,V, ).
We consider all the pairs {(o;, Vi) }jm, and relabel them to get a sequence
(o, Vi), k € N. For p-a.e. z € supp p let o, V, be the angle and (d — n)-plane
for which (7.1) holds. Set

Ek = {LU € E K(ZE,Vk,Oék) - K(xa‘/;aaz)}a

Observe that Ej are measurable due to measurability of x — (V,, ), and
that pw(E" \ Usey Ex) = 0. Pick any k£ € N such that u(Ey) > 0. For p-a.e.

r € E), we have
/1 <,u(K(x,V}€,ozk,r))>p dr
0

— < 0.
rm r

Thus, choosing My > 1 big enough, we get that the set F' C Fj, of points such

that
/1 (N(K(x7‘/l€7akvr))>p ﬁ < MO
0

rm T

satisfies u(F') > 0. Finally, using the Lebesgue differentiation theorem and (7.3),
it is easy to see that for p-a.e. x € F we have ©™*(u|p, ) = ©™*(u,x) > 0
and O} (u|p,x) = O (p,z) < C.. Hence, p|, satisfies the assumptions of
Lemma 7.2, and so it is n-rectifiable. O

7.1 Proof of Lemma 7.2 for y < H"

First, we will prove Lemma 7.2 under the additional assumption ©™*(u, ) < oo
for p-a.e. x € R? (which is equivalent to u < H").

Using similar tricks as in the proof of Proposition 7.1, it is easy to see that
we may actually replace ©™*(u, z) < oo by a stronger condition: without loss
of generality, we can assume that there exist C; > 0 and ry > 0 such that for
all x € suppp and all 0 < r < ry we have

u(B(x,r)) < Cyrm. (7.4)
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Then, the assumptions of Lemma 2.1 are satisfied, and we get a family of cubes
Top C D% and an associated family of Lipschitz graphs I'z, R € Top. The
cubes from Top satisfy the packing condition

> ©,(2Br)lu(R) < u(RY) + &,,(RY, V,a) < (1+ My)u(B(0,1)).

ReTop

It follows that for pu-a.e. x € R? we have

Z @“(2BR)p < Q.

ReTop: R3x

Fix some z for which the above holds. Denote by Ry D Ry D ... the sequence
of cubes from Top containing z. We claim that for p-a.e. = this sequence is
finite.

Indeed, if the sequence is infinite, we have ©,(2Bg,) — 0. On the other
hand, let ¢ > 0 and 7(R;11) <r <r(R;). Since R; ;1 € Next(R;), we get from
(5.1)

@M(l’ﬂ“) SA @M(QBRi)'

In consequence,
O™ (u, ) Sa limsup©,(2Bg,) =0,
1—00

which may happen only on a set of p-measure 0 because ©™*(u,z) > 0 for
p-a.e. x € R

Hence, for p-a.e. x € R? the sequence {R;} is finite. This means that if
Ry, denotes the smallest Top cube containing z, then x € Good(Ry). It follows
that

u(Rd\ U Good(R)>:O.

ReTop
By Lemma 2.1 (ii) we have u(Good(Ry) \ I'g,) = 0. Hence,

M(Rd\ U FR) = 07
ReTop

and so p is n-rectifiable.

7.2 Proof of Lemma 7.2 in full generality

Thanks to the partial result from the preceding subsection, it is clear that to
prove Lemma 7.2 in full generality, it suffices to show that for p satisfying the
assumptions of Lemma 7.2 we have

V(o) — sup BT

< oo for p-ae. x € B(0,1).
r>0 rr

To do that, we will use techniques from [Tol19, Section 5.
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Lemma 7.3 ([Toll9, Lemma 5.1]). Let C' > 2. Suppose that p is a Radon
measure on RY, and that ©"(u,z) < C, for u-a.e. x € R Then, for u-a.e.
x € R? there exists a sequence of radii r, — 0 such that

w(B(z,Cry)) < 2C%u(B(x, 7)) < 20 C,OC™ 1. (7.5)

Let A < % be a small constant depending on «, to be chosen later. By the
lemma above (used with C'= A"!) and Vitali’s covering theorem (see [Mat95,
Theorem 2.8]), there exists a family of pairwise disjoint closed balls B;, i € I,
centered at x; € suppp C B(0,1), which cover p-almost all of B(0,1), and

which satisfy
p(B) < 2)u(AB;) < 20CAr(By)",

and
r(B;) < p

for some arbitrary fixed p > 0. We may assume that (7.2) holds for all the
centers x;. Choose Iy C I a finite subfamily such that

u(B(0, 1)\ J Bi) < eu(B(0,1)),

i€lp

where € > 0 is some small constant. Clearly, Iy = Io(p, €).

For each ¢ € I, we consider an n-dimensional disk D;, centered at z;,
parallel to V1t € G(d,n), with radius Ar(B;). We define an approximating
measure

LN MB) g
iGZI:O H"(Dz’)H b
Note that
v(D;) = u(Bi) =\ p(AB;) Sx Cur(By)". (7.6)
Moreover, since I is a finite family, the definition of v and (7.6) imply that v
satisfies the polynomial growth condition (2.1) with 7o = min;es, 7(B;)/2 and
Cy = C(\)C,, ie. for 0 <r <rgand z € suppv

v(B(z,r)) < C(N\)Cyr™. (7.7)

Lemma 7.4. For A = Ma) < 5 small enough, we have

EVJ)(Rd’ V7 %O‘) S)\,p (MO + M(B<Oa 1))p):u(B(O7 1))

The implicit constant does not depend on p,c.

Proof. Let i € Iy and z € D;. We will estimate the v-measure of K(x,V, %a, r).

First, note that v(K(z,V, i, 7)) = v(K(z,V, 3a,7) \ B;). Indeed, B; N
suppv = D;, and D; N K(z,V, 3a) = @ because D; is parallel to V*+. Thus,
V(K (z,V,ta,r) N B;) = 0. It follows immediately that for r < (1 — \)r(B)
we have v(K (z,V, 30,1)) = 0.
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Concerning 7 > (1 — \)r(B;), if A = A(«) is small enough, then
K(z,V,3a,7)\ B; C K(z;,V,3a,2r)\ B;

because © € AB;. Thus, it suffices to estimate v(K (z;,V, 3a, 2r) \ B;).

Suppose r > (1—=A)r(B;) and j € Iy is such that D;NK (z;,V, 3a, 2r)\ B; #
@. Since B; and B; are disjoint, we have

r(B;) +r(B;) + dist(B;, B;) < 3r and dist(D;, D;) >

It follows easily that, for A = A(«) small enough, we get AB; C K(z;, V, o, 4r).

Thus,
, 3 - , 3 . .
v(K (2:, V, 30, 2r)) = v(K (2., V. 3a,2r) \ By) < > D)
j€lo:AB; CK (z;,V,a,4r)
(7.6)
R > n(AB;) < p(K (i, V, o, 4r)).
j€lo:AB; CK (z;,V,a,4r)
Hence,
/1/4 (y(K(:vZ,V Sa, 2r)) > dr NA/ ( xz,Va r))>p dr (%2) M,
0 T r
This gives

o () e
<// ( xl,v, ar))) cfj“dy(x)
<MY+ [ /1/4( B) g

Sop Mov(Di) + v(RY)v(Di) < Mop(B;) + 1u(B(0, 1)) u(By).

Summing over i € [ yields

Erp(RE,V, 500) Shpp (Mo + p(B(0,1))P)pu(B(0, 1))

Lemma 7.5. For A = Ma) < 5 small enough, we have

[ M) dv(x) Zany (€ + My + u(B0, 1)) u(B(O, 1)
The constants on the right hand side do not depend on p,¢.
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Proof. By (7.7) and Lemma 7.4, we may use Lemma 2.1 to get a family of
cubes Top,, satisfying properties (i)-(iii) of Lemma 2.1, and such that

> ©,2Br)"(R) San (CL)v(RY) + C(p) (Mo + pu(B(0,1))")u(B(0, 1))

Sanp ((CLP + My + p(B(0,1))")u(B(0,1)). (7.8)

Now, the property (iii) of Lemma 2.1 lets us estimate M,v(x). Indeed,
suppose x € supp v, and let r; > 0 be such that

Mov(z) < QM.

Since suppr C B(0,2), we have r; < 4. Let @ € D, be the smallest cube
satisfying € @ and B(z,r) Nsuppv C 2B (such a cube exists because the
largest cube @) := supp v clearly satsfies suppr C 2Bg,). Let R € Top, be
the top cube such that @ € Tr(R). Clearly, ¢(Q) ~ r;. By Lemma 2.1 (iii), we
have

B
Br) < 6,(084) < 6,250).
5}
Thus, M, v(2)? S Y retop, Lr(2)0,(2BR)P. Integrating with respect to v and
applying (7.8) yields the desired estimate. O

Lemma 7.6. We have
[ M) dp() Sarp ((CF + My + u(B(0, 1)) u(B(O, 1).
In particular, Myu(x) < oo for p-a.e. x € B(0,1).

Proof. Denote
w(B(x,r
M, ppi(x) = sup M

r>p T
Recall that Iy = Iy(p,c) and set
E.,=suppun U B;.
i€l

We claim that

Moy (U, ) (@) dp(e) S [ Moo (@) dvia) (7.9)

E.,
Indeed, let z,2" € B;, j € Iy, and r > p. Then, using repeatedly the fact that
r(B;) < p <rforié€ I,

W(Bla,r) N E.p) S u(BW.30NE) < X p(B)
Z'ElolBiﬂB(x/,:ST);ﬁ@

= > v(D;) < v(B(a,5r)).

i€lp:B;NB(x!,3r) 40
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Hence, for all x € B;, j € Iy,
My, (g, ,p)(z) < 5" m,igjgj My pv(2').

Integrating both sides of the inequality with respect to p in E; , yields (7.9).
Lemma 7.5 and (7.9) give

. M, ,(Lg. 1) ()" dp(x)
< Cla A p)((C + My + u(B(0,1))")u(B(0,1)) =: K,

where K is independent of p and e.
Set e, = 27%. Observe that, for a fixed p > 0, we have u(R™\lim inf;, E., ,) =
0, where

hmmf E. ,= U G; and Gj;= ﬂ E., ,.

k=j

The inclusion G; C E, , gives

J, Moo )@ dila) < [ ML (@) dpfa) < K

Esj,p

Since the sequence of sets G; is increasing, we easily get that for p-a.e. x €
B(0,1)
]]‘Gj (.T) MTL,P(]IGJ'IU’)( ) ]_)—OO> M, PM( )

and the convergence is monotone. Hence, by monotone convergence theorem,
[ Mupia)y du(w) < K.

The estimate is uniform in p, and so once again monotone convergence gives
/ Myp(2)? du(z) < K.

O

Taking into account Lemma 7.6 and Section 7.1, the proof of Lemma 7.2 is

finished.

8 Necessary condition for rectifiability

In this section we will prove the following.

Proposition 8.1. Suppose p is an n-rectifiable measure on R? and 1 < p < oo.
Then, for u-a.e. x € R? there exists V,, € G(d,d—n) such that for any o € (0,1)

we have by
1 K
J G T
0

rh r



8. Necessary condition for rectifiability

First, we recall the definition of 8, numbers, as defined by David and
Semmes [DS91].

Definition 8.2. Given a Radon measure u, x € supp p, r > 0, and an n-plane

L, define
(1 dist(y, L)\ 1/
Buz(x,7) = HLlf (r" /B(m) <r> du(y) |

where the infimum is taken over all n-planes intersecting B(x,r).

Tolsa showed the following necessary condition for rectifiability in terms of
(B2 numbers.

Theorem 8.3 ([Toll5]). Suppose p is an n-rectifiable measure on Re. Then,
for p-a.e. x € R we have

/01 Boa(z,7)? ‘f: < . (8.1)

Remark 8.4. When showing that rectifiable sets have approximate tangents
almost everywhere one uses the so-called linear approrimation properties, see
[Mat95, Theorems 15.11 and 15.19]. The theorem of Tolsa improves on the
linear approximation property, and that allows us to improve on the classical
approximate tangent plane result.

Before proving Proposition 8.1 we need one more lemma. Recall that if o >
0, W is an n-plane, and 0 < r < R, then K (z, W+, a,r, R) = K(z, W+, a, R) \
K(x, Wt a,r).

Lemma 8.5. Let a, e € (0,1) be some constants satisfyingn =1 —a—3e > 0.
Let x € R, r > 0, and suppose that W and L are n-planes satisfying v € W
and

disty (L N B(z,r), W N B(z,r)) < er. (8.2)

Then
K(x, W a,r,2r) C B(z,2r)\ B,(L).

Proof. Suppose y € K(z, WL, a,7,2r), so that r < |r —y| < 2r and |z —

mw(y)| < alr — y|. We need to show that dist(y, L) > nr.
Set y' = m(y), v’ = mp(x). Then

dist(y, L) = ly = ¢/| > |z —y| — |2’ = ¢/| — |o — 2|

(8.2)
= v —y|— |z’ —y| —dist(z, L) > |z —y|—|2' —y|—er
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Let 7y and 77, denote the orthogonal projections onto the n-planes parallel to
W and L passing through the origin. It follows from (8.2) that ||7w — 7|, <
Thus,

2" =y | =|7L(z — )| <|7w (@ —y)l+law = 7Ll |z =yl <|7w(z —y)|+2er.

Hence, using the fact that |7y (z — y)| = |z — 7w (y)| < o]z — y|, we get from
the two estimates above

dist(y, L) > |z—y|—=|7w(z — y)|-3er > (1—a)|z—y|-3er > (1—a=3¢)r = nr.
O

Proof of Proposition 8.1. Let p be n-rectifiable. For r > 0 and x € supp i let
L, , be the n-plane minimizing 5, 2(x,r). We know that for p-a.e. x € supp pt
we have (8.1) and (I1.3.18) (in particular, the approximate tangent plane W,
exists). Fix such z. Set V, = W let a € (0,1) be arbitrary, and for 0 < r < R
set K(r) = K(z,V,,a,1), K(r,R) = K(z,V,,a,r, R). We will show that

Ecwwwyw<m. (8.3)

rn r

Let € > 0 be a constant so small that 7 := 1—a—3¢ > 0. Use Lemma [1.3.9
to find ry > 0 such that for 0 < r < rg we have

disty(Ly, N B(z,r), W, N B(z,r)) < er.
Then, it follows from Lemma 8.5 that for all 0 < r < rg
K(r/2,r) C B(z,r)\ By (Lyy).
Note that by Chebyshev’s inequality

dist(y, Ly.,)\”
$@“’)>de=n2wmﬂ%”?

r

w(B(x,r) \ By (Lay)) < n? o) (
Hence, for 0 < r < ry we have

p(K(r/2,7))

rn

Sﬂ? 6/1,2(3:) T)27

and so

/0 WK (r/2,r)) / Bua(z,r)* — 8<l)oo (8.4)

rn



9. Sufficient condition for BPLG

Now, observe that for any integer N > 0

/’"0/2 p(K(r)) CL ZU (2F7y))2"
< 2"(ro)™" ; (K (27 %rg))2" — (ro) ™" ; (K (27 rg))2""
= (ro)™" ]; J(K (27 Frg))20 0 — () ]; (K (27 rg))2""
™ (K (20 rg))

< (rg)™" kz::Q (M(K(Q—k+1r0)) - M(K(2—kro))>2’m + (2D pg)n

ro (K (r/2,7)) d
5/0 HEr/2T) (:,{ ) Z o,z 2y,

,
Letting N — oo, we get from the above and (8.4) that
o p(K(r)) dr " dr . g
/0 o Sn/o Buala,r)? - + 0" (1, x) < 00,
for p-a.e. = € supp p, where we also used the fact that ©™*(u, z) < oo p-almost

everywhere (because y is n-rectifiable). The integral [, ! “(f(r)) dr is obviously
finite, and so we get that

) d
[ e dr

which is precisely (8.3) with p = 1. To get the same with p > 1, note that
since ©™*(u, z) < oo for p-a.e. x, we have

e

< sup O, mr”l/ﬂ —<oo.
0<r<1

9 Sufficient condition for BPLG

In this section we prove the “sufficient part” of Theorem 1.9. After a suitable
translation and rescaling, it suffices to show the following:

Proposition 9.1. Suppose p > 1, E C R? is n-AD-reqular, and 0 € E. Let
a >0, My>1, k>0, and assume that there exist F C E N B(0,1) and
V e G(d,d —n), such that H"(F) > k, and for all x € F'

/01 (’H”(K(:L‘,V,Oé,r) ﬂF)>” Cij" < M, (9.1)

Tn
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Then there exists a Lipschitz graph I, with Lipschitz constant depending on
a,n,d, such that
HY(FNT) 2k, (9.2)

with the implicit constant depending on p, My, a,n,d, and the AD-reqularity
constants of F.

To prove the above we will use techniques developed in [MO18b]. Fix
V € G(d,d —n). Let 8 > 0 and M € {0,1,2...}. In the language of
Martikainen and Orponen, a set E C R? has the n-dimensional (6, M )-property
ifforall z € E

#iel : K, V,0,27, 277" YnE + @} < M.

It is easy to see that if F has the n-dimensional (6,0)-property, then FE is
contained in a Lipschitz graph with Lipschitz constant bounded by 1/6, see
[MO18b, Remark 1.11].

The main proposition of [MO18b] reads as follows.

Proposition 9.2 ([MOI18b, Proposition 1.12]). Assume that E is n-AD-
reqular, and assume that Fy C EN B(0,1) is an H"-measurable subset with
H"(Fy) =c 1. Suppose further that F) satisfies the n-dimensional (6, M)-
property for some 8 >0, M > 0. Then there exists and H"™-measurable subset
Fy C Fy with H"(Fy) ~conm 1 which satisfies the (8/0,0)-property. Here b > 1
is a constant depending only on d.

Remark 9.3. It follows immediately from the proposition above that if we
construct £y C E N B(0,1) with H"(F}) ~ k satisfying the n-dimensional
(a/2, M)-property, then we will get a Lipschitz graph I" such that (9.2) holds.
Hence, we will be done with the proof of Proposition 9.1.

To construct F we will use another lemma from [MO18b].

Lemma 9.4 ([MO18b, Lemma 2.1]). Let E be an n-AD-regular set with
H"(E)>C >0, let FC ENB(0.1) be an H™-measurable subset, and let

F.={xe€F : H'(FNB(x,r,)) <erl for some radius 0 < r, < 1}.

Then H™(F.) < e with the bound depending only on C and the AD-regularity
constant of E.

Note that the set F'\ F. does not have to be AD-regular. Nevertheless, we
gain some extra regularity that will prove useful.

Now, let E'and F' C ENB(0, 1) be as in the assumptions of Proposition 9.1.
We apply Lemma 9.4 to conclude that for some ¢, depending on s and the
AD-regularity constant of E, we have

K
HUENE) 2 5
Set [} = F'\ F..



10. Necessary condition for BPLG

Lemma 9.5. There exists M = M(My,e,a,n) such that Fy satisfies the
n-dimensional («/2, M)-property.

Proof. Denote by Fgag C Fi the set of x € Fj such that
#{j€Z : K(x,V,a/2,277, 277" YN F, £ 2} > M. (9.3)

We will show that, if M is chosen big enough, the set Fpg,q is empty.
Let x € Fpag and j € Z be such that there exists z; € K(z,V,«/2,277,2797)N
F. Tt is easy to see that for some A = A(«), independent of j, we have

B(z;,A277) C K(z,V,a, 27771 27712),
Since x; € Fy = F'\ F,, it follows that
H"(F N B(x;,\277)) > e(A277)™.
The two observations above give

H'(FNK(z,V,a,27772) - HY(FNK(z,V,a,2777127772))
(27j+2)n - (27j+2)n R\ €

By (9.3), there are more than M different scales (i.e. j’s) for which the above
holds. Thus, for x € Fg,q we have

/1 <7—[”(K(x, V,a,r) ﬂF))p dr

— Zan MeP
a,\ .
rm r =

Taking M = M (My, e, a,n,p) big enough we get a contradiction with (9.1).
Thus, Fgaq is empty. Now, it follows trivially by the definition of Fg,q that F}
satisfies the n-dimensional («/2, M)-property. O

By Remark 9.3, this finishes the proof of Proposition 9.1.

10 Necessary condition for BPLG

In this section we prove the “necessary part” of Theorem 1.9. After rescaling,
translating, and using the BPLG property, it is clear that it suffices to show
the following:

Proposition 10.1. Suppose E C R? is n-AD-reqular, and 0 € E. Let p > 1.
Assume there exists a Lipschitz graph I such that H"('NENB(0,1)) > k. Then
there exists « = a(Lip(I")) > 0, V € G(d,d—n), and a set F C 'NENB(0,1),
such that H™(F) 2 k, and for x € F'
/1 (H"(K(m, Via,r)N E))p dr
0

T <, (10.1)
rn T

where My > 1 is a constant depending on p, Lip(I'), k and the AD-regularity
constant of E.
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We begin by fixing some additional notation. Set p = H"|,. We will
denote the AD-regularity constant of E by Cjy, so that for every z € E, 0 <
r < diam(F),

Citr™ < u(B(z,r)) < Cor™.

Remark 10.2. Since we assume that E is AD-regular, the exponent p in
(10.1) does not really matter. For any p > 1 we have

Y

HYK (z,V,a,r) N E)\” < CP,IH”(K(m, V,a,r) N E)
rm =0 rn
and so it is enough to prove (10.1) for p = 1.

Set L = Lip(I"). Let V € G(d,d — n) be such that I" is an L-Lipschitz
graph over V+ and let § = §(L) > 0 be such that

K(z,V,0)NnTI' =@ for all z € T

Set o = min(4,0.1, 1.
For every x € EN B(0,1) \ I" consider the ball B, = B(z,0.01dist(x,T)).
We use the 5r-covering lemma to choose a countable subfamily of pairwise

disjoint balls B; = B(x;,r;), r; = 0.01dist(x;,I'), j € Z, such that

ENB(0,1)\T c (5B

jez
Observe that

SOt < Co X u(By) = Cou( | By) < Cop(B(0,2)) £ C3. (10.2)

JEZ JET JET
For each j € Z set

K;= |J K V,a), K;(r)= | Ky, V,a,r).

yESBj y€5Bj
Lemma 10.3. For each j € Z we have

Moreover,
Ki(rynI'=@  forr<r;. (10.4)

Proof. (10.4) is very easy — observe that for r < r; we have K,(r) C 6B;, and
so for y € K;(r)

dist(y, I') > dist(z;,I") — 6r; = (1 — 0.06) dist(z;,I") > 0.
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Concerning (10.3), we claim that since I' = graph(F’) for some L-Lipschitz
function F': V+ — V, and since « is sufficiently small, for all x € R? we have

K(z,V,a)NT C B(z,Cdist(z,I)), (10.5)

where C' = C(L) > 1. Indeed, if dist(x,I") = 0, then K(z,V,a) NI' = & and
there is nothing to prove. Suppose dist(z,I') > 0, y € K(z,V,a) N T, and let

z € I be the image of x under the projection onto I' orthogonal to V*, i.e.

z =y (z) + F(my (7).
Observe that, since I' is a Lipschitz graph,

|z — 2| <p dist(z, 1),

and also miz(x) = mi>(2). By the definition of a cone, y € K(x,V,a) gives

T (2 = y)| = 7 ( = y)| < alz —yl.
On the other hand, y € I' and the above imply
[mv (2 = y)| < Ll (2 — y)| < Lalz —yl.
The three estimates above yield
o =yl < Jo =2 + |2 =yl < O(L) dist(x,T) + |mip (2 — y)| + |mv (2 = y)]
1
< C(L)dist(z,T) + ajz — y| + Lajz — y| < C(L)dist(x,T) + 5]30 —yl.

Hence, |z — y| < dist(z,I') and (10.5) follows.
Now, going back to (10.3), note that for y € 5B; we have dist(y,I') = r;, so
that K(y,V,a) NI C B(y, Cr;) for some C' = C(L). Moreover, B(y,Cr;) C

B(x,10CT;). Therefore, K; NI' C B(z;,10Cr;) NI, and (10.3) easily follows.

O

Proof of Proposition 10.1. Let x € ' B(0,1) and 0 < r < 1. Since {5B;};ez
cover ENB(0,1)\ T, and K(x,V,a,r) NT' = &, we have

/L(K(JZ,V,O(,T)) < Z M(5Bj) S Co Z r;‘Z'

JEL:5B;NK (x,V,a,r)#2 JEL:5B;NK (x,V,a,r)#2

Notice that 5B; N K (z,V, o, r) # @ if and only if x € K;(r). Hence, using the
above and Lemma 10.3 yields

1
/ / (K (z,V,a,r)) @dm(x)
rnB(0,1) Jo T

dr
", (r dH"
So /FHBOI / ]e% K;() (z)
1d

=27 oo b 0@ T S / [ )

= 7 Jroso = 7 Jsor
5 (10.3) 5 (102)
< r’?/ () S Y S
=/ 7 JKar E jez 7 ’
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We know that H"(I'NB(0,1)NE) > k, and so we can use Chebyshev’s inequality
to conclude that there exist My = My(L,Co,k) >1and F CT'NB(0,1)NE
with H"(F) > % such that for all z € F

— < M.

rn r

/1 u(K(x,V,a,r)) dr

11 Set with BPLG but no BME

We will show the following.

Proposition 11.1. Fiz an aperture parameter o € (0,1). There ezists a
sequence of 1-ADR sets Exy = Ex(a) C B(0,1) C R2, N > 100(1+log,(a™t)),
with the following properties:

(i) they all contain BPLG in a uniform way, that is, they are 1-ADR with
the same constans Cy, and they all satisfy the BPLG condition (see
Definition 1.7) with L = 1 and some uniform x > 0.

(ii) regardless of the choice of directions V, € G(2,1), they all have big
conical energies:
/ Epy1(x, Ve, a, 1) dH (2)
En
- VHY K (z,V,, a,r) N Ey) dr
= Jou )

T r

dM'(z) 2o N. (11.1)

Let ay — 0. Now, a disjoint union of appropriately rescaled sets En ()
would contain BPLG and would not satisfy the BME condition (Definition
1.12) for any My and a > 0. We omit the details.

Remark 11.2. In this section, the notation £(Lq, Ly) will denote the “true”
angle between two lines, and not its sine, as it was used in other chapters.

Let M =100[a™!], so that M = a~!. In the lemma below we construct a
Lipschitz graph I' = I'(N, M) that can be seen as the first approximation of
the set Ey. There exists a fixed direction Vj, such that for all directions V'
close to Vg (£L(V,Vp) < m/8), the conical energy &Eri(x,V,a, 1) is bigger than
N for all z belonging to a neighbourhood of a large portion of I'. Rescaled and
rotated copies of I will be then used as building blocks in the construction of
EN-

Let A be the usual dyadic grid of open intervals on (—1,1), and let Ay
denote the dyadic intervals of length 27



11. Set with BPLG but no BME

Vo

\
/8% >

FIGURE V.1: V} is the line forming angle 7/8 with the x axis. The lines V for
which (11.2) holds are lying in the grey region.

Lemma 11.3. Let N > 100(1 +1logy(a™)) be an integer. There exists a piece-
wise linear 1-Lipschitz function g : [—1,1] — [-M~Y, M~], and a collection
of disjoint dyadic intervals T C A with the following properties:

(P1) g(—1) = g(1) = 0.

(P2) For every I € T we have I C [—1/2,1/2], the function g|; is increasing,
and for t € I we have ¢'(t) = 1.

(P3) #I = 2"M2NMHY gnd T C An41)- Hence,

H! (U I) =2 M 1.

IeT

(P4) Let I' = graph(g), G : [-1,1] — I be the graph map G(t) = (t,9(t)),
and let Vo = {(x,y) : y = tan(n/8)x} € G(2,1). For any I € T, any
r € R? with dist(x, G(I)) < 27NN+ “and all V € G(2,1) satisfying
LV, Vy) < 7/8, we have

/1H1(K(I,V,a,r)ﬂF) dr>N (11.2)
0 r ro '

See Figure V.1.

For an idea of what I' looks like, see the graph at the bottom of Figure
V.3. Before we prove Lemma 11.3, let us show how it can be used to prove
Proposition 11.1.
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11.1 Construction of Ey

Let I' = T'(M, N) be the 1-Lipschitz graph from Lemma 11.3. The set Ey
will consist of one “big” Lipschitz graph I'g = I', and three layers of much
smaller Lipschitz graphs stacked on top of the big one. The small graphs will
be rescaled and rotated versions of I'. Another way to see Ey is as a union
of four bilipschitz curves [y, ..., I's, and this is how we are going to define it.
Roughly speaking, if I'; is already defined, I';;; will be constructed by replacing
some of the segments comprising I'; with rescaled and rotated copies of T'.

First, let p : R? — R? be the counterclockwise rotation by /4. Set
Lo = {(z,0) : z € R} and for k > 1 set L, = p*(Ly) € G(2,1) (here p*
denotes k compositions of p, and the same notation is used for ¢ defined below).

Define also 1, = 27*NM+D=k/2 and let 6 : R? — R? be the dilation by
factor ry, i.e. d(z) = riz. Note that r, = (r))¥, so that §* is the dilation
by factor ry. The constant r; was chosen in such a way that for an interval
I € T C A1) we have HY(G(I)) = 2r1 by (P2) (where G is the graph map
of g).

We will abuse the notation and identify the segment Sy := [—1,1] x {0}
with [—1,1] C R.

Set I'g =T, and let v = 0¢ : Sg — 'y be defined as the natural graph map
Tolt) = a0(t) = G (1) = (£, g(1)).

Lemma 11.4. Let k € {1,2,3}. There exist maps 7y, : So — R? such that:
a) the sets I'y, := v (So) are of the form

Iy = (sz—l\ U Sk:,]) U U Ter,
Iezk Iezk
where I = (Iy,...,Iy) € IF and T is the family of intervals from
Lemma 11.5,

b) the sets Sy are segments, with Sy.r = Gy.1(So) and Gy.; == TropFod® for
some translation 17 (in particular, H*(Sy.1) = 27y and Sk are parallel
to Lk),

¢) the 'y are rescaled and rotated copies of I, with I'y; = G1(Io) (in
particular, since the endpoints of Ty and Sy coincide, the same is true
fO’f’ FkJ cmd SkJ),

d) for k = 1,J € I, we have Sy, = oo(J) C Lo, and for k > 1, if
I = (]/, J) c Th-1 % I, then Sk,[ = Gk—l,[’(SI,J) C Fk_Lp CI'g_q,
e) if I =(I',J), a1, ay are the endpoints of Si.r, and by, by are the endpoints
Of Fk—l,[’; then
|ai — bj| 2 7

fori,5 € {1,2} (i.e. Sy is “deep inside” I'y_1 1),
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f) the maps v are of the form vy, = o o --- 0 0qy, where oy, : T'y_1 — Ty is
defined as

op(z) = o for v € Thoy \ Urezr Sk
) Gr(x)oogo G,;}(:v), for x € Syy, I €IF

In particular, o, (Skr) =Tk 1.
9) llow —id| oo (ry_yy < 2M M1y,

Proof of Lemma 11./. We will define o, inductively.

First, for any I € Z set Sy := 0o(I) C I'g. Observe that by (P2) Sy, is a
segment parallel to L;. Moreover, since H!(I) = 2Y/2 7, we have H'(S, ;) =
2r;. It follows that Sy ; = 77 0 po §(Sy) for some translation 7;. Define
Gi1:R* > R*as Gy y=770pod, and I'y; = Gy ;(Ty).

We define oy : Ty — R? as in f). In other words, o1lg, , can be seen as a
graph map parametrizing the Lipschitz graph I'y ;. It is very easy to see that
S1.1, T'1r, and oy defined in this way satisfy all the conditions except for e)
and g), which we will prove later on.

Now, suppose that o1, Vx_1, etc. have already been defined, and that
they satisfy a) — d), f).

For any [ = (1/7 J) € ITF1 x T set Sk;,[ = Gk_L[/(Sl,J) C sz—l,[" Since
Sy, is parallel to Ly and Gy p = 71 0 pF= 1o 6871 Si 1 is a segment parallel
to Ly. Moreover, since H'(S; ;) = 27y, we have H'(Sk1) =271 71 = 2rp. Tt
follows that Sy = 77 0 p* 0 6%(Sy) for some translation 7.

We define o, : Ty — R? as in f), so that 0k|5k,] can be seen as a graph
map parametrizing the Lipschitz graph I'y ;. It is easy to see that oy, I'y, etc.
defined this way satisfy a) — d), f).

Proof of e). Let k = 1. Recall that for all I € Z we have I C [-1/2,1/2]
by (P2). Hence, S; ;= 0o(I) C 0o([—1/2,1/2]) C T'y. lf 2 € 0¢([—1/2,1/2]) is
arbitrary and if y € Iy is one of the endpoints of Iy, we have |z —y| = 1 = r.
So e) holds for k = 1. For k € {2,3} the claim follows from the fact that if
I = (I’, J) S TkR1 x I, then Sk’[ = Gk_L[/(SLJ) and Fk_l’p = Gk—l,[’(ro)‘

Proof of g). We have oy, = id on I'y_1 \ Ujezr Sk.r1, and for x € Sy s

jox(x) — 2 = |Grr o000 Gyj(x) — Grro Gyi(w)]
= o 0 Gi(w) — Gii(@)] < rellglloe < 2M My,

where we used the fact that oo(t) = (£, 9(t)), and that ||g|l.c < 2M~! by
Lemma 11.3. [

Lemma 11.5. The maps vy, and o from Lemma 11.4 are bilipschitz, with
bilipschitz constants independent of N.
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Proof. Tt suffices to show that oy, is bilipschitz with Lip(oy) and Lip(o;, ')
independent of N, and then the same will be true for 7, by Lemma 11.4 f).
Suppose that o; are already known to be bilipschitz for 0 < j7 < k —1, with
Lip(o;) and Lip(o; ") independent of N (clearly, the condition holds for oy).
Let x,y € I'y_;. Our aim is to show that |ox(x) — ok (y)| = |z — y|.
Case 1. |x —y| > 6 M ry. It follows from Lemma 11.4 g) that

ok(x) =0k (y)| < |z—y|+]|ok(z)—z|+|ow(y) —y| < |lz—y|+4M 'rp < 2z —y],

and
- 1
low(@)—op(y)| > |z—y|—|op(z)—2|—|ow(y) —y| > |[z—y|—4M 'r) > glx—y!-

Case 2. x,y € I'y_1 \ Ujezr Sk,r- This case is trivial, because |oj(z) —
ou(y)| = 7 — . -

Case 5. |x —y| < 6M~1ry, and z,y € Sk for some I € Z%. Using the fact
that o is bilipschitz we get

log(z) — or(y)| = ‘Gk,l 00po Gﬁ(@ — G roopo0 Gz}(y)\
= 1o 0 Gy j(x) — 00 0 Gy ()| = k|G d (@) = Gt (w)] = = — yl.

Case 4. |v —y| <6M'ry, x € Sy for some I € ZF and y € Ty_1 \ k1.
We claim that

yelear, (11.3)
where [ = (I';J) € TF-' x T and T,_; v is the Lipschitz graph containing Sy, ;.
Indeed, by the induction assumption, the map 7,;_11 : -1 — Sy is bilipschitz
with Lip(ve_1), Lip(74',) independent of N. Since H'(Sk;) = 27, and
H (Di1rr) A i1, we get that M (9,20 (Ser)) & i and 2 (90 (Tro1,r)) &
re_1. Moreover, we have

Vet (Sk,1) € vty (De1,rr) C So, (11.4)

where all three sets are segments. If a;,as and by, by are the endpoints of
Vit (Sk.r) and ;1 (Tx_1.1), respectively, then it follows from Lemma 11.4 e)
and from the bilipschitz property of v,_; that for ¢, 5 € {1,2} we have

|ai = bj| Z -1 (11.5)

Recall that € Si; and |z — y| < M ~'ry, so that dist(y, Skr) < M~ 'ry.
Hence,
dist(721 (), 71;11(51@1)) S M~y

Putting this together with (11.4) and (11.5), and assuming that M > M, for
some absolute constant My > 10, we get that v, (y) € v ', (Cr_1.1v), which is
equivalent to y € I'y_y 1.
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Now, let z € Sk be an endpoint of Sy ; minimizing the distance to x.
Observe that x — z € Ly, and oy(x) — x € L, so

low(z) — 2 = |on(x) — 2> + |z — 2|~ (11.6)

Moreover, since z is an endpoint of Sy ;, the point G,;}(z) is an endpoint of

So, and so by (P1) g(G,;}(z)) = 0. Together with the fact that ¢ is 1-Lipschitz
this gives

() — 2| = |G 0 09 0 Gih(w) — Grr o Gy i(x))

= rifog 0 G i(x) = Gii(@)] = reg(Gri(@)| = re|g(Gri () — 9(Gri(2))]
< r|Gi(a) = Gii(z)| = |z — 2. (1L.7)

Furthermore, observe that since y € I'y_; 1 \ Sk.s, z € Sks is an endpoint of
Skt HY(Sk.s) = 274, and | —y| < M~1ry, we get that the point v, (2) € Sy
lies between the points 7; ', (2) and ;' (y). We already know that v, is
bilipschitz, and so

2 —z|+ |2 —y| =~ [ (@) = v )+ et (2) = %l ()]
= [iti(@) = i) & |z —yl. (11.8)

Now, we need to further differentiate between two subcases.

Subcase 4a. |v—y| < 6M'ry, x € Sy, and y € Syy forsome Y € IF [
Y.

We claim that the point z is a common endpoint of Sy and Sj ;. Indeed,
since y € T'y_1.p by (11.3), we have Y = (I', Z) € ZF1' x Z and Sy, y C Ty_1.1.
By Lemma 11.4 d) Sky = Gk—l,[’(Sl,Z) = Gk_l’p e} O’O(Z), and Sk’] = Gk_lJ/ @)
oo(J). Recall that |z —y| < 6M~'ry, which implies dist(Sk 1, Sky) < 6M ry,
and so dist(Z, J) < M~'r; ' r, = M~'ry. By (P3) J and Z are dyadic intervals
of length /27, which implies that dist(Z, J) = 0. Hence, the point z is a
common endpoint of Si; and Sy y, and the estimates (11.6), (11.7) are also
valid with x replaced by y.

The Lipschitz property of o} follows easily:

(11.6),(11.7) (11.8)
oi(z) — oY) < low(z) —2[+|z—0ow(y)] < |z—z[+[z—yl = [z—y|

The converse inequality is a consequence of the fact that S ; and Sy y are
co-linear, z — y € Ly, op(z) —z € L, and oy (y) —y € Li-

|ok(z) — ok(y)]? = low(x) =z + 2 —y +y — or(y)]?
= o —y[* + |ow(@) =2+ y — ow(y)]* > o — y[*.

Subcase 4b. |v —y| < 6Mlry, x € Sy for some I € IF and y € Ty \
Uyezr Sty
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FIGURE V.2: Points x,y, z lie on I';,_; ;» (continuous curve above), which is a
1-Lipschitz graph over the line L;_;. = belongs to the segment Sy ; C I'y_1 1
(thick segment above), and z is an endpoint of Sk ;. op(x) lies on I'y ; (dashed
curve above), a 1-Lipschitz graph over Sy ; with the same endpoints as S, ;.
The 1-Lipschitz property implies that I'y ; C S, where S is a square having
Sk,r as diagonal. On the other hand, the 1-Lipschitz property of I'y_; i implies
that I'y_1 » C Ko := K(z, Lg_1,sin(m/4)), i.e. it lies in the two-sided version
of cone K above. In particular, y € Ky. However, in Subcase 4b we assume
that |x —y| < 6M~'ry and y € Skr, and so y must lie in K, and not in the
other one-sided cone comprising K. Since L;_; and Sy ; form an angle 7/4,
the observations above imply 7/4 < £(ox(x), z,y) < 7 (see the dotted angle).

In this case we have oy(y) = y. The upper bound follows from previous
estimates:
(11.6),(11.7) (11.8)
low(@) —y| < low(z) —2[+]z—yl < |oe—z[+z—yl = |z—y|

Concerning the lower bound, it follows by elementary geometry and prop-
erties of our construction that 7/4 < L(ox(z), z,y) < 7, see Figure V.2. Thus,
using the law of cosines

low(z) —y|> = |ow(z) — 2> + |2 — y|* — 2|on(x) — 2||z — y| cos(L(on(2), 2, v))
> |ow(z) — 2 + |2 — y[* = V2lon(x) — 2||z — ]

\/5 (11.6)
> (1—2 (low(@) =2 + 1z =9P) 2 |o— 2P+ [z =yl Z | — ol

Since this was the last case we had to check, we get that o} is bilipschitz, as

claimed.
O]



11. Set with BPLG but no BME

Finally, we set
EN:F()UFlUFQUFg.

Note that due to Lemma 11.4 a)

Ey=TouJTi;u | Ioyu {J sy (11.9)

IeT Ie1? 1e13

That is, Ey is a union of a single big Lipschitz graph, and three layers of
smaller Lipschitz graphs.

11.2 FEy has BPLG

In this section we show that Ey has big pieces of Lipschitz graphs, with
constants independent of N.

Observe that Ey is AD-regular because it is a union of four bilipschitz
curves. The ADR constants do not depend on N due to Lemma 11.5.

Lemma 11.6. For any x € Ex and any 0 < r < diam(Ey) we can find a
Lipschitz graph ¥ (depending on x and r) such that

HY(ExNB(z,7r)NX) >, (11.10)
with the implicit constant independent of N.

First, we prove an auxiliary estimate. Given integers 7,1 € {0, 1,2, 3} define
YT = Tias y =07

Lemma 11.7. Leti,l € {0,1,2,3} and k = min(i,l). Then
i — id|| zoory) < 6M Mgy (11.11)

Proof. 1f i = [ the result is clear because v;; = id. Assume [ > ¢. Applying
(I —i)-many times Lemma 11.4 g) we get that

[z —a(@)| < Y Imgaa(@) =@ = Y0 Inga(@) = oi(ng-a(2)]

j=i+1 j=i+1

l
S Z 2M717”j S 2(] - k>M71Ti+1 S 6M717”i+1.

j=it1

On the other hand, if I < ¢, then applying the estimate above to y = v,;(x) we
get

|z — ya(2)] = [ria(y) —yl < 6M717’l+1-
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Proof of Lemma 11.6. Let € Ey and 0 < r < diam(Ey). By (11.9) there
exist j € {0,1,2,3} and I € Z7 such that z € T; .
Suppose r < r;. Since T'; 1 is a Lipschitz graph satisfying H'(T; ;) > r; > r,
we have
H' (Ex N B(z,r)N L) =H (B(z,r)NT;;) >

That is, we may choose ¥ =T’ ;.

Now assume 7; <r < 1o = 1. Let k € {0,1,2} be such that ryy; <r <7y
(of course, k+1 < j). Let y = 7;x(x). Observe that, by Lemma 11.4 a), since
y € T, there exists some &' € {0,...,k} such that y € Ty ;v for some I’ € IV
Since k&' < k, we have H' (T 1) ~ ris > r, > r. Moreover, assuming M > 12,
(11.11) gives

Tk4+1

diSt(I’,Fk/’I/) S |ZE — y| = |I — 7],k($)| S T S

r
5 )
and so

H' (Exy N B(z,r) N Ty ) = H (B(x,r) N T ) 27

Hence, we may choose ¥ = 'y .
Finally, for 1 < r < diam(Ey) =~ 1, the condition (11.10) is satisfied with
Y =T, O

11.3 [Ey has big conical energy

In this section we show that Fy satisfies (11.1).

We introduce additional notation. Analogously to the definition of Sy ; for
ke {O, 1,2,3}, for I = (Il, J) € 73 x T we define 54’[ = GgJ/(SLJ).

If [ € " is of the form [ = (I',I") € IF x T7, we will write

Sk,1 = Sk.r, Lir =T, Gr1 = Gr .

Lemma 11.8. Let [ = (]1,]2,]3,]4) S I4, and let x € 847] C F37] C Ey.
Then, for any V € G(2,1) we have

— >N. (11.12)

~J

/1 HY (K (z,V,a,7)N Ey) dr
0

T r

Proof. Let I € I*, # € Sy;y and V € G(2,1) be as above. Recall that
Ly = {(z,0) : z € R}, p is the counterclockwise rotation by m/4, and
Ly = p*(Lo) € G(2,1). Recall also that Vi = {(x,y) : y = tan(7/8)x} is the
line from (P4) in Lemma 11.3. Observe that there exists some k € {0, 1,2, 3}
such that £(p~*(V),Vp) < 7/8. Fix such k. We are going to use (P4) with
respect to I'y ; to arrive at (11.12).

Recall that Syi1; = Gir(Si1,,,), where Gy = 7 o0 pF o 6% for some
translation 7. Recall also that Gy ;(I') = ;. Let @/ = Gy j(z), and V' =
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p~*(V). Then, using the fact that Gy, s is a similarity with stretching factor ry,
we get

/1 H'(K(xz,V,a,r)N Ey) dr >/1 H' (K(2,V,a,r)NTyy) dr
0 T r —Jo T T

/17" HY K (2", V' a,r; r)NT) dr /T’kl HY K (2, V' a,s)NT) ds
f— k —_— = .
0 0 s

T r S
(11.13)

Recall that k was chosen in such a way that V' = p=*(V) satisfies £(V’, Vp) <
7/8. In order to use (P4), it only remains to show that dist(z’, G(I")) <
2~ N+ for some I € T.

Observe that v3(Ss7) C Sky1,7- We know from (11.11) that if M > 6,
then

dist(z, Sky1.0) < dist(x,v3%(S41)) < |z — y3(x)] < Tgp1. (11.14)

Thus,

dist(2', S1.1,,,) = dist(Gy;(2), G 1 (Ses1,1)) = 73, ' dist(w, Sp1,1)
< iy = = 27 NVME=12 < g NOEHY),
S1,1,,, was defined as 09(Iy41) = G(Ik11), and so it follows from (P4) that the
last term in (11.13) is greater than C'N for some absolute constant C. Thus,
(11.12) holds. O

Now we can finish the proof of Proposition 11.1. Observe that

7—[1< U S4,1> = > H(Gsr(S)

Ie1* I'el3, Jel
= (#I)’r3 > H'(S1y) = (#I)°r3 > H'(J)
JeT JeT
(23) 9—3M 93N (M+1) 9—3N(M+1)=3/2 9=M+1 _ 9—4M—1/2 ~ 1,
where we also used that M is a constant depending only on a. Together with
Lemma 11.8, this shows that the set Fy has the desired property (11.1), i.e.

/ /1 Hl(K({ﬂ,V;,Oé,T)mEN) @d}[l(l’)
Ex Jo T r
VHYK (2, Vy,o,r) N Ex) dr
> Y Y ? - > N‘
B 1%134 /54,1/0 r r I (x) ~

Thus, the proof of Proposition 11.1 is complete. All that remains to prove is
Lemma 11.3. We do that in the following two subsections.
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0.1

°W

-0.1 -

-01 1

T T T
0.1
0 W
| |

-0.1

FiGure V.3: Top to bottom: graphs of g1, g2, and g3 = g when N = 2 and
M = 3. The thick segments denote intervals in G;, Go, and G3, respectively.

11.4 Construction of g

In this subsection we construct a function g and a family of dyadic intervals 7
that satisfy (P1), (P2), and (P3).

First, we define a family of auxiliary functions. For j = 1,..., M we define
fi =11 = [-M 127N M 127N as

h(27N)

fit) = AN

where h(t) : R — [—1,1] is the 1-Lipschitz triangle wave:
h(t) = |t mod 4 — 2| — 1.

In the above t mod 4 denotes the unique number s € [0,4) such that ¢t = 4k + s
for some k € Z.

Note that for all j we have Lip(f;) = M. For j = 1,..., M we define
also g; : [-1,1] — [-M 127N+ V127 N+ a5

and we set I'; = graph(g;) C B(0,1) C R?, g = gy, ' = T'y. See Figure V.3.
Observe that ¢ is 1-Lipschitz.
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Proof of (P1). We want to show that ¢g(1) = g(—1) = 0. Since h is an even
function, the functions f; and g; are also even. Hence, g(1) = g(—1). Note
also that if we have some function § satisfying properties (P2) and (P4), then
for any constant C' € R the function § + C will also satisfy (P2) and (P4). In
other words, these properties are invariant under adding constants. It follows
that we can work with the function g as defined above, prove (P2) and (P4),
and at the end replace g by g — ¢g(1). So the property (P1) is not an issue. [

We proceed to define the family 7 C Apr41)n

Recall that A denotes the open dyadic intervals of length 27%. Observe
that for any j the functions f; and g; are linear on each interval from Ay,
and we have f; = M ~1 on every second interval, and fi=-M ~1 on the rest.

Set G; C A to be the family of dyadic intervals I contained in [—1/2,1/2]
such that for all 1 <4 < j we have f/ = M~ on [. Tt is easy to see that
each G; consists of 27V~7 disjoint intervals of length 2797V, see Figure V.3. We
define also Z C A(yr41)n as the family of dyadic intervals of length 2=(M+1DN
contained in Uyjeg,, I

Proof of (P3). By the definition above we have
#T = 2N - 4Gy = 2M TN, (11.15)
so the property (P3) holds. ]

Proof of (P2). We have defined G, in such a way that if t € I € G, then
g;(t) = jM~'. It follows that if t € I € Z, then t € J for some .J € Gy, and
so ¢ = 1. Thus, (P2) holds. ]

11.5 TI' has big conical energy

This subsection is dedicated to proving (P4). We recall the statement for
reader’s convenience:

(P4) Let I' = graph(g), G : [-1
and let Vo = {(z,y) 1 y =
r € R? with dist(z, G(I)) <
L(V,Vy) < m/8, we have

1] — T be the graph map G(t) = (¢, ¢9(t)),
tan(r/8)x} € G(2,1). For any I € Z, any
2-NMHD “and all V € G(2,1) satisfying

Y

/1 HY K (z,V,a,7)NT) dr
0

> N. (11.16)
T T

Fix z, I, and V as above. We will show (11.16).

Since dist(z, G(I)) < 27N+ there exists ¢, € I such that |z — G(ty)| <
2-N(M+1) " Fix such .

For every j = 1,..., M define G;(t) = (,9,(t)). For every t € Urea,, !
set L;(t) C R? to be the line tangent to I'; at G,(t). We define also I;(t) as
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the unique interval from A;x containing ¢. Note that, since g; is linear on
intervals from A;y, we have L;(t) = L;(t') whenever ¢ € I;(t). Denote by Ly
the z-axis.

Observe that if Iy/(t) € Gy, then for each 1 < j < M we have g(t) = jM "
Thus,

AL(L;(t), Lo) = arctan(jM~"), and £(L;(t),Vp) < /8. (11.17)
Set L; = L;(t) — (¢, g;(t)). Note that (0,0) € L;, and that the definition of L;
does not depend on t, as long as Ip(t) € Gy. Since £L(V, V) < /8, it follows
from (11.17) that there exists some 1 < j < M such that

LV, L;) < max, (arctan(iM_l)—arctan((i—1)M_1)) = arctan(M ') < Mt

= (11.18)
Fix such j. Recall that M = 100[a~'], and so
LAV, L) <M < E (11.19)
Hence, for any r > 0
K(z,V,a,r) D K(x,Lj,a/2,T). (11.20)

Lemma 11.9. For t € [—1,1] we have |G(t) — G;(t)] = |g(t) — g;(¢)] <
IM-1 2—N(j+1)‘

Proof. The estimate follows immediately from the definition of g and g;:

M
< > At |<Z Lo < gpgtg NG,

i=j+1 _]+1

> L)

i=j+1

l9(t) —

]

Recall that ty € I € T was such that |[x—G(to)| < 27NM+D Set 2/ = G (ty).
Then, by the lemma above, we have

|z — '] < |o — Gto)| + |G (to) — G(ty)] < 27 NMHD 1 o= NGHD < 9= NG+

(11.21)
Let I' € G; be the unique dyadic interval in A,y containing /. That is,
I' = I;(to).

Recall that for any 0 < r < R the notation K(z,V,«,r, R) stands for a
twice truncated cone K (z,V,a, R)\ B(z,r). In the lemma below we show that
for all the scales between 2-NU+1) and 27V7, G(I') has large intersection with
the the twice truncated cone centered at 2’ with direction L, corresponding to
that scale.
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Lemma 11.10. Fort € I' such that |G(t) — 2'| > 27NU+D we have G(t) €
K(2', Lj,a/8). Moreover, for integers k satisfying Nj <k < N(j+1) —1 we
have

HY(G(I')N K (2!, Lj, /8,278t 27FF2)) > o=k, (11.22)

Proof. Let t € I' satisfy |G(t) — 2’| > 27NU+D. Recall that, since I’ € G, the
set Gj(1I') is a segment parallel to L;. We also know that 2’ = G;(ty) € G;(I’),
and so by Lemma 11.9

dist(G(t), L; + 2') < |G(t) — G,(t)] < 2M 127N+ < %|G(t) — 2,

where we also used that M = 100[a~!]. Thus, G(t) € K(2/, L;,a/8).
Now, let k be an integer such that Nj <k < N(j+1)—1. Let t € I’ be
such that 27% < |t — ty], so that

|G(t) — 2| > |G;(t) — G;(to)| — |G(t) = G5(1)] = |t — to| — 2M 1 27NUHD
Z 2716 . 2M71 27N(j+1) Z 27N(j+1).

Hence, by our previous result, G(t) € K(2', L;,/8). At the same time, the
calculation above shows that |G(t) — 2’| > 27%"1. Similarly,

Gl — 2 G,(1) — G (k)] +1G(0) — G ()] < VIt — to] + 21127V,
Hence, for ¢t € I' such that 27% < |t — t5| < 27%"! we have
27F L < |G(t) — o' < 27FF2
That is, for t € I’ with 27% < |t — to| < 27" we have
G(t) € K(2/, Lj,a/8,27% 1 27F+2),
Since G is bilipschitz, (11.22) follows. O

Later on we will need the following simple lemma about the inclusions of
twice truncated cones.

Lemma 11.11. Let z1,2o € R?*, L € G(2,1), » > 0 and oy € (0,1/4).
Suppose that |1 — xo| < agr. Then

K(z1, L, g, o oy — 29|, 7) C K (9, L, 4avg, 2r).

Proof. Lety € K(x1, L, ag, ag |1 — x5, 7), so that ag oy —xs| < |y —21| < 7
and dist(y, L + z1) < agly — x1|. It is clear that for any p € L + x; we have
dist(p, L + x) = |71 — 2], and so

dist(y, L + z2) < dist(y, L + 21) + |21 — 22| < aoly — 21| + aply — 1]
< 20|y — 22| + 2|1 — 24
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At the same time, we have
ly — xa| > [y — 21| = |21 — 22| > (ag" = 1) |21 — 22| > |21 — 2o.

Putting the two estimates together gives y € K(xq, L,4cp). To see that
y € B(z,2r), note that |y — za| < |y — z1| + |x1 — 22| < 2r. O

Recall that in (11.22) we showed a lower bound on the length of intersection
of G(I') with a cone centered at z’. However, to prove (11.16) we need
information about the intersections with cones centered at . We use (11.22)
and Lemma 11.11 to get the following.

Lemma 11.12. Let k be an integer such that o=t 2~ NUFTD+8 < 9=k < 9=Nj=3
Then, we have
HY(G(I')N K (x,Lj,a/2,27%)) > 27", (11.23)

Proof. First, recall that 2’ = Gj(ty) and |z — 2/| < 27NU+D+L by (11.21). By
our assumptions on k we have

Salz — a!| < a7t NUHDH < 9=kt 9=kl (11.24)

Hence, we may apply Lemma 11.11 with 2y = 2/, 29 = 2, L = L, ap =
a/8, r=2"%"1 to get

K2, Lj,a/8,8a o — 2|, 27" ) € K(x,Lj,a/2,27F).
Since 8otz — 2| < 257* by (11.24), it follows from the above that
K2, Lj, /8,274 2781y € K(x, L;j,a/2,27%). (11.25)

Note that we have Nj <k —3 < N(j+ 1) — 1 due to our assumptions on k.
Thus, we may use (11.22) to get

HY(G(I') N K(x,Lj, /8,275 27+ 1)) > o7k
Together with (11.25), this concludes the proof. O
We are ready to finish the proof of Lemma 11.3.
Proof of (P4). We want to show that

— >N. (11.26)
r T

/1 HYK(x,V,a,r)NT) dr
0

We use (11.20) to write

/1 H'(K(z,V,a,r)NT) dr >/1 HY (K (z,L;,a/2,r)NT) dr
0 r o Jo

r r

9-Ni=3 1 _
Z/ HY(K(z,L;,a/2,r)NT) dr

(11.27)

—19—N(j+1)+9 r r
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Note that a='2-NU+D+9 < 2=Ni=3 dque to the assumption N > 100(1 +
logy(@™1)). Now let o=t 2-NUHDH <y < 27N3=3 and let k be the unique
integer such that 27% < r < 27%*1_ Then, k satisfies the assumptions of
Lemma 11.12, and we get

Hl(K(LC,Lj,Oé/27T) N F) > Hl(K(.T,Lj,Oé/Q,Qik) M F) Z 27k ~ T

It follows from (11.27) and the above that

1 —

r r ~ Ja—12-NG+D+

1 —Nj-3
/17-[(K(x,V,oz,r)ﬂF)dr>/2 dr
0
. _ . _ N
= log(2) (N(j+1)—9—log,(a™")=Nj=3) = log(2)(N—log,(a™")~12) = 175,

where we used the assumption N > 100(1 + logy(a™")) in the last inequality.
Thus, the proof of (11.26) is finished. O

12 Example of Joyce and Morters

In this section we will show that the measure p constructed in [JMO0] satisfies
the assumptions of Theorem 1.14, but does not satisfy BPBE(1). Hence,
Theorem 1.14 is a true improvement on its &, analogue [CT17, Theorem
10.2).

12.1 Construction of p

For reader’s convenience, we sketch out the construction of Joyce and Morters
below.

Let M > 3 be a large constant, and 1/2 < 8, < 1 be a sequence of numbers
converging to 1. For k > 1 we define my, = Mk, m(k) = my...my = M* k!,

and
k4 1\
O = —_— .
F k

We set also aj = 27" for all 2" < j < 2"t n > 0.

We proceed to define a compact set £ C R? on which the measure p will
be supported. First, let Ey be a closed ball of diameter 1. We place m; closed
balls of diameter 2r; := o1 /m; inside Ey. We do it in such a way, that

e their centers lie on the diameter of Fy forming angle oy with the z axis,
e the boundaries of the first and the last ball touch the boundary of Ej,

e they overlap as little as possible, i.e. the distance between the centers of
two neighbouring balls is (1 — o1/my)/(my — 1).
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We call these balls the balls of generation 1, we denote their family by B;, and
we set By = Upgep, B.

Now suppose that £}, has already been defined as a union of balls Ugep, B,
and that #B; = m(k). Inside every ball B € By we place my; closed balls of
diameter 27,1 := 01 ...0541/m(k + 1). We do it in such a way, that

e their centers lie on the diameter of B forming angle > o; with the z
axis,

e the boundaries of the first and the last ball touch touch the boundary of
B,

e they overlap as little as possible, i.e. the distance between the centers of
two neighbouring balls is

d L 01...0k 1—0k+1/mk+1
k+1 -— ’ .
m(k) Mprq — 1

The balls defined above are called the balls of generation (k+1), and their
family is denoted by Byy1. Clearly, #Bg1 = my1 - m(k) = m(k +1). We set
Eii1 = Upep,,, B, and E = Ny E.

It is shown in [JMOO, §2.1] that if M is chosen appropriately, then two balls
of generation (k + 1) may intersect only if they are contained in the same ball
of generation k. It follows that there exists a natural probability measure p
supported on E defined by

w(B) =m(k)™" for B€ By, k>1. (12.1)

If the sequence [}, is chosen properly, the set E has the following curious
property: it is of non-o-finite length, but all the projections of E onto lines
are of zero length. Moreover, the Menger curvature of E is finite. However, we
will not use those properties.

12.2 The assumptions of Theorem 1.14 are satisfied

In [JMOO, §2.1] Joyce and Morters construct a function ¢ : [0,d;) — R
satisfying ¢(r) < r and
d1 2
/ 2(r) dr < oo.
0

r3

They also show that for 0 < r < d; the measure p satisfies pu(B(x,r)) < 84 ¢(r).
It follows easily that pu(B(x,r)) < Cyr for C; = max(84,1/d;) and all r > 0.
Furthermore, by the observations above and the fact that u(R?) = 1, for all
xr € F = supp u we have

/Ooo <M<B<f,r>>>2 d < /Odl 9052)2

o 1
W+/——W§M@ (12.2)
d
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for some M, depending only on d; and ¢.
Obviously, for any V € G(2,1), a € (0,1), R > 0, we have

SM,Q(x,V,a,R):/OR <M(K(x,V,a,r))>2 ﬁé Ooo (M(B(fﬂa?“))f ‘ir’

T r r

and so the assumptions of Theorem 1.14 are trivially satisfied.

Let us note that the boundedness of nice singular integral operators on
L?(u) for this particular measure y is not a new result. It is well known that
measures satisfying (12.2) behave well with respect to SIOs. For example, one
can use (12.2) and [Mat96, Theorem 2.2] to prove local curvature condition for

i, and then boundedness of Cauchy transform follows from [Tol99, Theorem
1.1].

12.3 £, is not bounded
Let z € E, V € G(2,1), and a € (0,1) be given. We will show that

U (K (x,V, d
&M@MmUZA”(@}ﬂM>;:m. (12.3)

First, we identify the lines W € G(2,1) with the angle 0y, € [0, ) they form
with the x axis. We will abuse notation by writing K (z, 0y, o, R) to denote
K(x,W,a, R). Set 6 := 0y.

Definition 12.1. We will say that an integer k is a good indez if

(Z;W—Am)—ekgg, (12.4)

where N is the integer satisfying 2 < k < 2V¥*! | By the definition of o, this
is equivalent to

]w—2N+1———9] (12.5)

Our strategy is the following: first, we show that there are many good
indices. Then, we prove that if k is a good index, then p(K (z,0, o, 27))ry "
is large. Put together, the two facts will imply (12.3).

We define Ny = Ny(a) to be a large integer, to be fixed in Lemmas 12.2
and 12.3.

Lemma 12.2. If Ny = Ny(«) is large enough, then for all N > Ny we have a
large portion of good indices satisfying 2 < k < 2NT1 that is,

#{2N <k <2V ks a good index} > 2N a.
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Proof. Let Ny be so big that 2= Vo < a/100, and let N > Ny. Let 2N < ko <
2N*1 be the index minimizing |(kg — 2V + 1)m27Y — 9‘. It is clear that

(ko — 2V +1)27r — 0| <27V,

and so it follows from (12.5) that all integers k such that 2V < k < 28¥*! and
|(k — ko)27V7| < a/10 are good indices. It is easy to see that there are at
least C2Na such integers, where C' is some absolute constant. O]

Recall that r, was the radius of balls of k-th generation, and x € F is
arbitrary. For k > 1 let By € By, be a ball of generation k containing = (there
may be two such balls, in which case we just choose one).

Lemma 12.3. If Ny = Ny(«) is large enough, then for all good indices k > 2N
we have
M<K<x> 0,a,2 rk)) 2 M(Bk)

Proof. Let y be the center of By 1, so that |x — y| < rgy1. By construction,
Tkt1 = Tk O'k+1(Mk)71 S Tk /i)il. (126)
Since k > 2™ for N, big enough we get
a
[z —y] <rpga < 50"k (12.7)
Then, it follows from Lemma 11.11 that
K(y7 97 a/47 404_1|ZL‘ - yla Tk:) - K([L’, 6)’ «, QTk)
Since 4o~ |z — y| < /2 by (12.7), we get
K(y,0,a/4,rp/2,1) C K(z,0,,27ry). (12.8)
On the other hand, using the definition of good index (12.4) we arrive at
K(y, by oy — Nm,a/20,71,/2, 1) C K(y,0,0/4,71/2, 7). (12.9)

For brevity, set K to be the cone from the left hand side above, and let L be
the axis of K. Recall that the diameter of By (let us call it D) forms angle
Z?;l a; — Nm with the x axis; that is, D is parallel to L. Since y is the center
of By, it follows from the construction of F that y € D. Hence, D C L.
We claim that the balls of generation (k + 1) contained in By N B(y, %) \
B(y,r/2), are in fact contained in K. Indeed, suppose z belongs to such ball,

Thus, z € K.
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Since y € D and By, is a ball of radius ry, it follows that a large portion
of balls of generation (k + 1) contained in By, is also contained in B(y,ry) \
B(y, rt/2). That is, they are of the type considered above. Hence,

w(K) 2 p(Bg).

By (12.9) and (12.8) we have K C K(z,0,«,21y), and so the proof is finished.
O]

Lemma 12.4. For k > 2
1(Br) o
2’)"k ~

o] =

Proof. By the definition of p (12.1), ry, and o) we have

1(By) . m(k) 1 1\ EO\* 1 ki 1
21} 01...0, O1...0% 2 k+1 2 kK+1 k+1

where in the last inequality we used the fact that 1/2 < 8, < 1. O
We are ready to finish the proof of the estimate (12.3).

Proof of (12.3). Observe that if k > Nj is a good index, then by Lemma 12.3
and Lemma 12.4 for r € (2ry,47)

WK (@,0,0,7)) _ 1
r ~ kK
and so dre (K (z,0,a,7r))dr 1
Lm R 2 (12.10)
Recall that rp,; < k~!rg, by (12.6). Hence,
/ (K (z,0,0,7)) dr S e w(K(x,0,a,7)) dr
T S 2 r
Z 3 /47% u(K(x,0,a r)) -1 Z 3 1
 N=No oN <N +1 72 N=No 2N <g<2N+1 k
kis good kis good

Lemma 12.2

o
~ Oy >ooo2h > > 27V2Na = cc.
N=No 2N <k<oN+1 N=Np
kis good
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An o number characterization of LP spaces on
uniformly rectifiable sets VI

1 Introduction

Recall that in Section [.6.2 we defined o numbers, the flatness quantifying
coefficients introduced in [Tol09]. In this chapter we will use a slightly modified
definition compared to that of Definition 1.6.7. For a (possibly real-valued)
measure g and n € N, if B = B(z,r) we define

1

an(z,r) =al(B) = v cgéfL Fg(u, cH"|L), (1.1)

where the infimum is taken over all ¢ € R and all n-planes L that intersect B.
We will often omit the superscript n, as it will be fixed throughout.

Remark 1.1. Note that in this chapter we normalize o numbers by r~".
Furthermore, since we will be working with real-valued measures, the infimum
above is taken over ¢ € R (if p is a positive measure then it does not make
any difference).

For an extended discussion of o numbers, see Section 1.6.2. Recall that
«a numbers can be used to characterize uniformly rectifiable measures by the
following result of Tolsa.

Theorem 1.2 ([Tol09, Theorem 1.2]). An n-ADR measure o is UR if and
only if the measure o, (z, T)Qda(az)% is a Carleson measure, meaning that for
all balls B centered on supp o with 0 < r(B) < diam(supp o),

/OTB /Ba(,(x,r)2 da(x)cjnr < Cyo(B)

for some fixed Cy > 0.
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The purpose of this chapter is to extend Tolsa’s result to measures that
are not AD-regular, but are given by L? functions defined on UR sets.

Given a Radon measure o, f € Lj,.(0), and a ball B = B(z,r) with
o(B(z,r)) > 0 set

_ :fo do
fB_f:c,r O’(B) .

Theorem 1.3. Let 0 be a UR measure and f € LP(0) where 1 < p < 0.
Then

HfHLP(o') ~ </0 (afa(xar) + ‘flx,r&o(x>r))2 :) ) (12)

LP(o)

with the implicit constant depending on p and o.

Sharpness of the result

An interesting aspect of our result is the presence of two terms that comprise
our square function. We don’t know whether the result holds for general
UR sets without the second term. Neither of the terms bounds the other in
the pointwise sense: one could be zero while the other is nonzero. On the
other hand, we don’t know whether the norm of the square function involving
only o, dominates the one involving only |f|;,a,. The reverse inequality is
certainly not true, as the latter square function vanishes if o is the Lebesgue
measure on Y = R",

Question. Let 0 be a UR measure and f € LP(0) where 1 < p < 0o. Do we
have

1
e8] dr 2
i 5| ([ esatenr? )] 2 13
Lr(o)

Equivalently, is it true that

I(/Ooo(fx,roza(a:,r))Q ?‘)é < (/OOO o) Cir)é ?

Lr(o) Lr(o)

The answer to the question above is obviously affirmative in the flat case, i.e.
o =H"|, for L a n-dimensional plane. It is also positive if o is an AD-regular
measure on a n-dimensional plane L, i.e. o = gH"|, for some function g
satisfying A~' < g(z) < A. Indeed, let ¢ = H"|,, so that fo = fgd. In that
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case, by Theorem 1.3

1
o) 9 dr 2
1Fllirioy =l 9l ooy = | [~ traor)? 5

Lr(o)

Finally, one could show that (1.3) is true for “sufficiently flat” UR measures
o. What we mean by this is that if the constant Cy from Theorem 1.2 is
sufficiently small, then some variant of Carleson’s embedding theorem can be
used” to show that

(/Ooo (’f|x,r&g($a r)>2 Cff) 2 Sp Coll fll ooy -

LP(o)

Together with (1.2) this gives

00 dr 2
1oy < Co|( [~ asoler)? & + C(p, ) Coll 1o
0

r
LP(o)

Assuming the Carleson constant Cy to be small enough, we get that the last
term can be absorbed by the left hand side. To make this more rigorous, one
should perhaps track the dependence of C'(p, o) (the implicit constant from
(1.2)) on the UR constants of ¢ with more diligence than we did. However, the
implicit constants can only get better as o becomes flatter, and they certainly
cannot blow-up as the Carleson constant Cyy goes to 0: if o satisfies the Carleson
condition of Theorem 1.2 with some Cj, then it also satisfies it with constant
C}, for every Cj) > C.

Organization of the chapter

In Section 2 we introduce the necessary tools and make some initial reductions.

We define also Jf, a dyadic variant of the square function from Theorem 1.3,
see (2.4).

We show that [|Jf||, < [/f]|, in Section 3. The proof uses martingale
difference operators, and it is inspired by how Theorem 1.2 was originally
proved, see [Tol09, Section 4]. In Section 4 we use the estimate [|J f||, S|,

*For p = 2 use e.g. [Toll4, Theorem 5.8], for p # 2 one can show a corresponding
statement by proving an appropriate good-lambda inequality, in the spirit of what we do in
Section 4 (but simpler).
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and an appropriate good-lambda inequality to conclude that || Jf[|, S| f|l, for
general 1 < p < oo.

Finally, in Section 5 we prove [|f|l, < [[Jf]|,- To do that we use the
Littlewood-Paley theory of David, Journé and Semmes [DJS85].

2 Preliminaries

2.1 Notation

In our estimates we will write f < g to denote f < Cg for some constant
C' (the so-called “implicit constant”). If the implicit constant depends on a
parameter t, i.e. C = C(t), we will write f <; g. The notation f ~ g and
f =y gstands for ¢ S f S gand g Sy f S f, respectively. To make the
notation lighter, we will usually not track the dependence of C' on dimensions
n, d, on the ADR constant of o, or the parameter 1 < p < oco.

For simplicity, we will sometimes write

L1l = 11 2o o -

Recall that we introduced the notation fg to signify the average of f over
a ball B with respect to . For general Borel sets £ C R? with o(F) > 0 and
f € L,.(0) we will write
Jg | do
o(E)

(e =

If v,w € RY, then v - w denotes their scalar product.

2.2 Adjacent systems of cubes

As usual, we will work with a family of subsets of supp o =: ¥ that in many
ways resemble the family of dyadic cubes on R™. For this reason we will call
these sets “cubes”. Many different systems of cubes have been constructed
throughout the years, beginning with the work of David [Dav88a] and Christ
[Chr90]. In our proof it will be convenient to use adjacent systems of cubes
constructed by Hytonen and Tapiola [HT14]. One should think of them as a
generalization of the translated dyadic grids in R", widely used to perform the
“1/3 trick”.

First, we will say that a family & of Borel subsets of ¥ satisfies the usual
properties of David-Christ cubes if 9 = Upey Yk, and for each k € Z:

(a) for P, Q € %, P # Q, we have c(PNQ) = I,
(b) the sets in P, cover X:
»=U @

QEDy,
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(c) for each @ € P and each | > k

e= U P

PE.@ZZPCQ

(d) there exists 0 < ¢ < 1 (independent of k) such that each @ € Zj has a
center z(Q)) € @ satisfying

k
B(2(Q), ‘55) NY CQc Bz(Q),36") N (2.1)

Consequently, as long as 0¥ < diam(X), we have o(Q) ~ §*. Set

Q) := ",

(e) the cubes @ € 2 have thin boundaries, that is, there exists v € (0,1)
such that for n € (0,0.1) we have

oc{z e X : dist(z,Q) + dist(z, 2\ Q) < nl(Q)}) <n'o(Q). (2.2)

Remark 2.1. Note that in the above we assume Z;, to be defined for all £ € Z.
In the case of unbounded ¥, this translates to having arbitrarily large cubes
as k — —oo. In the case of compact X, there exists some ky such that for all
k < ko we have &, = {¥}. However, in our proof we will assume that ¥ is
unbounded, see Lemma 2.5.

In our setting, the results [HT14, Theorem 2.9, Theorem 5.9] can be
summarized as follows.

Lemma 2.2. Let 0 be a n-AD reqular measure on R%. Then, there exist
1 < N <00 and a small constant 0 < 6 < 0.01, depending only on the ADR
constant of o, such that the following holds. Let Q = {1,...,N}. For each
w € Q we have a system of cubes P (w) satisfying the usual properties of
David-Christ cubes, and additionally, for all x € ¥ and 0 < r < diam(X) there
are w € Q, k€7 and Q € P(w) with

B(z,r)Nn¥X CQ

and

E(Q) = 5k =5 T

Remark 2.3. The construction in [HT14] is valid for general (geometrically)
doubling metric spaces, possibly with no underlying measure space structure.
The constants N and ¢ from Lemma 2.2 depend on the doubling constant
of the metric space. Hytonen and Tapiola construct two different kinds of
cubes, which they call open and closed cubes, see [HT14, Theorem 2.9]. In
the above we consider closed cubes, so that properties (b), (¢) and (d) follow
immediately from [HT14, Theorem 2.9]. To get the property (a) one uses

185



VI

AN a NUMBER CHARACTERIZATION OF LP SPACES ON UR SETS

186

the fact that interiors of P and @ are disjoint by [HT14, (2.11)], and then
o(OP) = 0(9Q) = 0 follows from (e). To prove the thin boundaries property
(e) one may adapt the proof of Christ [Chr90, pp. 610-612] together with
AD-regularity of 0. We omit the details.

From now on, let us fix a uniformly rectifiable measure o, with ¥ = suppo.
Let €, 6 and Z(w) be as in Lemma 2.2. For simplicity, in our estimates we
will not track the dependence of implicit constants on 9.

For all w € Q and Q € Z,(w) we will write

2(Q) ={Pe€2w) : PCQ},
Ch(Q) == 2(Q) N Djy1(w).

The elements of Ch(Q) will be called children of @, and @ will be called their

parent.
Set

Bo = B(2(Q), 4(Q)),

so that () C Bg N X, and whenever P € 2(()) we also have Bp C By.
Fix some wy € €2, and set

9 = 9(@0).

This will be our system of reference. Given @) € Z we define w(Q) € € to be the
index such that there exists R(Q) € Z(w(Q)) satisfying By Nsuppo C R(Q)
and ((R(Q)) =~ ¢(Q). If there is more than one such w, we simply choose one.
We define also G(w) C Z as the family of cubes @ € & such that w(Q) = w.
Clearly,

U Gw) = 2.

weN

2.3 a-numbers

In proving the main theorem, it will be more convenient to work with dyadic
versions of the a-numbers. Below we will introduce the notation needed for this
framework. Given a Radon measure y we denote by L% a minimizing n-plane
for a,(z,7), and by ¢ . the corresponding constant. They may be non-unique,
in which case we just choose one of the minimizers. Set P}, = H"|;. and
Lk =ck P If B= B(x,r)we will also write L}, cj etc. ’

For Q € 2 and a Radon measure p we set

(@) = au(Bg)-

; o TH o TH M
We will write Lq, := L, cg = cp, etc.
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Observe that whenever By C Bs are balls, we have Lip,(B;) C Lip,(Bs),
and so if r(B;) > Cr(Bsz), then

1 . n
a,(B) = (B ngL Ep, (, cH"[1)

1 1
< —F Lhy< ——
= (Bt B (1, Lp,) <

Consider the following square function:

1/2
J<m>—( 5 afa<@>2+\fr%Qaa<Q>2) . (2.4

zeEQED

Theorem 1.3 will follow from the following dyadic version:

Theorem 2.4. Let o be a uniformly rectifiable measure with unbounded support,
and let f € LP(o) for some 1 < p < oo. Then

HJfHLP(o) ~ ||f||LP(a) :
First, let us show why we may assume that supp o is unbounded.

Lemma 2.5. [t suffices to only prove Theorem 1.5 in the case that supp o is
unbounded.

Proof. Suppose o did have compact support. Without loss of generality, we
may assume diam(suppo) = 1, suppo C B = B(0,1), and L = R™. Let

=0+ Pg o 4p-

It is not hard to show that pu is also UR. If Theorem 1.3 holds for UR measures
of unbounded support, then it holds for pu. Let f € LP(¢0) C LP(u) and let

93;(55,7“) = Oéfg(l',’l“) + |f|:c7raa(x7r)>

so that, by the Theorem 1.3,

H (/Ooo 07 (z, 1) cir) 1/2

2| Fll oy =1l ooy - (2.5)
LP(p)

Observe that

0/ (z,r) = Qﬁ(a:,r) for x € suppo and 0 < r < 2.
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Thus,

9 1/2
(o)
0 T

2 dr\"?
2
:H</0 95(:@7‘) T)
Lr(o)
o d?” 1/2
2
</0 9,{(95,7") 7,)

Furthermore, we claim that for any x € suppo and r > 2 we have

Lr(o)
(2.5)
S N llpego -
L ()

05 (2, 7) S 7" fla- (2.6)

Indeed, since supp f C suppo C B,

1 1 1
o 1) € — Fpen(F0,0) < — [ |fl do ~ —|fls,  (27)

and also

1 1
Fleraola,r) S = [ 17 do~ | fls.
r B r

It follows from (2.6) that

o0 dr o0 dr
f 2 2 2
|0 s [T S IR

and so

S v + [ 1140 S 1 ooy

Lr(o)

(e 2)

To finish the proof we now need to show the reverse inequality. Notice that
since f is supported on suppo, as,(z,r) = as.(z,r) for all x € supp p and
r > 0. We can argue just as in (2.7) to get that for = € supp pu and r > 2,

1 |f
yn+l FB(IJ‘) (faa O) 5

|B 5 |f|2BOéO-<2]B>,
rn rn

where we also used «,(2B) ~ 1.
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Hence,

A(Am@mwwffjgmmw
</</ ozfyxr2:> du(x +/</ oz, r)? c;lﬂr) (o)

([t t) e ([ inmocmr ) ano

</ ( [ ool d) du(z) + (112500 (2B)?

d 2
</</ 0 (x,r)? r) dp(x)
r
where we used (2.3) in the final inequality.
Furthermore, for x € R"\4B, if ay,(z,7) # 0, then r > |z|/2 and so
o0 dr\®
2
— | d
o ([ o)
dr

i::/an 2/+1B\2/B) </| I/Q(IJE‘Q]BO%@]B%>> 2n+1>§ i)
S flaoBY S [ el te)

nN(29+1B\2/B)

< Uksaa(2B)? 5 [ ([ a0 ) it

again using (2.3). These two estimates imply

(Am““@”fi>w2mm (A m@r)f>

Note that for x € supp o and r < 2, we have P7, = Pl . For r > 2, notice
that o, (2B) ~ 1, and so

< (2.8)

LP(o)

ay(z,1) < »,Pg) = T,SHFBu,r)(U, PeldB)Sr™" < %7(,313)’
hence
1t .7 < [ lan 22,
where [ f[4 @ f dp/u(B(z,7)). Thus, just as how we proved (2.8), we
can show

0°°<|frz Pou(a,r)?

| [

LP(o) .
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This, (2.8) and (2.5) imply the desired estimate:

- 1/2
([ ostar)
0 T

”fHLP(o') S

Lr(o)
[
Proof of the Theorem 1.3 using Theorem 2.4. By Lemma 2.5, we may assume
that supp o = ¥ is unbounded, so that Theorem 2.4 holds.
Let z € X, r > 0. Let k € Z be such that 6*t! < r < §*, and let Q be a

cube in 2 containing x. Recall that @ C B(2(Q), 34(Q)). Since r < {(Q), we
have

B(x,r) C B(2(Q),30(Q) + 1) C B(2(Q),4(Q)) = By
Hence, by (2.3),
ape(z,7) S 0pe(Q).
We also have |f|,, < |f|B,, and so

|flerco(z,7) S |f|BQaU(Q)‘

Consequently,

k41

6k:
[ ol ) + Lol ) S agol@2 + 100 (@)

Summing over k € Z yields
oo dr
[ o)+ flapao (e, TS Y ape(@)F + 11 a0(@)
0 r r€EQEY

Similarly, for x € X, r > 0,6 < r < §*, we may consider a cube
Q) € Dy42 such that x € Q C By C B(x,r). Mimicking the estimates above,
one gets

o d
S gl @7+ 113y00@) 5 [ (agoler) + | flesage. ) O
TEQEYD 0 r

Putting the two estimates together, we get the comparability of the dyadic
and continuous variants of the square function:

- d

@R = Y 0@ 1700 (@) & [ (@gole.r) + 1 flasan () .
TEQEYD

]

Theorem 2.4 will follow from the results from the next three sections. From
now on we assume that o is a uniformly rectifiable measure with unbounded
support.



17/l

S

3 (7 flly Sl

First, we prove the estimate [[Jf[|, S|/ f]|, in the case p = 2.

Proposition 3.1. Let f € L?(c). Then

S (040 (Q) + [ £13, 00 (QDUQ)" SIS 1720 -

Qey

Our main tool in the proof of Proposition 3.1 are the martingale difference
operators associated to systems of cubes Z(w).

Givenw € Q, Q € Z(w), and f € L, .(0) we set

Aof = Y, (NHirlp—(flole.

PECh(Q)

Observe that all Agf have zero mean, i.e. [Agf do = 0.
It is well known (see e.g. [Gralda, Chapter 6.4]) that given f € L?(o) and
some system of cubes Z(w) we have

Y Aqf

QEZ(w)

with the convergence understood in the L? sense. It is crucial that o(X) = oo,
so that f + C' € L?*(o) if and only if C'= 0 (in the case o(X) < oo one would
have to subtract from the left hand side above the average of f).

Note that Agf are mutually orthogonal in L?(c), so that

11720 = > H of | (3.1)
QED(w)
Moreover, if Q € Z(w), then for o-a.e. x € @
f@)=(fla+ > Apf(a) (3.2)

Pe(Q)

Lemma 3.2. Suppose Q € Z, and let R = R(Q) € Z(w(Q)) be as in Section
2.1. Then, for f € L*(c) we have

l+n/2

ase(Q) S [{f)rlas(R) + Z Q) 1ARf,- (3.3)
Pe2(R
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Proof. Let ¢ € Lip,(Bg) and consider a candidate for Eg’ of the form (f) R L.
For all x € Bg Nsuppo we have x € R, so that using (3.2)

[ @)1 (@) dot@) = (P)n [ o) deila)

:’/gp(:v) VRt D 90 z)Apf(x /‘P R dLG(2)

Pe2(R

R|\/so ) do(a /@ ) AL

+ 3 | i) -

Pe2(R

=1 + .

It is clear that

(2.3)

Iy <[(f)rl oo (@UQ)" < [(f)r| an(R)UQ)™,

which gives rise to the first term on the right hand side of (3.3).

Concerning I5, we use the zero mean property of martingale difference
operators, and the fact that ¢ € Lip,(Bg), to get

L=Y

Pe2(R)

| (p(@) = o(=(P)) Apf(a) do(a)
< Y [le@) = wP)I|Arf ()] dol)

 peaR)

Holder
S X UPARAL, S X UP)TRARS,-

PGQ (R) Pe2(R)

Dividing by ¢(Q)"*! and taking supremum over ¢ € Lip,(Bg) yields (3.3). [

Proof of Proposition 3.1. We begin by noting that, since ¢ is uniformly rec-
tifiable, a,(Q)?¢(Q)™ is a Carleson measure by the results from [Tol09], see
Theorem 1.2. Therefore, the estimate

S 1500 (@7UQ)" S

Qe

follows immediately from Carleson’s embedding theorem, see e.g. [Toll4,
Theorem 5.8], and we only need to estimate the sum involving a,(Q).

Observe that for each w € 2 and R € Z(w) there is at most a bounded
number of cubes () € Z such that R(Q) = R.
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Fix some w € Q. Recall that G(w) is the family of cubes Q € Z such that
w(Q) = w. We apply (3.3) and the observation above to get

> ap(QUQ)"

Qeg(w)

S X KhrPas(RPUR)" + (PZ

sz A Sl
RE(w) RED(w)

(P2 ?
(R) )

= Sl + Sg.

Concerning S7, we may use Carleson’s embedding theorem again to estimate

S1<If1
Moving on to Ss, we apply the Cauchy-Schwarz inequality to get

se y (3 fhaen)( X GE)

ReP(w) \ PEZ(R) Pce%(R)

It is easy to see that, due to AD-regularity of o, 3 pcy(r % < 1. Thus,

((P) (P
< T % gmleei= X s Y Gn
Re@(w) Pe2(R Pe9(w) ReP(w)
RDOP
S 2 HAprg ||fH2
PeP(w)

Putting the estimates above together we arrive at

Y (@@ SIS

QeG(w)

Summing over all w € Q (recall that # is bounded) we get the desired
estimate. N

4 |IJfll, SUAI, for 1 <p < oo

In this section we use the estimate ||Jf|[> S| f|l, to prove [|J f[|, S f]], for
general 1 < p < co. More precisely, we will show a localized version of the
estimate, which implies the global estimate via a limiting argument.

Fix an arbitrary Qy € Z and set

1/2
(@) :=( 5 afa<cz>2+|f|23@aa<@>2) .

z€QEZ(Qo)
Proposition 4.1. Let 1 <p < oo and f € LP(0). Then,

“JOfHLP(QO) 51) ||f||Lp(BQO)
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The proposition follows easily from a good-lambda inequality stated below.
Let M denote the non-centered maximal Hardy-Littlewood operator with
respect to o, i.e.

M f(x) =sup{|f|p : = € B, B is a ball}.

Since o is AD-regular, the operator M is bounded on LP(o) for p > 1, see e.g.
[Toll4, Theorem 2.6, Remark 2.7].

Lemma 4.2. Let f € L}, (o). For any a > 1 there exists ¢ = e(a) > 0 such
that for all A > 0

9
oc{x € Qo : Jof(x)>a) Mf(zx) <eA}) < TOU({I €Qo : Jof(x) > A}).
(4.1)
Let us show how to use the above to prove Proposition 4.1.

Proof of Proposition j.1. Note that Jof = Jo(f1p,,), so without loss of gen-
erality we may assume that supp f C Bg,. Let @ = a(p) > 1 be so close to
1 that 0.9a? < 0.95, and let € = () be as in Lemma 4.2. We use the layer
cake representation to get

/QOJOf( )P do(z / NWlo({z € Qo+ Jof(x) > A}) dA
:pap/o NWlo({z € Qo Jof(x) > arl) dA
< pa® /OOO N lo({z € Qo : Jof(x) > aX, Mf(x) <el}) d)
+ po? /°o W lo({z € Qo : Mf(z)>eA}) dh
(1.1

< et [T e Qo hf(@) > A it are [ MFG) doo)
<fp/ Wlo({z e Qo Jof(x) > A}) dA + afe *p/ Mf(z) do(z)

— 20
19
= — J a:pdaa:—i—ape_p/M x)P do(x).
30 . Bl @) doo) [ Mi(ay dofa)
Absorbing the first term from the right hand side into the left hand side, we

arrive at

/ Jof ()P do(z) < 20aPe / Mf(z) do(z).
Qo
We use the LP boundedness of M and the assumption supp f C By, to conclude

/Qo Jof(z)? do(z) Sae /BQO F(2)P do(x).

The remainder of this section is dedicated to proving Lemma 4.2.
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4.1 Preliminaries
Fix a > 1 and A > 0. First, we set
E)\ = {.’L’ € QO . Jof(.fl?) > )\}

Consider the covering of F) with a family of cubes €\ C Z(Qo) such that for

every S € €\ we have
a(SNE)) >0.990(S)

and S is the maximal cube with this property. Since the cubes from %) are
pairwise disjoint, to get (4.1) it is enough to find € = £(«) such that for each
S € 6\ we have

oc{x e S : Jof(x) >a\, Mf(z) <eA}) < 1800(3). (4.2)
Fix S € %,. Without loss of generality assume that
c({z €S : Mf(z) <eA}) > ﬁ)a(S), (4.3)

otherwise there is nothing to prove.
Given x € S, we split the sum from the definition of Jyf(x) into two parts:

Jof($)2
= Y (ap@+1f3,00@2) + X (0e(@Q)7 + [ f13,00(Q)?)
T€QED(S) SCQEZ(Qo)

— L@+ B (44)

Clearly, Jof(z) = Jof is just a constant. By the definition of %) there exists
y € S (where S is the parent of S) such that y & Ey. By the definition of Ej,
we get that

Sof < Jof(y) <A

We will show the following.

Lemma 4.3. There exists a set S; C S such that o(Sy) > 0.50(S) and

; S f(2)? do(z) < e2X0(9))

The estimate (4.2) follows from the above easily. Indeed, using Chebyshev,
we can find Sy C Sy such that for all x € Sy we have J;f(z) < eX and
0(S2) > 0.50(S1) > 0.20(S). Then, choosing ¢ = e(«) small enough, (4.4)
gives Jof(x)? < A2+ Ce?X? < a?)? on Sy, so that

o{x el : Jof(x) >a\, Mf(x) <eA}) <a(S\S2) < —0a(9).

S|

So our goal is to prove Lemma 4.3.
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4.2 Calderén-Zygmund decomposition

Let R = R(S) be as in Section 2.2, so that Bs Nsuppo C R. We consider a
variant of the Calderén-Zygmund decomposition of f1z with respect to Z(R)
at the level 2.

First, let {Q;}; C Z(R) be maximal cubes satisfying | f|s, > 2eA. Note

that for all x € ); (and recalling that M is the non-centered maximal function)
we have

Mf(x) > |flpy, = 2eA.
Hence, U; Q; C {z €S : Mf(x) > 2e)}, and so

o(R\UQ) 2 o(S\UQ) 2 oz €S + Mf(x) <))

(4.3) 8

> EU(S) ~US)" = LR)". (4.5)
In particular, @); # R for all j. Thus, by the maximality of (); we get easily
|f|BQ]. e (4.6)

We define g € L*(o) by
9(@) = f(@) Iy, q,(®) + %:(fmj]lcgj (2)-
From the definition of ); and (4.6) it follows that | g||, < eA. We define also
be L' (o) as
) = S0~ (o)la, () = T
j
Note that f = g + b and for all j we have [b; do = 0.

4.3 Definition of 5

We set S; = S\ N, where N, is some small neighbourhood of U; @;. To make

this more precise, glven a small n > 0 we define N, = U; N, ;, Where

Ny =A{z €suppo : dist(z, Q;) < nl(Q;)}.
The thin boundaries property of & (2.2) gives
0(Np; \ Q;) <10 (@)
for some v € (0,1). From (4.5) and the fact that o(5) =~ o(R) we get

S\ N) 2 o(S\UQ) - o, \Q) = - Ee(@)

o(S) — Cio(S) = (180—077> #(S).
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Here C' depends only on the implicit constant in o(S) ~ o(R), which in turn
depends on the ADR constant of ¢ and on the parameters from the definition
of the system 2.

Choosing 7 so small that C'n” < 0.1, we get that S; = S\ N, satisfies

7
(52 Lo(s)
4.4 Estimating J f
Now, we will show that
Jif(2)? do(z) < 2N\ (S)) (4.7)

S1

Recall that

Jf@)? =3 @+ D flp,00(Q) = Jif(2)* + Ji f ()"

z€QEeP(S) z€QEP(S)

First we deal with J} f. Observe that for all Q) € Z(S) intersecting S; we
have

fls, S X (4.8)

Indeed, let y € @ NSy, and let P € Z(R) be such that y € P, ((Q) ~ {(P),

and By C Bp. By the maximality of @; and the fact that P\ U; Q; # @ we
get | flg, < 2eA. Estimate (4.8) follows from the inclusion By C Bp.
Using (4.8) as well as Theorem 1.2 we get

> |f|BQoaa<> o) 2N Y an(QPe(QN S

2€QED(S Qe2(S)

SEN DT a,(Q)0(Q) S E¥N0(9) m 20 (Sy).
QRe(S)

Thus, we are only left with showing

T f(w / 3 an(Q)Z do(z) < 2\20(S)).  (4.9)

S1 S1 T€EQED(S

Lemma 4.4. For Q € 2(S) we have

Z E(QJ')n

a0 (Q) S age(Q) + A el
’ J:Q;NBQ#2 L)t
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Proof. Let ¢ € Lip,(Bg). Then, using the decomposition f(y) = g(y) + b(y)
valid for all y € R D Bs Nsuppo D By Nsuppo,

[ 1) doty) - / oly) AL (1)
S’/w(y)g( /90 ) ALY (y ‘ ’/w )’

Y (e (v) do(y).

Concerning the second term on the right hand side, recall that [ b; do = 0 and
that supp b; C ;. Keeping that in mind, denoting by x; the center of @);, we
estimate in the following way:

[ (@) = elw)bs(w) doty)

[ @ity doty) =3

J J

<X [lew - ewnbo)] et > 4@ [l
= Y 1@ [ 1)~ De| dow) S X 6@ (e,
J:Q;NBo#9 J J:Q;NBo#2

(? eA Z E(Qj)n+l~

J:Q;NBo#@

Together with the previous string of estimates, taking supremum over all
¢ € Lip,(Bg), we get

Z g(@j)n

. (Q) < O‘ga(Q) +eA —
g J:Q;NBQ#Y K(Q) i

An immediate consequence of Lemma 4.4 is the estimate

[, JiF @) do(a)

2
E(Qj)n+1
</ Jig(z)? do(z) + 2\? /S1 b ( > W) do(x).

J:Q;NBQ#9
(4.10)

Using Proposition 3.1 and the fact that||g|| <€), suppg C R, we get

[, Ha(a)? do(w) <[ gll3 Slgl3 <l o(R) £ >N (R) = Xa(S).
(4.11)
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Moving on to the second term from the right hand side of (4.10), denote
by Tree C 2(S) the family of cubes contained in S that intersect S;. We have

)
A z()(, > g(@)m) doa)

J:Q;NBo#2

QETree J:Q;NBQ#2

Cauchygchwarz Z E(Q)nz( Z K(Qj)n—ﬂ) ( Z E(Qj)n)

QETree jZQjﬂBQ;ﬁZ jSQ]'ﬂBQ#Q

SR g

(4.12)

Note that since @) € Tree, we have ) N S; # @. By the definition of S, this
implies that for all j such that Q; N By # @ we have ((Q)) 2, {(Q;). Indeed, if
0(Q) < nl(Qj), then Bo N Q; # @ implies Q) C N, j, which would contradict

QNS #a.
By the observation above, we have some C' = C(n) such that if BoNQ; # 9,
then @); C C'Bg. Consequently,

> UQ)"S X 0(Q) < o(CBo) =, Q)"

j:QjﬁBQ;ﬁ@ j:QjCCBQ

Thus, the right hand side of (4.12) can be estimated by

YU Y U@ = Z«? Q)" ) (Q)™*. (4.13)

QETree J:Q;NBQ#2 Q€ETree:Q;NBo#2

As noted above, Q; N Bg # @ implies £(Q) 2, ¢(Q;). Hence,
> UQ)™ Sy UQs) 7,

Q€ Tree:Q,;NBo#2

where we used the fact that the sum above is essentially a geometric series.
Putting this together with (4.13) and (4.12), we get

2
/51 s (j:er%W é((%)):) do(z) <, ;e(Qj)" SUR)" = o(Sy).
Together with (4.10) and (4.11) this gives the desired estimate (4.9):
/ TLf( () <, 2020 (SY).
This finishes the proof of Lemma 4.3.
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5 |1, SN, for 1 <p < oo

In this section we show the second inequality of Theorem 2.4.

Proposition 5.1. Let f € LP(0) for some 1 <p < oo. Then

11l 2oy SN Moo - (5.1)

5.1 Littlewood-Paley theory

Our main tool will be the Littlewood-Paley theory for spaces of homogeneous
type developed by David, Journé and Semmes in [DJS85]. We follow the way
it was paraphrased (in English) in [Tol17, Section 15].

Forr >0,z €%, and g € L}, (o), let

b4 (g0)(e) o+ (g0)@)
Drg(®) = =5 0@y~ emxola)

where ¢,.(y) = 7 "¢(y/r) and ¢ is a radially symmetric smooth nonnegative
function supported in B(0,1) with [pa ¢ = 1.
For a function g € L},.(¢) and r > 0, we denote

50 = S

so that
Drg = Srg - S2rg-

Let W, be the operator of multiplication by 1/Sf1. We consider the
operators B . . B
S, =85W,.S5" and D, =S5, — Sy,

Note that S,, and thus D,, are self-adjoint and S,1 = 1, so that
D.1=D1=0. (5.2)

Let s.(z,y) the kernel of S, with respect to o, that is, so we can write

Sg(w) = [ si(.y) g(y) do(y).

Observe that
sp(z,y)

and the kernel of S, is

Sp(x,y) = /sr(m,z) () $r(y, 2) do(z).
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We claim that the kernel d,(z,-) for the operator D, is supported in B(z,4r)
and satisfies the Lipschitz bounds

v (2,y) = dp(x,2)] S |y — 2r™" " (5.3)

Indeed, let x, 2’ € supp o. Since ¢, is Cr~""!-Lipschitz and o is AD-regular,

605 0(@) = by 4 0(0")| = | [(010 = ) = 6" ~ )do(y)

<oy U B, s
Thus, for y € suppo,
|Sr<x y) — Sr(xl y)|
|¢r($ —y) — (2’ —y)| , 1 1
b, % (@) T =Y\ T e o)
v —a'| | xo(x) =P xo(a))| |x—2a
S yn+l T or * o ()2 ~ e
Hence,
/ 1 d
80(0) = 80l 9) = | [ (502, 2) = &', 2)) gy g 900 2) do ()
S 2)do(a)| 5 227

where in the last line we used the fact that [ s,.(y, z)do(z) =1 and

% ¢r( B ) 7“7
Sr1(z) = b, % 0(2) o wolm) W 2 /B<z,r/2> ¢ % o(2)

—-n

do(x) =~ 1.

Since d, = §,— §», and is symmetric, this proves (5.3). Moreover, notice that
if z € supp o, supp s,.(z,-) C B(x,r), and so the integrand of §, is nonzero only
when z € B(x,r) N B(y,r), meaning |z — y| < 2r, and so supp 8, C B(z, 2r),
hence supp d, C B(z,4r), which proves our claim.

Theorem 5.2. [DJS85] Let ry, =27%, and g € LP(0), 1 < p < 00, we have

%
9l zr ) = (Z |Drk9|2) : (5.4)

keZ
Lr(o)

The original result is stated for p = 2, but this case implies the other cases
(see for example the proof of [Tol01, Corollary 6.1]).
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Let Dy, := DW dy, = drk. By (5.4), it is clear that to prove (5.1), it suffices
to show that

1

2
(Z\DW) SUTF oo -
keZ

LP(o)

In fact, we will show a stronger, pointwise inequality which immediately implies
the one above.

Lemma 5.3. Let v € 3, k € Z, and let Q) € Z be the smallest cube containing
x and such that supp di(z, ) C 0.5Bg. Then, {(Q) ~ 1 and

[Dif ()] S 40 (Q) + |flBo0(Q)- (5.5)

The remainder of this section is devoted to the proof of this lemma.

5.2 Preliminaries

Fix z € X, k € Z, and let Q) be as above. As noted just above (5.3), we have
di(z,-) C B(x,4rt), and so £(Q) =~ ry follows immediately.

We make a few simple reductions.
Remark 5.4. Without loss of generality we may assume that a,(Q) < ¢ for

some small ¢. Indeed, if we had o, (@) > ¢, then using (5.3) and the fact that
supp di(z,-) C Bg

Dt @) =| [ dute.) ) dotw)| <[dute)| [, 1) o)
SUQ™ [ 1F W)l doty) = [flzg S- 1F]5400(Q).

Q

and so in this case (5.5) holds. From now on we assume «,(Q) < ¢.

Remark 5.5. Similarly, without loss of generality we may assume that Lé" N
0.5Bg # @. If we had Lg’ N0.5Bg = &, then Lg" Nsuppd,(z,-) = @ so that

/ di(z,y) ALY (y) = 0.

This implies

Dief(a)| = | [ dula ) f0) do(y)| S ago(B),

and so (5.5) is true also in this case.
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Recall that c , ¢ are the constants minimizing a;,(Q), a,(Q), respec-
tively. Since ¢ is AD-regular and «,(Q) < €, we get by [ATT20, Lemma
3.3]

22

1. (5.6)
To show (5.5) we begin by using ( 2) and the triangle inequality:

Def @) = | [ (e, 0) doty)

(5.2

/dkxy ) do(y) ——/dkxyda()

dofy) = [, dula.y) dLfy (y)

Q

fo
] oy )
+ /Lg; Aw.y) LG W) = - [ delan) AL )
fa
+ 2L duley) acg(y /dk (x,y) do(y)| = (1) + (IT) + (I1T).
CQ L

(5.7)

Using the Lipschitz property of dj, (5.3) we immediately get that (I) < a0(Q),
and that

(111 S L 0,(Q) ‘% || an(@Q). (5.8)

Lemma 5.6. We have ‘cg" S| flBg-

Proof. Indeed, if we had ) ‘ > A|f|B, for some big A > 10, then CQ =0

would be a better competitor for a constant minimizing ay,(Q). To see that,
note that for any ¢ € Lip,(Bg)

[t dr 0| < CU@"™ fln,

That is, Fp,(fo,0) < CU(Q)""|f|s,- On the other hand, taking a positive
¢ € Lip,(Bg) such that ¢(x) = ¢(Q) for x € 0.7Bg, and using the assumption
Lg N0.5Bg # & we get

ar(@UQ)"™ 2

[vr do—cg’/ng amr

> ‘cg

HQYH"(0.7Bo N LEY) — ’/W da‘

. A
> OA| g Q)™ — CUQY |1y = Sl lQY™ > Fiy (12,0,
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assuming A big enough. This contradicts the optimality of cg’. O]

Using the lemma above and (5.8) we get

(L11) S |flBooe(Q)-

Hence, by (5.7), to finish the proof of (5.5) it remains to show that

(D) = |||, o o) 00) = [ duloy) a1 )] 5

This can be seen as an estimate of how far from each other the planes Lg’ and
Lg, are.

The inequality above follows immediately from Proposition 5.7 proven in the
next subsection, together with the already established estimate ’cQ ‘ S | flBg-

5.3 Angles between planes approximating fo and o

In the following proposition we do not use uniform rectifiability in any way,
and so we state it for a general AD-regular measure u. Recall that given a ball
B we defined P = H™ L L.

Proposition 5.7. Let i be an n-AD-reqular measure on R%, and let f €
Li (). Letx € suppp, r >0, B = B(x,r), and suppose that L1'N0.5B # @.
Then,

] |*FB(7’§77’§“) S agu(B) + e |a(B). (5.9)
In the proof of Proposition 5.7 we will use the following lemma.

Lemma 5.8. Let B = B(z,r) and let Ly, Ly be two n-planes intersecting
0.5B. Set Py =H"|, , Po=H"|,,. Then,

1
ﬁFB(PlaPQ) SdiStH(LlﬂB,LgﬂB). (510)

Proof. First, set

distg (L1 N B, Ly N B)
. .

Note that we always have Fg(P;,Ps) < r" so that if D > 1, then (5.10)
follows trivially. Hence, without loss of generality we may assume that D < ¢
for some € > 0 to be fixed later.

We claim that if € is chosen small enough (depending only on n, d), then
there exists an isometry A : L; — Lo such that for y € B N L; we have
ly — A(y)| < Dr. To see that, let y; € Ly N B be arbitrary. Set yo = 7, (y1).
Clearly,

D=

ly1 — yo| < Dr < er.
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Let vy,...,v, be an orthonormal basis of the linear plane L} := Ly — y;. For
1=1,...,d define

w; = 1w, (Y1 +v;) — Yo € Ly — yp = L.

In fact, since yo = 7r,(y1), we have w; = T, (v;). Tt is easy to see that for all
v € L} we have
7wy (v) —v| < Dlvl.

Hence, |w; —v;| £ D < ¢ and for i # j
|wi - ws| = [(wi — i) - (wj —v;) + (Wi —vi) vy + v+ (wy — ;)] S D <e.

Choosing ¢ small enough (depending only on dimensions), we get easily that
{w;} is a basis of L,. Moreover, if {w;} is the orthonormal basis of L
constructed from {w;} using the Gram-Schmidt process, then it follows from
the estimates above that for alli =1,....n

hﬁi—-vﬂ f;l).

We define the map A : L; — Ly as the unique isometry such that A(y;) = yo
and A(y; +v;) = yo + w;. It follows immediately from basic linear algebra that
for y € L1 N B we have |y — A(y)| < Dr.

Now, let ¢ € Lip,(B). We have

|/ y) dH" (y /L2 o(y) dH" (y ‘ ‘/ y) dH" (y /LIQD(A(y))dHn(y)’
< [ lotw) A @) S [ Draw(s) S D

Taking supremum over ¢ € Lip,(B) finishes the proof. O

Proof of Proposition 5.7. For simplicity of notation we will usually omit the
subscript B, i.e. we will write L* := L%, c¢/# = cg‘, and so on.

Without loss of generality we can assume that ¢/# > 0. Indeed, if that
was not the case we could consider ¢ = —f. Then the plane and constant
L9 = L1 9 = —c/* > () are minimizing for ay,(B), and we have a,,(B) =
ag,(B). Thus, proving (5.9) for ¢ is equivalent to proving it for f, and ¢#* > 0.

Note that we always have Fz(P*, P/#) < " so that if a,(B) 2 1, then
(5.9) is trivial. Assume that o, (B) < € for some small ¢ > 0 (depending on
dimensions and AD-regularity constants), to be fixed later.

Note that if € is small enough, then one can use AD-regularity of u to
conclude that L* N 0.5B # @ (see for example [Tol09, Lemma 3.1]). We use
this observation, the assumption L/* N 0.5B # & and (5.10) to estimate

1 Fo(PH PN < sudisty (L* N B, L'" N B)

—: /"D,
T"+1 r
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Our aim is to show that
"D < cf*a,(B) + ag.(B). (5.11)

Let 0 < 7 < 0.01 be some dimensional constant. Note that, since L/* N
0.5B # @, the set L/#N0.9B is a n-dimensional ball with H"(L/#N0.9B) ~ r".
We claim that we can find a n-dimensional ball By contained in L* N 0.9B, of
radius nr (in particular r(By) ~, (B)), and such that

dist(z, L*) > 10nDr for all z € B,. (5.12)

Indeed, if there was no such ball, i.e. if for all n-dimensional balls B, C
LN 0.9B of radius nr there was some 2 € By with dist(z, L*) < 10nDr, then
it would follow easily from the definition of Hausdorff distance, and from the
fact that L* and L/* are n-planes intersecting 0.55, that

disty (L* N B, L" N B) < nDr = ndisty(L* N B, L* N B).

For n small enough, this is a contradiction. We omit the details, which can be
readily filled in e.g. using [AT15, Lemma 6.4].
Consider an open neighbourhood of By given by

U:={yeR" : dist(y,Bg) < nDr},
and also for A > 0 set
AU :={y € R" : dist(y,By) < \nDr}.

Since D < 1, one should think of U as a d-dimensional pancake around By
of thickness nDr, so that the smaller D, the flatter the pancake. Note that
by (5.12) for all 0 < A < 10 we have AU N L* = @, and also AU C B because
By C 0.9B.

Let ¢ : R? — [0,Dr] be a function satisfying ¢ = nDr in U, supp ¢ C 2U,
and Lip(p) < 1. Clearly, ¢ € Lip,(B), and so

|/<pf du—/w AL < ag,(B)rt. (5.13)

Furthermore, note that ¢ = nDr on By, so that
/cp ALt = v /f © dH" > I*nDrH"(By) = C(d)c/* Dyt
Lfn
Together with (5.13) this implies

/cpf du > C(n,d)c’™ Dr™™ — ay, (B)r"t. (5.14)
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Recall that we are trying to prove ¢/*D < ¢/ a,(B) + a;,(B). If we had
"D < Aay,(B) for some A = A(n,d) > 100, then there is nothing to prove.
So without loss of generality assume that ¢/#D > Aay,(B). In that case (5.14)
gives

/gof du 2, ¢ Drm T, (5.15)

Now we define a modified version of ¢. Recall that suppy C 2U. For
all y € supppu N 2U let B, = B(y,nDr/5). We use the 5r covering theorem
to extract from {By}yesupp unzv @ subfamily of pairwise disjoint balls {B; }ier
such that supp N 2U C U,; 5B;. Note that |J; 10B; C 4U, and in particular,
U; 10B; N L* = &. Moreover, the balls 105; have bounded intersection. Thus,
we may consider a partition of unity

U=

icl

such that suppt; C 10B; for each ¢ € I, ¥ = 1 on |;5B8;, and Lip¥ <
(nDr)~".
Consider ® = pW¥. We have

IVl <IVellollPlle +llell IVl S 1+ nDr(nDr)— =1.

Hence, C® € Lip,(B) for some C =~ 1, so that

‘/(I)f dp — /cp e < Clag, (B)rm. (5.16)

On the other hand, observe that ¥ = 1 on supp ¢ Nsupp u. By (5.15)
/CIDf dp = /g&f du 2, c/*Dr"tt,
Together with (5.16) this gives
/<I> dLi* > C(n)e Drtt — C g, (B)r™tt =, e/ Drtt (5.17)

where we used once again the additional assumption ¢/*D > Ay, (B) we made
along the way (and choosing A large).

Now we will show that

, ® dH" <, a,(B)rt. (5.18)
LIk

Since L/ = ¢/FH™|, ;,, together with (5.17) this will give ¢/*D <, ¢/*a,(B),
and so the proof of (5.11) will be finished.

Recall that supp® C supp ¥ C U; 10B;, and that ||| <|l¢l., = nDr.
Hence,
¢ dH" <, DrY HY(L" N 10B;) <, #1(Dr)™.

Lin icl
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To estimate #1 we will use AD-regularity of u. Recall that { B;};cr are pairwise
disjoint, they are centered at points from supp N 2U, and r(B;) = nrD/5.

Thus,
#I(rD)" w2y 3_ u(B:) = p( | Bi)-

iel i€l
On the other hand, since the balls {B;} are centered at points from 2U, we
have U;cr B; C 3U and
n(UBi) < u(3U).
il
To bound u(3U) consider ¢ € Lip,(B) such that » > 0, ¢ =nrD on 3U and
supp @ C 4U. Recalling that 4U N L* = &, we arrive at

rDu(30) <, /g?a dp = ’/(ﬁ dp — /95 dlt| < a,(B)r™t.

Putting all the estimates above together we get (5.18):

» S dH" Sy #1(Dr)" S, rDp(3U) Sy (Bt



A necessary condition for the L? boundedness

of the Riesz transform on Heisenberg groups
VII

1 Introduction

The motivation behind this note is the following question: what are the
measures £ on the Heisenberg group H" which guarantee that the (correct
notion of) Riesz transform is bounded from L?*(p) to itself? This question
(or some variant of it) with R" instead of H", was one of the major starting
points of quantitative rectifiability, as described in Chapter I. We described
some motivation for developing GMT in more general settings (including
the Heisenberg group) in Section 1.7. We should mention that the study of
Heisenberg geometry can be approached from different perspectives and with
different applications in mind; for example, see [NY 18] for a connection with
theoretical computer science.

In the last couple of years, there has been some progress towards an answer
to our initial question; see for example [CFO19], [FO19] and [Orpl18b]. In this
chapter we give a necessary condition to be imposed on a Radon measure p
on H" for the Riesz transform to be L?(u) bounded. Here R, is the singular
integral operator whose kernel is the horizontal gradient of the fundamental
solution of the Heisenberg sub-Laplacian, as defined in [CM12]. Note that due
to the non-Euclidean setting, we will use different notation than in previous
chapters (e.g. B(p,r) will denote the ball with respect to the Koranyi metric,
and not the Euclidean distance). See Section 2 for precise definitions.

Theorem 1.1. Let p1 be a Radon measure on H" such that R, is bounded on
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L*(p) with norm C4, and such that p(F) = 0 whenever dimg(F) < 2*. Then
there exists a constant Cy such that for all balls B(x,r) C H", we have

w(B(z,r)) < Cor®™th, (1.1)

Here Cy depends only on n and Cy, and the ball B(z,r) is defined with respect
to the Kordanyi metric, see Section 2.

A corresponding statement holds in the Euclidean setting, and is a result
of David, [Dav9l, Part ITI, Proposition 1.4]. See also [Orpl7], Proposition
6.9 for a more detailed proof of the same result. Let R}, denote the standard
n-dimensional Riesz transform in R

Theorem 1.2. Assume that j is a non-atomic Radon measure on R such

that R, is bounded on L*(p) with norm Cy. Then, for all Euclidean balls
Bga(z,7) C RY we have

p(Bra(z, 1)) < Cor™ (1.2)
Here Cy depends only on Cy, n, and d.

A measure satisfying (1.2) (or (1.1)) is said to have polynomial growth. Let
us give a couple of remarks.

Remark 1.3. Although the result itself (both in the Euclidean and Heisenberg
case) is not very hard, it is nevertheless very useful. For example, most tools
developed in the last two decades that take quantitative rectifiability beyond
AD-regular measures still need polynomial growth (see for example the book
by Tolsa [Tol14]). Thus, we expect that our result will be quite useful, too.

Remark 1.4. While the two results above look similar, there is actually a
difference, in the sense that, in the Heisenberg case, there actually exist lower
dimensional measures which give a bounded Riesz transform, but are not
atomic.

This is not a byproduct of the proof, but rather a fact of the Heisenberg
geometry. Indeed, the 2-dimensional t-axis (or any Heisenberg translate of it)
gives a bounded (2n + 1)-dimensional Riesz transform; this is simply because
on these sets the kernel vanishes identically, see (2.4).

One can construct a more interesting example in the vertical plane of the
one dimensional Heisenberg group H, say. Consider a tube of height 1 and
radius €2 around the t-axis, and take the intersection with the vertical plane.
Call the resulting rectangle R; ;. Cut out from R; two smaller rectangles R
and Ry, one in the top right corner and one in the bottom left corner, both

*This assumption comes from the fact that the kernel of R,, vanishes on the vertical
lines, which have dimension 2. See also Remark 1.4 below.
fWith some exceptions, see for example [AS18], or [BS15].
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of height &5 and width €2, for some e, < g;/4. We proceed in this way, so
that after k steps we have 2¥~! disjoint rectangles {Ry.:}: of height ¢ and
width 2. Consider the natural probability measure u on the Cantor-like set
C = Nk U; Rgi. It is not difficult to show that, if ¢, — 0 are small enough,
the Heisenberg Riesz transform is bounded on L?(p); the idea is that the set
is concentrated along the t-axis, and thus the kernel is very small (see (2.4)
below). Depending on the choice of () we have dimy(C) € [0, 2].

Plan of the chapter

In Section 2 we briefly recall basic facts about Heisenberg groups and the
Riesz transform. We also introduce a family of “dyadic cubes” suitable to our
setting.

Section 3 is dedicated to Lemma 3.1, our main technical lemma. Roughly
speaking, we show that if a measure p is such that R, is bounded on L?(1),
and there is some cube @y with a very high concentration of u (i.e. pu(Qq) >
0(Qo)*™ 1), then we can find a family HD(Qy) of much smaller cubes, contained
in ()g, such that

a) a very large portion of measure p on (Jy is concentrated on the cubes
from HD(Qy),

b) the family HD(Qy) is relatively small, in the sense that it consists of few
cubes.

In Section 4 we show that if the polynomial growth condition (1.1) is not
satisfied, then we can find a cube satisfying the assumptions of our main lemma.
This in turn allows us to start an iteration algorithm, consisting of using the
main lemma countably many times, that results in constructing a set Z with
w(Z) > 0 and dimpg(Z) < 2. This finishes the proof of Theorem 1.1.

2 Preliminaries

In our estimates we will often use the notation f < ¢ which means that there
exists some absolute constant C' for which f < Cyg. If the constant C' depends
on some parameter ¢, we will write f <; g. Notation f =~ ¢ will stand for
f<g<f,and f & g is defined analogously. For simplicity, in our estimates

we will suppress the dependence on dimension n and on absolute constants
A, A (see (2.7)).

2.1 Heisenberg group

In this paper we consider the n-th Heisenberg group with exponential coor-
dinates (see [CDPTO07] or [Fas19] for a swift introduction to the Heisenberg
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group in a context close to ours). In practice, we will denote a point p € H" as
(2,t) e R x R, and 2z = (Z1, ..., Tp, Y1, ---, Y ). In these coordinates the group
law in H" takes the form

1 n
poq= (z+z’7t+t’ + 52(931%’ —yzx;)) ,
i=1
where p = (2,t) and ¢ = (2/,¢). Note that the group operation is not
commutative. The identity element is the origin (0, 0) and the inverse is given by
p~! = (—z,—t). We make H" into a metric space by setting d(p, q) := ||¢~'-p||u,
where

Iplle = |21* + 16¢%, (2.1)

and |z| denotes the Euclidean norm of z € R*".

Note that || - ||z is 1-homogeneous with respect to the anisotropic dilation
p = Ap = (Az,A%t), A > 0. The metric d is sometimes called the Kordnyi
metric.

Given p € H" and r > 0 we set

B(p,7)={q | dp,q) <r}, Ulp,r)={q|d(p,q) <r}.

For @ > 0 we will write H* to denote the usual a-dimensional Hausdorff
measure with respect to metric d. For A C H" we set dimy(A) to be the
Hausdorff dimension of A.

It follows easily from the definition of the Koranyi metric that for all p € H”
and r > 0 we have

H*2(B(p,r)) = H*2(B(0,1)) r* 2. (2.2)

Thus, even though the topological dimension of H" is 2n + 1, the Hausdorff
dimension of H" is equal to 2n + 2. For the sake of brevity we set D := 2n + 2.
Usually one denotes the Hausdorff dimension of H" by (), but we have decided
to save that letter for cubes; hence the non-standard notation.

It is also easy to check that if £2"*! denotes the usual Lebesgue measure
on R?"*1 ~ H", then we have a constant C' > 0 such that

L = CHP. (2.3)

2.2 Heisenberg Riesz transform
Recall that, for a function u : H" — R, the horizontal gradient of u is given by
Vau = (Xqu, ..., Xpu, Yiu, ..., Yyu) ,

where the vector fields X1,..., X,,,Y7,...,Y, and % represent the left invariant
translates of the canonical basis at the identity. In particular, Xy,..., X, Y7, ...
span the horizontal distribution in H".

7YTL
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The Heisenberg sublaplacian Ay is given by 37, X2 + Y2, and its funda-
mental solution is

G(p) = allpllE "

The (D — 1)-dimensional Riesz kernel in H", first considered in [CM12], is
given by K(p) = VuG(p). The Riesz transform is formally defined as

R,f(p) = / K(q~"-p)f(q) dulq).

n

Since it is not clear whether the integral above converges, one considers the
truncated Riesz transform given by the formula

Rysf(p) = / K(q™" - p)f(a) du(q),
H"™\B(p,5)
for & > 0. We say that R, is bounded on L?(y) if the truncated operators R,, s
are bounded on L?(x) uniformly in § > 0.
One can easily check that the Riesz kernel is actually equal to

—2z1|2|* + 8yit —2x,|2|* + 8yt
K(Z,t>:n< n ) n )
Iz, ) IE Iz, ) IE
—2y|2|? — 8xqt —2yn|2|? — 8xnt>
Iz ol 7 I plE™
Hence,
4z
K(z,t)]* =n’ . 2.4
| (Zu )| n (|Z|4 I 16t2)n+1 ( )
This implies the curious fact that |K(z,t)| < C' whenever
|2 < 16[¢™*, (2.5)

which is a ‘paraboloidal’ double cone around t-axis with vertex at the origin.
This fact will play a key role in the subsequent analysis.

Chousionis and Mattila showed in [CM12, Proposition 3.11] that the Riesz
kernel is a standard kernel. In particular, it satisfies the following continuity
property: whenever ¢, qs # p € H", we have

{d(QLQQ) d(QIaQQ)}
d(PaCh)D’d(Pa%)D .

Takingp=0and ¢s = ¢ ' - P, g2 = G~ ' - P, one gets immediately that for all
qi,¢2 # p € H"

K(p~™" - q1) = K(p™" - ¢2)|] < max

(2.6)

K@ p) = K@ p) < max{ Th.5) L0.4) }

d(ﬁa q*l)D7 d(ﬁa q~2)D
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2.3 Dyadic cubes

We are going to use a family of decompositions of H" into subsets that share
many properties with the standard dyadic cubes from R™. The most classical
constructions of this kind are due to Chirst [Chr90] and David [Dav88a], but
for us it will be more convenient to use the “cubes” constructed in [IKKRS12].

First, note that given any ball B(p, 2r), one may use the 5r-covering lemma
and the property (2.2) to conclude that there exists some absolute constant
m such that B(p,2r) may be covered by m balls B(p;,r), where {p;}.", are
points in B(p,2r). That is, H" is geometrically doubling. In particular, we
can use [KRS12, Theorem 2.1, Remark 2.2].

Lemma 2.1 ([KRS12]). For all k € Z there ezists a family of subsets of H",
denoted by Dy, such that

(i) H" = Ugeo, @
(ii) if k > 1, and Q € Dy, P € Dy, then either QNP =2 or Q C P,
(ii1) for every Q € Dy, there exists pg € Q) such that
Ulpe, \27) € Q C Blpg, A27Y) 2.7)
for some absolute constants \, A > 0.

Let us stress once more that we will not keep track of how various parameters
appearing in the proof depend on A and A.

We set D = Uy Di. For Q € Dy, we define the sidelength of Q as £(Q) = 2.
Clearly, by (2.2) and (2.7), for @ € © we have

It follows that if ) € ®, then for k£ > 0
#{PeD|PCQ (P)=27"(Q)} ~ 2. (2.8)

Given a Radon measure p and () € ® we will denote the (D —1)-dimensional
density of p in @ by
HQ)

uQ)r—r
For simplicity, we will suppress the dependence on p and simply write O(Q).

Gu(Q) =

3 Main lemma

Our main tool in the proof of Theorem 1.1 is the following lemma.



3. Main lemma

Lemma 3.1. Let uu be a Radon measure on H™ such that R, is bounded on L*(p)
with norm Cy. There exist constants A = A(n) > 1, s = s(A,n) € (0,1/2)
and M = M(Cy,n) > 100 such that the following holds.

Suppose that Qo € © satisfies O(Qo) > M. Set N = {A‘Q log(@(Qo))J.
Then, the family of high density cubes

HD(Qo) = {Q € D | Q € Qu, UQ) =27VU(Qo), O(Q) >20(Qy)}

satisfies
> 1w(Q) = (1—6(Qo)*)u(Qo). (3.1)
QEeHD(Qo)
Moreover, we have
S Q)Y < G UQ) (3.2)
Q€EHD(Qo)

or some dimensional constant C, (“p” stands for “pvacking”).
p (P 4 g

The rest of this section is dedicated to proving the lemma above. For
brevity of notation, we set Oy = ©(Q)y). Observe that the integer N was
chosen in such a way that

24°N ~ 0y > M. (3.3)

In particular, we have N > Ny for some very big Ny depending on M and A.
We split the proof of Lemma 3.1 into several steps.
First, note that by the pigeonhole principle and (2.8), we can find a cube
Q1 € © with sidelength £(Q;) = 274V¢(Q,) such that

p(Qn) 2 M%) (3.4)

Without loss of generality, by applying the appropriate translation, we can
assume that @)y is centred at the origin, i.e. pg, = 0. Set

T = {(zt) € Qoll2| <27 V(Qu))

and for any x > 0 set

To:={(2t) € Qo|l2| < K27NU(Qo) }.

Observe that )1 C T. In a sense, T' can be seen as a tube with vertical axis
passing through pg, = 0. Note also that for any cube Q) C Qo \ 7' we have

dist(Q, Q1) = 27M(Qy).

We start by proving a few preliminary results.

Lemma 3.2. There are at most C(k) 22N cubes of sidelength 27N0(Qq) con-
tained in T),.
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Proof. Observe that since 0 € @y, and by (2.7) Qo C B(pg,, Al(Qy)), we have
Qo C B(0,2A4(Qy)). Hence,

T, C {(2:1) € B(0,2A0(Qu)) | |2] < 5270(Qu) |
C{(z,t) e H" | 2] < £27VU(Qo), 16/t < (2M(Q0))'} =: T
By (2.3),
HP(T,) = CL T ~ (27 VU(Q0)) ™" (2A(Q0))? ~ 272N U(Qo)”.

It follows that HP(T}) <. 272"V¢(Qo)P. On the other hand, recall that for
any cube @ with sidelength £(Q) = 27V0(Qy) we have HP(Q) ~ 27VP1(Q)P.
Since all such cubes are pairwise disjoint, we get

o HP(T,.)
#{Q €D UQ) =27"UQ), Q € T} S vpy

2—2nN€(QO)D B 22N
~K 27N(2n+2)g(QO>D -

L]
Lemma 3.3. Let Q € D satisfy Q C Qo \ T and £(Q) = £(Q1) = 272N(Qo).
Then
nQ) < (m).

Proof. Suppose the claim above is false. Then we can find a cube Qy C Qo \ T
with £(Qs) = 274N((Qy) such that

mQ
u(@:) > L0 (3.5)
Let 0 < § < dist(Q1,Q2), let p € Q2 be arbitrary, and consider
Rus(lo)(p) = [ K(a™p)du(o)

1

By triangle inequality,

|Rus(,)(p)] = /Q1 K(qg™'p)— K(p)dp(g)|.  (3.6)

1

/Q K(p) du(q)’ -

We estimate the first term as follows. Note that, since p € ()5 and ()5 lies
outside T', then, writing p = (z,t) and using (2.4), we have

R

T 16 2 g 22 Qo) = 2N Q) .

K (p)* ~




3. Main lemma

And thus we also have

[, K)o = K0 @) 27 GG ea)

For the second term in (3.6) we use the continuity of the kernel K (2.6)
and the fact that d(p, q) ~ ||p|lm > 27V(Qo) (because p € Qs C Qo \ T):

Jalls 2ANU(Qy) 2 AN
K(¢g™'-p)— K(p)| < min([pla, d(p, q))? S (27V(Qo))P K(Qo)p—zé 9

Taking A > 2D we get

/1 K(q—l -p)— K(p)du(q)| <27 AN/2 (/é)((f)?ll)) .

Together with (3.7) and (3.6), assuming Ny bigger than some absolute constant
(recall that N > Njy), this gives

Q1)

|Ru,6(1621)( )| 22" Ng(@ )D 1

for all p € Q.
Now, we use the estimate above and the L?*(u) boundedness of R, to get

-N N(Ql)
0(Qy)P-1"

Our assumptions on ()7 (3.4) and @, (3.5) yield

2 W@t S ([ 1Bestio) 0P du))” < Cn(@n)

N:U’(Q1>2:U’(Q2>% -N N(QO) -1/2 _ 5—AND-N1/2
G2 <2 (QO)D 1 Z 2 QANDg(QO)DAG)O =2 @0
(‘fj) 9~ AND—-N 9A?N/2.

Taking A > 5D we can bound the last term from below in the following way:
(3.3)
27AND7N+A2N/2 > 2A2N/4 > M1/4.

Putting together the estimates above gives C; > M4, which is a contradiction
for M = M(Cy,n) big enough. O

We immediately get the following cor.
Corollary 3.4. We have

w(To) > (1 —65")u(Qo)- (3.9)
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Proof. Observe that if Q € D satisfies £(Q) = £(Q1) = 27N (Qy) and Q ¢ T,
then we have Q NT = & (assuming A large enough with respect to A). It
follows that () satisfies the assumptions of Lemma 3.3, and so

u(Q) < 27VP0, u(Qy).

Summing over all such @ and using (2.8) yields
#(Qo\ ) < 65" 1(Qo)-

Recall that
HD(Qo) = {Q €D | Q C Qo, UQ) =27"U(Qo), O(Q) > 26y},

and that A is the absolute constant such that @ C B(pg, AU(Q)). Without loss
of generality, we may assume A > 2.
We are ready to prove the first part of Lemma 3.1, the estimate (3.1).

Lemma 3.5. There exists s = s(A,n) € (0,1/2) such that
> (@)= (1—=60")u(Qo). (3.10)

Q€eHD(Qo)

Proof. We will prove (3.10) by contradiction. Suppose that

> @) < (1-65")u(Qo). (3.11)
QeHD(Qo)

Set
LD(Qo) = {Q €D | Q C Toa, UQ) =27"¢(Qo), O(Q) <260}

It is easy to see that the cubes from HD(Qo) U LD(Qy) cover Ty. If we assume
Oy > M > 100, and s < 1/2, then ©;°/2 > O, and so by (3.9) and (3.11)
we get

> m@Q) = @gsu(Qo)- (3.12)

QeLD(Qo)

On the other hand, recall from Lemma 3.2 that there are at most €22V
cubes of sidelength 27V¢(Qy) contained in Ty, where C' = C(A,n). Moreover,
for any @ € LD(Qp) we have

uQ)r!

1(Q) < 2000(Q)° ! = QM(QO)W = 27NPIH(Qy).

In consequence,

Z ,U’(Q) < C22N27N(D71)+1/L<Q0)_
QeLD(Qo)



3. Main lemma

This contradicts (3.12) because

(9~ ND+3N+1 _ 9 (2—A2N)(—D+3)A—2 (3<j>) (j(n)@(—DH)A*2 <

choosing s = s(A,n) small enough. O

We move on to the second part of Lemma 3.1, i.e. the packing estimate
(3.2).

Lemma 3.6. We have

U Q C ThHa. (313)
QeHD(Qo)
In consequence,
> Q) SUQ)* (3.14)
QEHD(Qo)

Proof. We will prove that for @ € HD(Qy) we have Q N'Ty # &. Then, since
Q) = 27N(Qy), it follows easily from (2.7) that indeed Q C Ty 12(Qg) C
ToA(Qo)-

We argue by contradiction. Suppose that @@ € HD(Qp) and Q N T, = &.
Consider the cubes {P;}ic; with £(P) = 274V0(Qy) = 2-MA-IN¢(Q) and
P, C Q. Then, Q =U; P;, forall v € I we have P,NT, = &, and #I ~ 2(A-1)ND
by (2.8).

We use Lemma 3.3 to conclude that for all i € I

Q
w(p) < @lzgﬁv)p-

Summing over ¢ € [ yields

@O QAND @0 2AND @0 2ND’

Q) =" u(P) < #I - Qo) sa-nvp Qo) _ p(Qo)

el

so that
_ 1(Q) 1(Qo) 1 ©
OQ) = G Q7T ~ 8,2 TGP~ By 0 <

But this contradicts the assumption @ € HD(Qo):
O(Q) > 200 > 2M > 1,

and so the proof of (3.13) is finished.
Concerning (3.14), note that by (3.13) and Lemma 3.2 we have

#HD(Q) < 22V, (3.15)

Hence,

> UQP=6@Qu) 27 Y 1S UQo)*

QeHD(Qo) QeHD(Qo)
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4 Iteration argument

To complete the proof of Theorem 1.1, we assume that the measure ;1 does
not satisfy the polynomial growth condition (1.1). Then we will use Lemma
3.1 countably many times to construct a set Z with positive y-measure and
with Hausdorff dimension at most 2.

Suppose that there exists a ball B(z,r) with u(B(x,r)) > Cor?™*1; if Cy is
big enough, we can find a cube Qy € ©, @ C B(x,r) such that

6(@0) Z Ma

where M is the constant from Lemma 3.1.
Let A > 1 be as in Lemma 3.1. Following the notation of Lemma 3.1, for
an arbitrary cube @ € ® with O(Q) > M, set

N(Q) = |A10g(0(Q))|
and
HD(Q) == {P €D |P CQ, ((P) =2""(Q), B(P) > 20(Q)} .

Put Zy := Qo, HDg := {Qo}, HD; := HD(Qy), and Z; := Ugenp, @- Proceed-
ing inductively, for all j > 2 we define

HD; == |J HD(Q),

QEHDj_l

U @

QeHD;

Note that for each j the cubes in HD, form a disjoint family. Moreover, {Z;};>¢
form a decreasing sequence of sets, that is Z; 41 C Z;. Define

7=0
Lemma 4.1. We have
/"L(Z) NMS (QO)

Proof. Observe that for () € HD; we have
0(Q) > 270(Qy) > 27 M. (4.1)

In particular, ©(Q) > M and so we may apply Lemma 3.1 to Q. It follows
that for any 7 > 0 we have

(3.1)

W= ¥ w@= Y X wp)'E Y (1-e@ )
Q€EHD; 11 QeHD; PeHD(Q) Q€eHD;
SY G MQ) = (1 2 M),

QEHDJ'
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Using this estimate (j 4+ 1) times we arrive at
j .
i(Zys) = TI0 = 27 M) Q). (42)
i=0

Since Z; form a sequence of decreasing sets, we get by the continuity of measure

w(2) = lim p(Z;) = H — 27" M)u(Qo) = C(s, M)n(Qo),
where C(s, M) is positive and finite because 3°5°,27% < oo. ]

Lemma 4.2. We have

Proof. Recall that N(Q) = |A"21og(©(Q))|. It follows from (4.1) that for

Q € HD; we have N(Q) > C3j A2 for some absolute constant Cs > 0. Thus,

for € HD,; and P € HD(Q)
((P) =27"y(Q) < 27HU(Q).
Using this observation j times we get that for P € HD,
((P) < 27 ITEDAT(Qy),

where Cy = C5/2. Hence, the cubes from HD; form coverings of Z with
decreasing diameters, well suited for estimating the Hausdorff measure of Z.

Let 0 <e <1, 0 <6 <1besmall Let j >0 be so big that for ) € HD;
we have diam(Q) < Al(Q) <. Then,

H§+E(Z) < A2+a Z E(Q)2+E < A2+a( —Cyuj(j—1)A~ 2 Z K
Q€HD; Q€HD;
(4.3)
It follows by (3.2) that

> U= X > HQP=G Y «(P)

QeHD; PeHD;_; QeHD(P) PeHD;

Using the estimate above j times, and putting it together with (4.3) we arrive
at
’H§+E(Z) < A2+€(C’p)j 2—604j(j—1)A‘2 K(QO)2+E~

The right hand side above converges to 0 as j — oo (just note that the

exponent at C), is linear in j while the exponent at 2 is quadratic in j). Hence,

H3Te(Z) = 0. Letting § — 0 we get H*™(Z) = 0. Since this is true for
arbitrarily small € > 0, it follows that

dimy(Z) =inf{t >0 : HY(Z)=0} <2.
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Proof of Theorem 1.1. We have found a set Z C H" of dimension smaller than
or equal to 2 (Lemma 4.2) but which nevertheless has positive py-measure
(Lemma 4.1). This contradicts the assumptions of Theorem 1.1. Thus, there
exists Cy = Cy(n,Cy) such that p(B(z,r)) < Cor?™*! for all x € H" and
r > 0. [
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