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Euler equations 1755

(E)

(
@t v + ( v � r )v + r p = 0; x 2 Rd ; t � 0
div v = 0;
vj t = 0 = v0:

� Velocity �eld : (t ; x) 2 [0; T ] � Rd 7! v = ( v1; ::; vd ) 2 Rd

� The operator v � r is de�ned by

v � r =
P d

j = 1 v j @j :

� The pressurep is a scalar satisfying the elliptic equation

� p = � div (v � r v):

� Kato : For v0 2 Hs; s > d
2 + 1 there is a unique maximal solutionv 2 C([0; T ? ); Hs).
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V�o�r�t�i�c�i�t�y �f�o�r�m�u�l�a�t�i�o�n� �i�n�2d

The vorticity ! = @1v2 � @2v1 satis�es

(E)

8
<

:

@t ! + v � r ! = 0; t � 0; x 2 R2

v = r ? � � 1!
! j t = 0 = ! 0

Biot-Savart law

v(t ; x) =
1

2�

�

R2

(x � y)?

jx � y j2
! (t ; y)dy; x? = ei �

2 x
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G�l�o�b�a�l �e�x�i	s��t�e�n�c�e �i�n�2d

Characteristic method
! (t ; x) = ! 0(� � 1(t ; x))

with � being the �ow map :

�
@t � (t ; x) = v(t ; � (t ; x))
� (0; x) = x:

Conservation laws : since� (t ) preserves Lebesgue measure, then

8p 2 [1; 1 ]; 8t � 0 k! (t )kLp = k! 0kLp

Classical solutions are global.
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Y�u�d�o�v�i�ch� 	s��o�l�u�t�i�o�n	s

Yudovich (1963) : If ! 0 2 L1 \ L1 then (E) has a unique global solution
! 2 L1 (R+ ; L1 \ L1 ) and

! (t ; x) = ! 0(� � 1(t ; x))

Note that the velocity is not Lipschitz in general but only log-Lipschitz.

! 0 = 1� =) v0 =2 Lip

However
! 0 = 1 =) v0 2 Lip

The �ow � still exists and it is unique and continuous in(t ; x): For eacht , � (t ) is
a homeomorphism preserving Lebesgue measure. It is a di�eomorphism for classical
solutions.
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V�o�r�t�e�x 	p�a�t�ch� 	p�r�o�b�l�e�m�

A patch is ! 0 = 1D , with D a bounded domain.

! (t ) = 1Dt ; Dt = � (t ; D):

What about the regularity of the boundary ?

Contour dynamics equation (Deem Zabusky 1978) :
Let s 2 [0; 2� ] 7!  t (s) be a parametrization of@Dt ,

�
@t  t (s) � v(t ;  t (s))

�
� ~n( t (s)) = 0

Lagrangian parametrization is given by : @t  t = v(t ;  t )

@t  t (s) = �
1

2�

�

@Dt

log
��  t (s) � z

�� dz:
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Persistance regularity : Chemin(1993),

@D 2 C1+ " =) 8 t � 0 @Dt 2 C1+ " :

The casesC1 and Lip are open even locally in time.
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R�e�l�a�t�i�v�e �e�q��u�i�l�i�b�r�i�a�
Relative equilibria are vortices that do not change their shapes in time.

1 vortices

2 Translating vortices

3 Rotating vortices
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Stationary vortices

A stationary solution is such that! (t ; x) = ! 0(x)(2 L1 \ L1 )

v0 � r ! 0 = div(v0! 0) = 0 ( in D0(R2)) ; v0(x) =
1

2�

�

R2

(x � y)?

jx � y j2
! 0(y)dy

Examples : radial solutions
! 0(x) = f0(jx j);

with f0 be a compactly supported bounded function : Rankine vortices : disc,
annulus..
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Translating vortices
:

A translating solution is such that

! (t ; x) = ! 0

�
x � U t

�
; U 2 R2

One can check thatv(t ; x) = v0

�
x � U t

�
and

�
v0(x) � U

�
� r ! 0(x) = 0

If ! 0 is compactly supported then we have the conservation law :
�

R2
x! (t ; x)dx =

�

R2
x! 0(x)dx:

Hence change of variables give
�

R2
x! (t ; x)dx =

�

R2
x! 0(x)dx + U t

�

R2
! 0(x)dx

and thus the circulation vanishes
�

R2 ! 0(x)dx = 0

Consequence : Vortices in the patch form never translate.
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Nontrivial example :

Dipolar Chaplygin-Lamb vortex( around 1900).

The construction is explicit and based on the resolution in the disc of

�  = � 2 ; jx j � 1; ! 0(x) = 0; jx j > 1

Counter-rotating pairs of patches can be constructed implicitly.
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R�o�t�a�t�i�n�g �v�o�r�t�i�c�e
s

R�o�t�a�t�i�n�g �v�o�r�t�i�c�e
swith the angular velocity 
 are solutions in the form :

! (t ; x) = ! 0

�
e� i 
 t x

�

The equation of ! 0 is given by

(v0(x) � 
 x? ) � r ! 0(x) = 0;

with

v0(x) =
1

2�

�

R2

(x � y)?

jx � y j2
! 0(y)dy

Examples :

Radial solutions (they rotate with any angular velocity).
Kirchho� ellipses (1876). An elliptic patch rotates uniformly about its
centre.
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R�o�t�a�t�i�n�g 	p�a�t�ch�e
s
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R�o�t�a�t�i�n�g 	p�a�t�ch�e
s

We shall restrict the discussion to�r�o�t�a�t�i�n�g 	p�a�t�ch�e
swith the angular velocity 
 :

Dt = ei 
 t D:

The boundary equation is given by

(v(x) � 
 x? ) � n(x) = 0; 8 x 2 @D:

wheren is a normal vector to the boundary. By Green-Stokes theorem

v(z) =
1

2i �

�

D

dA(w)
z � w

=
1

4�

�

@D

z � �
z � �

d�

Hence

Re
n� 1

2i �

�

@D

z � �
z � �

d� + 2
 z
�

~� (z)
o

; 8z 2 @D
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Kirchho� ellipses (1876)

Any ellipse with semi-axesa and b rotates about its center of mass with


 =
ab

(a + b)2
�

Proof : we use the conformal parametrization of the ellipse

w 2 T 7! � (w) =
a + b

2

�
w + Qw

�
; Q :=

a � b
a + b

Note that for z = � (w); � = � (� ) we have

z � �
z � �

=
Q� � w
� � Qw

Thus
1

2i �

�

@D

z � �
z � �

d� =
a + b

2
1

2i �

�

T

Q� � w
� � Qw

(1 � Q� 2)d�

We use residue theorem.
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� There are many ways to formulate the problem :

1 Variational formulation. Kelvin's variational principle

2 Potential formulation (
 � 0)
� Elliptic tools : moving plane method.

3 Free boundary problem.

4 Formulation with Faber polynomials.
� Suitable for numerical approximation.

5 Conformal mapping formulation (
 > 0).
� Bifurcation theory

6 Riemann-Hilbert problem.
� Global bifurcation theory
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K�e�l�v�i�n�'	s �v�a�r�i�a�t�i�o�n�a�l 	p�r�i�n�c�i	p�l�e

Rotating solutions (! (t ; z) = ! 0(e� it 
 z)) are the critical points of

H � 
 I ;

with 
 being a Lagrange multiplier with respect to area preserving displacements.

H(! ) = �
1
2

�

R2
! (x) (x)dx (6=

1
2

kvk2
L2) [Kinetic energy]

= �
1

4�

x

R2� R2

log jx � y j ! (x)! (y)dxdy:

I(! ) =
�

R2
jx j2! (x)dx; [Angular impulse]

This is the starting-point for variational approaches.
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V�a�r�i�a�t�i�o�n�a�l �ch�a�r�a�c�t�e�r�i�z�a�t�i�o�n� �o�f �c�i�r�c�u�l�a�r� �v�o�r�t�i�c�e
s

Set H(! ) = �
1
2

�

R2
! (x) (x)dx and

M � =
n

w 2 L1; 0 � ! � �;
�

R2
! (x)dx = 1

o

Then max
n

H(! ); ! 2 M �

o
is given by the circular patch! � � � 1D(0;R) with

R =
p

1
�� (modulo translations) and

� ! 1 ; ! � * � 0:
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P�o�t�e�n�t�i�a�l �f�o�r�m�u�l�a�t�i�o�n�

Recall that the boundary equation is given by the strong formulation

(v(x) � 
 x? ) � n(x) = 0; 8 x 2 @D:

Note that v = r ?  with  the stream function

�  = ! = 1D ;  (x) =
1

2�

�

D
logjx � y jdA(y)

Integrating we get the weak formulation

1
2


 jx j2 �
1

2�

�

D
logjx � y jdy � � = 0; 8x 2 @D:
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F�r�e�e �b�o�u�n�d�a�r�y �f�o�r�m�u�l�a�t�i�o�n�

Set

’ (x) =
1
2


 jx j2 �
1

2�

�

D
logjx � y jdy � �

Then ’ satis�es the elliptic equation

� ’ (x) =
�

2
 � 1; x 2 D
2
 ; x 2 CnD

supplemented with the boundary condition :’ (x) = 0; 8x 2 @D.

The fact that ’ 2 C2� � (C) introduces a rigidity on the boundary !

Free boundary problem for elliptic equations was discussed by : Brezis, Ca�arelli,
Kinderlehrer, Nirenberg, Schae�er,...
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Trivial solutions (simply connected domains)

1 Fraenkel (2000) : letD be a solution with 
 = 0 then D must be a disc.

2 H. (2014) : let D be a convex solution with
 < 0 then D must be a disc.

3 Let let D be a solution with 
 = 1
2 then D must be a disc.
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Case
 = 1
2

� Set ’ (x) = Cte + 1
2 
 jx j2 �  (x) then

� ’ (x) = 2
 � 1D ; ’ (x) = 0; x 2 @D:

� For 
 = 1
2 we �nd that ’ is harmonic inD and thus

 (x) = Cte +
1
4

jx j2; 8 x 2 D:

It follows that

@z  =
1

4�

�

D

1
z � y

dA(y) =
1
4

z; 8z 2 D

By holomorphy we get
z@z  = Cte; 8z 2 Dc
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Case
 � 0

Using the maximum principle

1D = H(’ ); H Heaviside function

Thus ’ satis�es the integral equation

’ (x) = Cte +
1
2


 jx j2 �
1

2�

�

R2
log jx � y jH( ’ (y))dA(y):

The moving plane method shows that’ up to a translation is a strictly monotonic radial
function.
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N�o�n�t�r�i�v�i�a�l 	s��o�l�u�t�i�o�n	s

1 Kirchho� vortex (1876). Any �e�l�l�i	p	s��ewith semi-axesa and b rotates with


 =
ab

(a + b)2
�

2 Numerical observation Deem-Zabusky 1978 : existence ofm� fold V-states (same
symmetry of regular polygon with m sides).
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B�u�r�b�e�a�'	s �r�e
s��u�l�t(1982)

There exists a family of rotating patches(Vm)m� 2 �b�i�f�u�r�c�a�t�i�n�gfrom the disc at

the spectrum 
 2 f m� 1
2m ; m � 2g. Each point of Vm describes a V-state with

m-fold symmetry .
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Vortex patch problem

The casem = 2 corresponds to Kirchho� ellipses.

Taou�k Hmidi



Elements of bifurcation theory
Consider the �nite-dimensional dynamical system

_x = f (x; 
) ; x 2 Rd ; 
 2 R

The phase portrait is the set of all the disjoint orbits.

We say that there is a bifurcation at some value
 0, if there is a topological
accident in the phase portrait.
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Examples

1 Let f (x; 
) = 
 x � x3 in d = 1, then there a pitchfork bifurcation at 
 = 0

2 Poincaré-Andronov-Hopf bifurcationd = 2 :

f (x; y; 
) =
�


 x � y � x(x2 + y2)
x + 
 y � y(x2 + y2)

�
: (1)

Emergence of periodic orbits (limit cycles) for
 > 0
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Assume that

1 f : R � R2 ! R2 is C3,

2 8
 2 R; f (0; 
) = 0,

3 The matrix @x f (0; 
) admits two complex eigenvalues

� (
) � i � (
) ; � (0) = 0; � (0) 6= 0;

4 Transversality assumption� 0(0) = 0

Then there is a parametrizations 2 (� a; a) 7! (x(s); 
( s)) of periodic solutions.
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Stationary bifurcation in in�nite dimension

Consider two Banach spacesX ; Y and

F : R � X ! Y

a smooth function such that

F (
 ; 0) = 0; 8
 2 R

If @x F (
 ; 0) 2 Isom(X ; Y ) then by the implicit function theorem, there is no
bifurcation at 
 :

Bifurcation may occur when 0 is an eigenvalue for@x F (
 ; 0))
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Fredholm operators
Let X ; Y be two Banach spaces, a continuous operatorT : X 7! Y is said Fredholm if

1 KerT is �nite dimenional.

2 The range ImT is closed and of �nite co-dimension

The index of T is
ind(T ) = dimKerT � codim ImT

Let T be Fredholm andK a compact operator then

1 T + K is Fredholm,

2 ind(T + K ) = ind(T )

Example : LetX =
�

f 2 C2([0; 1]; R); f (0) = f (1) = 0
	

; Y = C([0; 1]; R), � 2 Y and
de�ne T : X ! Y

Tf = f 00� � f

Then T is Fedholm of zero index. Moreover, if� � 0 then T is an isomorphism.
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Crandall-Rabinowitz theorem

Let X ; Y be two Banach spaces and

F : R � X ! Y

be a smooth function such that

1 F (
 ; 0) = 0; 8
 2 R
2 The kernel Ker@x F (0; 0) = hx0i is one-dimensional and the rangeR(@x F (0; 0) is

closed and of co-dimension one.

3 Transversality assumption :

@
 @x F (0; 0)x0 =2 R(@x F (0; 0))

Then there is a curve of non trivial solutionss 2 (� a; a) 7! (
( s); x(s)) with

8s 2 (� a; a); F (
( s); x(s)) = 0
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General approach

The boundary is subject to the equation

Re

( �
2
 z +

1
2i �

�

@D

� � z
� � z

d�
�

~� (z)

)

= 0; 8 z 2 @D:

Let � : T ! @D be the �c�o�n�f�o�r�m�a�l 	p�a�r�a�m�e�t�r�i�z�a�t�i�o�n�

�( w) = w +
X

n� 0

an

wn
; an 2 R:

We have assumed that the real axis is an axis of symmetry ofD.

Then for any w 2 T

F (
 ; �( w)) � Im

� �
2
 �( w) +

1
2i �

�

T

�( � ) � �( w)
�( � ) � �( w)

� 0(� )d�
�

w � 0(w)
�

= 0:

Rankine vortices :8
 2 R; F (
 ; w) = Im

� �
(2
 � 1)w

�
w

�
= 0
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Recall that

F (
 ; �( w)) � Im

� �
2
 �( w) +

1
2i �

�

T

�( � ) � �( w)
�( � ) � �( w)

� 0(� )d�
�

w � 0(w)
�

= 0:

We look for solutions which are small perturbation of the disc :

� = Id + f ; f (w) =
X

n� 0

anw � n; an 2 R

We still denoteF (
 ; f ) = F (
 ; �) .

Function spaces :

X =
�

f 2 C1+ � (T)
	

; Y =
n

g(w) =
X

n� 1

bnIm(wn) 2 C� (T); bn 2 R
o

The coe�cient associated to n = 0 vanishes since the Fourier coe�cients of
F (
 ; f ) are real !

For small r , F : (� 1; 1) � B(0; r ) ! Y is well-de�ned and smooth.
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Spectral study

1 Straightforward computations yield : forh(w) =
P

n� 0 anw � n 2 X

@f F (
 ; 0)h(w) =
d
dt

F (
 ; th(w)) j t = 0

= Im
n

2

�

wh(w) + h0(w)
�

� h0(w)
o

=
X

n� 1

n
�

2
 �
n � 1

n

�
an� 1Im(wn)

2

n

 ; Ker @f F (
 ; 0) 6= 0

o
=

n

 m := m� 1

2m ; m � 1
o

and

Ker @f F (
 ; 0) = hvm i ; vm(w) = wm� 1

3 Transversality condition

@
 @f F (
 m; 0)vm = 2m Im(wm)
= =2 R(@f F (
 m; 0))
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B�o�u�n�d�a�r�y �r�e�g�u�l�a�r�i�t�y

� H.-Mateu-Verdera [2013]. Close to the circle the V-states areC1 and convex.

� Castro, Córdoba, Gómez-Serrano [2015] :A�n�a�l�y�t�i�c�i�t�yof the boundaries.

Taou�k Hmidi



Euler in the unit disc

Recall the vorticity equation

@t ! + v � r ! = 0; v = r ?  in D

 (x) =
1

2�

�

D
log

jx � y j
j1 � xy j

! (y)dy

V-states equation : recall that a rotating patch is a solution s. t.

! (t ) = 1Dt ; Dt = eit 
 D;

then

Re
n�

2
 z +
1

2i �

�

@D

z � �
z � �

d� �
1

2i �

�

@D

j� j2

1 � z�
d�

�
~� (z)

o
= 0; z 2 @D:

Trivial solutions
Dt = Db := bD; 0 < b < 1
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Bifurcation from the trivial solutions

de la Hoz-Hassainia-H-Mateu (2015). Letm � 1, then there existsm-fold V -states
bifurcating from the trivial solution ! 0 = 1Db at the angular velocity


 m ,
m � 1 + b2m

2m
�

R�e�m�a�r�k	s:

1 As b ! 0 we get Burbea eigenvalues.
2 In the planeR2, m � 2 and there is no V-states with only one axis of

symmetry.
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I) Limiting V-states
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II) Bifurcation diagram
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D�o�u�b�l�y-�c�o�n�n�e�c�t�e�d� V-	s��t�a�t�e
s

Goal : �nd in the plane rotating patches in the form

! 0 = 1D1nD2 ; D2 b D1;

with D1; D2 two bounded simply-connected domains.

The annuli are explicit rotating patches (stationary).

To date, no other explicit solutions are known !
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de la Hoz-H.-Mateu-Verdera 2014 :
Let C(b; 1) be the annulus of small radiusb. De�ne

� m =
hm

2
(1 � b2) � 1

i 2

� b2m

and take m � 3 such that � m> 0. Then there are two branches of non trivial
m-fold doubly connected V-states bifurcating from the annulus at the angular
velocities 
 �

m


 �
m =

1 � b2

4
�

1
2m

p
� m:
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Structure of the eigenvalues
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For givenb, 9mb such that the bifurcation holds for anym � mb.

Monotonicity : m 7! 
 �
m & ; m 7! 
 +

m %
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Structure of the 4� folds
� The bifurcation to 4� fold holds if

0 < b <
p p

2 � 1 , b?
4 � 0:6435

Numerical experiments :

For b << b?
4 ; corners appear in the limiting V-states. Forb = 0:4:

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Ω = 0.126, 0.130, …, 0.146

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

Ω = 0.267, 0.270, …, 0.294 ∧ Ω = 0.2949

Figure � Left : V-states bifurcating from 
 �
4 . Right : V-states bifurcating

from 
 +
4
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If b � b?
4 ;(
 +

m � 
 �
m ) then the two branches merge forming small loop (proved with

Renault 2016).
b = 0:63

Figure � Left : V-states bifurcating from
 �
4 . Right : V-states bifurcating

from 
 +
4

For the degenerate caseb = b?
4 , there is no bifurcation, (proved with Mateu 2015)
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