Jacobians of Sobolev homeomorphisms

Stanislav Hencl and Jan Malý

Charles University, Prague, Czech Republic

July 2018, Barcelona

∃ >

Problem: Let $\Omega \subset \mathbf{R}^n$ be a domain, $f : \Omega \to \mathbf{R}^n$ be a homeomorphism such that $f \in W^{1,1}(\Omega, \mathbf{R}^n)$. Is it true that $J_f \geq 0$ a.e. or $J_f \leq 0$ a.e.?

ヨット イヨット イヨッ

Problem: Let $\Omega \subset \mathbf{R}^n$ be a domain, $f : \Omega \to \mathbf{R}^n$ be a homeomorphism such that $f \in W^{1,1}(\Omega, \mathbf{R}^n)$. Is it true that $J_f \geq 0$ a.e. or $J_f \leq 0$ a.e.?

YES if f differentiable, i.e. n = 2 or $f \in W^{1,p}$, p > n - 1

Problem: Let $\Omega \subset \mathbf{R}^n$ be a domain, $f : \Omega \to \mathbf{R}^n$ be a homeomorphism such that $f \in W^{1,1}(\Omega, \mathbf{R}^n)$. Is it true that $J_f \geq 0$ a.e. or $J_f \leq 0$ a.e.?

YES if f differentiable, i.e. n = 2 or $f \in W^{1,p}$, p > n - 1

Obstacles:

• $\exists f$ homeomorphism and Lipschitz, but $J_f = 0$ on a set of positive measure.

向下 イヨト イヨト

Problem: Let $\Omega \subset \mathbf{R}^n$ be a domain, $f : \Omega \to \mathbf{R}^n$ be a homeomorphism such that $f \in W^{1,1}(\Omega, \mathbf{R}^n)$. Is it true that $J_f \geq 0$ a.e. or $J_f \leq 0$ a.e.?

YES if f differentiable, i.e. n = 2 or $f \in W^{1,p}$, p > n - 1

Obstacles:

- $\exists f$ homeomorphism and Lipschitz, but $J_f = 0$ on a set of positive measure.
- $\exists f \in W^{1,p}$, p < n, continuous, f(x) = x for $x \in \partial B(0,1)$, but $J_f < 0$ a.e. (NOT homeomorphism)

・ 同 ト ・ ヨ ト ・ ヨ ト

Problem: Let $\Omega \subset \mathbf{R}^n$ be a domain, $f : \Omega \to \mathbf{R}^n$ be a homeomorphism such that $f \in W^{1,1}(\Omega, \mathbf{R}^n)$. Is it true that $J_f \geq 0$ a.e. or $J_f \leq 0$ a.e.?

YES if f differentiable, i.e. n = 2 or $f \in W^{1,p}$, p > n - 1

Obstacles:

- $\exists f$ homeomorphism and Lipschitz, but $J_f = 0$ on a set of positive measure.
- $\exists f \in W^{1,p}$, p < n, continuous, f(x) = x for $x \in \partial B(0,1)$, but $J_f < 0$ a.e. (NOT homeomorphism)
- ∃f homeomorphism, approximatively differentiable, f(x) = x for x ∈ ∂B(0,1), but J_f < 0 has positive measure. (NOT W^{1,1}) - see Goldstein, Hajlasz

Theorem

Let $\Omega \subset \mathbf{R}^n$ be an open set and $n \leq 3$. Suppose that $f \in W^{1,1}_{loc}(\Omega, \mathbf{R}^n)$ is a homeomorphism. Then $J_f \geq 0$ a.e. or $J_f \leq 0$ a.e.

Theorem

Let $\Omega \subset \mathbf{R}^n$ be an open set and $n \leq 3$. Suppose that $f \in W^{1,1}_{loc}(\Omega, \mathbf{R}^n)$ is a homeomorphism. Then $J_f \geq 0$ a.e. or $J_f \leq 0$ a.e.

Theorem

Let $\Omega \subset \mathbf{R}^n$ be an open set, $n \ge 2$. Suppose that $f \in W^{1,p}(\Omega, \mathbf{R}^n)$ is a homeomorphism for some $p > \lfloor n/2 \rfloor$. Then $J_f \ge 0$ a.e. or $J_f \le 0$ a.e.

Theorem

Let $\Omega \subset \mathbf{R}^n$ be an open set and $n \leq 3$. Suppose that $f \in W^{1,1}_{loc}(\Omega, \mathbf{R}^n)$ is a homeomorphism. Then $J_f \geq 0$ a.e. or $J_f \leq 0$ a.e.

Theorem

Let $\Omega \subset \mathbf{R}^n$ be an open set, $n \ge 2$. Suppose that $f : \Omega \to \mathbf{R}^n$ is a Sobolev homeomorphism with $\nabla f \in L_{p,1}$, where p = [n/2]. Then $J_f \ge 0$ a.e. or $J_f \le 0$ a.e.

・ 同・ ・ ヨ・

Tools from topology

Topological degree - deg $(f, \Omega, y_0) = \sum_{\{x \in \Omega: f(x) = y_0\}} \operatorname{sgn}(J_f(x))$ $f : \Omega \to \mathbb{R}^n$ continuous is *sense-preserving* if deg $(f, \Omega', y_0) > 0$, $\forall \Omega' \subset \subset \Omega$ and $\forall y_0 \in f(\Omega') \setminus f(\partial \Omega')$.

伺 ト イヨト イヨト

Tools from topology

Topological degree - deg $(f, \Omega, y_0) = \sum_{\{x \in \Omega: f(x) = y_0\}} \operatorname{sgn}(J_f(x))$ $f : \Omega \to \mathbb{R}^n$ continuous is *sense-preserving* if deg $(f, \Omega', y_0) > 0$, $\forall \Omega' \subset \subset \Omega$ and $\forall y_0 \in f(\Omega') \setminus f(\partial \Omega')$. **FACT 1:** Each homeomorphism on a domain is either sense-preserving or sense-reversing.

Theorem

Let $\Omega \subset \mathbf{R}^n$ be an open set and $n \leq 3$. Suppose that $f \in W^{1,1}_{loc}(\Omega, \mathbf{R}^n)$ is a sense preserving homeomorphism. Then $J_f \geq 0$ a.e.

Tools from topology

Topological degree - deg $(f, \Omega, y_0) = \sum_{\{x \in \Omega: f(x) = y_0\}} \operatorname{sgn}(J_f(x))$ $f : \Omega \to \mathbb{R}^n$ continuous is *sense-preserving* if deg $(f, \Omega', y_0) > 0$, $\forall \Omega' \subset \subset \Omega$ and $\forall y_0 \in f(\Omega') \setminus f(\partial \Omega')$. **FACT 1:** Each homeomorphism on a domain is either sense-preserving or sense-reversing.

Linking number:

FACT 2: Linking number is a topological invariant. If f is sense preserving, then it cannot map two curves with linking number +1 to curves with linking number -1.

Let f be a sense-preserving homeomorphism in $W^{1,1}(\Omega, \mathbb{R}^2)$. Let x_0 be a point, such that f is differentiable at x_0 and $J_f(x_0) < 0$.

Let f be a sense-preserving homeomorphism in $W^{1,1}(\Omega, \mathbb{R}^2)$. Let x_0 be a point, such that f is differentiable at x_0 and $J_f(x_0) < 0$.

WLOG
$$f(x_0)=0$$
 and $Df(x_0)=egin{pmatrix} 1&0\0&-1 \end{pmatrix}$

通 と く ヨ と く ヨ と …

Let f be a sense-preserving homeomorphism in $W^{1,1}(\Omega, \mathbb{R}^2)$. Let x_0 be a point, such that f is differentiable at x_0 and $J_f(x_0) < 0$.

$$egin{aligned} & \mathsf{WLOG} \ f(x_0) = 0 \ \mathsf{and} \ Df(x_0) = egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} \ f(x_0 + [x,y]) &\sim Df(x_0)[x,y] = [x,-y] \end{aligned}$$

向下 イヨト イヨト

Let f be a sense-preserving homeomorphism in $W^{1,1}(\Omega, \mathbb{R}^2)$. Let x_0 be a point, such that f is differentiable at x_0 and $J_f(x_0) < 0$.

WLOG $f(x_0) = 0$ and $Df(x_0) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $f(x_0 + [x, y]) \sim Df(x_0)[x, y] = [x, -y]$

Index of a curve with respect to a point is a topological invariant - contradiction.

Let f be a sense-preserving homeomorphism in $W^{1,p}(\Omega, \mathbb{R}^3)$, p > 2. Let x_0 be a point, such that f is differentiable at x_0 and $J_f(x_0) < 0$.

伺下 イヨト イヨト

Let f be a sense-preserving homeomorphism in $W^{1,p}(\Omega, \mathbb{R}^3)$, p > 2. Let x_0 be a point, such that f is differentiable at x_0 and $J_f(x_0) < 0$.

WLOG
$$f(x_0) = 0$$
 and $Df(x_0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
 $f(x_0 + [x, y, z]) \sim Df(x_0)[x, y, z] = [x, y, -z]$

回り くほり くほり ……ほ

Let f be a sense-preserving homeomorphism in $W^{1,p}(\Omega, \mathbb{R}^3)$, p > 2. Let x_0 be a point, such that f is differentiable at x_0 and $J_f(x_0) < 0$.

Linking number is a topological invariant - contradiction.

Let f be a sense-preserving homeomorphism in $W^{1,1}(\Omega, \mathbb{R}^3)$. Let x_0 be a point, such that f is approximatively differentiable at x_0 , x_0 is a Lebesque point of Df and $J_f(x_0) < 0$.

同 と く ヨ と く ヨ と …

Let f be a sense-preserving homeomorphism in $W^{1,1}(\Omega, \mathbb{R}^3)$. Let x_0 be a point, such that f is approximatively differentiable at x_0 , x_0 is a Lebesque point of Df and $J_f(x_0) < 0$.

WLOG
$$f(x_0) = 0$$
 and $Df(x_0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

伺 とう ヨン うちょう

Let f be a sense-preserving homeomorphism in $W^{1,1}(\Omega, \mathbb{R}^3)$. Let x_0 be a point, such that f is approximatively differentiable at x_0 , x_0 is a Lebesque point of Df and $J_f(x_0) < 0$.

WLOG
$$f(x_0) = 0$$
 and $Df(x_0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
 $f(x_0 + [x, y, z]) \sim [x, y, -z]$ for 99,9% of points $x \in B(0, r)$

直 とう きょう うちょう

Let f be a sense-preserving homeomorphism in $W^{1,1}(\Omega, \mathbb{R}^3)$. Let x_0 be a point, such that f is approximatively differentiable at x_0 , x_0 is a Lebesque point of Df and $J_f(x_0) < 0$.

 $f(x_0 + [x, y, z]) \sim [x, y, -z]$ for 99,9% of points of B(0, r) $f(x_0 + [x, y, z]) \sim [x, y, -z]$ for 99% of points of circle C

Let f be a sense-preserving homeomorphism in $W^{1,1}(\Omega, \mathbb{R}^3)$. Let x_0 be a point, such that f is approximatively differentiable at x_0 , x_0 is a Lebesque point of Df and $J_f(x_0) < 0$.

 $f(x_0 + [x, y, z]) \sim [x, y, -z]$ for 99,9% of points of B(0, r) $f(x_0 + [x, y, z]) \sim [x, y, -z]$ for 99% of points of circle C

 $rac{1}{|B(x,r)|}\int_{B(x,r)}|Df-Df(x_0)|$ small and thus $rac{1}{|C|}\int_C|Df|\leq 1+\varepsilon$

向下 イヨト イヨト

Let f be a sense-preserving homeomorphism in $W^{1,1}(\Omega, \mathbb{R}^3)$. Let x_0 be a point, such that f is approximatively differentiable at x_0 , x_0 is a Lebesque point of Df and $J_f(x_0) < 0$.

 $f(x_0 + [x, y, z]) \sim [x, y, -z]$ for 99,9% of points of B(0, r) $f(x_0 + [x, y, z]) \sim [x, y, -z]$ for 99% of points of circle C

 $rac{1}{|B(x,r)|}\int_{B(x,r)}|Df-Df(x_0)|$ small and thus $rac{1}{|C|}\int_C|Df|\leq 1+arepsilon$

Real proof: more formal, some limiting argument on $B(x, r_n)$ where $r_n \rightarrow 0$, idea is the same

Real proof: more formal, some limiting argument on $B(x, r_n)$ where $r_n \rightarrow 0$, idea is the same

Higher dimension : n = 5 two 2-dimensional linked spheres

essential - $W^{2+\varepsilon} \hookrightarrow C$ on those spheres

Real proof: more formal, some limiting argument on $B(x, r_n)$ where $r_n \rightarrow 0$, idea is the same

Higher dimension : n = 5 two 2-dimensional linked spheres

essential - $W^{2+arepsilon} \hookrightarrow C$ on those spheres

n = 4 link one circle and one 2-dimensional sphere

Theorem (Campbell, H., Tengvall)

Let $n \ge 4$ and $1 \le p < [\frac{n}{2}]$. There is a homeomorphism in the Sobolev space $f \in W^{1,p}((0,1)^n, \mathbb{R}^n)$ such that $\mathcal{L}_n(\{x : J_f(x) > 0\}) > 0$ and $\mathcal{L}_n(\{x : J_f(x) < 0\}) > 0$.

Theorem (Campbell, H., Tengvall)

Let $n \ge 4$ and $1 \le p < [\frac{n}{2}]$. There is a homeomorphism in the Sobolev space $f \in W^{1,p}((0,1)^n, \mathbb{R}^n)$ such that $\mathcal{L}_n(\{x : J_f(x) > 0\}) > 0$ and $\mathcal{L}_n(\{x : J_f(x) < 0\}) > 0$.

Open problems:

•
$$n \ge 4$$
, $f \in W^{1,p}(\Omega, \mathbb{R}^n)$ homeomorphism, $p = \lfloor n/2 \rfloor$
 $\stackrel{?}{\Longrightarrow} J_f \ge 0$ a.e. or $J_f \le 0$ a.e.

Theorem (Campbell, H., Tengvall)

Let $n \ge 4$ and $1 \le p < [\frac{n}{2}]$. There is a homeomorphism in the Sobolev space $f \in W^{1,p}((0,1)^n, \mathbb{R}^n)$ such that $\mathcal{L}_n(\{x : J_f(x) > 0\}) > 0$ and $\mathcal{L}_n(\{x : J_f(x) < 0\}) > 0$.

Open problems:

- $n \ge 4$, $f \in W^{1,p}(\Omega, \mathbb{R}^n)$ homeomorphism, $p = \lfloor n/2 \rfloor$ $\implies J_f \ge 0$ a.e. or $J_f \le 0$ a.e.
- n = 3, $f \in W^{1,1}(\Omega, \mathbb{R}^3)$ open and discrete, $\stackrel{?}{\Rightarrow} J_f \ge 0$ a.e. or $J_f \le 0$ a.e.

・ 同 ト ・ ヨ ト ・ ヨ ト