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Abstract

The main goal of this paper is to present an alternative, real vari-
able proof of the T (1)-Theorem for the Cauchy Integral. We then
prove that the estimate from below of analytic capacity in terms of
total Menger curvature is a direct consequence of the T (1)-Theorem.
An example shows that the L∞-BMO estimate for the Cauchy Integral
does not follow from L2 boundedness when the underlying measure is
not doubling.

Introduction

In this paper we present an alternative proof of the T (1)-Theorem for the
Cauchy Integral Operator with respect to an underlying measure which is
not assumed to satisfy the standard doubling condition. This result has been
proved recently in [T1] and, independently, in [NTV1] where fairly general
Calderón-Zygmund operators are considered. The proof in [T1] exploits a
tool specific to the Cauchy kernel, called Menger curvature (see section 1 for
the definition) and is based on two main ingredients: a good λ inequality
and a special argument, which is designed to make the transition from an
L2 estimate to a weak (1, 1) inequality. This argument involves analytic
capacity (concretely, the inequality (18) below) and consequently is of a
complex analytic nature. Our approach avoids use of complex analysis. In
fact, our strategy consists in finding in any given disc a “big piece”, in the
sense of Guy David [D1, D2], on which the operator is bounded on L2. We
then plug in the standard good λ inequality to control the maximal Cauchy
Integral by the centered maximal operator, as in [D1, D2]. In this second step
one only needs to check that the doubling condition is not really used in the
classical arguments. Thus our proof is actually reduced to the construction
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of a “big piece”, which turns out to be fairly simple because of the good
positivity properties of Menger curvature. We proceed now to state precisely
the main result.

Let µ be a positive Radon measure in the plane. Our goal is to estimate
the Cauchy integral operator on L2(µ). In view of the singularity of the
Cauchy kernel 1

z−ζ
we assume that µ satisfies the growth condition

(1) µ(D) ≤ Cr(D), for each disc D,

where r(D) stands for the radius of D and C is some positive constant
independent of D. Indeed, if µ has no atoms then (1) is necessary for the
L2(µ) boundedness of the Cauchy Integral [D2, p. 56]. We say that the
Cauchy integral operator is bounded on L2(µ) whenever for some positive
constant C one has

(2)

∫
|Cε(fµ)|2 dµ ≤ C

∫
|f |2 dµ, f ∈ L2(µ), ε > 0,

where

(3) Cε(fµ)(z) =

∫

|ζ−z|>ε

f(ζ)

ζ − z
dµ(ζ), z ∈ C.

Notice that the integral in (3) is absolutely convergent for each z, as can
readily be seen applying the Schwarz inequality and then using (1).

A necessary condition for (2) is obtained by taking as f the characteristic
function χD of a disc D and restricting the domain of integration in the left
hand side of (2) to D:

(4)

∫

D

|Cε(χDµ)|2 dµ ≤ Cµ(D), for each disc D, ε > 0.

The T (1)-Theorem for the Cauchy integral can now be stated as follows.

Theorem. Let µ be a positive Radon measure satisfying (1). Then (2) fol-
lows from (4).

We remark that if µ satisfies the doubling condition

(5) µ(2D) ≤ Cµ(D), for each disc D,

where 2D stands for the disc concentric with D of twice the radius, then (4)
is easily seen to be equivalent to requiring that Cε(µ) belongs to BMO(µ),
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uniformly in ε. Hence we recover the familiar condition in the standard
formulation of the T (1)-Theorem for the operator T = C [D2, p. 30]:

C(1) ≡ C(µ) belongs to BMO ≡ BMO(µ).

In the doubling context the Theorem can readily be proved using Menger
curvature and interpolation between H1 and BMO (see section 4).

In section 1 we gather some preliminaries including notation, terminology
and background. Section 2 contains the proof of the Theorem. In section 3 we
remark that the estimate from below for analytic capacity in terms of Merger
curvature (inequality (18) below) follows readily from the theorem by purely
real variable arguments. Section 4 shows that if the doubling condition (5)
fails then L2 boundedness of C does not imply the L∞-BMO estimate.

1 Preliminaries

Given three distinct points z1, z2, z3 ∈ C one has the identity [Me]

(6)
∑

σ

1

(zσ(2) − zσ(1))(zσ(3) − zσ(1))
= c(z1, z2, z3)

2

where the sum is taken over the six permutations of {1, 2, 3} and c(z1, z2, z3)
is the Menger curvatuve of the given triple, that is, the inverse of the radius
of the circumference passing through z1, z2 and z3. For a positive Radon
measure ν the quantity

c(ν)2 =

∫∫∫
c(z1, z2, z3)

2 dν(z1) dν(z2) dν(z3)

is called the total Menger curvature of ν or simply the curvature of ν. Note
that we have not defined c(z1, z2, z3) for triples where at least two of the
points are the same; for such triples we may set c(z1, z2, z3) = 0.

The first application of (6) to the L2 theory of the Cauchy Integral Op-
erator was a new proof of the L2 boundedness of the Cauchy Integral on
Lipschitz graphs, (see [V2] and [MV]). There we showed that the arc length
measure on an arc of a Lipschitz graph has finite Menger curvature.

Later on the identity (6) was used to obtain estimates from below for
analytic capacity [Me] and to describe uniform rectifiability via the mapping
properties of the Cauchy integral operator [MMV]. The results in [V2] or
[MV] were explicitly mentioned in [Me], pp. 828-829, but unfortunately no
reference was made to [V2] or [MV], which already existed in preprint form.
This has caused some misunderstanding of the real sequence of events and
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some inaccuracies in attributing the results. Impressive progress has been
made, using (6), in recent work by several authors [DM, JM, L, Ma, T1, T2,
T3], culminating in David’s solution of Vitushkin’s conjecture [D3].

In our estimates we will use two variants of the Hardy-Littlewood maximal
operator acting on a complex Radon measure ν, namely,

Mν(z) = sup
r>0

|ν|(D(z, r))

r
, z ∈ C,

and

Mµν(z) = sup
r>0

|ν|(D(z, r))

µ(D(z, r))
, z ∈ spt µ,

where D(z, r) is the open disc centered at z of radius r and spt µ is the closed
support of µ.

It follows from the Besicovitch covering Lemma that Mµ satisfies the weak
type estimate [J, p. 8]

(7) µ{z : Mµν(z) > t} ≤ Ct−1‖ν‖,
and since

Mν(z) ≤ CMµν(z), z ∈ spt µ,

because of (5), (7) also holds when Mµ is replaced by M .
Actually the weak type (1, 1) estimate for M is a consequence of the sim-

plest standard covering lemma [S, Lemma 1, p. 12] and so there is nothing
deep in it. Although we could work only with Mµ we prefer to keep the dis-
tinction between M and Mµ to emphasize those steps where the Besicovitch
covering lemma necessarily comes into play. Notice that (7) coupled with the
obvious L∞ estimate gives by interpolation the inequality

∫
Mµ(fµ)p dµ ≤ C

∫
|f |p dµ, 1 < p < ∞.

The letter C will denote either the Cauchy Integral Operator or a constant
which may be different at each occurrence and that is independent of the
relevant variables under consideration. The precise meaning of C will always
be clear from the context.

2 The proof

Let ν be a complex Radon measure. Set

(8) Cεν(z) =

∫

|ζ−z|>ε

dν(ζ)

ζ − z
, z ∈ C.
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The integral in (8) is absolutely convergent for all z provided ν is a finite
measure or, more generally, provided

(9)

∫
d|ν|(ζ)

1 + |ζ| < ∞.

Lemma 1. Let νj, j = 1, 2, 3 be three real Radon measures satisfying (9)
with ν replaced by νj, j = 1, 2, 3. Then

∑
σ

∫
Cε(νσ(1))Cε(νσ(2)) dνσ(3)

=

∫∫∫

Sε

c2(z1, z2, z3) dν1(z1) dν2(z2) dν3(z3) + R,

where the sum is taken over the permutations of {1, 2, 3},

Sε = {(z1, z2, z3) ∈ C3 : |z1 − z2| > ε, |z1 − z3| > ε and |z2 − z3| > ε}

and

|R| ≤ C
∑

σ

∫
Mνσ(2)(zσ(1))Mνσ(3)(zσ(1)) dνσ(1)(zσ(1)),

C being an absolute constant.

Proof. Set

Tε = {(z1, z2, z3) ∈ C3 : |z1 − z3| > ε and |z2 − z3| > ε},
Uε = {(z1, z2, z3) ∈ C3 : |z1 − z2| ≤ ε, |z1 − z3| > 2ε and |z2 − z3| > ε}

and

Vε = {(z1, z2, z3) ∈ C3 : |z1 − z2| ≤ ε, |z1 − z3| ≤ 2ε and |z2 − z3| > ε}.

Then

∫
Cε(ν1)Cε(ν2) dν3 =

∫∫∫

Tε

dν1(z1) dν2(z2) dν3(ν3)

(z1 − z3)(z2 − z3)

=

∫∫∫

Sε

· · ·+
∫∫∫

Uε

· · ·+
∫∫∫

Vε

· · · =
∫∫∫

Sε

· · ·+ Iε + IIε

5



where the last identity is a definition of Iε and IIε. To estimate Iε and IIε we
assume, without loss of generality, that the νj are positive measures. Then

|Iε| ≤ C

∫∫∫

Uε

dν1(z1) dν2(z2) dν3(z3)

|z1 − z3|2

≤ C

∫∫

|z1−z2|≤ε

ε−1Mν3(z1) dν1(z1) dν2(z2)

≤ C

∫
Mν2(z1)Mν3(z1) dν1(z1).

For IIε we write

|IIε| ≤ ε−2

∫∫∫

Vε

dν1 dν2 dν3

≤ Cε−1

∫∫

|z1−z2|≤ε

Mν3(z1) dν1(z1) dν2(z2)

≤ C

∫
Mν2(z1)Mν3(z1) dν1(z1).

Operating in a similar way for any σ and then summing over σ we get the
conclusion of the Lemma.

We apply Lemma 1 to ν1 = ν2 = fµ with f a (real function) in L2(µ)
and ν3 = χDµ with D a fixed disc. We then have

(10) 2

∫

D

|Cε(fµ)|2 dµ + 2 Re

∫
Cε(fµ)Cε(χDµ)f dµ

=

∫∫∫

Sε

c2(z, w, ζ)f(z)f(w)χD(ζ) dµ(z) dµ(w) dµ(ζ) + O

(∫
f 2 dµ

)
.

In particular taking f = χD one gets

6

∫

D

|Cε(χDµ)|2 dµ =

∫∫∫

Sε∩D3

c2(z, w, ζ) dµ(z) dµ(w) dµ(ζ) + O(µ(D)),

and thus

(11)

∫∫∫

D3

c2(z, w, ζ) dµ(z) dµ(w) dµ(ζ) ≤ Cµ(D),

provided (4) holds.
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It is worth pointing out that (11) was inexactly attributed in [NTV1,
p. 705]. Indeed, a first version of (11) appears in [V2] and [MV] and later on
in [MMV] in the form at hand.

We come now to the core of the argument that produces a “big piece”
inside a given disc D.

Set

c2
D(z) =

∫∫

D2

c2(z, w, ζ) dµ(w) dµ(ζ), z ∈ C.

By Chebischev

µ{z ∈ D : cD(z) > t or |Cε(χDµ)(z)| > t}

≤ t−2

(∫

D

c2
D(z) dµ(z) +

∫

D

|Cε(χDµ)|2 dµ

)
≤ Ct−2µ(D).

Hence, given 0 < θ < 1 (θ will be chosen later), there exists a compact
E ⊂ D such that

cD(z) ≤
√

C/θ and |Cε(χDµ)(z)| ≤
√

C/θ, z ∈ E,

and
µ(D\E) ≤ θµ(D).

Set, as in [T1],

k(z, w) =

∫

D

c2(z, w, ζ) dµ(ζ),

so that ∫

E

k(z, w) dµ(w) ≤ c2
D(z) ≤ C/θ, z ∈ E.

Since k(z, w) = k(w, z), Schur’s Lemma now gives that if f ∈ L2(E)
(= L2(E, dµ)) then

∣∣∣∣
∫∫∫

Sε

c2(z, w, ζ)f(z)f(w)χD(ζ) dµ(z) dµ(w) dµ(ζ)

∣∣∣∣

≤
∫
|f(z)|

∫
|f(w)|k(z, w) dµ(w) dµ(z) ≤ C

∫
f 2 dµ,

where C = C(θ) does not depend on ε.
Therefore from (10)

∫

D

|Cε(fµ)|2 dµ ≤ C

(∫

D

|Cε(fµ)|2
)1/2 (∫

f 2 dµ

)1/2

+ C

∫
f 2 dµ,
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and consequently

∫

D

|Cε(fµ)|2 dµ ≤ C

∫
f 2 dµ, f ∈ L2(E).

By duality this implies

(12)

∫

E

|Cε(fµ)|2 dµ ≤ C

∫
f 2 dµ, f ∈ L2(D).

We now need an appropriate Cotlar type inequality. For a complex Radon
measure ν satisfying (9) set, for z ∈ C,

C∗
ε (z) = sup

δ≥ε
|Cδν(z)|

and
C∗ν(z) = sup

ε>0
C∗

ε ν(z).

Lemma 2. Let µ and ν be positive Radon measures satisfying the growth
condition

µ(D) + ν(D) ≤ Cr(D), for each disc D,

and such that for some ε > 0

∫
|Cε(f dµ)|2 dν ≤ C

∫
|f |2 dµ, f ∈ L2(µ).

Then
C∗

ε (fµ)(z) ≤ C{Mν(|Cε(fµ)|2 dν)1/2 + Mν(|f |2 dµ)1/2}.
For a proof for the case µ = ν, which can be seen to work under our

hypothesis, we refer the reader to [T2, Lemma 3 and Theorem 4].
Combining (12) with Lemma 2 applied to ν = χEµ and µ = χDµ we get,

for each f ∈ L2(D),

µ{z ∈ E : C∗
ε (fµ)(z) > t} ≤ Ct−2

(∫

E

|Cε(fµ)|2 dµ +

∫
f 2 dµ

)
(13)

≤ Ct−2

∫
f 2 dµ.

We now want to have the above inequality at our disposal for a general
f ∈ L2(µ). This essentially means that, for each open disc D, Cε maps
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boundedly L2(Dc) into L2(D) with constant independent of ε. This is clear
if Cε is replaced by

C(fµ)(z) = lim
ε→0

Cε(fµ)(z), z ∈ D, f ∈ L2(Dc).

The reason is that, C(fµ) being holomorphic on D, we only need to apply
Carleson’s Theorem twice:

∫

D

|C(fµ)|2 dµ ≤ C

∫

∂D

|C(fµ)|2|dz| ≤ C

∫

Dc

|f |2 dµ.

However we wish to have a real variable proof, which could be extended to
Rn and n− 1 dimensional kernels. This can be done painlessly and in fact is
implicit in David’s paper [D1].

Lemma 3. Let ∆ be an open disc and let µ and ν be positive Radon measures
satisfying

µ(D) + ν(D) ≤ Cr(D), for each disc D,

and µ(∆C) = ν(∆) = 0.
Then ∫

C∗(fν)2 dµ ≤ C

∫
|f |2 dν, f ∈ L2(ν).

Proof. Assume, without loss of generality, that ∆ is centered at the origin
and let r be its radius. Given z ∈ ∆ let d be the distance from z to ∂∆. We
claim that

(14) C∗(fν)(z) ≤ C∗(fν)(w) + CM(fν)(w), |w − z| ≤ 2d.

Fix ε > 0. Assume first that ε < d. Then for |w − z| ≤ 2d,

|Cε(fν)(z)| = |Cd(fν)(z)| ≤ |C4d(fν)(z)|+ M(fν)(w).

The same inequality holds for d ≤ ε < 4d, so that we are left with the case
4d ≤ ε. Set f1 = χD(z,ε)f , f2 = f − f1. Thus, for |w − z| ≤ 2d,

|Cε(fν)(z)− Cε(f2ν)(w)| ≤ CM(fν)(w)

and
|Cε(f2ν)(w)− Cε(fν)(w)| ≤ CM(fν)(w)

because of standard simple estimates. Therefore the claim follows.
Set

F (w) = C∗(fν)(w) + CM(fν)(w).
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Using (14), the simplest covering lemma [S, Lemma 1, p. 12] and the growth
condition on µ, one proves that (see for example [S, p. 59–60])

µ{z ∈ ∆ : C∗(fν)(z) > t} ≤ C |{w ∈ ∂∆ : F (w) > t}| ,

where | · | denotes one dimensional Lebesgue measure. Then

∫

∆

C∗(fν)2(z) dµ(z) ≤ C

(∫

∂∆

C∗(fν)2(w)|dw|+
∫

∂∆

M(fν)2(w)|dw|
)

≤ C

∫
|f |2 dν

by [D1, Proposition 5, p. 164] and [D1, Proposition 3, p. 161].

Lemma 3 and (13) now give

(15) µ{z ∈ E : C∗
ε (fµ)(z) > t} ≤ Ct−2

∫
f 2 dµ, f ∈ L2(µ),

which shows that E is indeed a “big piece”.
The proof of the Theorem is practically complete. One last step is left: we

have to check that (15) allows us to prove an appropriate good λ inequality
without resorting to a doubling condition on µ. For the reader’s convenience
we present the well known argument, which can be found in [D2, p. 61–62].
The good λ inequality we need is the following.

For each η > 0 there exists γ = γ(η) > 0 small enough so that

(16) µ{z : C∗
ε (fµ)(z) > (1 + η)t and Mµ(f 2µ)1/2(z) ≤ γt}

≤ 1

2
µ{z : C∗

ε (fµ)(z) > t}.

Once (16) is established we deduce that C∗
ε satisfies the same Lp inequalities

as Mµ(f 2µ)1/2 [D2, p. 60]. Then

∫
C∗

ε (fµ)p dµ ≤ Cp

∫
|f |p dµ, 2 < p < ∞.

In particular
∫
|Cε(fµ)|p dµ ≤ Cp

∫
|f |p dµ, 2 < p < ∞,

and by duality we get the same estimate for 1 < p < 2 and so for p = 2 by
interpolation.
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Let’s prove (16). The set Ω = {z : C∗
ε (fµ)(t) > t} is open. Given

a ∈ S ∩ Ω let D(a) be the disc with center a and radius 5−1 dist(a, Ωc). By
the Besicovitch covering lemma Ω ∩ S can be covered by a family of discs
Dj = D(aj) which is almost disjoint, that is, such that each point in the
plane belongs to at most N discs Dj, N being an absolute constant. Notice
that then the family {4Dj} is almost disjoint too. This is one of the key facts
in order to allow us to dispense with the doubling condition.

We are going to show that, given η > 0 and 0 < α < 1, there exists
γ = γ(η, α) > 0 such that, for all j,
(17)
µ{z ∈ S ∩Dj : C∗

ε (fµ)(z) > (1 + η)t and Mµ(f 2µ)1/2(z) ≤ γt} ≤ αµ(4Dj).

Then summing over j,

µ{z ∈ S : C∗
ε (fµ)(z) > (1 + η)t and Mµ(f 2µ)1/2(z) ≤ γt} ≤ αNµ(Ω),

where N stands now for the constant of almost disjointness of {4Dj}. Choos-
ing α so that αN = 1

2
we get (16).

Let’s turn our attention to (17). Fix j and set D = Dj, a = aj. As-
sume, without loss of generality, that there exists b ∈ S ∩ D such that
Mµ(f 2µ)1/2(b) ≤ γt. Let w be a point in Ωc such that |w − a| = dist(a, Ωc)
and set B = D(w, 9r) where r = |w − a|/5 is the radius of D. Hence
D ⊂ ∆ ≡ D(b, 3r) ⊂ 4D ⊂ B. Set f1 = fχB and f2 = f − f1. Then, for
z ∈ D and δ ≥ ε,

|Cδ(f1µ)(z)| = |Cδ(χ∆f)(z)|+ 1

r

∫

B

|f(ζ)| dµ(ζ)

≤ C∗
ε (χ∆f)(z) + CM(fµ)(b)

≤ C∗
ε (χ∆f)(z) + Cγt,

and so
|Cδ(fµ)(z)| ≤ |Cδ(f2µ)(z)|+ C∗

ε (χ∆fµ)(z) + Cγt.

To compare Cδ(f2µ)(z) with Cδ(fµ)(w) we use the standard arguments (see
[D1] or [D2]). We obtain

|Cδ(f2µ)(z)− Cδ(f2µ)(w)| ≤ CM(fµ)(b)

and
|Cδ(f2µ)(w)| ≤ C∗

ε (fµ)(w) ≤ t.

Therefore

C∗
ε (fµ)(z) ≤ C∗

ε (χ∆fµ)(z) + (1 + Cγ)t, z ∈ D.
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Now choose γ so that 2Cγ ≤ η and let E be a “big piece” associated to the
disc D and the number θ. Then

µ{z ∈ D : C∗
ε (fµ)(z) > (1 + η)t} ≤ µ(D\E)

+ µ
{

z ∈ E : C∗
ε (χ∆fµ)(z) >

η

2
t
}

≤ θµ(D) + C(ηt)−2

∫

∆

f 2 dµ

≤ θµ(D) + C(ηt)−2µ(∆)Mµ(f 2µ)(b)

≤ (θ + C(γ/η)2)µ(4D) ≤ αµ(4D)

provided θ and γ are chosen small snough so that θ + C(γ/η)2 ≤ α.

3 Estimating analytic capacity from below

Let K be a compact subset of C, γ(K) its analytic capacity, and let µ be
a positive measure supported in K satisfying µ(D) ≤ r(D) for each disc D
and c(µ) < ∞. Then [Me]

(18) γ(K) ≥ c
‖µ‖3/2

(‖µ‖+ c2(µ))1/2
.

The original proof of (18) is rather simple but relies on the Garabedian’s L2

description of analytic capacity [G] and thus depends on complex analysis
techniques. We give here a quick derivation of an inequality slightly better
than (18) from the T (1)-Theorem described in the preceding sections, using
purely real variable methods. Therefore the T (1)-Theorem for the Cauchy
Integral and (18) are equivalent statements. Similar arguments have been
used independently by Tolsa in [T3] for other purposes.

Given a compactly supported positive measure µ, set

E(µ) =

∫
Mµ(z) dµ(z) +

∫
cµ(z) dµ(z),

where

c2
µ(z) =

∫∫
c2(z, w, ζ) dµ(w) dµ(ζ), z ∈ C.

The quantity E(µ) and the function Mµ(z) + Cµ(z) seem to be appropriate
candidates to play the roles of “energy” and “potential” associated to the
kernel 1/z.
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Theorem. For each compact subset K of the plane,

(19) γ(K) ≥ C sup{E(µ)−1 : spt µ ⊂ K and ‖µ‖ = 1}.

If µ is a positive measure supported on K such µ(D) ≤ r(D) for all discs
D, then

E

(
µ

‖µ‖
)

= ‖µ‖−2E(µ) ≤ ‖µ‖−2(‖µ‖+c(µ)‖µ‖1/2) = ‖µ‖−3/2(‖µ‖1/2+c(µ))

and so (18) follows from (19).

Proof of the Theorem. Take a probability measure µ supported on K with
E(µ) < ∞. By Chebischev there exists a compact subset J of K such that
µ(J) ≥ 2−1, and Mµ(z) ≤ A and cµ(z) ≤ A, for all z ∈ J , where A = 2E(µ).

Set ν = µ|J . Then ‖ν‖ ≥ 2−1, ν(D) ≤ Ar(D) for each disc D and

(20) cν(z) ≤ A, z ∈ spt ν.

Clearly (20) gives (11) with µ replaced by ν and therefore the Cauchy Integral
is bounded on L2(ν) by the T (1)-Theorem discussed in the previous sections.
We wish now to have the weak L1 inequality

(21) ν{z : |Cε(λ)| > t} ≤ CA

t
‖λ‖,

where λ is any finite measure in the plane and C some absolute constant.
This follows by standard Calderón-Zygmund theory if µ is “doubling”

and by a simple argument found recently in [NTV2] in the general case.
Dualizing the weak type inequality (21), as in [T1] or [V1], we obtain that
there exists a ν-measurable function h, 0 ≤ h < 1, with ν(J) ≤ 2

∫
h dν

and |C(h dν)(z)| ≤ CA, for each z ∈ C\J . Here C(h dν) is just the locally
integrable function 1

z
∗ h dν. Therefore, for some absolute constant C

γ(K) ≥ CA−1 = CE(µ)−1,

as desired.

4 Failure of the L∞-BMO estimate

When µ is a doubling measure the proof of the T (1) Theorem for the Cauchy
Integral is very simple, as showed in [V2] and [MV]. The reasoning goes as
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follows. Fix a disc D and take a bounded, µ-measurable function f supported
on D. Because of (10) and (11) we get

∫

D

|Cε(fµ)|2 dµ ≤ 2

(∫

D

|Cε(fµ)|2 dµ

)1/2 (∫
|Cε(χDµ)|2 dµ

)1/2

+ ‖f‖2
∞

∫∫∫

D3

c2(z, w, ζ) dµ(z) dµ(w) dµ(ζ)+C‖f‖2
∞µ(D)

≤ Cµ(D)1/2

(∫

D

|Cε(fµ)|2 dµ

)1/2

+ Cµ(D)‖f‖2
∞

and so

(22)

∫

D

|Cε(fµ)|2 dµ ≤ C‖f‖2
∞µ(D),

with C independent of ε.
The above inequality and standard arguments show that Cε maps L∞(µ)

boundedly into BMO(µ) and maps the atomic version of H1(µ) boundedly
into L1(µ) (see [J, p. 49]). Interpolation between BMO and L1 now gives
that Cε maps L2 into L2.

By BMO(µ) we understand the space of locally integrable functions with
respect to µ, such that for each disc D centered at a point in spt µ one has

∫

D

|f(z)− fD| dµ(z) ≤ Cµ(D),

C being a positive constant independent of D and

fD =
1

µ(D)

∫

D

f dµ.

An atom is a µ-measurable function a, supported on some disc D centered
at a point in spt µ, such that |a| ≤ µ(D)−1 and

∫
a dµ = 0. The atomic

version H1
at(µ) of H1 is then the set of functions of the form

∞∑
j=1

λjaj,

where aj is an atom for all j and
∞∑

j=1

|λj| < ∞.

When the measure µ is non-doubling one can still obtain (22) from the
hypothesis of the T (1)-Theorem, but we shall see that (22) implies neither the
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L∞-BMO nor the H1
at-L

1 estimate. The example we shall describe is rather
simple. In fact, the measure µ will be the one-dimensional Lebesgue measure
restricted to a certain subset of the real line.

Set λn = 4−2n
, n = 0, 1, 2, . . ., and

In = [λ2
n−1, 2λ

2
n−1],

Jn =

[
λn−1

2
,
λn−1

2
+ λ2

n−1

]
, n = 1, 2, , 3 . . . .

Define µ as the one-dimensional Lebesgue measure restricted to

(−1, 0) ∪
( ∞⋃

n=1

(In ∪ Jn)

)
.

Let Dn denote the disc of radius λn−1

2
centered at the point λn−1

2
. Then the

function

h =
∞∑

n=1

(χIn − χJn)µ(Dn)−12−n

lies in H1
at(µ). We claim that

∫ 0

−1

|C(h)(x)| dx = +∞,

where for f ∈ L1(R) we write

C(f)(x) = P.V.

∫ ∞

−∞

f(t)

t− x
dt.

Fix a positive integer n, and abbreviate In as both I and (a, b) and Jn as J
and (α, β). Then

C(χI)(x)− C(χJ)(x) = log
b− x

a− x
− log

β − x

α− x
≥ 0, for x ≤ 0.

A simple computation gives

∫ 0

−1

C(χI)(x) dx =

∫ b

a

log

(
1 +

1

t

)
dt ≥ l log

(
1 +

1

2l

)

and ∫ 0

−1

C(χJ)(x) dx =

∫ β

α

log

(
1 +

1

t

)
dt ≤ l log

(
1 +

1√
l

)
,
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where l = b− a.
Since µ(Dn) ∼ λ2

n−1, we conclude that

∫ 0

−1

|C(h)(x)| dx ≥ C

∞∑
n=1

2−n log λ−1
n−1 = +∞,

as claimed.
Thus C does not map H1

at(µ) into L1(µ), although it maps L2(µ) into
L2(µ). To show that L∞(µ) is not mapped boundedly into BMO(µ) we
resort to the most elementary fact concerning the duality between H1

at(µ)
and BMO(µ). Namely, given an atom a and a disc D as in the definition of
atom, there exists a function b in L∞(µ), ‖b‖∞ = 1, for which one has

∫
|C(a)| dµ =

∫
C(a)b dµ

= −
∫

aC(b) dµ

= −
∫

a(C(b)− C(b)D) dµ

≤ 1

µ(D)

∫

D

|C(b)− C(b)D| dµ.

Then the L∞-BMO estimate would imply the H1
at-L

1 estimate, which
fails.
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