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Abstract. In this paper we obtain rather precise estimates for the
analytic capacity of a big class of planar Cantors sets. In fact, we show
that analytic capacity and positive analytic capacity are comparable for
these sets. The main tool for the proof is an appropriate version of the
T (b)-Theorem.

1. Introduction

In this paper we characterize the planar Cantor sets of zero analytic ca-
pacity. Our main result answers a question of P. Mattila [Ma] and completes
the solution of a long standing open problem with a curious history, which
goes back to 1972. We refer the reader to [I2, p. 153] and [Ma] for more
details. Moreover, we confirm a conjecture of Eiderman [E] concerning the
analytic capacity of the N -th approximation of a Cantor set.

Before formulating our main results we recall the definition of the basic
objects involved.

The analytic capacity of a compact subset E of the complex plane C is

(1) γ(E) = sup |f ′(∞)|,
where the supremum is taken over all analytic functions f on C\E such that
|f | 6 1 on C\E. Although there has recently been important progress on our
understanding of analytic capacity (see the survey papers [D], [V3] and the
references given there), many basic questions about γ remain unanswered.
One of the oldest is the semi-additivity problem, that is, the problem of
showing the existence of an absolute constant C such that

(2) γ(E ∪ F ) 6 C {γ(E) + γ(F )} ,

for all compact sets E and F . If (2) were true, then one would have powerful
geometric criteria for rational approximation, which are otherwise missing
(see [V2] and [Vi2]).
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On the other hand, it has recently been established that a close variant
of γ, called positive analytic capacity, is indeed semi-additive. The positive
analytic capacity of a compact set E is

γ+(E) = supµ(E),

where the supremum is taken over the positive Borel measures µ supported

on E such that the Cauchy potential f =
1
z
∗ µ is a function in L∞(C) with

‖f‖∞ 6 1. Since (
1
z
∗ µ)′(∞) = µ(E), we clearly have γ+(E) 6 γ(E).

Since γ+ is semi-additive, as shown in [T1], it is clear that (2) follows
from the inequality

(3) γ(E) 6 Cγ+(E), E compact ⊂ C,

where the positive constant C does not depend on E. We will see below
that our main result provides a proof of (3) for a particular (but significant)
class of sets E. To the best of our knowledge, the first mention of (3) that
can be found in the literature is in [DO]. An equivalent form of (3), which
involves Menger curvature, has recently been conjectured by Melnikov (see
[D]).

Now we turn our attention to Cantor sets. Given a sequence λ = (λn)∞n=1,
0 6 λn 6 1/3, we construct a Cantor set by the following algorithm. Con-
sider the unit square Q0 = [0, 1] × [0, 1]. At the first step we take 4 closed
squares inside Q0, of side-length λ1, with sides parallel to the coordinate
axes, such that each square contains a vertex of Q0. At step 2 we apply the
preceding procedure to each of the 4 squares produced at step 1, but now
using the proportion factor λ2. Then we obtain 16 squares of side-length
σ2 = λ1λ2. Proceeding inductively, we have at the n-th step 4n squares Qn

j ,
1 6 j 6 4n, of side-length σn =

∏n
j=1 λj . Write

En = E(λ1, . . . , λn) =
4n⋃

j=1

Qn
j ,

and define the Cantor set associated to the sequence λ = (λn)∞n=1 by the
identity

E = E(λ) =
∞⋂

n=1

En.

Our main result reads as follows.

Theorem 1. The Cantor set E(λ) has zero analytic capacity if and only if
∞∑

n=1

1
(4nσn)2

= ∞.

The assumption λn 6 1/3 for the Cantor sets E(λ) is purely technical.
Actually Theorem 1 (as well as Theorem 2 below) holds for any sequence
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(λn)n with 0 < λn < 1/2. See Remark 2 at the end of the paper for more
details.

Mattila showed in [Ma] that the above condition is necessary and our
contribution in this paper is proving the sufficiency. The special case λn =
1/4, n > 1, was obtained independently by Garnett [G1] and Ivanov [I1] in
the 1970’s and, since then, the “corner quarters” Cantor set has become the
favorite example of a set of zero analytic capacity and positive length. P.
Jones gave in [J] an alternative proof of Garnett’s result, based on harmonic
measure. Recently Jones’ approach has been used to establish the vanishing
of the analytic capacity of E(λ) for some special classes of sequences λ =
(λn)∞n=1 with 4nσn tending to infinity [GY].

Theorem 1 follows from a more precise result on the analytic capacity
of the set EN = E(λ1, . . . , λN ). The asymptotic behaviour of γ+(EN ) is
completely understood: for some constant C > 1 and all N = 1, 2, . . . one
has

(4) C−1
( N∑

n=1

1
(4nσn)2

)−1/2
6 γ+(EN ) 6 C

( N∑

n=1

1
(4nσn)2

)−1/2
.

The upper estimate is due to Eiderman [E] and a different proof has been
given in [T2]. The lower estimate was proved by Mattila in [Ma]. However,
the result was not explicitly stated in [Ma], presumably because at that time
the main object of interest was γ rather than γ+. An indication of how one
proves the lower estimate in (4) will be provided at the end of Section 2.
See also [E, p. 821].

Theorem 1 follows from the upper estimate in (4) and the next result.

Theorem 2. There exists a positive constant C0 such that

(5) γ(EN ) 6 C0γ
+(EN ), N = 1, 2, . . .

If λn = 1/4, n > 1, then combining Theorem 2 with (4) we get

γ(EN ) 6 C√
N

, N = 1, 2, . . . ,

which improves considerably Murai’s inequality [Mu]

γ(EN ) 6 C

log N
, N = 2, 3, . . . ,

the best estimate known up to now.
The main tool used in our proof of Theorem 2 is the local T (b)-Theorem of

M. Christ [CH2], a particular version of which will be discussed and stated in
Section 2. Section 2 contains also some basic facts on the Cauchy transform
and the Plemelj formulae. The proof of Theorem 2 is presented in Section
3.

Our notation and terminology are standard. For example D(z, r) is the
open disk centered at z and of radius r, ds is the arclength measure on a
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rectifiable arc and P ' Q means that C−1Q 6 P 6 CQ for some absolute
constant C > 1.

The symbols C, C ′, C ′′, C0, C1, . . . stand for absolute constants with a
definite value. We will also use the symbol A to denote an absolute constant
that may vary at different occurrences.

Remark 1. The second author [T3] has recently proved that Theorem 2 also
holds for a general compact set. In particular, this implies the semiadditivity
of analytic capacity. The proof in [T3] also involves and induction argument
and an appropriate T (b)-Theorem as in the present paper.

2. Background results

2.1. Cauchy Integrals. Fix an integer M > 0 and let EM = E(λ1, . . . , λM )
be the M -th approximation of the Cantor set associated to the sequence
(λn)∞n=1. Then EM is the union of 4M closed squares QM

j , 1 6 j 6 4M , and
∂EM is the union of the 4M closed piecewise linear curves ∂QM

j . For a Borel
measure µ supported on ∂EM set

C(µ)(z) =
∫

dµ(ζ)
ζ − z

, z /∈ ∂EM ,

and

C(µ)(z) = lim
ε→0

∫

|ζ−z|>ε

dµ(ζ)
ζ − z

, z ∈ ∂EM ,

whenever the principal value integral exists. Let C+(µ)(z) (respectively
C−(µ)(z)) stand for the non-tangential limit of C(µ)(w) as w tends to z from
the interior of EM (respectively, from the complement of EM ). It follows
from standard classical results that Cµ(z), C+µ(z) and C−µ(z) exist for
almost all z with respect to arclength measure ds on ∂EM . Moreover one
has the Plemelj formulae (see [V3])

(6)

{
C+µ(z) = Cµ(z) + πif(z)
C−µ(z) = Cµ(z)− πif(z),

where the identities hold for ds-almost all z ∈ ∂EM and µ = f(z)dz + µs, f
being integrable and µs being singular with respect to ds.

Assume that one has µs = 0 and

|f(z)| 6 A, for ds-almost all z ∈ ∂EM ,

and that one wants to show

(7) |C(µ)(z)| 6 A, for ds-almost all z ∈ ∂EM .

Then one only has to check that

|C(µ)(z)| 6 A, for z /∈ EM ,

because then

|C−(µ)(z)| 6 A, for ds-almost all z ∈ ∂EM ,



ANALYTIC CAPACITY OF CANTOR SETS 5

and thus the second identity in (6) gives (7).

2.2. The local T (b)-Theorem. The local T (b)-Theorem is a criterion for
the L2 boundedness of a singular integral that was proved originally by M.
Christ in the setting of homogeneous spaces [CH2]. We state below a very
particular version of Christ’s result, which is adapted to the principal value
Cauchy Integral and to a measure µ supported on ∂EM . The reader may
think that µ is of the form µ = cds|∂EM

for some (small) positive constant
c. However, one should keep in mind that, for 4nσn ↗∞, ds|∂EM

does not
satisfy condition (i) in the statement below with a constant independent of
M . As it will become clear later, an appropiate choice of c is required to get
(i) and (iii) with absolute constants.

Theorem. (Christ). Let µ be a positive Borel measure supported on ∂EM

satisfying, for some absolute constant C, the following conditions:
(i) µ(D(z, r)) 6 Cr, z ∈ ∂EM , r > 0,
(ii) µ(D(z, 2r)) 6 Cµ(D(z, r)), z ∈ ∂EM , r > 0,
(iii) For each disc D centered at a point in ∂EM there exists a function bD

in L∞(µ), bD supported on D, satisfying |bD| 6 1 and |C(bDµ)| 6 1
µ-almost everywhere on ∂EM , and µ(D) 6 C

∣∣∫ bDdµ
∣∣.

Then

(8)
∫
|C(fµ)|2 dµ 6 C ′

∫
|f |2dµ, f ∈ L2(µ),

for some absolute constant C ′ (depending only on C).

The relevance of inequality (8) for our problem lies in the fact that it
implies

(9) µ(K) 6 C ′′γ+(K), K compact ⊂ ∂EM ,

for some absolute constant C ′′ (depending only on C ′).
The derivation of (9) from (8) goes through a well-known path: first, by

classical Calderón-Zygmund Theory one gets a weak (1, 1) inequality from
(8); then, a surprisingly simple method to dualize a weak (1, 1) inequality
leads immediately to (9). The original argument is in [DO]. Some years
before [DO] Uy found a slightly different way of dualizing a weak (1, 1)
inequality, which, however, does not yield (9) (see [Uy]). The interested
reader will find additional information in [CH1], [T1] and [V1].

Inequality (9) explains also why the lower estimate in (4) follows from
Mattila’s arguments in [Ma]: see Theorem 3.7 in p. 202 and the first para-
graph after it.

3. Proof of Theorem 2

We first give a sketch of the argument. Assume that one can find a
positive Borel measure µ supported on ∂EN , EN = E(λ1, . . . , λN ), which
satisfies (i) and (ii) with M replaced by N , such that ‖µ‖ = γ(EN ) and the
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Cauchy Integral is bounded on L2(µ). Then we get (9) with M replaced by
N , as we explained in section 2. For K = ∂EN (9) yields

γ(EN ) = ‖µ‖ 6 Aγ+(EN ),

as desired. In the actual argument we do not construct µ on EN . For reasons
that will become clear later we are forced to work in EM with M smaller than
N . On the other hand, M cannot be much smaller than N , because in the
course of the subsequent reasoning one needs to have γ+(EM ) 6 Aγ+(EN ).
Hence M has to be chosen carefully, in such a way that the local T (b)-
Theorem can be applied to get the boundedness of the Cauchy Integral on
L2(µ), with an absolute constant.

Now we start the proof of Theorem 2.
Set an = 4nσn and

Sn =
1
a2

1

+
1
a2

2

+ · · ·+ 1
a2

n

.

We can assume, without loss of generality, that for each N > 1, there
exists M , 1 6 M < N , such that

(10) SM 6 SN

2
< SM+1.

Otherwise
SN

2
< S1 and thus, by (4), γ+(EN ) > A−1λ1. On the other hand,

taking into account the obvious estimate of analytic capacity by length, we
clearly have

γ(EN ) 6 γ(E1) 6 1
2π

length(∂E1) =
8
π

λ1.

Therefore (5) is trivial in the present case, provided C0 is chosen to satisfy

C0 > 8
π

A.

Assume, then, that (10) holds and let’s proceed to prove (5) by induction
on N . The case N = 1 is obviously true. The induction hypothesis is

γ(En) 6 C0γ(E+
n ), 0 < n < N,

where the precise value of the absolute constant C0 will be determined later.
We distinguish two cases.

Case 1: For some absolute constant C1, to be determined later,

(11) aMγ(E(λM+1, . . . , λN )) 6 C1γ(EN ).

Case 2: (11) does not hold.
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We deal first with Case 2. By the induction hypothesis applied to the
sequence λM+1, . . . , λN and by (4) we have

γ(EN ) 6 C−1
1 aMγ(E(λM+1, . . . , λN )) 6

6 C−1
1 C0aMγ+(E(λM+1, . . . , λN )) 6

6 C−1
1 C0A

aM
( N∑

n=M+1

1
(4λM+1 . . . 4λn)2

)1/2
=

= C−1
1 C0A

1
( N∑

n=M+1

1
a2

n

)1/2
.

Clearly, the inequality SM 6 SN

2
is equivalent to

1
( N∑

n=M+1

1
a2

n

)1/2
6

√
2

( N∑

n=1

1
a2

n

)1/2
,

and so, again by (4),

γ(EN ) 6 C−1
1 C0Aγ+(EN ).

If C1 = A, where A is the constant in the preceding inequality, we get (5),
as desired.

Let’s now consider Case 1. Set

µ =
γ(EN )

length(∂EM )
ds|∂EM

,

so that ‖µ‖ = γ(EN ). To check condition (i) in the local T (b)-Theorem of
Section 2 we consider two cases. If r 6 σM , then

µ(D) 6 γ(EN )
length(∂EM )

2r 6 Cr,

because γ(EN ) 6 γ(EM ) 6 length(∂EM ).
For r > σM we can replace arbitrary discs centered at points in ∂EM by

the squares Qn
j , 0 6 n 6 M , 0 6 j 6 4n. In other words, it suffices to prove

(12) µ(Qn
j ) 6 C`(Qn

j ), 0 6 n 6 M, 1 6 j 6 4n.

To show this, given a disc D of radius r centered at z ∈ ∂EM , one considers
a square Qn

j ⊃ D, where n is chosen so that `(Qn
j ) is comparable to r, Then,

µ(Qn
j ) = γ(EN )

1
4n

=
4γ(EN )

length(∂En)
`(Qn

j ) 6 4γ(En)
length(∂En)

`(Qn
j ) 6 2

π
`(Qn

j ).

and so (12) is proved.
It is also a simple matter to ascertain that (ii) holds.
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Now our goal is to prove that the hypothesis (iii) of the local T (b)-
Theorem is satisfied. Once this has been verified, (9) applied to K = ∂EM

yields

(13) γ(EN ) = ‖µ‖ 6 Aγ+(EM ) 6 A

S
1/2
M

.

Assuming that (13) holds, to complete the proof we distinguish again two
cases, according to whether 1/a2

M+1 is greater than SM or not.
If 1/a2

M+1 > SM , then

SM+1 = SM +
1

a2
M+1

' 1
a2

M+1

,

and so

γ+(EM+1) ' 1

S
1/2
M+1

' aM+1 =
1
4

length(∂EM+1).

Hence

γ(EN ) 6 γ(EM+1) 6 1
2π

length(∂EM+1) ' γ+(EM+1) ' γ+(EN ),

and thus (5) holds for a sufficiently big constant C0.
If 1/a2

M+1 6 SM , then SM+1 ' SM and so

γ+(EN ) ' 1

S
1/2
N

' 1

S
1/2
M

,

which gives (5), with a big enough C0, by (13).
Summing up, we have reduced the proof of Theorem 2 to checking that

the hypothesis (iii) of the local T (b)-Theorem is satisfied. As we already
remarked when dealing with hypothesis (i), in proving (iii) we can replace
discs centered at points in ∂EM by squares Qn

j , 1 6 j 6 4n, 0 6 n 6 M .
In other words, it is enough to show that, given a square Qn

j , 0 6 n 6 M ,
1 6 j 6 4n, there exists a function bn

j in L∞(µ), supported on Qn
j , satisfying

|bn
j | 6 1 and |C(bn

j µ)| 6 1 dµ-almost everywhere on ∂EM and such that

µ(Qn
j ) 6 C

∣∣∣∣
∫

bn
j dµ

∣∣∣∣ .

Let f be the Ahlfors function of EN . Then f is analytic on C\EN ,
|f(z)| 6 1, z /∈ EN , f(∞) = 0 and f ′(∞) = γ(EN ). The non-tangential
boundary value of f at ζ ∈ ∂EN , which exists for ds-almost all ζ ∈ ∂EN , is

denoted by f(ζ). Set ν =
1

2πi
f(ζ)dζ|∂EN

, so that

f(z) =
∫

1
z − ζ

dν(ζ), z /∈ EN .
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Fix a generation n, 0 6 n 6 M . Then, for some index k, 1 6 k 6 4n,

γ(EN ) =
4n∑

j=1

ν(Qn
j ) 6 4n|ν(Qn

k)|,

or, equivalently, µ(Qn
k) 6 |ν(Qn

k)|.
To define the function bn

k associated to Qn
k we need to describe a simple

preliminary construction.
Take a compactly supported C∞ function ϕ on C, 0 6 ϕ 6 1,

∫
∂Q0 ϕds >

1, such that ϕ vanishes on ∪4
j=1D(zj , 1/4), where the zj are the vertices of

Q0. Then |C(ϕds|∂Q0
)| 6 A, as one checks easily. Set

ϕM
j (z) = ϕ

(z − vM
j

σM

)
χQM

j
,

where vM
j is the left lower vertex of QM

j . Hence |C(ϕM
j dµ)| 6 A and

∫
ϕM

j dµ =
1

length(∂QM
j )

∫
ϕM

j ds µ(QM
j ) > 1

4
µ(QM

j ).

Define

b = bn
k =

∑

QM
j ⊂Qn

k

ν(QM
j )

ϕM
j∫

ϕM
j dµ

.

For j 6= k we construct bn
j by simply translating bn

k . We have Qn
j = wn

j +Qn
k ,

for some complex number wn
j . Set

bn
j (z) = bn

k(z − wn
j ), z ∈ C.

Now we will prove that bn
k satisfies condition (iii). Clearly,

∣∣∣∣
∫

bdµ

∣∣∣∣ = |ν(Qn
k)| > µ(Qn

k).

To show that b is bounded it suffices to prove

(14) |ν(QM
j )| 6 Aµ(QM

j ), 1 6 j 6 4M ,

and for this we first remark that |C(χQM
j

ν)(z)| 6 A, z /∈ EN . This is proved

in [G2, Lemma 2.3 (a), p. 90]. Since C(χQM
j

ν) is analytic outside QM
j ∩EN ,

we conclude that
|ν(QM

j )| 6 Aγ(QM
j ∩ EN ).

Now notice that the set QM
j ∩ EN can be obtained from E(λM+1, . . . , λN )

by a dilation of factor σM and a translation. Hence, recalling (11),

γ(QM
j ∩ EN ) = σMγ(E(λM+1, . . . , λN )) 6 C1

1
4M

γ(EN ) = C1µ(QM
j ),

which gives (14). It is worth pointing out at this point that the above
inequality explains why M cannot be taken to be N .
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Thanks to the discussion in Section 2 on Cauchy Integrals and the Plemelj
formulae, it becomes clear that we are only left with the task of proving

|C(bdµ)(z)| 6 A, z /∈ EM ∩Qn
k .

Since |C(χQn
k
ν)(z)| 6 A, z /∈ EN ∩ Qn

k , we only need to estimate, for z /∈
EM ∩Qn

k , the difference

(15) C(bdµ)(z)− C(χQn
k
ν)(z) =

∑

QM
j ⊂Qn

k

C(αM
j )(z),

where

αM
j = ν(QM

j )
ϕM

j dµ∫
ϕM

j dµ
− χQM

j
ν.

We have
∫

dαM
j = 0 and |C(αM

j )(z)| 6 A, z /∈ QM
j , 1 6 j 6 4M , using again

[G2, Lemma 2.3 (a), p. 90].
Thus, if zM

j is the center of QM
j ,

(16) |C(αM
j )(z)| 6 A

σ2
M

dist(z, QM
j )2

, |z − zM
j | > σM .

By the maximum principle, in estimating (15) we can assume that |z−zM
j | 6

σM for some j with QM
j ⊂ Qn

k . Hence (15) is not greater than

(17) A + A
∑

l 6=j

σ2
M

dist(z,QM
l )2

.

For 0 6 n 6 M let Qn be the square in the n-th generation that contains
QM

j . We can estimate (17) by

A + A
M−1∑

n=0

∑

QM
l ⊂Qn\Qn+1

σ2
M

dist(z, QM
l )2

6

6 A + A

M−1∑

n=0

σ2
M

σ2
n

4M−n 6 A + A

M−1∑

n=0

(4
9

)M−n
6 A,

because σM = σnλn+1 . . . λM 6 σn

3M−n
, 0 6 n 6 M .

This completes the construction of the function bn
k associated to the square

Qn
k as required by hypothesis (iii) in the local T (b)-Theorem.
Now, by translation invariance it is clear that bn

j for j 6 k also satisfies
(iii).

This shows that the local T (b)-Theorem can be applied to µ and thus
completes the proof of Theorem 2. ¤

Remark 2. For simplicity, we assumed above that λn 6 1/3 for all n. How-
ever, both Theorem 1 and Theorem 2 hold for 0 < λn < 1/2. Let us sketch
the changes needed in the proof.
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First it should be noticed that the estimate (4) for γ+(EN ) holds for
0 < λn < 1/2. Indeed, the arguments for the left inequality in (4) in [Ma]
are valid in this case. On the other hand, the right inequality in (4) is also
true for 0 < λn < 1/2. For example, arguing as in [T2] one can easily check
that

γ+(EN ) 6 A

(
1 +

∑

1 6 n 6 N,
λn 6 1/3

1
(4nσn)2

)−1/2

≈
( ∑

16n6N

1
(4nσn)2

)−1/2

.

The other places where the assumption λn 6 1/3 has been used are (14)
and (15). The inequality (14) also holds for 0 < λn < 1/2. It follows
from Vitushkin’s estimates for the integral

∫
Γ f(z) dz for piecewise Lyapunov

curves Γ [Vi1] (in our case Γ = ∂QM
j ). To prove (15) one can use the sharper

estimate

|C(αM
j )(z)| 6 A

σM γ(QM
j ∩ EN )

dist(z, QM
j )2

6 AC1

σM µ(QM
j )

dist(z, QM
j )2

, |z − zM
j | > σM ,

instead of (16) (see [G2, p.12–13], for example). We leave the details for the
reader.
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