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Abstract. We prove a characterization of some Lp-Sobolev spaces in-
volving the quadratic symmetrization of the Calderón commutator ker-
nel, which is related to a square function with differences of difference
quotients. An endpoint weak type estimate is established for functions
in homogeneous Hardy-Sobolev spaces Ḣ1

α. We also use a local ver-
sion of this square function to characterize pointwise differentiability for
functions in the Zygmund class.

1. Introduction

In this paper we give a characterization of Sobolev spaces on the real line
by a square function which appears in some proofs of the L2-boundedness of
the first Calderón commutator [22] and the Cauchy integral on a Lipschitz
or chord arc curve [10], [22]. Moreover, a local version of this square function
can be used to describe the set of points where a given function is pointwise
differentiable.

Our square function acts on functions on the real line and involves the
difference of two difference quotients with increments s and t. Define

(1) Sαf(x) =
(∫∫

R×R

∣∣∣f(x+ s)− f(x)

s
− f(x+ t)− f(x)

t

∣∣∣2 ds dt

|s− t|2α
)1/2

.

This square function is a rough relative of the more standard Marcinkiewicz
square function associated with second differences,

(2) Gαf(x) =
(∫ ∞

0

|f(x+ 2t)− 2f(x+ t) + f(x)|2

t1+2α
dt
)1/2

,

which was introduced for α = 1 by Marcinkiewicz to investigate questions
about pointwise differentiability (see [17]). In §3 we prove that for α ≥ 0
and f ∈ L2(R) there is a pointwise majorization

(3) Gαf(x) ≤ C(α)Sαf(x).

We shall prove sharp results on mapping properties of Sα when acting
in Lp-Sobolev spaces. Our starting point is the identity ‖S1f‖2 = c‖f ′‖2,
proved in [10] by an application of Plancherel’s theorem. We aim for an

analogous characterizations of other homogeneous Sobolev spaces Ḣp
α, with
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p 6= 2 and suitable α. It is proved in §4 that such a characterization is limited
to the range 1/2 < α < 3/2. Recall that, for 1 < p < ∞, the (semi)-norm

on Ḣp
α is given by ‖Dαf‖p, where Dα denotes the Riesz derivative operator

of order α; it is defined by D̂αg(ξ) = |ξ|αĝ(ξ), at least for Schwartz functions
whose Fourier transform is compactly supported in R \ {0}. Of course Dα
is the inverse of the Riesz potential operator Iα = D−α, given for 0 < α < 1
by Iαf = γ(α) · (f ∗ |x|α−1), with γ(α) a constant, and defined for other α

by analytic continuation. The space Ḣp
α consists of all distributions which

are Riesz potentials of order α of Lp functions. See [15], [16], [20], [21] for
more on these spaces.

Theorem 1.1. Let 1 < p <∞, 1/2 < α < 3/2. Then

‖Dαf‖Lp(R) ≈ ‖Sαf‖Lp(R) .

Here the implicit constants depend only on p and α.

In contrast we have the larger range max{1/p − 1/2, 0} < α < 2 in the
known equivalence ‖Dαf‖p ≈ ‖Gαf‖p for the Marcinkiewicz square function,
see [19].

The proof of Theorem 1.1 is immediately reduced to the equivalence

‖f‖Lp(R) ≈ ‖Sα(D−αf)‖Lp(R) .

It is natural to ask whether this result extends to p = 1 in the sense of a
characterization for the homogeneous Hardy-Sobolev spaces Ḣp

α. The vector-
valued operator associated with f 7→ Sα(Dαf) can be viewed as a rough
singular integral in the spirit of [4]. It turns out that the upper H1 → L1

bounds fail; this is in contrast to a positive result for the Marcinkiewicz
square function, namely ‖Gα(D−αf)‖1 . ‖f‖H1 for 1/2 < α < 2. See e.g.
[20, §3.5.3]. The following H1 → L1,∞ endpoint result for f 7→ Sα(D−αf) is
optimal in the sense that L1,∞ cannot be replaced by a Lorentz space L1,q

with q <∞, see §4.3.

Theorem 1.2. Let 1/2 < α < 3/2. Then for all f in the homogeneous

Hardy-Sobolev space Ḣ1
α and all λ > 0,

meas({x : Sαf(x) > λ}) ≤ Cαλ−1‖Dαf‖H1 .

The statement above for α = 1 can be restated in terms of the first
derivative, using the Hilbert transform.

Corollary 1.3. (i) For f ∈ Lp, 1 < p <∞, ‖S1f‖p ≈ ‖f ′‖p.
(ii) If f ′ ∈ H1 then meas({x : S1f(x) > λ}) ≤ Cλ−1‖f ′‖H1 .

In §4.4 we show that the condition f ′ ∈ H1 in the second part of Corollary
1.3 cannot be replaced by f ′ ∈ L1, and formulate a related open question
for the Riesz derivatives.

We shall also consider a local version of the square function S1 in order to
study pointwise differentiability. Recall that a bounded function f : R→ R



3

is in the Zygmund class Λ∗ (also known as the homogeneous Besov space

Ḃ∞,∞1 ) if there exists a constant c = c(f) > 0 such that

|f(x+ h) + f(x− h)− 2f(x)| ≤ c|h|, x, h ∈ R.

The infimum of the constants c satisfying the above inequality is denoted by
‖f‖Λ∗ . Functions in the Zygmund class may be nowhere differentiable. For
example, the Weierstrass function f(x) =

∑∞
n=1 b

−n cos(bnx), where b > 1,
is nowhere differentiable and belongs to Λ∗. It turns out that a local version
of S1 characterizes the almost everywhere differentiability of functions in
the Zygmund class, very much in the spirit of a classical theorem of Stein
and Zygmund [18] which uses a local version of the Marcinkiewicz square
function G1. Our result reads as follows.

Theorem 1.4. Let f : R → R belong to the Zygmund class Λ∗. Then the
set of points x ∈ R such that∫∫

|t|+|s|<1

∣∣∣f(x+ s)− f(x)

s
− f(x+ t)− f(x)

t

∣∣∣2 ds dt

|s− t|2
<∞

coincides, except possibly for a set of Lebesgue measure zero, with the set of
points where f is differentiable.

In view of the pointwise inequality G1f . S1f the main point of Theorem
1.4 is that almost everywhere the pointwise differentiability for functions in
the Zygmund class implies the finiteness of the rough square function. For
general functions in L2

loc this implication fails, see §9.1.2. Theorem 1.4 will
be obtained as a simple consequence of a more general result formulated as
Theorem 9.3.

This paper. In §2 we discuss the connection with quadratic symmetriza-
tions of Calderón commutators and with the Cauchy integral. In §3 we prove
a generalization of the pointwise majorization result (3). In §4 we briefly
discuss necessary conditions for Theorems 1.1 and 1.2. In §5 we prove the
lower bound in Theorem 1.1, namely, ‖Dαf‖p . ‖Sαf‖p, 1 < p < ∞. In
§6 we discuss basic decompositions of our operators and prove some refined
L2 bounds that are crucial for the proofs of Theorems 1.1 and 1.2. In §7
we prove the endpoint Theorem 1.2. In §8 we quickly discuss various ap-
proaches to Theorem 1.1 via interpolation arguments. In §9 we state and
prove the results on pointwise differentiability.

2. Relation with Calderón commutators

For suitable functions A : R→ C consider the first Calderón commutator
CA whose Schwartz kernel KA is given by

KA(x, y) = p.v.
A(y)−A(x)

(x− y)2
.

Calderón [2] proved the L2(R) boundedness of CA for Lipschitz functions A;
subsequently many other proofs were discovered. Here we are motivated by
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the proof in [22] which uses a symmetrization technique based on the three
term quadratic symmetrization

(4) Sym[KA](x, y, z)

:= KA(x, y)KA(x, z)) +KA(y, z)KA(y, x) +KA(z, x)KA(z, y),

which is well defined as a function on

G = {(x, y, z) ∈ R× R× R : x 6= y, x 6= z, y 6= z}.

We have the following elementary but crucial identity ([22]).

Lemma 2.1. For (x, y, z) ∈ G,

(5) Sym[KA](x, y, z) =
1

(z − y)2

(A(y)−A(x)

y − x
− A(z)−A(x)

z − x

)2
.

Proof. We use the notation Dab := A(a)−A(b). For all (x, y, z) we compute

(x− y)2(x− z)2(y − z)2 Sym[KA](x, y, z)

=(y − z)2DxyDxz + (z − x)2DyzDyx + (x− y)2DzxDzy

=x2Dyz(Dyx −Dzx) + y2Dzx(Dzy −Dxy) + z2Dxy(Dxz −Dyz)

− 2yzDxyDxz − 2zxDyzDyx − 2xyDzxDzy

and usingDac−Dbc = Dab we see that (x−y)2(x−z)2(y−z)2 Sym[KA](x, y, z)
is equal to

(6a) x2D2
yz + y2D2

zx + z2D2
xy − 2xyDxzDyz − 2xzDxyDzy − 2yzDyxDzx.

Now it turns out that this expression is also equal to

(6b)
(
(z − x)Dyx − (y − x)Dzx)

)2
.

Indeed the last display equals

(z − x)2D2
yx + (y − x)2D2

zx − 2(z − x)(y − x)DyxDzx

= z2D2
yz + y2D2

zx − 2zyDyxDzx +R

where R = −2xz(D2
yx −DyxDzx)− 2xy(D2

zx −DyxDzx)− x2(Dyx −Dzx)2.
Now use Dyx −Dzx = Dyz and conclude that (6a) and (6b) coincide. This
yields the asserted formula. �

Using Lemma 2.1 the result of Theorem 1.1 can now be written in terms
of the quadratic symmetrization:

Corollary 2.2. For 1 < p <∞, 1/2 < α < 3/2,

‖DαA‖pp ≈
∫ (∫∫ |Sym[KA](x, y, z)|

|y − z|2α−2
dy dz

)p/2
dx.
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As mentioned before, for α = 1, p = 2 the equivalence of norms becomes
an identity (noted in [10]). Indeed (5) and a Fourier transform calculation
using Plancherel’s theorem yield

(7)

∫∫∫
R×R×R

|Sym[KA](x, y, z)|dx dy dz = c

∫
R
|A′(x)|2dx.

This argument can also be applied to the cases 1/2 < α < 3/2. In [22] it
is explained how (7) can be used to prove the L2 boundedness of CA when
A is Lipschitz: one checks the assumptions of the T (1) theorem of David
and Journé. In fact, the T (1) can be bypassed by a simple argument, which
reduces matters to the H1 −BMO duality.

Moreover, in [22] it is shown that the action of the Cauchy-integral op-
erator for the Lipschitz graph on characteristic functions of intervals is ma-
jorized by the action of the first Calderón commutator. The argument uses
crucially the concept of Menger curvature which is controlled by Sym[KA].
To be specific, the Menger curvature function associated to the graph z(x) =
(x,A(x)) is defined by (R(x, y, z))−1 where R(x, y, z) is the radius of the cir-
cle through the points z(x), z(y), z(z) (the Menger curvature is zero if the
three points lie on a straight line). The crucial identity is

1

R(x, y, z)
=

4 area (T (x, y, z))

|z(y)− z(x)||z(z)− z(y)||z(x)− z(z)|
where T (x, y, z) is the triangle with vertices z(x), z(y), z(z). The identity
implies, after using |z(a)− z(b)| ≥ |a− b| and (5), the inequality

(8)
1

R(x, y, z)
≤ 2

∣∣Sym[KA](x, y, z)
∣∣1/2.

See [10], [22] for more on the proof of the L2 boundedness of the Cauchy
integral operator based on Menger curvature. We do not emphasize Menger
curvature in this paper since, while the inequality (8) is efficient when A is
a Lipschitz function (as then |z(a) − z(b) ≈ |a − b|), it may be wasteful for
the Sobolev classes of functions we are interested here.

3. Comparison with Marcinkiewicz type square functions

Given f ∈ L2(R) and m ∈ R, consider the following square functions
defined for x ∈ R by

(9) Gα,mf(x) =
(∫

R

∣∣∣f(x+mt)− f(x)

mt
− f(x+ t)− f(x)

t

∣∣∣2 dt

|t|2α−1

)1/2
.

The square function Sα can be recovered from the Gα,m using the identity

(10) Sαf(x)2 = 2

∫
|m|>1

Gα,mf(x)2 dm

|m− 1|2α

which follows by the change of variables s = mt for |s| ≥ |t|, and symmetry
considerations. Conversely, the next lemma shows a pointwise domination
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of Gα,mf in terms of Sαf , for every m > 1. For m = 2 we have

Gα,2f(x) =
Gαf(x)

2
for the Marcinkiewicz square function Gαf and thus recover the pointwise
inequality (3) stated in the introduction.

Lemma 3.1. Let α ≥ 0. Then for m > 1, there exists a constant Cα,m such
that for all f ∈ L2(R)

Gα,mf(x) ≤ Cα,mSαf(x), x ∈ R.

Proof. Fix s ∈ R and m > 1. We have

Gα,mf(x)2 ≤ 2

∫
R

∣∣∣f(x+mt)− f(x)

mt
− f(x+mt/s)− f(x)

mt/s

∣∣∣2 dt

|t|2α−1

+2

∫
R

∣∣∣f(x+mt/s)− f(x)

mt/s
− f(x+ t)− f(x)

t

∣∣∣2 dt

|t|2α−1
.

The change of variable mt/s = u shows that the first term is equal to
2(s/m)2−2αGα,sf(x)2. Hence

Gα,mf(x)2 ≤ 2(s/m)2−2αGα,sf(x)2 + 2Gα,m/sf(x)2.

Observe that the interval [1,m] is invariant under the change of variable
s 7→ m/s. Integrating with respect to the measure ds/s yields

Gα,mf(x)2 logm =

∫ m

1
Gα,mf(x)2ds

s

≤ 2

∫ m

1

[
(s/m)2−2αGα,sf(x)2 + Gα,m/sf(x)2

]ds
s

= 2

∫ m

1
Gα,sf(x)2

( s2−2α

m2−2α
+ 1
)ds
s

≤ 2Aα,m

∫ m

1
Gα,sf(x)2 ds

(s− 1)2α

where Aα,m := sup1≤s≤m((s/m)2−2α + 1)s−1(s − 1)2α is clearly finite for
α ≥ 0. Now by the identity (10) we obtain

Gα,mf(x) ≤
(Aα,m

logm

)1/2
Sαf(x) . �

4. Necessary conditions

We show that our characterization fails to extend to the Hardy-Sobolev
spaces (corresponding to p = 1) and that the condition 1/2 < α < 3/2 in
Theorem 1.1 is necessary. In what follows we use the notation

(11) ∆sf(x) = f(x+ s)− f(x)

for the difference operator with increment s.



7

4.1. The condition α > 1/2. Suppose that 0 < α ≤ 1/2. Consider f ∈ C∞c
with vanishing moments up to order 2, with the property that f(x) = 1 for

x ∈ [0, 1] and f is supported in (−3/2, 3/2). Then f ∈ Ḣp
α for p ≥ 1. Notice

that

s−1∆sf(x)− t−1∆tf(x) = −s−1 + t−1 for x ∈ [0, 1], t ∈ [3
2 , 2], s > 4,

and thus, for x ∈ [0, 1],

Sαf(x) ≥ 1

4

(∫ ∞
s=4
|s− 2|−2αds

)1/2
=∞, if α ≤ 1/2 .

Thus we need to have α > 1/2.

4.2. The condition α < 3/2. Let f ∈ C∞c with vanishing moments up to

order 2 and satisfying f(x) = x2 for |x| ≤ 4. As above, f ∈ Ḣp
α for p ≥ 1.

Now

s−1∆sf(x)− t−1∆tf(x) =

∫ 1

0
f ′(x+ us)− f ′(x+ ut)du

so that s−1∆sf(x) − t−1∆tf(x) = s − t if |x| ≤ 1, |s + t| ≤ 1, |s − t| ≤ 1,
and we get

Sαf(x) ≥
(∫∫

|s−t|≤1
|s+t|≤1

|s− t|2−2α ds dt
)1/2

, for |x| ≤ 1.

Hence, if α ≥ 3/2 then Sαf(x) = ∞ for |x| ≤ 1 which shows the necessity
of the condition α < 3/2.

4.3. Failure of the strong type Hardy space bound. We show that for func-
tions in the homogeneous Hardy-Sobolev spaces Ḣ1

α the square-function Sαf
may fail to be in L1, or even in any Lorentz space L1,q with q <∞.

Let f be an odd smooth function with compact support in (−2, 2) such
that f(y) = 1 for y ∈ [1/2, 1]. Using dyadic frequency decompositions one
can show that Dαf ∈ H1(R) for α ≥ 0. Let x > 2. We then have

∆sf(x) = 1 if − x+ 1/2 ≤ s ≤ −x+ 1,

∆tf(x) = −1 if − x− 1 ≤ t ≤ −x− 1/2.

Hence, by (1) we get for x > 2,

Sαf(x) ≥
(∫ −x+1

s=−x+1/2

∫ −x−1/2

t=−x−1

|s−1 + t−1|2

|s− t|2α
dvdw

)1/2
≥ 1

2(x− 1)

and thus Sαf /∈ L1,q(R) for q <∞.
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4.4. Failure of a weak type (1, 1) bound. We prove the statement given after
Corollary 1.3 and show that there is a sequence of functions fj such that
‖f ′j‖1 = O(1) and the S1fj are unbounded in L1,∞.

Define fj(x) = 0 for x ≤ 0, fj(x) = jx, for 0 ≤ x ≤ j−1 and fj(x) = 1
for x > j−1 so that fj is a regularized version of the Heaviside function. We
have f ′j = j1[0,j−1] so that ‖f ′j‖1 = 1.

Let now −3/4 ≤ x ≤ −1/2. Then fj(x) = 0 and fj(x + s) = 1 if
−x + 1/j ≤ s ≤ 1, moreover fj(x + t) = 0 for j−1 ≤ t ≤ −x. We thus get,
for j ≥ 100,

S1f(x) ≥
(∫ 1

s=−x+j−1

s−2

∫ −x
1/j

(s− t)−2dt ds
)1/2

≥ c
(∫ 1

−x+j−1

(
(s+ x)−1 − (s− j−1)−1

)
ds
)1/2

≥ c′
(

log j − C
)1/2

.

Hence for large j and small c

meas{x : S1fj(x) ≥ c
√

log j} ≥ 1/4

which shows ‖S1fj‖L1,∞/‖f ′j‖1 &
√

log j.

Open problem: It would be interesting to explore what happens if the or-
dinary derivative f ′ is replaced by the Riesz-derivative D1f . More gener-
ally, does the weak type (1, 1) inequality ‖Sαf‖L1,∞ . ‖Dαf‖L1 hold for
1/2 < α < 3/2?

5. Lower bounds

It is our objective to prove the converse estimate

(12) ‖f‖p ≤ Cα,p‖Sα(D−αf)‖p
for 1 < p <∞. There is no restriction on α in this part of the proof.

First consider the function ρ(s) = s−1(eis − 1) and observe that

ρ(s)− ρ(t) =
1

2
(t− s) + E(s, t)

where |E(s, t)| ≤ C(|s|+ |t|)|s− t| for |s|, |t| ≤ 1. Let

Rε = {(s, t) : ε < s < 2ε, ε/10 < |s− t| < ε/5};

then for sufficiently small ε > 0 the function

m(ξ) =
1

|Rε|

∫∫
Rε

(eisξ − 1

s
− eitξ − 1

t

)
|s− t|−α dsdt

is smooth on [−4,−1/4] ∪ [1/4, 4], and moreover

|m(ξ)| ≥ Cε,α > 0, 1/4 ≤ |ξ| ≤ 4.
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Let ϕ be supported in (1/2, 2) such that
∑

k∈Z ϕ(2−k(|ξ|)) = 1 for all
ξ 6= 0. Let ϕ̃ ∈ C∞ be supported in (1/4, 4) such that ϕ̃ = 1 on [1/2, 2].
Then ξ 7→ ϕ̃(|ξ|)/m(ξ) is a C∞c function with support in {ξ : 1/4 < |ξ| < 4}.

Define three operators Lk, Mk, L̃k,α by

L̂kf(ξ) = ϕ(2−k|ξ|)f̂(ξ) ,

M̂kf(ξ) =
ϕ̃(2−k|ξ|)
m(2−kξ)

f̂(ξ) ,

̂̃
Lk,αf(ξ) = ϕ̃(2−k|ξ|)(2−k|ξ|)αf̂(ξ) .

These convolution operators make sense for Hilbert-space valued functions.

Below we shall use the following

Lemma 5.1. Let 1 < p <∞.

(i) For {fk} ∈ Lp(`2)∥∥∥∑
k∈Z

Lkfk

∥∥∥
p
≤ Cp

∥∥∥(∑
k∈Z
|fk|2

)1/2∥∥∥
p
.

(ii) For {fk} ∈ Lp(`2)∥∥∥(∑
k∈Z
|Mkfk|2

)1/2∥∥∥
p
≤ Cp

∥∥∥(∑
k∈Z
|fk|2

)1/2∥∥∥
p
.

(iii) Let H be a Hilbert space. For F ∈ Lp(H) we have∥∥∥(∑
k∈Z
|L̃k,αF |2H

)1/2∥∥∥
p
≤ Cp,α‖F‖Lp(H) .

Proof. These are straightforward applications of the standard theory of
singular convolution operators for Hilbert-space valued functions, see [1],
[16]. �

Proof of (12). Define Lk as above and L̃k similarly, with ϕ replaced by ϕ̃.
We then have

f =
∑
k∈Z

Lkf =
∑
k∈Z

LkL̃kL̃kf =
∑
k∈Z

LkMkL̃kF−1[m(2−k·)f̂ ].

By (i), (ii) of Lemma (5.1) we have

‖f‖p .
∥∥∥(∑

k∈Z

∣∣MkL̃kF−1[m(2−k·)f̂ ]
∣∣2)1/2∥∥∥

p

≤
∥∥∥(∑

k

∣∣∣ 1

|Rε|

∫∫
Rε

T s,tk f ds dt
∣∣∣2)1/2∥∥∥

p
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where T s,tk is defined by

T̂ s,tk f(ξ) = ϕ̃(2−k|ξ|)
(eis(2−kξ) − 1

s
− eit(2

−kξ) − 1

t

)
|s− t|−αf̂(ξ)

= 2−kϕ̃(2−k|ξ|)(2−k|ξ|)α
(ei(2−ks)ξ − 1

2−ks
− ei(2

−kt)ξ − 1

2−kt

) D̂−αf(ξ)

(2−k|s− t|)α
.

We apply the Cauchy-Schwarz inequality on Rε and get

‖f‖p ≤
∥∥∥(∑

k

1

|Rε|

∫∫
Rε

∣∣T s,tk f ∣∣2ds dt)1/2∥∥∥
p
.

Change variables s = 2kv, t = 2kw so that the last inequality becomes

‖f‖p

.
∥∥∥(∑

k

1

|Rε|

∫∫
2−kRε

∣∣∣ L̃k,α [v−1∆v(D−αf)− w−1∆w(D−αf)]

|v − w|α
∣∣∣2dv dw)1/2∥∥∥

p
.

We replace for each k the domain of integration 2−kRε by the entire R×R
and then apply part (iii) of Lemma 5.1 (with the Hilbert space H = L2(R×
R)). We thus see that ‖f‖p is bounded by (a constant times)

|Rε|−1/2
∥∥∥(∑

k

∫∫
R×R

∣∣L̃k,α[v−1∆v(D−αf)− w−1∆w(D−αf)]
∣∣2

|v − w|2α
dv dw

)1/2∥∥∥
p

≤ Cε,p,α
∥∥∥(∫∫

R×R

∣∣v−1∆v(D−αf)− w−1∆w(D−αf)
∣∣2

|v − w|2α
dv dw

)1/2∥∥∥
p

which completes the proof of (12). �

6. L2 bounds

As mentioned before the equivalence

(13) ‖Sα(D−αf)‖2 = cα‖f‖2
has been proved for α = 1 in [10]; a straightforward modification of the proof
also applies to the case α ∈ (1/2, 3/2). In this section we further break up
Sα(D−αf) and obtain improved bounds for the pieces, which are useful for
the proof of Theorems 1.1 and 1.2.

Let H be the Hilbert space of square-integrable functions on R× R. Fix
α ∈ (1/2, 3/2). We define a convolution operator T mapping Schwartz
functions on R to H-valued functions on the real line, by

(14) Tf(x, s, t) =
s−1∆sD−αf(x)− t−1∆tD−αf(x)

|s− t|α
for |s| ≥ |t|,

and
Tf(x, s, t) = 0 for |s| < |t|.
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The inequality ‖Sα(D−αf)‖p . ‖f‖p holds for all Schwartz functions f if
and only if T maps Lp(R) to Lp(R;H). For the estimates below we may
assume that f is a Schwartz function whose Fourier transform is compactly
supported in R \ {0}.

We introduce finer decompositions by dividing up the (s, t) parameter set.
For n, l ∈ Z, l ≤ n− 2, set

(15)
Vn,lk = {(s, t) : 2−k+n < |s| ≤ 2−k+n+1, 2−k+n−2 < |t| ≤ |s|,

2−k+l−1 < |s− t| ≤ 2−k+l},
and note that

(16) Vn,l = ∅ for l ≥ n+ 3.

Also for ` ∈ Z, ` ≤ n− 2, let

(17) Wn,`
k = {(s, t) : 2−k+n < |s| ≤ 2−k+n+1, 2−k+`−1 < |t| ≤ 2−k+`}.

Then, for every k ∈ Z,∑
n∈Z

( n+2∑
l=−∞

1Vn,lk
(s, t) +

n−2∑
`=−∞

1Wn.`
k

(s, t)
)

=

{
1 if |t| ≤ |s|,
0 if |t| > |s|.

We also observe

(18) Vn,lk = 2−kVn,l0 , Wn,`
k = 2−kWn,`

0 .

In what follows we denote by ψ a real valued Schwartz function so that

ψ̂(ξ) 6= 0 for 1
4 ≤ |ξ| ≤ 4 and ψ̂ vanishes to order 100 at the origin. We may

choose ψ so that

(19) supp(ψ) ⊂ {x : |x| ≤ 1/2},
We remark that this assumption is not needed in the present section, nor in
the proof of Theorem 1.1 discussed in §8.2. However it is quite convenient
in the proof of the endpoint bound of Theorem 1.2.

Set ψk = 2kψ(2k·). Define an operator Pk by

(20) Pkf = ψk ∗ f.
We introduce a decomposition of the operator T . Let ϕ ∈ C∞c supported
in {ξ : 1/2 < |ξ| < 2} so that

∑
k∈Z ϕ(2−kξ) = 1 for all ξ 6= 0. We then

decompose

T̂ f(ξ, s, t)

=
∑
k∈Z

ψ̂(2−kξ)2 ϕ(2−kξ)

(2−k|ξ|)α(ψ̂(2−kξ))2

1

2kα|s− t|α
(eiξs − 1

s
− eiξt − 1

t

)
f̂(ξ)

and hence

(21) Tf(x, s, t) =
∑
k∈Z

PkTkLkf(x, s, t)
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where

(22) L̂kf(ξ) =
ϕ(2−kξ)

(2−k|ξ|)α(ψ̂(2−kξ))2
f̂(ξ)

and
(23)

Tkf(x, s, t) =
1

2kα|s− t|α
(Pkf(x+ s)− Pkf(x)

s
− Pkf(x+ t)− Pkf(x)

t

)
when |t| ≤ |s| (and Tkf(x, s, t) = 0 otherwise). We also set, for |t| < |s|,

Tk,1f(x, s, t) =
1

2kα|s− t|α
Pkf(x+ s)− Pkf(x)

s
,(24a)

Tk,2f(x, s, t) =
1

2kα|s− t|α
Pkf(x+ t)− Pkf(x)

t
(24b)

so that Tk = Tk,1 − Tk,2.

We shall repeatedly use the following scaling lemma.

Lemma 6.1. Let g be a Schwartz function on R. For k ∈ Z and Ω ⊂ R2,
(25)(∫∫

Ω
|Tkg(x, s, t)|2ds dt

)1/2
=
(∫∫

2kΩ
|T0[g(2−k·)](2kx, v, w)|2dv dw

)1/2

Proof. The left hand side is equal to(∫∫
Ω

∣∣∣Pkg(x+ s)− Pkg(x)

s
− Pkg(x+ t)− Pkg(x)

t

∣∣∣2 ds dt

22kα|s− t|2α
)1/2

=
(∫∫

2kΩ

∣∣∣Pkg(x+2−kv)− Pkg(x)

v
− Pkg(x+2−kw)− Pkg(x)

w

∣∣∣2 dv dw

|v − w|2α
)1/2

and the assertion follows from Pkg(x) = P0[g(2−k·)](2kx). �

Our proof of L2 boundedness involves the following elementary estimates.

Lemma 6.2. Let a ≥ b > 0. Then

(i)

( ∫∫
|σ|≈|τ |≈a
|σ−τ |≈b

∣∣∣eiσ − 1

σ
− eiτ − 1

τ

∣∣∣2 dσdτ

|σ − τ |2α
)1/2

.


a

1
2 b

3
2
−α if a ≤ 1,

a−
1
2 b

3
2
−α if b ≤ 1 ≤ a,

a−
1
2 b

1
2
−α if 1 ≤ b ≤ a.

(ii) Let a ≥ γ and Ωa,γ := {(σ, τ) : |τ | ≤ |σ|/2, |τ | ≈ γ, |σ| ≈ a}. Then
for a ≥ 1(∫∫

Ωa,γ

∣∣∣eiσ − 1

σ

∣∣∣2 dσdτ

|σ − τ |2α
)1/2

. γ
1
2a−α min{a

1
2 , a−

1
2 } ,

(∫∫
Ωa,γ

∣∣∣eiτ − 1

τ

∣∣∣2 dσdτ

|σ − τ |2α
)1/2

. a
1
2
−α min{γ

1
2 , γ−

1
2 } .
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Moreover, if a ≤ 1 then(∫∫
Ωa,γ

∣∣∣eiσ − 1

σ
− eiτ − 1

τ

∣∣∣2 dσdτ

|σ − τ |2α
)1/2

. γ
1
2a

3
2
−α.

Proof. This follows readily from

(26)
∣∣∣eiσ − 1

σ
− eiτ − 1

τ

∣∣∣ ≤ C |σ − τ |
1 + |σ|+ |τ |

, |σ − τ | ≤ 10.

and

�(27)
∣∣∣eir − 1

r

∣∣∣ ≤ C min{1, r−1}.

Proposition 6.3. Let 1/2 < α < 3/2. Then the following estimates hold.

(i)

(28a)
∥∥∥(∫∫ ∣∣∣ ∑

k∈Z:
(s,t)∈Vn,lk

PkTkfk(·, s, t)
∣∣∣2ds dt)1/2∥∥∥

2
. cn,l

∥∥∥(∑
k

|fk|2
)1/2∥∥∥

2
,

with cn,l =


2
n
2 2l(

3
2
−α) if n ≤ 0, l ≤ n+ 2,

2−n/22l(
3
2
−α) if n ≥ 0, l ≤ 2,

2−n/22−l(α−
1
2

) if n ≥ 0, 0 ≤ l ≤ n+ 2,

0 if l > n+ 2.

(ii) Let n ≥ 0 and ` ≤ n− 2. Then

(28b)
∥∥∥(∫∫ ∣∣∣ ∑

k∈Z:
(s,t)∈Wn,`

k

PkTk,1fk(·, s, t)
∣∣∣2ds dt)1/2∥∥∥

2

. 2`/22−nα min{2−n/2, 2n/2}
∥∥∥(∑

k

|fk|2
)1/2∥∥∥

2

and

(28c)
∥∥∥(∫∫ ∣∣∣ ∑

k∈Z:
(s,t)∈Wn,`

k

PkTk,2fk(·, s, t)
∣∣∣2ds dt)1/2∥∥∥

2

. 2−n(α− 1
2

) min{2−`/2, 2`/2}
∥∥∥(∑

k

|fk|2
)1/2∥∥∥

2
.
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Moreover, for n ≤ 0,

(28d)
∥∥∥(∫∫ ∣∣∣ ∑

k∈Z:
(s,t)∈Wn,`

k

PkTkfk(·, s, t)
∣∣∣2ds dt)1/2∥∥∥

2

. 2n( 3
2
−α)2`/2

∥∥∥(∑
k

|fk|2
)1/2∥∥∥

2
.

Proof. Note that for fixed n, l the sets Vn,lk , k∈ Z are disjoint and, similarly,

for fixed n, ` the sets Wn,`
k , k ∈ Z are disjoint. Hence

∫∫
|
∑

k· · · |2dsdt =∫∫ ∑
k | · · · |2dsdt. Thus, if one then interchanges sums and integrals and

uses the uniform L2 boundedness of the operators Pk one can reduce the
proofs to showing uniform estimates for the individual operators Tk (or Tk,1,

Tk,2), involving the sets Vn,lk , Wm,`
k . By Lemma 6.1 this is reduced to use

estimates for the operator T0 (or T0,1, T0,2), involving localizations to the

sets Vn,l0 , Wm,`
0 . Let

m(ξ, s) = ψ̂(ξ)s−1(eisξ − 1).

All estimates in proposition 6.3 follow via Plancherel’s theorem from the
following set (29) of inequalities. First, with cn,l as in (28a),

(29a) sup
ξ

(∫∫
Vn,l0

|m(ξ, s)−m(ξ, t)|2

|s− t|2α
ds dt

)1/2
. cn,l .

Next,

sup
ξ

(∫∫
Wn,`

0

|m(ξ, s)|2

|s− t|2α
ds dt

)1/2
. 2`/22−nα min{2−n/2, 2n/2} ,(29b)

sup
ξ

(∫∫
Wn,`

0

|m(ξ, t)|2

|s− t|2α
ds dt

)1/2
. 2−n(α− 1

2
) min{2−`/2, 2`/2},(29c)

and (for `+ 2 ≤ n ≤ 0)

(29d) sup
ξ

(∫∫
Wn,`

0

|m(ξ, s)−m(ξ, t)|2

|s− t|2α
ds dt

)1/2
. 2n( 3

2
−α)2

`
2 .

We want to deduce (29) from Lemma 6.2. In view of the crucial cancellation
property of ψ we have

(30) |ψ̂(ξ)| ≤ CN
|ξ|2

(1 + |ξ|)N

for all N . Now by a change of variables(∫∫
Ω

|m(ξ, s)−m(ξ, t)|2

|s− t|2α
ds dt

)1/2

= |ξ|α|ψ̂(ξ)|
(∫∫

|ξ|Ω

∣∣∣eiσ − 1

σ
− eiτ − 1

τ

∣∣∣2 dσ dτ

|σ − τ |2α
)1/2

.
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Hence, by Lemma 6.2 and (30),(∫∫
Vn,l0

|m(ξ, s)−m(ξ, t)|2

|s− t|2α
ds dt

)1/2

.
|ξ|α+2

(1 + |ξ|)N
·


(2n|ξ|)1/2(2l|ξ|)3/2−α if 2n|ξ| ≤ 1, l ≤ n+ 2,

(2n|ξ|)−1/2(2l|ξ|)3/2−α if 2n|ξ| ≥ 1, 2l|ξ| ≤ 1,

(2n|ξ|)−1/2(2l|ξ|)−α+1/2 if 2n|ξ| ≥ 1, 0 ≤ l ≤ n+ 2,

which implies (29a). The estimates (29b), (29c), (29d) follow in a similar
way from Lemma 6.2 and (30). �

We finally note for further reference that summing the various estimates
in Proposition 6.3 together with an application of the Littlewood-Paley in-
equality (in L2) yields the bound ‖T F‖2 . ‖F‖L2(H).

7. The H1 → L1,∞ bound

We shall follow the method outlined in [14] which has its root in work
by M. Christ [4]. We use a variant of the atomic decomposition which also
takes our operator T into account (by using the decomposition (21) and
incorporating the Riesz potential operator in the atoms). The approach here
is based on the square-function characterization by Chang and Fefferman [3]
(in the one-parameter dilation setting). See also [13] for an early application
to endpoint estimates, and [14] for many more references.

7.1. Preliminaries. Let Pk, Tk, Lk as in (20), (23), (22). We plan to use
the decomposition (21). We consider the nontangential version of the Peetre
maximal operators

(31) Mkf(x) = sup
|h|≤2−k

|Lkf(x+ h)|

and the square function defined by

(32) Sf(x) =
(∑
k∈Z
|Mkf(x)|2

)1/2
.

Then (Peetre [11])

(33) ‖Sf‖L1 . ‖f‖H1 .

Let Jk be the set of dyadic intervals of length 2−k (i.e. each interval is of
the form [n2−k, (n+ 1)2−k) for some n ∈ Z). For µ ∈ Z let

Oµ = {x : |Sf(x)| > 2µ}

and let Jµk be the set of dyadic intervals of length 2−k with the property that

|J ∩ Oµ| ≥ |J |/2 and |J ∩ Oµ+1| < |J |/2.
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Clearly if Sf ∈ L1 then every dyadic interval belongs to exactly one of the
sets Jµk . We then have ([3])

(34)
∑
k∈Z

∑
J∈Jµk

‖1JLkf‖22 . 22µmeas(Oµ)

For completeness we include the argument for (34). The relevant fact is that
|Lkf(x)| ≤Mkf(z) for all x, z ∈ J , for each J ∈ Jk. Let

O∗µ = {x : MHL1Oµ > 10−1}
where MHL stands for the Hardy-Littlewood maximal operator. Then

meas(O∗µ) . meas(Oµ)

and we have ∪k ∪J∈Jµk J ⊂ O
∗
µ. Now∑

k∈Z

∑
J∈Jµk

‖1JLkf‖22 ≤
∑
k∈Z

∑
J∈Jµk

2

∫
J\Oµ+1

|Mkf(x)|2dx

≤ 2

∫
O∗µ\Oµ+1

∑
k∈Z
|Mkf(x)|2dx ≤ 22µ+2meas(O∗µ) ≤ C22µmeas(Oµ)

which establishes (34).

Now we assign to each dyadic interval J another dyadic interval I(J)
containing J . If J ∈ Jµk then clearly J ⊂ O∗µ. Let I(J) be the maximal
dyadic interval containing J which is contained in O∗µ. Set

bµ,Ik (x) =
∑
J∈Jµk :
I(J)=I

Lkf(x)1J(x).

We write L(I) = L if the length of a dyadic interval I is 2L. Also we let
Iµ be the collection of all dyadic intervwhich are maximal and contained in
O∗µ. By the maximality condition the intervals in Iµ have disjoint interior.

For future reference we note that if J ∈ Jµk and I(J) = I then L(I) + k ≥ 0.

Set, for I ∈ Iµ,

(35) γµ,I :=
( ∑

k:
k+L(I)≥0

∑
J∈Jkµ

‖1JLkf‖22
)1/2

.

We have ∑
I∈Iµ

|I|1/2γµ,I ≤
( ∑
I∈Iµ

|I|
)1/2( ∑

I∈Iµ
γ2
µ,I

)1/2

. |O∗µ|1/2(22µ|Oµ|)1/2 . 2µ|Oµ|
and hence

(36)
∑
µ∈Z

∑
I∈Iµ

|I|1/2γµ,I .
∑
µ∈Z

2µ|Oµ| . ‖Sf‖1 . ‖f‖H1 ,
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which is equivalent to

(37)
∑
µ∈Z

∑
I∈Iµ

|I|1/2
(∑
k∈Z
‖bµ,Ik ‖

2
2

)1/2
. ‖f‖H1 .

7.2. Proof of the H1 → L1,∞ inequality. Fix λ > 0. We claim that

(38) meas
(
{x ∈ R : |Tf(x, ·, ·)|L2(R2) > 10λ}

)
. λ−1

∑
µ∈Z

∑
I∈Iµ

|I|1/2γµ,I

which implies the desired bound, by (36).

The first step is the definition of an exceptional set E . Given any I, µ
with µ ∈ Z, I ∈ Jµ, we assign an integer κ(µ, I) (depending on λ), defined
as

κ(µ, I) = max{L(I), κ̃(µ, I)}

where the ”stopping time” κ̃(µ, I) is given by

(39) κ̃(µ, I) = inf{r ∈ Z : 2r ≥ λ−1|I|1/2γµ,I }.

For any I, µ satisfying L(I) < κ(µ, I) let Eµ,I be the interval of length

2κ(µ,I)+5, concentric with I and let

E =
⋃

µ,I:I∈Iµ
L(I)<κ(µ,I)

Eµ,I .

For any I with κ(µ, I) > L(I), we have 2κ(µ,I)−1 ≤ λ−1|I|1/2γµ,I . Thus

(40) meas(E) .
∑

I,µ:L(I)<κ(µ,I)

2κ(µ,I) .
∑
I,µ

λ−1|I|1/2γµ,I . λ−1‖f‖H1 .

Hence in order to prove (38) we only need to show

(41) meas(x ∈ E{ : |Tf(x, ·, ·)|L2(R2) > 10λ} . λ−1
∑
µ,I

|I|1/2γµ,I .

By Minkowski’s inequality we have

(42)

|Tf(x, ·, ·)|L2(R2) =
(∫∫ ∣∣∣∑

µ,I

∑
−k≤L(I)

PkTkb
µ,I
k (x, s, t)

∣∣∣2ds dt)1/2

≤
4∑
i=1

Ui(x) + VE(x) +W2,E(x) + V∗(x) +W2,∗(x) +W1(x)
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where

U1(x)=
(∫∫ ∣∣∣ ∑

n
`≤n+2

∑
k:(s,t)∈Vn,lk

∑
µ,I:
I∈Iµ

−k+n≤L(I)

PkTkb
µ,I
k (x, s, t)

∣∣∣2ds dt)1/2
,(43a)

U2(x)=
(∫∫ ∣∣∣ ∑

n≤2
`≤n−2

∑
k:(s,t)∈Wn,`

k

∑
µ,I:I∈Iµ
−k≤L(I)

PkTkb
µ,I
k (x, s, t)

∣∣∣2ds dt)1/2
,(43b)

U3(x)=
(∫∫ ∣∣∣ ∑

n≥2
`≤n−2

∑
k:(s,t)∈Wn,`

k

∑
µ,I:I∈Iµ
−k+n≤L(I)

PkTk,1b
µ,I
k (x, s, t)

∣∣∣2ds dt)1/2
,

(43c)

U4(x)=
(∫∫ ∣∣∣ ∑

n≥2
`≤n−2

∑
k:(s,t)∈Wn,`

k

∑
µ,I:I∈Iµ
−k+`≤L(I)

PkTk,2b
µ,I
k (x, s, t)

∣∣∣2ds dt)1/2

(43d)

and

VE(x) =
(∫∫ ∣∣∣ ∑

n,l:
n≥max{0,l−2}

∑
k:(s,t)∈Vn,lk

∑
µ,I:
I∈Iµ

L(I)<−k+n≤κ(µ,I)

PkTkb
µ,I
k (x, s, t)

∣∣∣2ds dt)1/2
,

(44a)

W2,E(x) =
(∫∫ ∣∣∣ ∑

n,`:
n≥max{0,`+2}

∑
k:(s,t)∈Wn,`

k

∑
µ,I:
I∈Iµ

L(I)<−k+`≤κ(µ,I)

PkTk,2b
µ,I
k (x, s, t)

∣∣∣2ds dt)1/2
.

(44b)

Furthermore

V∗(x) =
(∫∫ ∣∣∣ ∑

n,l:
n≥max{0,l−2}

∑
k:(s,t)∈Vn,lk

∑
µ,I:
I∈Iµ

κ(µ,I)<−k+n

PkTkb
µ,I
k (x, s, t)

∣∣∣2ds dt)1/2
,

(45a)

W2,∗(x) =
(∫∫ ∣∣∣ ∑

n,`:
n≥max{0,`+2}

∑
k:(s,t)∈Wn,`

k

∑
µ,I:
I∈Iµ

κ(µ,I)<−k+`

PkTk,2b
µ,I
k (x, s, t)

∣∣∣2ds dt)1/2

(45b)
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and finally
(46)

W1(x)=
(∫∫ ∣∣∣ ∑

n,`:
n≥max{0,`+2}

∑
k:(s,t)∈Wn,`

k

∑
µ,I:
I∈Iµ

L(I)<−k+n

PkTk,1b
µ,I
k (x, s, t)

∣∣∣2ds dt)1/2
.

The quantity on the left hand side of (41) is not greater than

4∑
i=1

meas(x ∈ E{ : Ui(x) > λ}+ meas(x ∈ E{ : W1(x) > λ}

+ meas(x ∈ E{ : V∗(x) > λ}+ meas(x ∈ E{ : W2,∗(x) > λ}

+ meas(x ∈ E{ : VE(x) > λ}+ meas(x ∈ E{ : W2,E(x) > λ}.

The terms VE and W2,E are supported in E and are thus irrelevant for the es-
timate (41). Thus (41) follows, by Tshebyshev’s inequality, from the bounds

4∑
i=1

‖Ui‖1 .
∑
µ,I

|I|1/2γµ,I ,(47)

‖V∗‖22 . λ
∑
µ,I

|I|1/2γµ,I ,(48)

‖W2,∗‖22 . λ
∑
µ,I

|I|1/2γµ,I ,(49)

‖W1‖1 .
∑
µ,I

|I|1/2γµ,I .(50)

Proof of (47). For (s, t) ∈ Vn,lk and −k + n ≤ L(I) the function x 7→
PkTkb

µ,I
k (x, s, t) is supported in a tenfold expansion I∗ of I. We use Minkowski’s

inequality for the n, l, µ, I sums, and then Cauchy-Schwarz on I∗ to get

‖U1‖1 ≤
∑
n

l≤n+2

∑
µ,I:
I∈Iµ

∥∥∥(∫∫ ∣∣∣ ∑
k:(s,t)∈Vn,lk
−k+n≤L(I)

PkTkb
µ,I
k (·, s, t)

∣∣∣2ds dt)1/2∥∥∥
1

.
∑
n

l≤n+2

∑
µ,I:
I∈Iµ

|I|1/2
(∫∫ ∥∥∥ ∑

k:(s,t)∈Vn,lk
−k+n≤L(I)

PkTkb
µ,I
k (·, s, t)

∥∥∥2

2
ds dt

)1/2
.
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Denote by cn,l the constants defined in (28a). Then
∑

n

∑
l≤n+2 cn,l < ∞.

Now we apply (28a) to get

‖U1‖1 ≤
∑
n

l≤n+2

cn,l
∑
µ,I:
I∈Iµ

|I|1/2
( ∑
k:−k≤L(I)

∥∥bµ,Ik ∥∥2

2

)1/2

.
∑
µ,I:
I∈Iµ

|I|1/2
( ∑
k:−k≤L(I)

∥∥bµ,Ik ∥∥2

2

)1/2
.

We apply a similar argument to estimate the L1 norms of U2, U3, U4. For U2

we get

‖U2‖1 ≤
∑
n≤2
`≤n−2

∑
µ,I:
I∈Iµ

|I|1/2
(∫∫ ∥∥∥ ∑

k:(s,t)∈Wn,l
k

−k≤L(I)

PkTkb
µ,I
k (·, s, t)

∥∥∥2

2
ds dt

)1/2

.
∑
µ,I:
I∈Iµ

|I|1/2
( ∑
k:−k≤L(I)

∥∥bµ,Ik ∥∥2

2

)1/2

where we used (28d). By (28b)

‖U3‖1 ≤
∑
µ,I:
I∈Iµ

|I|1/2
∑
n≥2
`≤n−2

(∫∫ ∥∥∥ ∑
k:(s,t)∈Wn,l

k
−k+n≤L(I)

PkTk,1b
µ,I
k (·, s, t)

∥∥∥2

2
ds dt

)1/2

.
∑
µ,I:
I∈Iµ

|I|1/2
( ∑
k:−k≤L(I)

∥∥bµ,Ik ∥∥2

2

)1/2
,

and, by (28c),

‖U4‖1 ≤
∑
µ,I:
I∈Iµ

|I|1/2
∑
n≥2
`≤n−2

(∫∫ ∥∥∥ ∑
k:(s,t)∈Wn,l

k
−k+l≤L(I)

PkTk,2b
µ,I
k (·, s, t)

∥∥∥2

2
ds dt

)1/2

.
∑
µ,I:
I∈Iµ

|I|1/2
( ∑
k:−k≤L(I)

∥∥bµ,Ik ∥∥2

2

)1/2
.

Finally we use
∑

k

∥∥bµ,Ik ∥∥2

2
= (γIµ)2 in all estimates above to complete the

proof of (47).
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Proof of (48). We have, by Minkowski integral inequality,

V∗(x) ≤
∑
n,l

n≥max{0,l−2}

(∫∫
Vn,lk

∣∣∣ ∑
k:(s,t)∈Vn,lk

∑
µ,I:
I∈Iµ

κ(µ,I)<−k+n

PkTkb
µ,I
k (x, s, t)

∣∣∣2ds dt)1/2

≤
∑
n,l

n≥max{0,l−2}

(∑
k

∫∫
Vn,lk

∣∣∣ ∑
µ,I:
I∈Iµ

κ(µ,I)<−k+n

PkTkb
µ,I
k (x, s, t)

∣∣∣2ds dt)1/2

and so, by Fubini,

‖V∗‖2 .
∑
n,l:

n≥max{0,l−2}

(∑
k

∫∫
Vn,lk

∥∥∥ ∑
µ,I:I∈Iµ

κ(µ,I)<−k+n

PkTkb
µ,I
k (·, s, t)

∥∥∥2

2
ds dt

)1/2
.

By (28a),

‖V∗‖2 .
∑
l

min{2−l(α−1/2), 2l(3/2−α)}
∑

n≥max{0,l−3}

2−n/2

×
(∑

k

∥∥∥ ∑
µ,I:I∈Iµ

κ(µ,I)<−k+n

bµ,Ik

∥∥∥2

2

)1/2
.

For fixed k,∥∥∥∑
µ

∑
I∈Iµ:

κ(µ,I)<−k+n

bµ,Ik

∥∥∥2

2
=
∥∥∥∑

µ

∑
µ,I:

κ(µ,I)<−k+n

∑
J∈Jµk
I(J)=I

1JLkf
∥∥∥2

2

=
∑
µ

∑
I∈Iµ

κ(µ,I)<−k+n

∑
J∈Jµk
I(J)=I

∥∥1JLkf∥∥2

2

because each dyadic interval of length 2−k is contained in exactly one fam-
ily Jµk , and for fixed µ the intervals in Iµ have disjoint interior. Now, since
1/2 < α < 3/2 , we can sum in l and obtain

‖V∗‖22 .
(∑
n≥0

2−n
(∑

k

∑
µ,I:I∈Iµ

κ(µ,I)<−k+n

∑
J∈Jµk
I(J)=I

∥∥1JLkf∥∥2

2

)1/2)

.
∑
k

∑
µ,I:
I∈Iµ

2−(κ(µ,I)+k)
∑
J∈Jµk
I(J)=I

∥∥1JLkf∥∥2

2

.
∑
µ,I:
I∈Iµ

2−(κ(µ,I)−L(I))
∑
J∈Jµk
I(J)=I

2−(L(I)+k)
∥∥1JLkf∥∥2

2
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and hence

(51)

‖V∗‖22 .
∑

µ,I:I∈Iµ
2L(I)−κ(µ,I)γ2

µ,I

.
∑
µ

[ ∑
I∈Iµ

κ(µ,I)=L(I)

γ2
µ,I +

∑
I∈Iµ

κ(µ,I)>L(I)

2L(I)−κ(µ,I)γ2
µ,I

]
.

If κ(µ, I) = L(I) then κ̃(µ, I) ≤ L(I) and by definition of κ̃(µ, I) we then

have 2L(I) ≥ 2κ̃(µ,I) ≥ λ−1|I|1/2γµ,I . Thus γµ,I ≤ |I|1/2λ. Therefore

(52a)
∑
I∈Iµ:

κ(µ,I)=L(I)

γ2
µ,I ≤ λ

∑
I∈Iµ

|I|1/2γµ,I .

If κ(µ, I) > L(I) then κ(µ, I) = κ̃(µ, I) and thus 2−κ(µ,I) ≤ λ|I|−1/2γ−1
µ,I ,

again by the definition of κ̃(µ, I). Hence

(52b)
∑
I∈Iµ

κ(µ,I)>L(I)

2L(I)−κ(µ,I)γ2
µ,I . λ

∑
I∈Iµ

|I|1/2γµ,I .

Now combining (51) with (52a), (52b) completes the proof of (48).

Proof of (49). This proof follows the lines of that of (48). Notice that the
conditions ` ≥ κ(µ, I) + k ≥ L(I) + k imply that ` ≥ 0. Now

W2,∗(x) ≤ ∑
n,`

n≥max{0,`+2}

(∑
k

∫∫
Wn,l
k

∣∣∣ ∑
µ,I:I∈Iµ

κ(µ,I)<−k+`

PkTk,2b
µ,I
k (x, s, t)

∣∣∣2ds dt)1/2

and so

‖W2,∗‖2 ≤ ∑
n,`

n≥max{0,`+2}

(∑
k

∫∫
Wn,l
k

∥∥∥ ∑
µ,I:I∈Iµ

κ(µ,I)<−k+`

PkTk,2b
µ,I
k (·, s, t)

∥∥∥2

2
ds dt

)1/2
.

By (28c)

‖W2,∗‖22 .
∑
n≥0

2−n(2α−1)
∑
`≥0

2−`
∑
k

∥∥∥ ∑
µ,I:I∈Iµ

κ(µ,I)<−k+`

bµ,Ik

∥∥∥2

2

.
∑
`≥0

2−`
∑
k

∑
µ,I:I∈Iµ

κ(µ,I)<−k+`

∑
J∈Jµk
I(J)=I

∥∥1JLkf∥∥2

2
,
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which implies

‖W2,∗‖22 .
∑
k

∑
µ,I:
I∈Iµ

2−k−κ(µ,I)
∑
J∈Jkµ
I(J)=I

‖1JLkf‖22 .
∑
µ,I:
I∈Iµ

2L(I)−κ(µ,I)γ2
µ,I

and this expression has been already estimated by Cλ
∑

µ,I |I|1/2γµ,I , by (51),

(52a) and (52b). This finishes the proof of (49).

Proof of (50). We now take advantage of the fact that the L2 bounds for
Tk,1 in (28b) are somewhat better then the corresponding bounds for Tk,2
in (28c). This allows us to invoque a straightforward L1 estimate for W1 as
opposed to the L2 arguments used for V∗ and W2,∗. We have

‖W1‖1

=
∥∥∥(∫∫ ∣∣∣ ∑

n,`:
n≥max{0,`+2}

∑
k:(s,t)∈Wn,`

k

∑
µ,I:I∈Iµ

L(I)<−k+n

PkTk,1b
µ,I
k (·, s, t)

∣∣∣2ds dt)1/2∥∥∥
1

.
∑
n,`:

n≥max{0,`+2}

∑
µ,I:
I∈Iµ

∑
k:L(I)−n<−k≤L(I)

∥∥∥(∫∫
Wn,`
k

∣∣∣PkTk,1bµ,Ik (·, s, t)
∣∣∣2ds dt)1/2∥∥∥

1
.

Now observe that the expression inside ‖ · · · ‖1 is supported in an interval of
length 2−k+n+5, concentric with I. Hence, by the Cauchy-Schwarz inequality
and Fubini

‖W1‖1 .∑
n,`:

n≥max{0,`+2}

∑
µ,I:
I∈Iµ

∑
L(I)−n<
−k≤L(I)

2
n−k
2

(∫∫
Wn,`
k

∥∥PkTk,1bµ,Ik (·, s, t)
∥∥2

2
ds dt

)1/2
.

By (28b),

‖W1‖1 .
∑
n,`:

n≥max{0,`+2}

2`/22−n(α+ 1
2

)
∑
µ,I:
I∈Iµ

∑
L(I)−n<
−k≤L(I)

2
n−k
2 ‖bµ,Ik ‖2

.
∑
n≥0

2−n(α−1/2)
∑
µ,I:
I∈Iµ

∑
−k≤L(I)

2−(k+L(I))/2|I|1/2‖bµ,Ik ‖2

and it follows easily that

‖W1‖1 .
∑
µ

∑
I∈Iµ

|I|1/2γµ,I ,

as claimed. �
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8. Lp estimates

8.1. Proof of Theorem 1.1, via estimates on Hardy spaces. The lower bounds
have already been established in §5. For the upper bounds we need to distin-
guish the case 1 < p < 2 (for which the result is an immediate consequence
of what we have already proved) and the case 2 < p <∞.

8.1.1. The case 1 < p < 2. For the upper Lp bounds we note that

(53) ‖Sα(D−αf)‖Lp ≤ Cp‖f |Lp , 1 < p < 2,

follows by real interpolation ([7]) from the already proved bounds

‖Sα(D−αf)‖L1,∞ . ‖f |H1 ,

‖Sα(D−αf)‖L2 . ‖f |L2 .

8.1.2. The case 2 < p < ∞. Consider the operator T acting on the H =
L2(R× R) valued functions F by

(54) T F (x) =

∫∫
|t|≤|s|

s−1∆−sD−αF (x, s, t)− t−1∆−tD−αF (x, s, t)

|s− t|α
ds dt .

and observe that (53) for 2 ≤ p <∞ follows by duality from

(55) ‖T F‖Lp ≤ Cp‖F‖Lp(H), 1 < p ≤ 2.

This can be deduced by real interpolation from

(56) ‖T F‖L2 . ‖F‖L2(H)

(which is equivalent to the case p = 2 of (53)) and

Theorem 8.1.

‖T F‖L1,∞ . ‖F‖H1(H).

This result follows from

(57) meas({x : |T F (x)| > λ})

≤ C

λ

∥∥∥(∑
k∈Z

sup
|h|≤2−k

∫∫
|LkF (·+ h, s, t)|2ds dt

)1/2∥∥∥
1

where the L1 norm on the right hand side involves a version of the maximal
square function SF in (32), but for H-valued functions F . More precisely,
in (31) one should replace the absolute value by the norm in H. Then
Peetre’s estimate (33) holds in this context. The proof of (57) will be omitted
since it is essentially the same as the proof of Theorem 1.2, with appropriate
notational modifications.
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8.2. An alternative approach to Theorem 1.1. There is an alternative (more
straightforward and direct, but not less lengthy) approach to Theorem 1.1
which bypasses Theorem 1.2.

To be specific we let φ be a C∞ function supported in {ξ : 1/2 < |ξ| ≤ 2}
and let Φ = F−1[φ]. Let Kk(x, s, t) be defined by

K̂k(ξ, s, t) = 2−kα|s− t|−αφ(2−k|ξ|)
(eisξ − 1

s
− eitξ − 1

t

)
.

By Littlewood-Paley theory one reduces the proof of Theorem 1.1 to the
following Lp inequalities for 1 < p < 2:∥∥∥(∑

k∈Z

∫∫
|t|≤|s|

∣∣∣ ∫ Kk(·−y, s, t)fk(y)dy
∣∣∣2dsdt)1/2∥∥∥

p
≤ Cp

∥∥∥(∑
k

|fk|2
)1/2∥∥∥

p
,

and∥∥∥(∑
k∈Z

∣∣∣ ∫∫
|t|≤|s|

∫
Kk(· − y, s, t)Fk(y, s, t)dy ds dt

∣∣∣2)1/2∥∥∥
p

≤ Cp
∥∥∥(∑

k

∫∫
|Fk(·, s, t)|2ds dt

)1/2∥∥∥
p
.

One decomposes, for each k, the half plane {|t| ≤ |s|} as a union of Vn,lk and

Wn,`
k , as in §6. One then aims to prove, for 1 < p ≤ 2, that there is ε(p) > 0,

such that

(58a)
∥∥∥(∑

k∈Z

∫∫
Vn,lk

∣∣∣ ∫ Kk(· − y, s, t)fk(y)dy
∣∣∣2ds dt)1/2∥∥∥

p

≤ Cp2−(|n|+|l|)ε(p)
∥∥∥(∑

k

|fk|2
)1/2∥∥∥

p
,

(58b)
∥∥∥(∑

k∈Z

∫∫
Wn,`
k

∣∣∣ ∫ Kk(· − y, s, t)fk(y)dy
∣∣∣2ds dt)1/2∥∥∥

p

≤ Cp2−(|n|+|l|)ε(p)
∥∥∥(∑

k

|fk|2
)1/2∥∥∥

p
,

and also the dual versions (with H = L2(R× R))

(59a)
∥∥∥(∑

k∈Z

∣∣∣ ∫∫
Vn,lk

∫
Kk(· − y, s, t)Fk(y, s, t)dy ds dt

∣∣∣2)1/2∥∥∥
p

≤ Cp2−(|n|+|l|)ε(p)
∥∥∥(∑

k

|Fk|2H
)1/2∥∥∥

p
,
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(59b)
∥∥∥(∑

k∈Z

∣∣∣ ∫∫
Wn,`
k

∫
Kk(· − y, s, t)Fk(y, s, t)dy ds dt

∣∣∣2)1/2∥∥∥
p

≤ Cp2−(|n|+|`|)ε(p)
∥∥∥(∑

k

|Fk|2H
)1/2∥∥∥

p
.

For p = 2 such estimates follow from §6. For p = 1 one proves slightly weaker
L1 → L1,∞ inequalities, with constants O(1 + |n|+ |l|) and O(1 + |n|+ |`|),
respectively. These follow if one checks the Hörmander condition on the
kernel Kk, cf. [8] and [16], namely

(60a)

∫
|x|≥2h

(∑
k∈Z

∫∫
Vn,lk

∣∣Kk(x+ h, s, t)−Kk(x, s, t)|2ds dt
)1/2

dx

. 1 + |n|+ |l|
and

(60b)

∫
|x|≥2h

(∑
k∈Z

∫∫
Wn,`
k

∣∣Kk(x+ h, s, t)−Kk(x, s, t)|2ds dt
)1/2

dx

. 1 + |n|+ |`| .

In fact slightly better bounds than (60a), (60b) can be proved, but they
are not good enough to sum in all the parameters (n, l), (n, `), respectively.
Inequalities (60a), (60b) can be established by straightforward L1 and L2

estimates used earlier; we shall not include the details. One can interpolate
the weak type (1, 1) inequalities implied by (60a), (60b) and the improved
L2 results to show the Lp inequalities (58) and (59), and these yield a proof
of Theorem 1.1.

9. Pointwise differentiability

Let f ∈ L2(R). A classical result of Stein and Zygmund [18], [16, ch.
VIII] says that f is differentiable at almost every point x ∈ R for which
there exists δ = δ(x) > 0 such that

(61) sup
|t|<δ

∣∣∣∣f(x+ 2t)− f(x)

2t
− f(x+ t)− f(x)

t

∣∣∣∣ <∞
and

(62)

∫
|t|<δ

∣∣∣f(x+ 2t)− f(x)

2t
− f(x+ t)− f(x)

t

∣∣∣2 dt|t| <∞.
Conversely, for almost every point x ∈ R where f is differentiable there
exists δ = δ(x) > 0 such that (62) holds. Notice that (61) is the Zygmund
condition at x in disguise.

The purpose of this section is to discuss analogous results when the inte-
gral in (62) is replaced by local versions of Sαf for α = 1, the square function
of the previous sections. We drop the subscript and write Sf ≡ S1f .
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9.1. Preliminary considerations.

9.1.1. Marcinkiewicz integrals. The following classical result on Marcinkiewicz
integrals is a crucial tool in proving results on pointwise differentiation.

Let F be a closed set of positive measure, and fix λ > 0. Let

I(λ)(x) :=

∫ x+1

x−1

distλ(y, F )

|x− y|1+λ
dy.

Then one proves [16, p.15] that

(63) I(λ)(x) <∞ for almost every x ∈ F.

9.1.2. Pointwise comparison with a related square function. Given f ∈ L2(R)
and m ∈ R, consider the square functions Qf defined for x ∈ R by

Qf(x) =
(∫

1<|m|≤2

∫
R

∣∣∣f(x+mt)−f(x+t)

(m− 1)t
− f(x+t)−f(x)

t

∣∣∣2 dt|t| dm)1/2
.

We shall use the identity

(64)
f(x+mt)− f(x)

mt
− f(x+ t)− f(x)

t

=
m− 1

m

(f(x+mt)− f(x+ t)

(m− 1)t
− f(x+ t)− f(x)

t

)
to show that Qf and Sf are equivalent.

Lemma 9.1. There exists a constant C > 0 such that

C−1Qf(x) ≤ Sf(x) ≤ CQf(x), x ∈ R, f ∈ L2(R).

Proof. Fix u ∈ R and N ≥ 1. Since

f(x+ uN t)− f(x)

uN t
− f(x+ t)− f(x)

t

=
N∑
j=1

f(x+ ujt)− f(x)

ujt
− f(x+ uj−1t)− f(x)

uj−1t
,

Schwarz’s inequality gives∣∣∣∣f(x+ uN t)− f(x)

uN t
− f(x+ t)− f(x)

t

∣∣∣∣2
≤ N

N∑
j=1

∣∣∣f(x+ ujt)− f(x)

ujt
− f(x+ uj−1t)− f(x)

uj−1t

∣∣∣2.
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Hence, with G1,m as in (9),

G1,uN f(x)2 ≤ N
N∑
j=1

∫
R

∣∣∣f(x+ ujt)− f(x)

ujt
− f(x+ uj−1t)− f(x)

uj−1t

∣∣∣2 dt|t|
= N2G1,uf(x)2.

Fix 0 < ε < 1. We perform the change of variable m = uN and then estimate∫ 2N

(1+ε)N
G1,mf(x)2 dm

(m− 1)2
=

∫ 2

1+ε
G1,uN f(x)2 NuN−1

(uN − 1)2
du

≤ N
∫ 2

1+ε
G1,uN f(x)2 1

uN−1

du

(u− 1)2
≤ N3

(1 + ε)N−1

∫ 2

1+ε
G1,uf(x)2 du

(u− 1)2
.

A similar argument gives∫ −(1+ε)N

−2N
G1,mf(x)2 dm

(m− 1)2
≤ N3

(1 + ε)N−1

∫ −1−ε

−2
G1,uf(x)2 du

(u− 1)2
.

Thus ∫
|m|≥2

G1,mf(x)2 dm

(m− 1)2
.
∫

1<|m|≤2
G1,mf(x)2 dm

(m− 1)2
.

By the identity (10) we get

Sf(x)2 ≈
∫

1<|m|≤2
G1,mf(x)2 dm

(m− 1)2

and the asserted equivalence follows immediately from the identity (64). �

9.1.3. An inequality for functions in the Zygmund class. For the proof of
Theorems 1.4 and 9.3 we need the following.

Lemma 9.2. Let f ∈ Λ∗. Then there is a constant C such that

(65) sup
x∈R

sup
|t|≤1

∣∣∣f(x+mt)− f(x)

mt
− f(x+ t)− f(x)

t

∣∣∣
≤ C‖f‖Λ∗ |m− 1|(1 + log(|m− 1|−1)) ,

for 1 < |m| ≤ 2.

Proof. We shall use that divided differences of functions in Λ∗ satisfy a mild
regularity property, namely

(66)
∣∣∣f(x+ t)− f(x)

t
− f(x+ s)− f(x)

s

∣∣∣ ≤ C‖f‖Λ∗
for x, t, s ∈ R with |s|/2 ≤ |t| ≤ |s|, see [5, Lemma 2]. This implies in
particular the easier version of (73) where the sup is just taken over m ∈
[−2,−1].
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Now if 1 < m ≤ 2 we apply the crucial identity (64) to gain the factor
m− 1; we then see that it suffices to show, for any x, t ∈ R and 1 < m ≤ 2,

(67)
∣∣∣f(x+mt)− f(x+ t)

(m− 1)t
− f(x+ t)− f(x)

t

∣∣∣ . ‖f‖Λ∗(1 + log
1

m− 1
).

Let N be the positive integer satisfying 1 < 2N (m− 1) ≤ 2. Since∣∣∣f(x+ t+ 2k−1(m− 1)t))− f(x+ t)

2k−1(m− 1)t
− f(x+ t+ 2k(m− 1)t)− f(x+ t)

2k(m− 1)t

∣∣∣
is bounded by C‖f‖Λ∗ , uniformly in x, t, k,m, we obtain, summing in k =
1, . . . , N ,∣∣∣f(x+mt)− f(x+ t)

(m− 1)t
− f(x+ t+ 2N (m− 1)t)− f(x+ t)

2N (m− 1)t

∣∣∣ . N‖f‖Λ∗ .
This gives (67). �

9.2. Differentiability versus finiteness of a square-function: an example. We
shall consider for any δ > 0 the local version Sloc,δ of S, defined by

(68) Sloc,δf(x)

=
(∫∫

|t|+|s|<δ

∣∣∣f(x+ t)− f(x)

t
− f(x+ s)− f(x)

s

∣∣∣2 ds dt

|s− t|2
)1/2

.

We show that the finiteness of Sloc,δf(x) is generally not a necessary con-
dition for differentiability. Specifically we present an example of a function f
differentiable at almost every point of a set E of positive measure such that
for any δ > 0,

Sloc,δf(x) =∞, for a.e. x ∈ E .

Hence an analogue of the result of Stein and Zygmund in this context does
not hold without additional assumptions on the function f (such as for
example the Zygmund class condition in Theorem 1.4).

Let E ⊂ R be a closed set of positive Lebesgue measure without interior
points. Write R\E = ∪Ij , where Ij = (cj − bj , cj + bj) are pairwise disjoint

open intervals. We denote by Ihalf
j = (cj − bj/2, cj + bj/2) the inner half of

Ij . Let f : R→ R satisfying

(69) |f(x)| ≤ dist(x,E), x ∈ R

and, for each j,

(70)

∫ δ

0

∣∣∣∣f(y + u)− f(y)

u

∣∣∣∣2 du =∞ for all y ∈ Ihalf
j .
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The change of variable s = mt and identity (70) gives

S2
loc,δf(x)

≈
∫
|t|<δ

∫
|m|>1

(
f(x+mt)− f(x+ t)

(m− 1)t
− f(x+ t)− f(x)

t

)2

dm
dt

|t|
.

We apply now Stepanov’s Theorem ([16, VIII, Thm.3] or [9]). It says that f
is differentiable at almost every point in E if and only if f(x0 +y)−f(x0) =
O(|y|) as |y| → 0 for almost every x0 ∈ E. Hence condition (69) implies
that f is differentiable at almost every point of E. Moreover (69) and the
Marcinkiewicz inequality (63) for λ = 2 imply∫

|t|<δ

(
f(x+ t)

t

)2 dt

|t|
<∞, for a.e. x ∈ E.

On the other hand, the change of variable (m− 1)t = u gives∫
|t|<δ

∫
|m|>1

(
f(x+mt)− f(x+ t)

(m− 1)t

)2

dm
dt

|t|

≥
∫
|t|<δ

∫ 1

0

(
f(x+ t+ u)− f(x+ t)

u

)2

du
dt

|t|2
.

Now, for fixed δ > 0, for almost every x ∈ E the interval (x − δ, x + δ)
contains an interval Ij . Here we use the assumption that E is a closed set
with no interior points. Hence there exists a set of points t ∈ (−δ, δ) of
positive measure such that x + t ∈ Ihalf

j and condition (70) shows that the

last integral diverges. Hence Sloc,δf(x) =∞ for almost every x ∈ E.

9.3. The main result on pointwise differentiability. We shall now consider
functions that are locally in the Zygmund class, i.e. satisfy condition (71)
below. This condition clearly holds when f is differentiable at x, but it is
substantially weaker.

Theorem 9.3. Let f ∈ L2
loc(R).

a) The function f is differentiable at almost every point x ∈ R where the
following two conditions hold

(71) lim sup
|h|→0

∣∣∣∣f(x+ 2h)− f(x)

2h
− f(x+ h)− f(x)

h

∣∣∣∣ <∞
and there exists δ = δ(x) > 0 such that

(72)

∫∫
|s|+|t|<δ

∣∣∣∣f(x+ s)− f(x)

s
− f(x+ t)− f(x)

t

∣∣∣∣2 ds dt

|s− t|2
<∞.

b) For almost every point x ∈ R where f is differentiable and

(73) lim sup
|t|→0

sup
1<|m|≤2

∣∣∣f(x+mt)−f(x)
mt − f(x+t)−f(x)

t

∣∣∣
|m− 1|(1 +

∣∣ log 1
|m−1|

∣∣) <∞,
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there exists δ = δ(x) > 0 such that

(74)

∫∫
|s|+|t|<δ

∣∣∣∣f(x+ s)− f(x)

s
− f(x+ t)− f(x)

t

∣∣∣∣2 ds dt

|s− t|2
<∞.

Proof of Theorem 1.4. One direction is immediate by a) of Theorem 9.3.
For the other direction one needs to verify that condition (73) holds for any
f ∈ Λ∗. But this was proved in Lemma 9.2. �

Proof of Theorem 9.3. (a) Given δ > 0, let E = Eδ be the set of points
x ∈ R for which∫∫

|t|+|s|<δ

∣∣∣∣f(x+ t)− f(x)

t
− f(x+ s)− f(x)

s

∣∣∣∣2 ds dt

|s− t|2
< δ−1

and

sup
|h|<δ

∣∣∣∣f(x+ 2h)− f(x)

2h
− f(x+ h)− f(x)

h

∣∣∣∣ < δ−1.

We show that for any fixed δ > 0, the function f is differentiable at almost
every point of Eδ. We can assume that f vanishes outside an interval I
of length δ. For x ∈ Eδ ∩ I we have Sf(x) < ∞ and Lemma 3.1 gives
G1f(x) = 2G1,2f(x) < ∞. Now, the Stein–Zygmund result gives that f is

differentiable at almost every point of Eδ ∩ I. The assertion a) follows if we

consider the union ∪j>1E
1/j .

(b) Given δ > 0, let E(δ) be the set of points x ∈ R for which

|f(x+ t)− f(x)| ≤ δ−1|t|,
holds for 0 ≤ |t| ≤ δ and∣∣∣f(x+mt)−f(x)

mt
− f(x+t)−f(x)

t

∣∣∣ ≤ δ−1|m−1|
∣∣1+ log 1

|m−1|
∣∣

holds when 1 < |m| ≤ 2, and 0 < |t| ≤ δ. It suffices to show that condi-
tion (74) holds for almost every point x ∈ E(δ) for each given δ (then one
takes the union ∪jE(1/j)) Without loss of generality we can assume that
E(δ) is compact and that f vanishes outside an interval I of length δ.

Given ε > 0, we prove that the set of all x ∈ E(δ) where (74) fails is of
measure less than ε. We can find a compact set F ⊂ E(δ) with |E(δ)\F | < ε
and a decomposition f = g+b where g is Lipschitz on R and b vanishes on F
([16, p. 248]). Moreover we can also assume that g and b vanish outside I∗,
the double interval with the same center. Applying the L2 inequality for Sg
we get Sg(x) <∞ for almost every x ∈ R. Hence we need to show that

Sb(x) <∞ for almost every x ∈ F ∩ I.

Since g is Lipschitz on R we get

(75) sup
x∈R

sup
|t|≤δ

|g(x+ t)− g(x)|
|t|

≤C1,
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and since the Lipschitz space is contained in the Zygmund class we also have
by Lemma 9.2

(76) sup
x∈R

sup
|t|≤δ

∣∣∣g(x+mt)− b(x)

mt
− g(x+t)−b(x)

t

∣∣∣ ≤ C2|m−1|(1+log 1
|m−1|)

for 1 ≤ |m| ≤ 2.

Therefore the function b satisfies, for some positive constant A,

(77) sup
|t|≤δ

|b(x+ t)− b(x)|
|t|

≤A,

and

(78) sup
|t|≤δ

∣∣∣b(x+mt)− b(x)

mt
− b(x+t)−b(x)

t

∣∣∣ ≤ A|m− 1|(1 + log 1
|m−1|)

for all x ∈ F and 1 ≤ |m| ≤ 2.

For the remainder of this proof implicit constants in inequalities of the
form . may depend on A.

Consider a Whitney decomposition of the open set I∗\I ∩ F , that is,
I∗\I ∩ F = ∪Ij , where {Ij} are pairwise disjoint intervals with

|Ij | ≤ dist(Ij , I ∩ F ) ≤ 4|Ij |.

Set Ij = [aj , bj ] and let xj = (aj + bj)/2 denote the center of Ij . We let
I∗j = (xj − |Ij |, xj + |Ij |) denote the open double interval. By (63)

(79)
∑
j

|Ij |1+λ

|x− xj |1+λ
. Iλ(x) <∞

for almost every x ∈ I ∩ F . The plan of the proof is to show that there
exists λ > 0 such that

|Sb(x)|2 .
∑
j

|Ij |1+λ

|x− xj |1+λ
,

for almost every x ∈ F ∩ I.

By part (a) of Lemma 9.1 we have Sb(x) ≈ Qb(x). Write

L = {m ∈ R : 1 < |m| ≤ 2}.
Then |Qb(x)|2 . A(x) +B(x), where

A(x) =

∫
R

∣∣∣∣b(x+ t)− b(x)

t

∣∣∣∣2 dt|t| ,
B(x) =

∫
L

∫
R

∣∣∣∣b(x+mt)− b(x+ t)

(m− 1)t

∣∣∣∣2 dt|t| dm.
We need to show that A(x) <∞, B(x) <∞ for almost every x ∈ F ∩ I. In
what follows we will always assume x ∈ F ∩ I.
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Since b|F ≡ 0, condition (77) gives that sup
x∈Ij
|b(x)| . |Ij | and hence

(80)

∫
Ij

|b|2 . |Ij |3.

Therefore

A(x) =

∫
R

b(y)2

|y − x|3
dy .

∑
j

|Ij |3

|xj − x|3

which by (79) is finite for almost every x ∈ F ∩ I.

Now B(x) = C(x) +D(x) where

C(x) =

∫
L

∫
F−x

∣∣∣b(x+mt)

(m− 1)t

∣∣∣2 dt|t| dm,
D(x) =

∫
L

∫
R\(F−x)

∣∣∣b(x+mt)− b(x+ t)

(m− 1)t

∣∣∣2 dt|t| dm.
For each m ∈ L and j = 1, 2, . . . , let Ij(m) =

Ij−x
m . We have

C(x) =

∫
L

∑
j

∫
t∈(F−x)∩Ij(m)

∣∣∣b(x+mt)

(m− 1)t

∣∣∣2 dt|t| dm.
Since b|F ≡ 0, condition (77) gives that sup{|b(x+mt)| : t ∈ Ij(m)} . |Ij |.
Hence

C(x) .
∫
L

∑
j

|Ij |2
(∫

t∈(F−x)∩Ij(m)

dt

|t|3
) dm

(m− 1)2
.

Now for each t ∈ F − x we have t ∈ Ij(m) if and only if m ∈ Ij(t). Write
Ij = (aj , bj). Then Ij(t) = ((aj − x)/t, (bj − x)/t) and∫

Ij(t)

dm

(m− 1)2
≤
∣∣∣∣ t

aj − x− t
− t

bj − x− t

∣∣∣∣ = |t| |Ij |
|aj − x− t||bj − x− t|

.

Since x + t ∈ F we have that both |aj − (x + t)| and |bj − (x + t)| are
comparable to |xj − (x+ t)|. Then∫

Ij(t)

dm

(m− 1)2
.

|t||Ij |
|xj − (x+ t)|2

.

Since x+ t ∈ F we have |x+ t−xj | & |Ij |. Moreover from m ∈ Ij(t), |m| ≤ 2
and x ∈ F we have |t| ≥ |aj − x|/2 ≈ |x− xj |. Fubini’s Theorem gives

C(x) .
∑
j

|Ij |3
∫
|t|&|x−xj |
|x+t−xj |&|Ij |

dt

|xj − (x+ t)|2|t|2

.
∑
j

|Ij |3

|x− xj |2

∫
|x+t−xj |&|Ij |

dt

|xj − (x+ t)|2
.
∑
j

|Ij |3

|x− xj |3
,

which by (79) is finite a.e. x ∈ F .
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Next we estimate D(x). By Fubini’s Theorem,

D(x) =
∑
j

∫ bj−x

aj−x

∫
L

∣∣∣b(x+mt)− b(x+ t)

(m− 1)t

∣∣∣2 dmdt

|t|
=
∑
j

Ej(x) + Fj(x),

where

Ej(x) =

∫ bj−x

aj−x

∫
{m∈L:x+mt∈F}

∣∣∣ b(x+ t)

(m− 1)t

∣∣∣2 dmdt

|t|
,

Fj(x) =

∫ bj−x

aj−x

∫
{m∈L:x+mt/∈F}

∣∣∣b(x+mt)− b(x+ t)

(m− 1)t

∣∣∣2 dmdt

|t|
.

Note that since {Ij} are Whitney intervals, x+t ∈ Ij and x+mt ∈ F implies
that |m− 1| & |Ij |/|x− xj |. Hence

Ej(x) .
∫ bj−x

aj−x

|b(x+ t)|2

|t|3
|x− xj |
|Ij |

dt.

Since b|F ≡ 0 condition (77) gives that |b(x+t)| . |Ij | for t ∈ (aj−x, bj−x).
We have |t| ≈ |x−xj | for any t ∈ (aj−x, bj−x) because the Ij are Whitney
intervals.

It follows that

Ej(x) .
|Ij |2

|x− xj |2

and ∑
j

Ej(x) .
∑
j

|Ij |2

(x− xj)2
,

which by (79) is finite a.e. x ∈ F .

Let us now estimate Fj(x). Split Fj(x) = Gj(x) +Hj(x) where

Gj(x) =

∫ bj−x

aj−x

∫
{m∈L:x+mt∈I∗j }

∣∣∣b(x+mt)− b(x+ t)

(m− 1)t

∣∣∣2 dmdt

|t|
,

Hj(x) =

∫ bj−x

aj−x

∑
k 6=j

∫
{m∈L:x+mt∈Ik\I∗j }

∣∣∣b(x+mt)− b(x+ t)

(m− 1)t

∣∣∣2 dmdt

|t|
.

Recall that I∗j denotes the interval of double length centered at xj . Now,

the assumption (73) and identity (64) give that∣∣∣b(x+mt)− b(x+ t)

(m− 1)t
− b(x+ t)− b(x)

t

∣∣∣ . ∣∣∣ ln 1

|m− 1|

∣∣∣.
Hence Gj(x) is bounded by a fixed multiple of∫ bj−x

aj−x

∫
{m∈L:x+mt∈I∗j }

ln2 1

|m− 1|
dm

dt

|t|
+

∫ bj−x

aj−x

∣∣∣b(x+ t)− b(x)

t

∣∣∣2 dt|t| .
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Since {Ij} are Whitney intervals, the fact that x + t ∈ Ij and x + mt ∈ I∗j
implies that |m− 1| . |Ij |

|x−xj | . So∫
{m∈L:x+mt∈I∗j }

ln2 1

|m− 1|
dm .

|Ij |
|x− xj |

ln2 |Ij |
|x− xj |

and we deduce that∫ bj−x

aj−x

∫
{m∈L:x+mt∈I∗j }

ln2 1

|m− 1|
dm

dt

|t|
.

|Ij |2

|x− xj |2
ln2 |Ij |
|x− xj |

.

Because {Ij} are Whitney intervals |Ij | . |x − xj | and ln2(|Ij |/|x − xj |) .
|x− xj |α/|Ij |α for any α > 0, we deduce∫ bj−x

aj−x

∫
{m∈L:x+mt∈I∗j }

ln2 1

|m− 1|
dm

dt

|t|
.

|Ij |2−α

|x− xj |2−α
.

As before ∫ bj−x

aj−x

∣∣∣b(x+ t)− b(x)

t

∣∣∣2 dt|t| . |Ij |3

|x− xj |3
.

We obtain ∑
j

Gj(x) .
∑
j

|Ij |2−α

|x− xj |2−α
,

where 0 < α < 1, which by (79) is finite a.e. x ∈ F .

It remains to estimate Hj(x) for x ∈ F ∩ I. Observe that |t| ∼ |x− xj | if
t ∈ (aj − x, bj − x). Since 1 < |m| ≤ 2 if the set

Jk = {m ∈ L : x+mt ∈ Ik\I∗j }

is nonempty we get that |x− xk| ' |x− xj |. Now we have∫
Jk

dm

(m− 1)2
.
∣∣∣(ak − x

t
− 1
)−1
−
(bk − x

t
− 1
)−1∣∣∣

=
|t||bk − ak|

|ak − x− t||bk − x− t|
≈ |t||Ik|

(xk − xj)2
.

Since b|F ≡ 0, condition (77) gives |b(x+mt)| . |Ik| and |b(x+ t)| . |Ij | for
any t ∈ (aj − x, bj − x) and m ∈ Jk. Now, Fubini’s Theorem gives

Hj(x) .
∑

k 6=j:|x−xk|≈|x−xj |

(|Ik|2 + |Ij |2)
|Ik|

(xk − xj)2

∫ bj−x

aj−x

dt

|t|2
.

Denote by A(j) the set of indices k 6= j such that |x − xk| ≈ |x − xj |.
Since {Ij} are Whitney intervals

Hj(x) .
∑

k∈A(j)

(|Ik|2 + |Ij |2)|Ik||Ij |
(xk − xj)2(x− xj)2
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and since ∑
k∈A(j)

|Ik|
(xk − xj)2

.
1

|Ij |
,

we get ∑
k∈A(j)

|Ij |3|Ik|
(xk − xj)2(x− xj)2

.
|Ij |2

(x− xj)2
.

We have∑
j

∑
k∈A(j)

|Ik|3|Ij |
(xk − xj)2(x− xj)2

∼=
∑
k

∑
j∈A(k)

|Ik|3|Ij |
(xk − xj)2(x− xk)2

and ∑
j∈A(k)

|Ij |
(xk − xj)2

.
1

|Ik|
.

Therefore ∑
j

∑
k∈A(j)

|Ik|3|Ij |
(xk − xj)2(x− xj)2

.
∑
k

|Ik|2

(x− xk)2

and so ∑
j

Hj(x) .
∑
j

|Ij |2

(x− xj)2

which by (79) is finite a.e. x ∈ F . This finishes the proof. �
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[22] J. Verdera, L2-boundedness of the Cauchy integral and Menger curvature. Harmonic
analysis and boundary value problems (Fayetteville, AR, 2000), 139–158, Contemp.
Math., 277, Amer. Math. Soc., Providence, RI, 2001.

J. Cuf́ı, A. Nicolau, J. Verdera, Departament de Matemàtiques, Universitat
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