
Jacobian Determinants
and Subdeterminants

UAB Lecture 2, Tuesday, July 17, from 10:00 - 11:00

(Hardy Space Regularity)



Let f : Ω → Rn be a mapping in the Sobolev space W 1,n−1
loc (Ω,Rn)

whose cofactors of Df(x) belong to L
n
n−1(Ω) . Does the Jacobian

determinant detDf lay in the Hardy space H1(Ω) ?

”Coffeeholics”

easily solve such problems once they work as ”Coffeecolleagues”
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We study mappings f = (f1, ..., fn) : Ω → Rn in the Sobolev space

W 1,n−1
loc (Ω,Rn) whose differential matrix Df = [∂f i/∂xj] satisfies∣∣D]f

∣∣ ∈ L n
n−1(Ω) (1)

where D]f denotes the cofactor matrix of Df . The aim of this lecture is

to answer a question of Müller, Qi and Yan [MQY] by proving the following

theorem.

THEOREM A . The Jacobian determinant J(x, f) = detDf(x)

belongs to the Hardy space H1(Ω), and we have the uniform estimate

‖ detDf ‖H1(Ω) ≤ C(n)

∫
Ω

∣∣D]f(x)
∣∣ n
n−1 dx (2)
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We shall use a maximal characterization of the space H1(Ω) over a domain

Ω ⊂ Rn. On account of the well known fact [FeSt] that BMO(Rn) is the

dual space to H1(Rn), we obtain

COROLLARY.

Under the assumptions of the theorem, with Ω = Rn , we have∫
Rn
ϕ(x)J(x, f)dx 4 ‖ϕ‖

BMO(Rn)

∫
Rn

∣∣D]f(x)
∣∣ n
n−1 dx (3)

where ϕ ∈ BMO(Rn).

This integral in the left hand side is understood by means of H1 − BMO

duality, see [Stb, p.142-144].
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The reader will notice that the expression in the left hand side of (2) is

homogeneous of degree 1 with respect to each of the coordinate functions

f1, f2, ..., fn, whereas the right hand side is lacking this type of homegeneity.

It is, therefore, natural to reformulate Estimate (2) by using the (n−1)-forms

df1 ∧ ... ∧ dfk−1 ∧ dfk+1 ∧ ... ∧ dfn

=

n∑
i=1

∂
(
f1, ..., fk−1, fk+1, ..., fn

)
∂ (x1, ..., xi−1, xi+1, ..., xn)

dx1 ∧ ... ∧ dxi−1 ∧ dxi+1 ∧ ... ∧ dxn

where the coefficients are all the cofactors of Df (sub-determinants) that

are missing the coordinate function fk .
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Elementary analysis of homogeneity now leads us to the following

strenthening of the estimate in Theorem A

‖det Df‖H1(Ω) 4
n∏
k=1

∥∥df1 ∧ ... ∧ dfk−1 ∧ dfk+1 ∧ ... ∧ dfn
∥∥
Lpk(Ω)

(4)

where p = (p1, ..., pn) is an arbitrary n-tuple of exponents p1, ..., pn > 1,

such that
1

p1
+ ...+

1

pn
= n− 1
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In a way the H1-regularity of Jacobians was first observed by Wente [We],

though a systematic study begins with the work by Coifman, Lions, Meyer

and Semmes [CLMS1] and [CLMS2]. They proved that the Jacobian

determinant, denoted here by J(x, f) = detDf(x), of a mapping f : Rn →
Rn in the Sobolev space W 1,n(Rn,Rn) lies in the Hardy space H1(Rn);

also see Müller [Mu] for the case of nonnegative Jacobians. As a matter

of fact, the Jacobian operator J : W 1,n(Rn,Rn)→ H1(Rn) is continuous.

We actually have a uniform bound

‖ detDf − detDg ‖
H1(Rn)

4 ‖Df −Dg‖n
(
‖Df ‖n + ‖Dg ‖n

)n−1
(5)
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Since then there has been dramatic development in the H1-theory of

Jacobians and related nonlinear differential forms. Most notable subsequent

publications are [Gr],[CoGr], [IV] and [MQY]. In [MQY] the authors

considered orientation preserving mappings in W 1,n−1
loc (Ω,Rn) which satisfy

Condition (1). The term orientation preserving pertains to the mappings

whose Jacobian determinant is nonnegative. It is shown in [MQ] that

the Jacobian belongs to the Zygmund class L logL(Ω′), on every compact

subdomain Ω′ ⊂ Ω. In particular, it belongs to H1(Ω′). The condition (1)

was motivated by a study of the existence problems in nonlinear elasticity

[B] and [Sv]. On the analogy of [CLMS2] Müller, Qi and Yan raised the

question as to whether the Jacobian remains in the Hardy space H1(Ω′)

if one allows it to change sign. Our Theorem A answers this question in

the affirmative. Of course, as a consequence of a result by Stein [Stp], we

recover that for orientation preserving mappings detDf ∈ L logL(Ω′).
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The main ingredient to our arguments is the use of spherical maximal

inequality, as shown in [St1] and [Bu]. This seems to be the first time that

spherical maximal functions have been successfully employed in the study

of Jacobians.

Combining the uniform estimate (2) with the fact that the dual of H1(Rn)

is VMO(Rn) we conclude with the following convergence of Jacobians in

the weak star topology of H1(Rn).
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THEOREM B .

Suppose

fj ⇀ f weakly in W 1,n−1(Rn,Rn) (6)

and ∫
Rn

∣∣D]fj(x)
∣∣ n
n−1 dx ≤ K (7)

for i = 1, 2, 3, .... Then for every ϕ ∈ VMO(Rn) we have

lim
j→∞

∫
Rn
ϕ(x)J(x, fj) dx =

∫
Rn
ϕ(x)J(x, f) dx (8)

Here the functions need not be L1-integrable, so the meaning of the

integrals is understood in the sense of H1 − BMO pairing. Jacobians need

not converge in the usual weak topology of H1(Rn). Precisely, (8) fails for

ϕ(x) = log |x|.
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Maximal Operators

Let Ω be an open subset of Rn. The Hardy-Littlewood maximal operator is

defined on L1
loc(Ω) by the rule

Mh(x) = MΩh(x) =

sup

{
1

|B(x,t)|
∫
B(x,t)

|h(y)| dy ; 0 < t < dist(x, ∂Ω)

}
In the above definition, B = B(x, t) is the ball centered at x ∈ Ω and

radius t. Most often the dependence of M on the domain Ω will not be

emphasized. We record the following local variant of the well know maximal

inequality

‖Mh‖
Lp(Ω)

4 ‖h‖
Lp(Ω)

(9)

for 1 < p ≤ ∞, where the implied constant Cp(n) 6 p C(n)
p−1 .
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Another important maximal operator was introduced to harmonic analysis

by Stein [St1]. It involves spherical averages:

(Sh) (x) = (SΩh) (x) =

sup

{
1

|S(x,t)|
∫
S(x,t)

|h(y)| dy : 0 < t < dist(x, ∂Ω)

}
Here we use the notation S(x, r) = ∂B(x, r). Notice that the integral

average of |h| is taken with respect to the (n− 1)-dimensional surface area.

As shown by Bourgain [Bu] for n = 2 and Stein [St1] in higher dimensions,

the spherical maximal operator is bounded in Lp-spaces for all p > n
n−1 ,

but not for p = n
n−1 . That is,

‖Sh‖
Lp(Ω)

4 ‖h‖
Lp(Ω)

, p >
n

n− 1
(10)
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Maximal Operator {Mθ}θ≥1

We shall now introduce one parameter family {Mθ}θ≥1 of maximal operators

Mθh(x) = sup

{ n
tn

∫ t

0

rn−1

(
1

|S(x, r)|

∫
S(x,r)

|h(y)|

)θ
dr

1
θ }

(11)

where 0 < t < dist(x, ∂Ω) .

The Hardy-Littlewood operator is none other than M1, whereas the spherical

operator arises by letting θ go to infinity. In consequence of the maximal

inequalities at (9) and (10) we have the following result.
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Theorem 1. The sublinear operator

Mθ : Lp(Ω)→ Lp(Ω)

is bounded for all p > n
n−1+1

θ

Proof. The case θ = 1 reduces to the Hardy-Littlewood maximal inequality,

so we may assume that θ > 1. The condition on p can be rewritten as

1− p
θ
< p · n− 1

n
· θ − 1

θ

Now we choose 0 < α < 1, to satisfy

1− p
θ
< α < p · n− 1

n
· θ − 1

θ
(12)
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By Hölder’s inequality we estimate the spherical averages(
1

|S(x, r)|

∫
S(x,r)

|h|

)θ
6

(
1

|S(x, r)|

∫
S(x,r)

|h|
αθ
θ−1

)θ−1(
1

|S(x, r)|

∫
S(x,r)

|h|θ−αθ
)

6
(
S |h|

αθ
θ−1

)θ−1 1

nωnrn−1

∫
S(x,r)

|h|θ−αθ

Here and in the sequel all maximal functions will be evaluated at x.

Substituting this inequality into formula (11) yields

[Mθh ]θ 6
(
S |h|

αθ
θ−1

)θ−1

M |h|θ−αθ
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Next, we use Hölder’s inequality

||Mθh||p 6

∥∥∥∥∥(S |h| αθθ−1

)1−1
θ

∥∥∥∥∥
p
α

∥∥∥∥ (M |h|θ−αθ)1
θ

∥∥∥∥
p

1−α

=
∥∥∥S |h| αθθ−1

∥∥∥1−1
θ

pθ−p
αθ

∥∥∥M |h|θ−αθ∥∥∥1
θ

p
θ−αθ

Notice that (12) yields pθ−p
αθ > n

n−1 and p
θ−αθ > 1. This makes it
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legitimate to apply maximal inequalities at (9) and (10).

‖Mθh ‖p 4
∥∥∥|h| αθθ−1

∥∥∥1−1
θ

pθ−p
αθ

∥∥∥ |h|θ−αθ∥∥∥1
θ

p
θ−αθ

= ‖h‖αp ‖h‖
1−α
p

= ‖h‖p

as desired.

REMARK. Notice that n
n−1 is always larger than n

n−1+1
θ

,

so Mθ is always bounded in L
n
n−1(Ω).
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Maximal Function of a Distribution

We shall rely on one particular approximation of the identity. That is, we

fix a radially symmetric function Φ ∈ C∞0 (Rn) supported in the unit ball

and having integral 1. For example

Φ(x) = C(n)

{
exp 1

|x|2−1
if |x| < 1

0 if |x| ≥ 1

where the constant C(n) is chosen so that
∫

Φ(x) dx = 1. For each

t > 0, we consider one parameter approximation to the Dirac mass Φt(x) =

t−nΦ
(
x
t

)
. Given h ∈ L1

loc(Ω), we recall the mollifiers

(h ∗ Φt) (x) =

∫
Ω

Φt(x− y)h(y) dy , whenever 0 < t < dist(x, ∂Ω)
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We mimic this convolution formula to extend the mollification procedure

to Schwartz distributions h ∈ D′(Ω) as follow

(h ∗ Φt) (x) = h[Φt(x− ·)]

where we notice that the function y → Φt(x − y) belongs to C∞0 (Ω) for

0 < t < dist(x, ∂Ω).

Then the associated maximal function of h can be defined as

Mh(x) =MΩh(x) = sup
{
|h ∗ Φt(x)| : 0 < t < dist(x, ∂Ω)

}
This maximal function works well in connection with H1-spaces because it

takes the possible cancellation into account.
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The Hardy Space H1(Ω)

The estimate Mh(x) 6 C(n)Mh(x) follows easily from the inequality∣∣∣∣∫
Ω

Φt(x− y)h(y) dy

∣∣∣∣ 6 C(n)

tn

∫
B(x,t)

|h(y)| dy

DEFINITION. The Hardy space H1(Ω) consists of distributions

h ∈ D′(Ω) such that

||h||H1(Ω) =

∫
Ω

Mh(x) dx <∞

Note that H1(Ω) ⊂ L1(Ω) and ‖ · ‖L1(Ω) 6 ‖ · ‖H1(Ω). For Ω = Rn our

definition coincides with the usual definition of the Hardy space H1(Rn),

see [Stb].
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Various bounds for Mh can be obtained from the following elementary

calculation.

LEMMA 3.

Let B(x, r) denote the ball centered at x ∈ Ω and

radius 0 < r < dist(x, ∂Ω). Then

|h ∗ Φt(x)| 6 C(n)

tn+1

∫ t

0

∣∣∣∣∣
∫
B(x,r)

h

∣∣∣∣∣ dr (13)

Note that the absolute value is carried out upon the integration of h ,

which is the key to subsequent estimates.
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Proof. Denote by S(x, r) = ∂B(x, r). By Fubini’s Theorem we obtain

(h ∗ Φt) (x) =

∫
B(x,t)

Φt(x− y)h(y) dy

=

∫ t

0

(∫
S(x,r)

Φt(x− y)h(y) dy

)
dr

=

∫ t

0

Φt(r)

(∫
S(x,r)

h(y) dy

)
dr

=

∫ t

0

Φt(r)

(
d

dr

∫
B(x,r)

h(y) dy

)
dr

= −
∫ t

0

[
d

dr
Φt(r)

][∫
B(x,r)

h(y) dy

]
dr

6
C(n)

tn+1

∫ t

0

∣∣∣∣∣
∫
B(x,r)

h

∣∣∣∣∣ dr , as desired
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Isoperimetric Inequality

Let f ∈W 1,n−1
loc (Ω,Rn) satisfy Condition (1). Our main device to estimating

the maximal function MJ by the subdeterminants of Df is the following

isoperimetric type inequality

∣∣∣∣∣
∫
B(x,r)

J(y, f) dy

∣∣∣∣∣ 6 C(n)

(∫
S(x,r)

∣∣D]f(y)
∣∣ dy) n

n−1

(14)

for almost every 0 < r < dist(x, ∂Ω). We refer to [MQY] for the proof.
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Now Lemma 3 gives

|(J ∗ Φt) (x)| 6
C(n)

tn+1

∫ t

0

(∫
S(x,r)

∣∣D]f
∣∣) n

n−1

dr

6
C(n)

tn+1

∫ t

0

rn

(
1

|S(x, r)|

∫
S(x,r)

∣∣D]f
∣∣) n

n−1

dr

6
C(n)

tn

∫ t

0

rn−1

(
1

|S(x, r)|

∫
S(x,r)

∣∣D]f
∣∣) n

n−1

dr

6 C(n)
(
M n

n−1
|D]f |

) n
n−1

(x)

Taking supremum with respect to 0 < t < dist(x, ∂Ω), we conclude with
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the pointwise inequality

MJ(x) 4
[
Mθ|D]f |

] n
n−1

(x) (15)

for almost every x ∈ Ω, where θ = n
n−1. The implied constant depends

only on the dimension. Let us strenghten inequality (14) slightly as follows.

LEMMA 4.

For each f ∈ W 1,n−1
loc (Ω,Rn) satisfying (1) and 0 < r < dist(x, ∂Ω) we

have ∣∣∣∣∣ 1

|B(x, r)|

∫
B(x,r)

J(y, f) dy

∣∣∣∣∣ 6 (14′)

C(n)

n∏
k=1

(∫
S(x,r)

∣∣df1 ∧ ... ∧ dfk−1 ∧ dfk+1 ∧ ... ∧ dfn
∣∣) 1

n−1
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Proof. This result is a consequence of (14). First, we have

∣∣D]f
∣∣ 6 n∑

k=1

∣∣df1 ∧ ... ∧ dfk−1 ∧ dfk+1 ∧ ... ∧ dfn
∣∣ (16)

Fubini’s Theorem tells us that for almost every r the integrals in the right

hand side of (14’) are finite. In what follows we consider only such radii.

Fix any positive integer l. For k = 1, 2, ..., n we define the positive numbers

λk =

1
l + 1

|S(x,r)|
∫
S(x,r)

∣∣df1 ∧ ... ∧ dfk−1 ∧ dfk+1 ∧ ... ∧ dfn
∣∣∏n

j=1

[
1
l + 1

|S(x,r)|
∫
S(x,r)

|df1 ∧ ... ∧ df j−1 ∧ df j+1 ∧ ... ∧ dfn|
]1
n

Clearly λ1 · · ·λn = 1 and we may apply (14) to the mappings

(λ1f
1, ..., λnf

n) in place of (f1, ..., fn), to obtain
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∣∣∣∣∣ 1

|B(x, r)|

∫
B(x,r)

J(y, f) dy

∣∣∣∣∣ 6
6 C(n)

(
1

|S(x, r)|

∫
S(x,r)

n∑
k=1

λ−1
k

∣∣∣df1 ∧ ... ∧ d̂fk ∧ ... ∧ dfn
∣∣∣) n

n−1

4

(
n∑
k=1

λ−1
k

[
1

l
+

1

|S(x, r|)

∫
S(x,r)

∣∣∣df1 ∧ ... ∧ d̂fk ∧ ... ∧ dfn
∣∣∣ ]) n

n−1

4
n∏
j=1

[
1

l
+

1

|S(x, r|)

∫
S(x,r)

∣∣∣df1 ∧ ... ∧ d̂f j ∧ ... ∧ dfn
∣∣∣ ] 1

n−1

As usual, the terms under ̂ are to be omitted.
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REMARK (optional)

We should observe here that the radii of the balls for which these inequalities

hold may depend on the mappings (λ1f
1, ..., λnf

n). However, we are dealing

with only countable number of such mappings, so we may assume that the

inequalities hold for almost every 0 < r < dist(x, ∂Ω), and with every

l = 1, 2, ... Now the inequality (14’) is established by letting l go to infinity.

With this version of isoperimetric inequality we can obtain a better estimate

of MJ(x). Indeed, using Inequality (14’) instead of (14), we obtain
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|(J ∗ Φt) (x)| 6

6
C(n)

tn+1

∫ t

0

rn
n∏
k=1

(
1

|S(x, r)|

∫
S(x,r)

|df1 ∧ ... ∧ d̂fk ∧ ... ∧ dfn|

) 1
n−1

dr

6
C(n)

tn

∫ t

0

rn−1
n∏
k=1

(
1

|S(x, r)|

∫
S(x,r)

|df1 ∧ ... ∧ d̂fk ∧ ... ∧ dfn|

) 1
n−1

dr

Then, by Hölder’s inequality with p1, ..., pn > 0 satisfy 1
p1

+ ...+ 1
p1

= n−1.

6
n∏
k=1

[
C(n)

tn

∫ t

0

rn−1

(
1

|S(x, r)|

∫
S(x,r)

|df1 ∧ ... ∧ d̂fk ∧ ... ∧ dfn|

)pk
dr

] 1
pk(n−1)

28



Taking supremum with respect to 0 < r < dist(x, ∂Ω) we conclude with

the pointwise inequality between maximal functions

MJ(x) 4
n∏
k=1

[
Mpk

(
df1 ∧ ... ∧ dfk−1 ∧ dfk−1 ∧ ... ∧ dfn

)] 1
n−1

(17)

where 1
p1

+ ... + 1
p1

= n − 1. The implied constant depends only on the

dimension.
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Proof of Theorems A

We estimate the L1-norm of MJ by using inequality (15)

‖MJ‖L1(Ω) 6 C(n)
∥∥Mθ|D]f |

∥∥ n
n−1

L
n
n−1(Ω)

6 C(n)
∥∥D]f

∥∥ n
n−1

L
n
n−1(Ω)

= C(n)

∫
Ω

∣∣D]f
∣∣ n
n−1

Here, of course, we have used boundednes of the operator Mθ in L
n
n−1(Ω).

This completes the proof of Theorem A.
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We now proceed to the proof of inequality (4). We integrate both side of

(17) and use Hölder’s inequality to obtain

(∫
Ω

MJ(x) dx

)n−1

6
n∏
k=1

(
C(n)

∫
Ω

[
Mpk(df

1 ∧ ... ∧ d̂fk ∧ ... ∧ dfn)
]pk) 1

pk

≤ Cp(n)

(∫
Ω

∣∣∣df1 ∧ ... ∧ d̂fk ∧ ... ∧ dfn
∣∣∣pk) 1

pk

This last inequality follows from the fact that the sublinear operators Mpk

are bouded from Lpk(Ω) to Lpk(Ω), provided pk > 1 for k = 1, ..., n, see

Theorem 1. The proof of inequality (4) is complete.
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Proof of Theorem B

First observe that Inequality (7) remains valid for the limit mapping, that

is: ∫
Rn

∣∣D]f(x)
∣∣ n
n−1 dx ≤ K (18)

This follows from the well know fact that D]fj → D]f in D′(Ω). In

particular, by Theorem A, we have

‖det Dfj‖H1 + ‖det Df‖H1 ≤ C(n) K (19)

for all j = 1, 2, ...
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Next we recall that the dual of H1(Rn) is BMO(Rn) (C. Fefferman, Bulletin

of AMS 1971), see also (C. Fefferman & E. Stein, Acta Math. 1972). On

the other hand H1(Rn) is dual of VMO(Rn) ⊂ BMO(Rn) . The BMO−H1

pairing is customary denoted by

ϕ[h] =

∫
Rn
ϕ(x)h(x) dx

Here the integral just signifies the action of ϕ on h or h on ϕ , respectively.

These actions coincide with the integral formula if ϕ ∈ C∞0 (Ω).

For any ε > 0 we can find a test function ϕε ∈ C∞0 (Ω) such that

||ϕ − ϕε||BMO 6 ε, because C∞0 (Ω) is dense in VMO(Rn). To simplify

notation it will be convenient to write Jk = J(x, fk) and J = J(x, f).
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Now

ϕ[Jk]− ϕ[J ] = ϕε[Jk]− ϕε[J ] + (ϕ− ϕε)[Jk]− (ϕ− ϕε)[J ] (20)

It follows from (3), (19) and lim
k→∞

ϕε[Jk] = ϕε[J ] that

lim
k→∞

sup |ϕ[Jk]− ϕ[J ]| 6 lim
k→∞

sup ‖ϕ− ϕε‖BMO (‖Jk‖H1 + ‖J‖H1)

6 C(n) K ε

As ε was arbitrary we conclude that

lim
k→∞

ϕ[Jk] = ϕ[J ]

completing the proof of Theorem B.
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In Theorem B, the space VMO(Rn)
cannot be replaced by BMO(Rn) (optional)

In other words, the sequence of Jacobians in our example will not converge

weakly in H1(Rn).

EXAMPLE. There is a sequence {fk} bounded in W 1,n(Rn,Rn),

converging uniformly to zero, and such that

lim
k→∞

inf

∫
Rn

(
log

1

|x|

)
J(x, fk) dx >

1

n
(21)

This example is of course stronger than we need. Uniform convergence

together with boundedness in W 1,n(Rn,Rn) implies that fk ⇀ 0 weakly in
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W 1,n−1(Rn,Rn). Moreover, we have uniform bound

sup
k≥1

∫
Rn

∣∣D]fk
∣∣ n
n−1 ≤ sup

k≥1

∫
Rn
|Dfk|

n
<∞

Note that the function log |x| lies in BMO(Rn) but not in VMO(Rn).

Construction. Given any positive integer k we consider a radial stretching

in the ball B = {x ∈ Rn : |x| ≤ 1
e}.

gk(x) =
Ck x

|x| |log |x||
1
n+1

k

, (22)
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where Ck is a constant determined by the equation

Ck = n

√
n

k ωn−1
(23)

An elementary computation shows that

|Dgk(x)| = Ck

|x| |log |x||
1
n+1

k

(24)

and

J(x, gk) =

(
1
n + 1

k

)
Cnk

|x|n |log |x||2+n
k

(25)
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Using polar coordinates we compute∫
B

|Dgk(x)|n dx = 1 (26)

Hence, by (24) and (25) we also have∫
B

(
log

1

|x|

)
J (x, gk) =

(
1

n
+

1

k

)∫
B

|Dgk(x)|n dx ≥ 1

n
(27)

We shall now define the desired sequence {fk} of mappings fk : Rn → Rn

by extending gk beyond the ball B as follows

fk(x) =

 gk(x) if 0 < |x| ≤ 1
e

Ck x η(|x|) if 1
e < |x| ≤ 1

0 otherwise
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Here η = η(t) is an arbitrary Lipschitz function defined on the interval [1e, 1],

such that η
(

1
e

)
= 1, η(1) = 0 and 0 ≤ η(t) ≤ 1.

Notice that

lim
k→∞

∫
|x|≥1

e

(log |x|) J (x, fk) dx = A1 lim
k→∞

Cnk = 0 (28)

where the constant A1 depends only on the choice of the function η.

Combinnig this fact with inequalty (27) we conclude that

lim
k→∞

inf

∫
Rn

(
log

1

|x|

)
J(x, fk) dx ≥

1

n

proving the claim at Inequality (21).
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Similarly, we find∫
Rn
|Dfk(x)|n dx =

∫
B

|Dgk(x)|n dx+A2 C
n
k = 1 +A2 C

n
k

with A2 depending only on η. In particular, the sequence {fk} is bounded

in W 1,n(Rn,Rn). The last thing to show is that

|fk(x)| ≤ Ck

for all x ∈ Rn and k = 1, 2, ... Thus fk → 0 uniformly in Rn.
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