Jacobians of Sobolev homeomorphisms

Stanislav Hencl and Jan Malý
Charles University, Prague, Czech Republic
July 2018, Barcelona

Hajlasz problem (~2000)

Problem: Let $\Omega \subset \mathbf{R}^{n}$ be a domain, $f: \Omega \rightarrow \mathbf{R}^{n}$ be a homeomorphism such that $f \in W^{1,1}\left(\Omega, \mathbf{R}^{n}\right)$. Is it true that $J_{f} \geq 0$ a.e. or $J_{f} \leq 0$ a.e.?

Hajlasz problem (~ 2000)

Problem: Let $\Omega \subset \mathbf{R}^{n}$ be a domain, $f: \Omega \rightarrow \mathbf{R}^{n}$ be a homeomorphism such that $f \in W^{1,1}\left(\Omega, \mathbf{R}^{n}\right)$. Is it true that $J_{f} \geq 0$ a.e. or $J_{f} \leq 0$ a.e.?

YES if f differentiable, i.e. $n=2$ or $f \in W^{1, p}, p>n-1$

Hajlasz problem (~ 2000)

Problem: Let $\Omega \subset \mathbf{R}^{n}$ be a domain, $f: \Omega \rightarrow \mathbf{R}^{n}$ be a homeomorphism such that $f \in W^{1,1}\left(\Omega, \mathbf{R}^{n}\right)$. Is it true that $J_{f} \geq 0$ a.e. or $J_{f} \leq 0$ a.e.?

YES if f differentiable, i.e. $n=2$ or $f \in W^{1, p}, p>n-1$

Obstacles:

- $\exists f$ homeomorphism and Lipschitz, but $J_{f}=0$ on a set of positive measure.

Hajlasz problem (~ 2000)

Problem: Let $\Omega \subset \mathbf{R}^{n}$ be a domain, $f: \Omega \rightarrow \mathbf{R}^{n}$ be a homeomorphism such that $f \in W^{1,1}\left(\Omega, \mathbf{R}^{n}\right)$. Is it true that $J_{f} \geq 0$ a.e. or $J_{f} \leq 0$ a.e.?

YES if f differentiable, i.e. $n=2$ or $f \in W^{1, p}, p>n-1$

Obstacles:

- $\exists f$ homeomorphism and Lipschitz, but $J_{f}=0$ on a set of positive measure.
- $\exists f \in W^{1, p}, p<n$, continuous, $f(x)=x$ for $x \in \partial B(0,1)$, but $J_{f}<0$ a.e. (NOT homeomorphism)

Hajlasz problem (~ 2000)

Problem: Let $\Omega \subset \mathbf{R}^{n}$ be a domain, $f: \Omega \rightarrow \mathbf{R}^{n}$ be a homeomorphism such that $f \in W^{1,1}\left(\Omega, \mathbf{R}^{n}\right)$. Is it true that $J_{f} \geq 0$ a.e. or $J_{f} \leq 0$ a.e.?

YES if f differentiable, i.e. $n=2$ or $f \in W^{1, p}, p>n-1$

Obstacles:

- $\exists f$ homeomorphism and Lipschitz, but $J_{f}=0$ on a set of positive measure.
- $\exists f \in W^{1, p}, p<n$, continuous, $f(x)=x$ for $x \in \partial B(0,1)$, but $J_{f}<0$ a.e. (NOT homeomorphism)
- $\exists f$ homeomorphism, approximatively differentiable , $f(x)=x$ for $x \in \partial B(0,1)$, but $J_{f}<0$ has positive measure. (NOT W ${ }^{1,1}$) - see Goldstein, Hajlasz

Results

Theorem

Let $\Omega \subset \mathbf{R}^{n}$ be an open set and $n \leq 3$. Suppose that $f \in W_{\text {loc }}^{1,1}\left(\Omega, \mathbf{R}^{n}\right)$ is a homeomorphism. Then $J_{f} \geq 0$ a.e. or $J_{f} \leq 0$ a.e.

Results

Theorem

Let $\Omega \subset \mathbf{R}^{n}$ be an open set and $n \leq 3$. Suppose that $f \in W_{\text {loc }}^{1,1}\left(\Omega, \mathbf{R}^{n}\right)$ is a homeomorphism. Then $J_{f} \geq 0$ a.e. or $J_{f} \leq 0$ a.e.

Theorem

Let $\Omega \subset \mathbf{R}^{n}$ be an open set, $n \geq 2$. Suppose that $f \in W^{1, p}\left(\Omega, \mathbf{R}^{n}\right)$ is a homeomorphism for some $p>[n / 2]$. Then $J_{f} \geq 0$ a.e. or $J_{f} \leq 0$ a.e.

Results

Theorem

Let $\Omega \subset \mathbf{R}^{n}$ be an open set and $n \leq 3$. Suppose that $f \in W_{\text {loc }}^{1,1}\left(\Omega, \mathbf{R}^{n}\right)$ is a homeomorphism. Then $J_{f} \geq 0$ a.e. or $J_{f} \leq 0$ a.e.

Theorem

Let $\Omega \subset \mathbf{R}^{n}$ be an open set, $n \geq 2$. Suppose that $f: \Omega \rightarrow \mathbf{R}^{n}$ is a Sobolev homeomorphism with $\nabla f \in L_{p, 1}$, where $p=[n / 2]$. Then $J_{f} \geq 0$ a.e. or $J_{f} \leq 0$ a.e.

Tools from topology

Topological degree $-\operatorname{deg}\left(f, \Omega, y_{0}\right)=\sum_{\left\{x \in \Omega: f(x)=y_{0}\right\}} \operatorname{sgn}\left(J_{f}(x)\right)$ $f: \Omega \rightarrow \mathbf{R}^{n}$ continuous is sense-preserving if $\operatorname{deg}\left(f, \Omega^{\prime}, y_{0}\right)>0, \forall \Omega^{\prime} \subset \subset \Omega$ and $\forall y_{0} \in f\left(\Omega^{\prime}\right) \backslash f\left(\partial \Omega^{\prime}\right)$.

Tools from topology

Topological degree $-\operatorname{deg}\left(f, \Omega, y_{0}\right)=\sum_{\left\{x \in \Omega: f(x)=y_{0}\right\}} \operatorname{sgn}\left(J_{f}(x)\right)$ $f: \Omega \rightarrow \mathbf{R}^{n}$ continuous is sense-preserving if $\operatorname{deg}\left(f, \Omega^{\prime}, y_{0}\right)>0, \forall \Omega^{\prime} \subset \subset \Omega$ and $\forall y_{0} \in f\left(\Omega^{\prime}\right) \backslash f\left(\partial \Omega^{\prime}\right)$.
FACT 1: Each homeomorphism on a domain is either sense-preserving or sense-reversing.

Theorem

Let $\Omega \subset \mathbf{R}^{n}$ be an open set and $n \leq 3$. Suppose that $f \in W_{\text {loc }}^{1,1}\left(\Omega, \mathbf{R}^{n}\right)$ is a sense preserving homeomorphism. Then $J_{f} \geq 0$ a.e.

Tools from topology

Topological degree $-\operatorname{deg}\left(f, \Omega, y_{0}\right)=\sum_{\left\{x \in \Omega: f(x)=y_{0}\right\}} \operatorname{sgn}\left(J_{f}(x)\right)$ $f: \Omega \rightarrow \mathbf{R}^{n}$ continuous is sense-preserving if $\operatorname{deg}\left(f, \Omega^{\prime}, y_{0}\right)>0, \forall \Omega^{\prime} \subset \subset \Omega$ and $\forall y_{0} \in f\left(\Omega^{\prime}\right) \backslash f\left(\partial \Omega^{\prime}\right)$.
FACT 1: Each homeomorphism on a domain is either sense-preserving or sense-reversing.

Linking number:

FACT 2: Linking number is a topological invariant. If f is sense preserving, then it cannot map two curves with linking number +1 to curves with linking number -1 .

Simple proof in dimension $n=2$

Let f be a sense-preserving homeomorphism in $W^{1,1}\left(\Omega, \mathbf{R}^{2}\right)$. Let x_{0} be a point, such that f is differentiable at x_{0} and $J_{f}\left(x_{0}\right)<0$.

Simple proof in dimension $n=2$

Let f be a sense-preserving homeomorphism in $W^{1,1}\left(\Omega, \mathbf{R}^{2}\right)$. Let x_{0} be a point, such that f is differentiable at x_{0} and $J_{f}\left(x_{0}\right)<0$.
WLOG $f\left(x_{0}\right)=0$ and $\operatorname{Df}\left(x_{0}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

Simple proof in dimension $n=2$

Let f be a sense-preserving homeomorphism in $W^{1,1}\left(\Omega, \mathbf{R}^{2}\right)$. Let x_{0} be a point, such that f is differentiable at x_{0} and $J_{f}\left(x_{0}\right)<0$.
WLOG $f\left(x_{0}\right)=0$ and $D f\left(x_{0}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
$f\left(x_{0}+[x, y]\right) \sim \operatorname{Df}\left(x_{0}\right)[x, y]=[x,-y]$

Simple proof in dimension $n=2$

Let f be a sense-preserving homeomorphism in $W^{1,1}\left(\Omega, \mathbf{R}^{2}\right)$. Let x_{0} be a point, such that f is differentiable at x_{0} and $J_{f}\left(x_{0}\right)<0$.
WLOG $f\left(x_{0}\right)=0$ and $\operatorname{Df}\left(x_{0}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
$f\left(x_{0}+[x, y]\right) \sim \operatorname{Df}\left(x_{0}\right)[x, y]=[x,-y]$
$\square \mathrm{I}=+1$

Index of a curve with respect to a point is a topological invariant - contradiction.

Simple proof in dimension $n=3$

Let f be a sense-preserving homeomorphism in $W^{1, p}\left(\Omega, \mathbf{R}^{3}\right)$, $p>2$.
Let x_{0} be a point, such that f is differentiable at x_{0} and $J_{f}\left(x_{0}\right)<0$.

Simple proof in dimension $n=3$

Let f be a sense-preserving homeomorphism in $W^{1, p}\left(\Omega, \mathbf{R}^{3}\right)$, $p>2$.
Let x_{0} be a point, such that f is differentiable at x_{0} and $J_{f}\left(x_{0}\right)<0$.
WLOG $f\left(x_{0}\right)=0$ and $D f\left(x_{0}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$
$f\left(x_{0}+[x, y, z]\right) \sim \operatorname{Df}\left(x_{0}\right)[x, y, z]=[x, y,-z]$

Simple proof in dimension $n=3$

Let f be a sense-preserving homeomorphism in $W^{1, p}\left(\Omega, \mathbf{R}^{3}\right)$, $p>2$.
Let x_{0} be a point, such that f is differentiable at x_{0} and $J_{f}\left(x_{0}\right)<0$.
$f\left(x_{0}+[x, y, z]\right) \sim D f\left(x_{0}\right)[x, y, z]=[x, y,-z]$

Linking number is a topological invariant - contradiction.

Proof in dimension $n=3$

Let f be a sense-preserving homeomorphism in $W^{1,1}\left(\Omega, \mathbf{R}^{3}\right)$. Let x_{0} be a point, such that f is approximatively differentiable at x_{0}, x_{0} is a Lebesque point of $D f$ and $J_{f}\left(x_{0}\right)<0$.

Proof in dimension $n=3$

Let f be a sense-preserving homeomorphism in $W^{1,1}\left(\Omega, \mathbf{R}^{3}\right)$. Let x_{0} be a point, such that f is approximatively differentiable at x_{0}, x_{0} is a Lebesque point of $D f$ and $J_{f}\left(x_{0}\right)<0$.
WLOG $f\left(x_{0}\right)=0$ and $D f\left(x_{0}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$

Proof in dimension $n=3$

Let f be a sense-preserving homeomorphism in $W^{1,1}\left(\Omega, \mathbf{R}^{3}\right)$. Let x_{0} be a point, such that f is approximatively differentiable at x_{0}, x_{0} is a Lebesque point of $D f$ and $J_{f}\left(x_{0}\right)<0$.
WLOG $f\left(x_{0}\right)=0$ and $D f\left(x_{0}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$
$f\left(x_{0}+[x, y, z]\right) \sim[x, y,-z]$ for $99,9 \%$ of points $x \in B(0, r)$

Proof in dimension $n=3$

Let f be a sense-preserving homeomorphism in $W^{1,1}\left(\Omega, \mathbf{R}^{3}\right)$. Let x_{0} be a point, such that f is approximatively differentiable at x_{0}, x_{0} is a Lebesque point of $D f$ and $J_{f}\left(x_{0}\right)<0$. $f\left(x_{0}+[x, y, z]\right) \sim[x, y,-z]$ for $99,9 \%$ of points of $B(0, r)$ $f\left(x_{0}+[x, y, z]\right) \sim[x, y,-z]$ for 99% of points of circle C

Proof in dimension $n=3$

Let f be a sense-preserving homeomorphism in $W^{1,1}\left(\Omega, \mathbf{R}^{3}\right)$. Let x_{0} be a point, such that f is approximatively differentiable at x_{0}, x_{0} is a Lebesque point of $D f$ and $J_{f}\left(x_{0}\right)<0$. $f\left(x_{0}+[x, y, z]\right) \sim[x, y,-z]$ for $99,9 \%$ of points of $B(0, r)$ $f\left(x_{0}+[x, y, z]\right) \sim[x, y,-z]$ for 99% of points of circle C

$\frac{1}{|B(x, r)|} \int_{B(x, r)}\left|D f-D f\left(x_{0}\right)\right|$ small and thus $\frac{1}{|C|} \int_{C}|D f| \leq 1+\varepsilon$

Proof in dimension $n=3$

Let f be a sense-preserving homeomorphism in $W^{1,1}\left(\Omega, \mathbf{R}^{3}\right)$. Let x_{0} be a point, such that f is approximatively differentiable at x_{0}, x_{0} is a Lebesque point of $D f$ and $J_{f}\left(x_{0}\right)<0$. $f\left(x_{0}+[x, y, z]\right) \sim[x, y,-z]$ for $99,9 \%$ of points of $B(0, r)$ $f\left(x_{0}+[x, y, z]\right) \sim[x, y,-z]$ for 99% of points of circle C

$\frac{1}{|B(x, r)|} \int_{B(x, r)}\left|D f-D f\left(x_{0}\right)\right|$ small and thus $\frac{1}{|C|} \int_{C}|D f| \leq 1+\varepsilon$

Notes on the proof

Real proof: more formal, some limiting argument on $B\left(x, r_{n}\right)$ where $r_{n} \rightarrow 0$, idea is the same

Notes on the proof

Real proof: more formal, some limiting argument on $B\left(x, r_{n}\right)$ where $r_{n} \rightarrow 0$, idea is the same

Higher dimension : $n=5$ two 2-dimensional linked spheres

essential - $W^{2+\varepsilon} \hookrightarrow C$ on those spheres

Notes on the proof

Real proof: more formal, some limiting argument on $B\left(x, r_{n}\right)$ where $r_{n} \rightarrow 0$, idea is the same

Higher dimension : $n=5$ two 2-dimensional linked spheres

essential - $W^{2+\varepsilon} \hookrightarrow C$ on those spheres
$n=4$ link one circle and one 2-dimensional sphere

Further results and questions

Theorem (Campbell, H., Tengvall)

Let $n \geq 4$ and $1 \leq p<\left[\frac{n}{2}\right]$. There is a homeomorphism in the Sobolev space $f \in W^{1, p}\left((0,1)^{n}, \mathbf{R}^{n}\right)$ such that $\mathcal{L}_{n}\left(\left\{x: J_{f}(x)>0\right\}\right)>0$ and $\mathcal{L}_{n}\left(\left\{x: J_{f}(x)<0\right\}\right)>0$.

Further results and questions

Theorem (Campbell, H., Tengvall)

Let $n \geq 4$ and $1 \leq p<\left[\frac{n}{2}\right]$. There is a homeomorphism in the Sobolev space $f \in W^{1, p}\left((0,1)^{n}, \mathbf{R}^{n}\right)$ such that $\mathcal{L}_{n}\left(\left\{x: J_{f}(x)>0\right\}\right)>0$ and $\mathcal{L}_{n}\left(\left\{x: J_{f}(x)<0\right\}\right)>0$.

Open problems:

- $n \geq 4, f \in W^{1, p}\left(\Omega, \mathbf{R}^{n}\right)$ homeomorphism, $p=[n / 2]$
$\stackrel{?}{\Longrightarrow} J_{f} \geq 0$ a.e. or $J_{f} \leq 0$ a.e.

Further results and questions

Theorem (Campbell, H., Tengvall)

Let $n \geq 4$ and $1 \leq p<\left[\frac{n}{2}\right]$. There is a homeomorphism in the Sobolev space $f \in W^{1, p}\left((0,1)^{n}, \mathbf{R}^{n}\right)$ such that $\mathcal{L}_{n}\left(\left\{x: J_{f}(x)>0\right\}\right)>0$ and $\mathcal{L}_{n}\left(\left\{x: J_{f}(x)<0\right\}\right)>0$.

Open problems:

- $n \geq 4, f \in W^{1, p}\left(\Omega, \mathbf{R}^{n}\right)$ homeomorphism, $p=[n / 2]$
$\stackrel{?}{\Longrightarrow} J_{f} \geq 0$ a.e. or $J_{f} \leq 0$ a.e.
- $n=3, f \in W^{1,1}\left(\Omega, \mathbf{R}^{3}\right)$ open and discrete, $\stackrel{?}{\Rightarrow} J_{f} \geq 0$ a.e. or $J_{f} \leq 0$ a.e.

