Qortex dynamics and relative equilibria

Taoufik Hmidi
IRMAR, Université de Rennes 1
UAB, 2018

－Saturn＇s hexagon
－Wingtip vortices

4ロ・4号

> Plan
(1) Well-posedness problem for Euler equations.
(2) Vortex patch problem.
(3) Generalities on relative equilibria.
(4) Elements of bifurcation theory.
(5) Rotating patches: simply connected cases.
(6) Smooth rotating patches.

Euler equations 1755

$$
\text { (E) }\left\{\begin{array}{l}
\partial_{t} v+(v \cdot \nabla) v+\nabla p=0, \quad x \in \mathbb{R}^{d}, t \geq 0 \\
\operatorname{div} v=0, \\
v_{\mid t=0}=v_{0}
\end{array}\right.
$$

- Velocity field : $(t, x) \in[0, T] \times \mathbb{R}^{d} \mapsto v=\left(v^{1}, . ., v^{d}\right) \in \mathbb{R}^{d}$
- The operator $v \cdot \nabla$ is defined by

$$
v \cdot \nabla=\sum_{j=1}^{d} v^{j} \partial_{j}
$$

- The pressure p is a scalar satisfying the elliptic equation

$$
\Delta p=-\operatorname{div}(v \cdot \nabla v)
$$

- Kato : For $v_{0} \in H^{s}, s>\frac{d}{2}+1$ there is a unique maximal solution $v \in C\left(\left[0, T^{\star}\right), H^{s}\right)$.

Qorticity formulation in $2 d$

- The vorticity $\omega=\partial_{1} v^{2}-\partial_{2} v^{1}$ satisfies

$$
\text { (E) }\left\{\begin{array}{l}
\partial_{t} \omega+v \cdot \nabla \omega=0, \quad t \geq 0, x \in \mathbb{R}^{2} \\
v=\nabla^{\perp} \Delta^{-1} \omega \\
\omega_{\mid t=0}=\omega_{0}
\end{array}\right.
$$

- Biot-Savart law

$$
v(t, x)=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \frac{(x-y)^{\perp}}{|x-y|^{2}} \omega(t, y) d y, \quad x^{\perp}=e^{i \frac{\pi}{2}} x
$$

Global existence in 2d

- Characteristic method

$$
\omega(t, x)=\omega_{0}\left(\phi^{-1}(t, x)\right)
$$

with ϕ being the flow map :

$$
\left\{\begin{array}{l}
\partial_{t} \phi(t, x)=v(t, \phi(t, x)) \\
\phi(0, x)=x
\end{array}\right.
$$

- Conservation laws : since $\phi(t)$ preserves Lebesgue measure, then

$$
\forall p \in[1, \infty], \forall t \geq 0 \quad\|\omega(t)\|_{L^{p}}=\left\|\omega_{0}\right\|_{L^{p}}
$$

- Classical solutions are global.

Yudovich solutions

- Yudovich (1963) : If $\omega_{0} \in L^{1} \cap L^{\infty}$ then (E) has a unique global solution $\omega \in L^{\infty}\left(\mathbb{R}_{+} ; L^{1} \cap L^{\infty}\right)$ and

$$
\omega(t, x)=\omega_{0}\left(\phi^{-1}(t, x)\right)
$$

- Note that the velocity is not Lipschitz in general but only log-Lipschitz.

$$
\omega_{0}=\mathbf{1}_{\square} \Longrightarrow v_{0} \notin \operatorname{Lip}
$$

However

$$
\omega_{0}=\mathbf{1}_{\bigcirc} \Longrightarrow v_{0} \in \operatorname{Lip}
$$

- The flow ϕ still exists and it is unique and continuous in (t, x). For each $t, \phi(t)$ is a homeomorphism preserving Lebesgue measure. It is a diffeomorphism for classical solutions.

Vortex patch problem

- A patch is $\omega_{0}=\mathbf{1}_{D}$, with D a bounded domain.

$$
\omega(t)=\mathbf{1}_{D_{t}}, \quad D_{t}=\phi(t, D) .
$$

- What about the regularity of the boundary?
- Contour dynamics equation (Deem Zabusky 1978) : Let $s \in[0,2 \pi] \mapsto \gamma_{t}(s)$ be a parametrization of ∂D_{t},

$$
\left(\partial_{t} \gamma_{t}(s)-v\left(t, \gamma_{t}(s)\right)\right) \cdot \vec{n}\left(\gamma_{t}(s)\right)=0
$$

Lagrangian parametrization is given by: $\quad \partial_{t} \gamma_{t}=v\left(t, \gamma_{t}\right)$

$$
\partial_{t} \gamma_{t}(s)=-\frac{1}{2 \pi} \int_{\partial D_{t}} \log \left|\gamma_{t}(s)-z\right| d z .
$$

- Persistance regularity: Chemin(1993),

$$
\partial D \in C^{1+\varepsilon} \Longrightarrow \forall t \geq 0 \quad \partial D_{t} \in C^{1+\varepsilon}
$$

- The cases C^{1} and Lip are open even locally in time.

Relative equilibria

Relative equilibria are vortices that do not change their shapes in time.
(1) vortices
(2) Translating vortices
(3) Rotating vortices

Taoufik Hmidi

Stationary vortices

- A stationary solution is such that $\omega(t, x)=\omega_{0}(x)\left(\in L^{1} \cap L^{\infty}\right)$

$$
v_{0} \cdot \nabla \omega_{0}=\operatorname{div}\left(v_{0} \omega_{0}\right)=0 \quad\left(\text { in } \quad \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)\right), \quad v_{0}(x)=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \frac{(x-y)^{\perp}}{|x-y|^{2}} \omega_{0}(y) d y
$$

Examples: radial solutions

$$
\omega_{0}(x)=f_{0}(|x|)
$$

with f_{0} be a compactly supported bounded function : Rankine vortices : disc, annulus..

Translating vortices

- A translating solution is such that

$$
\omega(t, x)=\omega_{0}(x-U t), \quad U \in \mathbb{R}^{2}
$$

One can check that $v(t, x)=v_{0}(x-U t)$ and

$$
\left(v_{0}(x)-U\right) \cdot \nabla \omega_{0}(x)=0
$$

- If ω_{0} is compactly supported then we have the conservation law :

$$
\int_{\mathbb{R}^{2}} x \omega(t, x) d x=\int_{\mathbb{R}^{2}} x \omega_{0}(x) d x
$$

Hence change of variables give

$$
\int_{\mathbb{R}^{2}} x \omega(t, x) d x=\int_{\mathbb{R}^{2}} x \omega_{0}(x) d x+U t \int_{\mathbb{R}^{2}} \omega_{0}(x) d x
$$

and thus the circulation vanishes $\int_{\mathbb{R}^{2}} \omega_{0}(x) d x=0$

- Consequence: Vortices in the patch form never translate.

Nontrivial example :

- Dipolar Chaplygin-Lamb vortex(around 1900).

The construction is explicit and based on the resolution in the disc of

$$
\Delta \psi=\kappa^{2} \psi,|x| \leq 1, \quad \omega_{0}(x)=0,|x|>1
$$

- Counter-rotating pairs of patches can be constructed implicitly.

Rotating vortices

- Rotating vortices with the angular velocity Ω are solutions in the form :

$$
\omega(t, x)=\omega_{0}\left(e^{-i \Omega t} x\right)
$$

- The equation of ω_{0} is given by

$$
\left(v_{0}(x)-\Omega x^{\perp}\right) \cdot \nabla \omega_{0}(x)=0
$$

with

$$
v_{0}(x)=\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \frac{(x-y)^{\perp}}{|x-y|^{2}} \omega_{0}(y) d y
$$

- Examples:
- Radial solutions (they rotate with any angular velocity).
- Kirchhoff ellipses (1876). An elliptic patch rotates uniformly about its centre.

Rotating patches

Taoufik Hmidi

Rotating patches

- We shall restrict the discussion to rotating patches with the angular velocity Ω :

$$
D_{t}=e^{i \Omega t} D .
$$

- The boundary equation is given by

$$
\left(v(x)-\Omega x^{\perp}\right) \cdot n(x)=0, \quad \forall x \in \partial D .
$$

where n is a normal vector to the boundary. By Green-Stokes theorem

$$
\begin{aligned}
\overline{v(z)} & =\frac{1}{2 i \pi} \int_{D} \frac{d A(w)}{z-w} \\
& =\frac{1}{4 \pi} \int_{\partial D} \frac{\bar{z}-\bar{\xi}}{z-\xi} d \xi
\end{aligned}
$$

Hence

$$
\operatorname{Re}\left\{\left(\frac{1}{2 i \pi} \int_{\partial D} \frac{\bar{z}-\bar{\xi}}{z-\xi} d \xi+2 \Omega \bar{z}\right) \vec{\tau}(z)\right\}, \quad \forall z \in \partial D
$$

Kirchhoff ellipses (1876)

Any ellipse with semi-axes a and b rotates about its center of mass with

$$
\Omega=\frac{a b}{(a+b) 2}
$$

Proof: we use the conformal parametrization of the ellipse

$$
w \in \mathbb{T} \mapsto \phi(w)=\frac{a+b}{2}(w+Q \bar{w}), \quad Q:=\frac{a-b}{a+b}
$$

Note that for $z=\phi(w), \xi=\phi(\tau)$ we have

$$
\frac{\bar{z}-\bar{\xi}}{z-\xi}=\frac{Q \tau-\bar{w}}{\tau-Q w}
$$

Thus

$$
\frac{1}{2 i \pi} \int_{\partial D} \frac{\bar{z}-\bar{\xi}}{z-\xi} d \xi=\frac{a+b}{2} \frac{1}{2 i \pi} \int_{\mathbb{T}} \frac{Q \tau-\bar{w}}{\tau-Q w}\left(1-Q \bar{\tau}^{2}\right) d \tau
$$

We use residue theorem.

- There are many ways to formulate the problem :
(1) Variational formulation. Kelvin's variational principle
(2) Potential formulation $(\Omega \leq 0)$
- Elliptic tools : moving plane method.
(3) Free boundary problem.
(4) Formulation with Faber polynomials.
- Suitable for numerical approximation.
(5) Conformal mapping formulation $(\Omega>0)$.
- Bifurcation theory
(6) Riemann-Hilbert problem.
- Global bifurcation theory

Teebrin's variational principle

- Rotating solutions $\left(\omega(t, z)=\omega_{0}\left(e^{-i t \Omega} z\right)\right)$ are the critical points of

$$
H-\Omega I,
$$

with Ω being a Lagrange multiplier with respect to area preserving displacements.

$$
\begin{array}{rlr}
H(\omega) & =-\frac{1}{2} \int_{\mathbb{R}^{2}} \omega(x) \psi(x) d x \quad\left(\neq \frac{1}{2}\|v\|_{L^{2}}^{2}\right) & \text { [Kinetic energy] } \\
& =-\frac{1}{4 \pi} \iint_{\mathbb{R}^{2} \times \mathbb{R}^{2}} \log |x-y| \omega(x) \omega(y) d x d y . \\
I(\omega) & =\int_{\mathbb{R}^{2}}|x|^{2} \omega(x) d x, & \text { [Angular impulse] }
\end{array}
$$

- This is the starting-point for variational approaches.

Variational characterization of circular vortices

- Set $H(\omega)=-\frac{1}{2} \int_{\mathbb{R}^{2}} \omega(x) \psi(x) d x$ and

$$
\mathcal{M}_{\kappa}=\left\{w \in L^{1}, 0 \leq \omega \leq \kappa, \int_{\mathbb{R}^{2}} \omega(x) d x=1\right\}
$$

Then $\max \left\{H(\omega), \omega \in \mathcal{M}_{\kappa}\right\}$ is given by the circular patch $\omega_{\kappa} \equiv \kappa 1_{\mathrm{D}(0, \mathrm{R})}$ with $R=\sqrt{\frac{1}{\pi \kappa}}$ (modulo translations) and

$$
\kappa \rightarrow \infty, \quad \omega_{\kappa} \rightharpoonup \delta_{0} .
$$

Potential formulation

- Recall that the boundary equation is given by the strong formulation

$$
\left(v(x)-\Omega x^{\perp}\right) \cdot n(x)=0, \quad \forall x \in \partial D
$$

- Note that $v=\nabla^{\perp} \psi$ with ψ the stream function

$$
\Delta \psi=\omega=\mathbf{1}_{D}, \quad \psi(x)=\frac{1}{2 \pi} \int_{D} \log |x-y| d A(y)
$$

- Integrating we get the weak formulation

$$
\frac{1}{2} \Omega|x|^{2}-\frac{1}{2 \pi} \int_{D} \log |x-y| d y-\mu=0, \quad \forall x \in \partial D
$$

Free boundary formulation

- Set

$$
\varphi(x)=\frac{1}{2} \Omega|x|^{2}-\frac{1}{2 \pi} \int_{D} \log |x-y| d y-\mu
$$

- Then φ satisfies the elliptic equation

$$
\Delta \varphi(x)=\left\{\begin{array}{l}
2 \Omega-1, \quad x \in D \\
2 \Omega, \quad x \in \mathbb{C} \backslash \bar{D}
\end{array}\right.
$$

supplemented with the boundary condition : $\varphi(x)=0, \quad \forall x \in \partial D$.

- The fact that $\varphi \in C^{2-\epsilon}(\mathbb{C})$ introduces a rigidity on the boundary!
- Free boundary problem for elliptic equations was discussed by : Brezis, Caffarelli, Kinderlehrer, Nirenberg, Schaeffer,...

Trivial solutions (simply connected domains)
(1) Fraenkel (2000) : let D be a solution with $\Omega=0$ then D must be a disc.
(2) H. (2014) : let D be a convex solution with $\Omega<0$ then D must be a disc.
(3) Let let D be a solution with $\Omega=\frac{1}{2}$ then D must be a disc.

$$
\text { Case } \Omega=\frac{1}{2}
$$

- Set $\varphi(x)=$ Cte $+\frac{1}{2} \Omega|x|^{2}-\psi(x)$ then

$$
\Delta \varphi(x)=2 \Omega-\mathbf{1}_{D}, \quad \varphi(x)=0, x \in \partial D
$$

- For $\Omega=\frac{1}{2}$ we find that φ is harmonic in D and thus

$$
\psi(x)=C t e+\frac{1}{4}|x|^{2}, \quad \forall x \in D
$$

It follows that

$$
\partial_{z} \psi=\frac{1}{4 \pi} \int_{D} \frac{1}{z-y} d A(y)=\frac{1}{4} \bar{z}, \quad \forall z \in D
$$

By holomorphy we get

$$
z \partial_{z} \psi=C t e, \forall z \in D^{c}
$$

Case $\Omega \leq 0$

Using the maximum principle

$$
\mathbf{1}_{D}=H(\varphi), \quad H \quad \text { Heaviside function }
$$

Thus φ satisfies the integral equation

$$
\varphi(x)=C t e+\frac{1}{2} \Omega|x|^{2}-\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \log |x-y| H(\varphi(y)) d A(y)
$$

The moving plane method shows that φ up to a translation is a strictly monotonic radial function.

Pontrivial solutions

(1) Kirchhoff vortex (1876). Any ellipse with semi-axes a and b rotates with

$$
\Omega=\frac{a b}{(a+b) 2} .
$$

(2) Numerical observation Deem-Zabusky 1978 : existence of m-fold V-states (same symmetry of regular polygon with m sides).

Burbea's result (1982)

- There exists a family of rotating patches $\left(V_{m}\right)_{m \geq 2}$ bifurcating from the disc at the spectrum $\Omega \in\left\{\frac{m-1}{2 m}, m \geq 2\right\}$. Each point of V_{m} describes a V-state with m-fold symmetry .

- The case $m=2$ corresponds to Kirchhoff ellipses.

Elements of bifurcation theory

Consider the finite-dimensional dynamical system

$$
\dot{x}=f(x, \Omega), x \in \mathbb{R}^{d}, \Omega \in \mathbb{R}
$$

- The phase portrait is the set of all the disjoint orbits.
- We say that there is a bifurcation at some value Ω_{0}, if there is a topological accident in the phase portrait.

Examples

(1) Let $f(x, \Omega)=\Omega x-x^{3}$ in $d=1$, then there a pitchfork bifurcation at $\Omega=0$
(2) Poincaré-Andronov-Hopf bifurcation $d=2$:

$$
\begin{equation*}
f(x, y, \Omega)=\binom{\Omega x-y-x\left(x^{2}+y^{2}\right)}{x+\Omega y-y\left(x^{2}+y^{2}\right)} \tag{1}
\end{equation*}
$$

Emergence of periodic orbits (limit cycles) for $\Omega>0$

Assume that
(1) $f: \mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is C^{3},
(2) $\forall \Omega \in \mathbb{R}, \quad f(0, \Omega)=0$,
(3) The matrix $\partial_{x} f(0, \Omega)$ admits two complex eigenvalues

$$
\alpha(\Omega) \pm i \beta(\Omega), \alpha(0)=0, \beta(0) \neq 0
$$

(4) Transversality assumption $\alpha^{\prime}(0)=0$

Then there is a parametrization $s \in(-a, a) \mapsto(x(s), \Omega(s))$ of periodic solutions.

Stationary bifurcation in infinite dimension

- Consider two Banach spaces X, Y and

$$
F: \mathbb{R} \times X \rightarrow Y
$$

a smooth function such that

$$
F(\Omega, 0)=0, \quad \forall \Omega \in \mathbb{R}
$$

- If $\partial_{x} F(\Omega, 0) \in \operatorname{Isom}(X, Y)$ then by the implicit function theorem, there is no bifurcation at Ω.
- Bifurcation may occur when 0 is an eigenvalue for $\partial_{x} F(\Omega, 0)$)

Fredholm operators
Let X, Y be two Banach spaces, a continuous operator $T: X \mapsto Y$ is said Fredholm if
(1) $\operatorname{Ker} T$ is finite dimenional.
(2) The range $\operatorname{Im} T$ is closed and of finite co-dimension

The index of T is

$$
\operatorname{ind}(T)=\operatorname{dim} \operatorname{Ker} T-\operatorname{codim} \operatorname{Im} T
$$

Let T be Fredholm and K a compact operator then
(1) $T+K$ is Fredholm,
(2) $\operatorname{ind}(T+K)=\operatorname{ind}(T)$

Example : Let $X=\left\{f \in C^{2}([0,1] ; \mathbb{R}), f(0)=f(1)=0\right\}, Y=C([0,1] ; \mathbb{R}), \phi \in Y$ and define $T: X \rightarrow Y$

$$
T f=f^{\prime \prime}-\phi f
$$

Then T is Fedholm of zero index. Moreover, if $\phi \geq 0$ then T is an isomorphism.

Crandall-Rabinowitz theorem

Let X, Y be two Banach spaces and

$$
F: \mathbb{R} \times X \rightarrow Y
$$

be a smooth function such that
(1) $F(\Omega, 0)=0, \quad \forall \Omega \in \mathbb{R}$
(2) The kernel Ker $\partial_{x} F(0,0)=\left\langle x_{0}\right\rangle$ is one-dimensional and the range $R\left(\partial_{x} F(0,0)\right.$ is closed and of co-dimension one.
(3) Transversality assumption :

$$
\partial_{\Omega} \partial_{x} F(0,0) x_{0} \notin R\left(\partial_{x} F(0,0)\right)
$$

Then there is a curve of non trivial solutions $s \in(-a, a) \mapsto(\Omega(s), x(s))$ with

$$
\forall s \in(-a, a), \quad F(\Omega(s), x(s))=0
$$

General approach

- The boundary is subject to the equation

$$
\operatorname{Re}\left\{\left(2 \Omega \bar{z}+\frac{1}{2 i \pi} \int_{\partial D} \frac{\bar{\xi}-\bar{z}}{\xi-z} d \xi\right) \vec{\tau}(z)\right\}=0, \quad \forall z \in \partial D .
$$

- Let $\Phi: \mathbb{T} \rightarrow \partial D$ be the conformal parametrization

$$
\Phi(w)=w+\sum_{n \geq 0} \frac{a_{n}}{w^{n}}, \quad a_{n} \in \mathbb{R}
$$

We have assumed that the real axis is an axis of symmetry of D.

- Then for any $w \in \mathbb{T}$

$$
\begin{aligned}
F(\Omega, \Phi(w)) & \equiv \operatorname{Im}\left\{\left(2 \Omega \overline{\Phi(w)}+\frac{1}{2 i \pi} \int_{\mathbb{T}} \frac{\overline{\Phi(\xi)}-\overline{\Phi(w)}}{\Phi(\xi)-\Phi(w)} \Phi^{\prime}(\xi) d \xi\right) w \Phi^{\prime}(w)\right\} \\
& =0
\end{aligned}
$$

- Rankine vortices : $\forall \Omega \in \mathbb{R}, \quad F(\Omega, w)=\operatorname{Im}\{((2 \Omega-1) \bar{w}) w\}=0$
- Recall that

$$
F(\Omega, \Phi(w)) \equiv \operatorname{lm}\left\{\left(2 \Omega \overline{\Phi(w)}+\frac{1}{2 i \pi} \int_{\mathbb{T}} \frac{\overline{\Phi(\xi)}-\overline{\Phi(w)}}{\Phi(\xi)-\Phi(w)} \Phi^{\prime}(\xi) d \xi\right) w \Phi^{\prime}(w)\right\}=0
$$

- We look for solutions which are small perturbation of the disc:

$$
\Phi=\mathrm{Id}+f, f(w)=\sum_{n \geq 0} a_{n} w^{-n}, a_{n} \in \mathbb{R}
$$

We still denote $F(\Omega, f)=F(\Omega, \Phi)$.

- Function spaces:

$$
X=\left\{f \in C^{1+\alpha}(\mathbb{T})\right\}, \quad Y=\left\{g(w)=\sum_{n \geq 1} b_{n} \operatorname{Im}\left(w^{n}\right) \in C^{\alpha}(\mathbb{T}), b_{n} \in \mathbb{R}\right\}
$$

- The coefficient associated to $n=0$ vanishes since the Fourier coefficients of $F(\Omega, f)$ are real !
- For small $r, F:(-1,1) \times B(0, r) \rightarrow Y$ is well-defined and smooth.

Spectral study
(1) Straightforward computations yield : for $h(w)=\sum_{n \geq 0} a_{n} w^{-n} \in X$

$$
\begin{aligned}
\partial_{f} F(\Omega, 0) h(w) & =\frac{d}{d t} F(\Omega, t h(w))_{\mid t=0} \\
& =\operatorname{Im}\left\{2 \Omega\left(w \overline{h(w)}+h^{\prime}(w)\right)-h^{\prime}(w)\right\} \\
& =\sum_{n \geq 1} n\left(2 \Omega-\frac{n-1}{n}\right) a_{n-1} \operatorname{lm}\left(w^{n}\right)
\end{aligned}
$$

(2) $\left\{\Omega, \quad \operatorname{Ker} \partial_{f} F(\Omega, 0) \neq 0\right\}=\left\{\Omega_{m}:=\frac{m-1}{2 m}, m \geq 1\right\}$ and

$$
\operatorname{Ker} \partial_{f} F(\Omega, 0)=\left\langle v_{m}\right\rangle, \quad v_{m}(w)=\bar{w}^{m-1}
$$

(3) Transversality condition

$$
\begin{aligned}
\partial_{\Omega} \partial_{f} F\left(\Omega_{m}, 0\right) v_{m} & =2 m \operatorname{Im}\left(w^{m}\right) \\
& =\notin R\left(\partial_{f} F\left(\Omega_{m}, 0\right)\right)
\end{aligned}
$$

Poundary regularity

- H.-Mateu-Verdera [2013]. Close to the circle the V-states are C^{∞} and convex.
- Castro, Córdoba, Gómez-Serrano [2015] : Analyticity of the boundaries.

Euler in the unit disc

- Recall the vorticity equation

$$
\begin{gathered}
\partial_{t} \omega+v \cdot \nabla \omega=0, \quad v=\nabla^{\perp} \psi \quad \text { in } \quad \mathbb{D} \\
\psi(x)=\frac{1}{2 \pi} \int_{\mathbb{D}} \log \frac{|x-y|}{|1-x \bar{y}|} \omega(y) d y
\end{gathered}
$$

- V-states equation : recall that a rotating patch is a solution s. t.

$$
\omega(t)=\mathbf{1}_{D_{t}}, \quad D_{t}=e^{i t \Omega} D
$$

then

$$
\operatorname{Re}\left\{\left(2 \Omega \bar{z}+\frac{1}{2 i \pi} \int_{\partial D} \frac{\bar{z}-\bar{\xi}}{z-\xi} d \xi-\frac{1}{2 i \pi} \int_{\partial D} \frac{|\xi|^{2}}{1-z \xi} d \xi\right) \vec{\tau}(z)\right\}=0, \quad z \in \partial D .
$$

- Trivial solutions

$$
D_{t}=\mathbb{D}_{b}:=b \mathbb{D}, \quad 0<b<1
$$

Bifurcation from the trivial solutions

- de la Hoz-Hassainia-H-Mateu (2015). Let $m \geq 1$, then there exists m-fold V-states bifurcating from the trivial solution $\omega_{0}=\mathbf{1}_{\mathbb{D}_{b}}$ at the angular velocity

$$
\Omega_{m} \triangleq \frac{m-1+b^{2 m}}{2 m}
$$

- Remarks:
(1) As $b \rightarrow 0$ we get Burbea eigenvalues.
(2) In the plane $\mathbb{R}^{2}, m \geq 2$ and there is no V -states with only one axis of symmetry.
I) Limiting V-states

Taoufik Hmidi

II）Bifurcation diagram

III）V－states with the same Ω

Doubly-connected ϑ-states

Goal: find in the plane rotating patches in the form

$$
\omega_{0}=\mathbf{1}_{D_{1} \backslash D_{2}}, \quad D_{2} \Subset D_{1},
$$

with D_{1}, D_{2} two bounded simply-connected domains.

- The annuli are explicit rotating patches (stationary).
- To date, no other explicit solutions are known!
- de la Hoz-H.-Mateu-Verdera 2014 :

Let $\mathcal{C}(b, 1)$ be the annulus of small radius b. Define

$$
\Delta_{m}=\left[\frac{m}{2}\left(1-b^{2}\right)-1\right]^{2}-b^{2 m}
$$

and take $m \geq 3$ such that $\Delta_{m}>0$. Then there are two branches of non trivial m -fold doubly connected V -states bifurcating from the annulus at the angular velocities $\Omega_{m}^{ \pm}$

$$
\Omega_{m}^{ \pm}=\frac{1-b^{2}}{4} \pm \frac{1}{2 m} \sqrt{\Delta_{m}}
$$

Structure of the eigenvalues

- For given $b, \exists m_{b}$ such that the bifurcation holds for any $m \geq m_{b}$.
- Monotonicity : $m \mapsto \Omega_{m}^{-} \searrow ; \quad m \mapsto \Omega_{m}^{+} \nearrow$

Structure of the 4 -folds

- The bifurcation to 4 -fold holds if

$$
0<b<\sqrt{\sqrt{2}-1} \triangleq b_{4}^{\star} \approx 0.6435
$$

Numerical experiments :

- For $b \ll b_{4}^{\star}$, corners appear in the limiting V-states. For $b=0.4$.

Figure - Left: V-states bifurcating from Ω_{4}^{-}. Right: V-states bifurcating from Ω_{4}^{+}

- If $b \approx b_{4}^{\star},\left(\Omega_{m}^{+} \approx \Omega_{m}^{-}\right)$then the two branches merge forming small loop (proved with Renault 2016).
$b=0.63$

Figure - Left : V-states bifurcating from Ω_{4}^{-}. Right : V-states bifurcating from Ω_{4}^{+}

- For the degenerate case $b=b_{4}^{\star}$, there is no bifurcation, (proved with Mateu 2015)

