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Abstract. It has been recently proved that analytic capacity, γ, is
semiadditive. This result is a consequence of the comparability between
γ and γ+, a version of γ originated by bounded Cauchy potentials of
positive measures. In this paper we describe the main ideas involved
in the proof of this result and we give a complete proof of it in the
particular case of the N -th approximation of the corner quarters Cantor
set.

1. Introduction

There has been recently some progress in connection with the theory of
analytic capacity. The main result, obtained by the second author [To4],
asserts that analytic capacity γ is semiadditive, that is,

γ(E ∪ F ) ≤ C(γ(E) + γ(F ))

for all compact sets E,F ⊂ C, where C is an absolute constant. This con-
firms a 35 years old conjecture of Vitushkin [Vi] and, consequently, provides
new criteria for uniform rational approximation.

The semiadditivity inequality above is derived in [To4] from another fact
of independent interest, namely that analytic capacity can be defined, mod-
ulo constants, by means of bounded Cauchy potentials of positive measures.
In other words, there exists a positive number C such that

(1.1) γ(E) ≤ Cγ+(E)

for all compact subsets E of the plane (see below for precise definitions).
In [MTV] we had already obtained inequality (1.1) for some planar Can-

tor sets. This was used there to determine the Cantor sets of zero analytic
capacity, which solved a long standing open problem raised by Garnett in
[Gar2].
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The goal of this expository paper is to explain the main ideas and tech-
niques used in the proof of the results mentioned above. In Section 3 we
present a complete proof of (1.1) in the particular case in which E = EN ,
the N-th approximation of the familiar corner quarters Cantor set. In this
setting the technical complications are reduced to a minimum and thus the
main ideas emerge easily. In Section 4 we describe the new difficulties that
arise in the proof of (1.1) for general compact sets and the new ideas required
to overcome them. The applications of semiadditivity to rational and har-
monic approximation are presented in Section 5. In the last section the
reader will find a short list of open problems that we think are interesting
and worth working at.

Before formulating the results in detail, we will recall some definitions.
The analytic capacity of a compact set E ⊂ C is defined as

γ(E) = sup |f ′(∞)|,
where the supremum is taken over all analytic functions f : C \E−→C with
|f | ≤ 1 on C \E and f ′(∞) = limz→∞ z(f(z)− f(∞)). For a general set F ,
we set γ(F ) = sup{γ(E) : E ⊂ F, E compact}.

The notion of analytic capacity was first introduced by Ahlfors [Ah] in
the 1940’s in order to study the removability of singularities of bounded an-
alytic functions. A compact set E ⊂ C is said to be removable (for bounded
analytic functions) if for any open set Ω containing E, every bounded func-
tion analytic on Ω \ E has an analytic extension to Ω. Ahlfors remarked
that E is removable if and only if γ(E) = 0.

In the 1950’s, Vitushkin showed that analytic capacity plays a funda-
mental role in problems of uniform approximation of analytic functions by
rational functions (see [Vi], for example). The main drawback of Vitushkin’s
results arises from the fact that there is not a complete description of ana-
lytic capacity in metric or geometric terms.

The capacity γ+ (or analytic capacity γ+) of a compact set E is

γ+(E) = sup
µ

µ(E),

where the supremum is taken over all positive Radon measures µ supported

on E such that the Cauchy potential f =
1
z
∗ µ is an L∞(C) function with

‖f‖∞ ≤ 1. Since
(1

z
∗ µ

)′
(∞) = µ(E), we have

(1.2) γ+(E) ≤ γ(E).

For a general set F , we set γ+(F ) = sup{γ+(E) : E ⊂ F, E compact}.
In [To4] it was shown that the converse of inequality (1.2) (modulo a

multiplicative constant) also holds:

Theorem 1.1. There exists an absolute constant C such that

γ(E) ≤ Cγ+(E)

for any compact set E.
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Therefore, we get γ(E) ≈ γ+(E) (where a ≈ b means that there exists
an absolute positive constant C such that C−1b ≤ a ≤ Cb), which solves an
old question about analytic capacity (see for example [DØ] or [Ve1, p.435]).

Since the capacity γ+ is countably semiadditive (see [To2]), the preced-
ing theorem implies that γ is also countably semiadditive:

Theorem 1.2. Let En, n = 1, 2, . . ., be Borel sets. Then,

γ
(⋃

n

En

)
≤ C

∑
n

γ(En),

where C is an absolute constant.

Let us mention another consequence of Theorem 1.1. As shown in [MV],
there is a strong relationship between the L2 boundedness of the Cauchy
integral operator and the Menger curvature of measures (see Section 4 for
this relationship and for the notion of Menger curvature of measures). As
a consequence, it turns out that a compact set E ⊂ C is non removable for
bounded analytic functions if and only if it supports a Radon measure µ with
finite Menger curvature and such that µ(B(x, r)) ≤ r for all x ∈ C, r > 0.

Now we turn our attention to Cantor sets. Given a sequence λ =
{λn}n≥1, with 0 ≤ λn ≤ 1/3, we construct a planar Cantor set as follows.
Let Q0 = [0, 1] × [0, 1]. At the first step we take four closed squares inside
Q0, with side length λ1, with sides parallel to the coordinate axes, and so
that each square contains a vertex of Q0. At the second step we apply the
preceding procedure to each of the four squares obtained in the first step,
but now using the proportion factor λ2. In this way, we get 16 squares of
side length σ2 = λ1λ2. Proceeding inductively, at each step we obtain 4n

squares Qn
j , j = 1, . . . , 4n with side length σn = λ1 · · ·λn. We denote

En = En(λ) =
4n⋃

j=1

Qn
j ,

and we define

E = E(λ) =
∞⋂

n=1

En.

If we set λn = 1/4 for all n, then E(λ) is the so called “corner quarters
Cantor set”, which has positive and finite 1-dimensional Hausdorff measure
but zero analytic capacity [Gar2].

The problem of estimating the analytic capacity of the Cantor sets E(λ)
was first considered by Garnett [Gar2]. Mattila [Ma] proved that if

(1.3)
∞∑

n=1

1
(4nσn)2

< ∞,
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then γ(E(λ)) > 0. In fact, his arguments show that the following quantita-
tive estimate holds

(1.4) γ+(EN ) ≥ C

(
N∑

n=1

1
(4nσn)2

)−1/2

,

where C is some positive absolute constant. Eiderman [Ei] proved the con-
verse inequality:

(1.5) γ+(EN ) ≤ C

(
N∑

n=1

1
(4nσn)2

)−1/2

(see also [To3] for a different proof). In [MTV] it was shown that γ(EN ) ≈
γ+(EN ), with absolute constants. So we get the following result.

Theorem 1.3. For all N ≥ 1, we have

γ(EN ) ≈
(

N∑

n=1

1
(4nσn)2

)−1/2

.

As a consequence, the Cantor set E(λ) has positive analytic capacity if and
only if (1.3) holds.

Taking λn = 1/4, for all n, we obtain the following.

Corollary 1.4. If EN is the N -th approximation of the corner quarters
Cantor set, then

γ(EN ) ≈ N−1/2.

2. Preliminaries

Given a complex Radon measure ν on C, the Cauchy transform of ν is

Cν(z) =
∫

1
ξ − z

dν(ξ).

This definition does not make sense, in general, for z ∈ supp(ν), although
one can easily see that the integral above is absolutely convergent at a.e.
z ∈ C (with respect to Lebesgue measure). This is the reason why one
considers the truncated Cauchy transform of ν, which is defined as

Cεν(z) =
∫

|ξ−z|>ε

1
ξ − z

dν(ξ),

for any ε > 0 and z ∈ C. Given a µ-measurable function f on C (where µ
is some fixed positive Radon measure on C), we write Cf := C(f dµ) and
Cεf := Cε(f dµ) for any ε > 0. It is said that the Cauchy transform is
bounded on L2(µ) if the operators Cε are bounded on L2(µ) uniformly on
ε > 0.

The maximal Cauchy transform of ν is defined as

C∗ν(z) = sup
ε>0

|Cεν(z)|.
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As above, we set C∗f := C∗(f µ).
A positive Radon measure µ is said to have linear growth if there exists

some constant C (depending on µ) such that µ(B(x, r)) ≤ Cr for all x ∈ C,
r > 0. Let us remark that, strictly speaking, one should say something like
“linear C-growth” instead of linear growth.

Given three pairwise different points x, y, z ∈ C, their Menger curvature
is

c(x, y, z) =
1

R(x, y, z)
,

where R(x, y, z) is the radius of the circumference passing through x, y, z
(with R(x, y, z) = ∞, c(x, y, z) = 0 if x, y, z lie on a same line). If two
among these points coincide, we let c(x, y, z) = 0. For a positive Radon
measure µ, we set

c2
µ(x) =

∫ ∫
c(x, y, z)2 dµ(y)dµ(z),

and we define the curvature of µ as

(2.1) c2(µ) =
∫

c2
µ(x) dµ(x) =

∫ ∫ ∫
c(x, y, z)2 dµ(x)dµ(y)dµ(z).

The ε-truncated version of c2(µ), which we denote as c2
ε(µ), is defined as in

the right hand side of (2.1), but with the triple integral over {x, y, z ∈ C :
|x− y|, |y − z|, |x− z| > ε}.

The notion of curvature of a measure, which was introduced by Melnikov
[Me] when he was studying a discrete version of analytic capacity, is con-
nected to the Cauchy transform. This relationship comes from the following
identity found by Melnikov and Verdera [MV] (assuming that µ has linear
growth):

(2.2) ‖Cεµ‖2
L2(µ) =

1
6
c2
ε(µ) + O(µ(C)),

In [Me], Melnikov proved the following inequality:

(2.3) γ(E) ≥ C sup
µ∈Σ(E)

µ(E)2

µ(E) + c2(µ)
,

where C > 0 is some absolute constant and Σ(E) stands for the set of all
positive Radon measures µ supported on E ⊂ C such that µ(B(x, r)) ≤ r
for all x ∈ E, r > 0. In [To2] it was shown that inequality (2.3) also holds
if one replaces γ(E) by γ+(E) on the left hand side, and then one obtains

(2.4) γ+(E) ≈ sup
µ∈Σ(E)

µ(E)2

µ(E) + c2(µ)
.

Let M be the maximal radial Hardy-Littlewood operator:

Mµ(x) = sup
r>0

µ(B(x, r))
r

.
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The following potential was introduced in [Ve2]:

(2.5) Uµ(x) := Mµ(x) + cµ(x),

It turns out that γ+ can also be characterized in terms of this potential (see
[To3], and also [Ve2] for a related result):

(2.6) γ+(E) ≈ sup{µ(E) : supp(µ) ⊂ E, Uµ(x) ≤ 1∀x ∈ E}.
Moreover, it has been shown in [To3] that γ+ (and thus γ by Theorem 1.1)
also satisfies the following inequality of weak type (1, 1):

(2.7) γ+{x ∈ C : Uµ(x) > λ} ≤ C µ(C)
λ

,

for all λ > 0. At this point it is worth to remark that γ+ (and thus γ) and
the Cauchy transform are also connected by another inequality of weak type
(1, 1):

γ+{x ∈ C : C∗ν(x) > λ} ≤ C |ν|(C)
λ

,

for all λ > 0 and any complex measure ν (see [To3]).
The reader can obtain more information on Menger curvature and its re-

lationship with the L2 boundedness of the Cauchy integral in the expository
paper [Ve3].

By a square Q we mean a closed square with sides parallel to the axes.
Throughout all the paper, the letter C will stand for an absolute constant

that may change at different occurrences. Constants with subscripts, such
as C1, will retain its value.

3. The analytic capacity of the corner quarters Cantor set

In this section we will prove Theorem 1.3 in the special case λn = 1/4
for all n. So E(λ) stands for the corner quarters Cantor set throughout all
the section (and EN for its N -th generation).

3.1. Estimate of γ+(EN ). For the reader’s convenience, we are going
to explain how one can prove that γ+(EN ) ≈ N−1/2. We will follow the
approach in [To3, Section 3.1]. Assume N ≥ 2 and consider the measure
µ = ds|∂EN

. Given x ∈ EN , let Qn(x) be the square Qn
j , 1 ≤ j ≤ 4n, that

contains x. We have

c2
µ(x) ≥

N−1∑

n=1

∫∫

y,z∈Qn−1(x)\Qn(x)
c(x, y, z)2 dµ(y)dµ(z)

≥ C−1
N−1∑

n=1

µ(Qn(x))2

`(Qn(x))2
= C−1(N − 1) ≥ C−1N.

Thus, Uµ(x) ≥ C−1N1/2 for all x ∈ EN . From (2.7), we deduce γ+(EN ) ≤
Cµ(EN )N−1/2 = CN−1/2.
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With little additional effort the reader can also verify that there exists
some absolute constant C such that c2

µ(x) ≤ CN for all x ∈ EN . So Uµ(x) ≤
CN1/2 and then, by (2.6), γ+(EN ) ≥ C−1N1/2.

3.2. The local T (b) theorem of Christ. The fundamental tool to
prove Theorem 1.3 (in the case λn = 1/4) will be the local T (b) Theorem
of Christ [Ch1], which is valid for general Calderón-Zygmund operators in
the setting of spaces of homogeneous type (see [CW]). However, we will
state it for the particular case of the Cauchy transform on the set ∂EN and
a measure of the form µ = c ds|∂EN

, with c ≤ 2.

Theorem 3.1 (Christ). Consider the measure µ = c ds|∂EN
, with c ≤ 2.

Suppose that for each square Qn
j , n = 0, . . . , N , j = 1, . . . , 4n, there exists a

function bn
j ∈ L∞(µ), supported on Qn

j , such that
(a) ‖bn

j ‖∞ ≤ C1,
(b) ‖Cε(bn

j )‖∞ ≤ C1 uniformly on ε > 0,

(c) µ(Qn
j ) ≤ C1

∣∣∣
∫

bn
j dµ

∣∣∣.
Then, the Cauchy transform is bounded on L2(µ) with norm bounded above
by some constant C2 which depends only on C1.

Below, we will use Theorem 3.1 to show that the Cauchy transform is
bounded on L2(µ) with norm bounded above by an absolute constant. The
assumption c ≤ 2 is a convenient normalization which ensures that C2 does
not depend on c.

Notice that the measure µ above has linear growth and is doubling (both
conditions with absolute constants, independent of c). On the other hand,
it is clear that the constant a in the inequality µ(B(x, r)) ≥ ar, x ∈ EN ,
0 < r ≤ 1, is not absolute since it is essentially a multiple of c. However,
this does not cause any trouble because Christ’s theorem depends only on
the doubling and linearity constants.

3.3. Some preliminary comments. In order to show that

(3.1) γ(EN ) ≤ Cγ+(EN ),

we would like to prove that the Cauchy transform is bounded on L2(µ),
where µ = 1

4γ(EN )ds|∂EN
, with the L2(µ) norm bounded above by some

absolute constant. Then, by a dualization argument of the weak (1, 1) in-
equality (see [Ch2, p. 107], for example), it follows that

(3.2) γ+(EN ) ≥ C−1µ(EN ),

which clearly implies (3.1), since µ(EN ) = γ(EN ).
From the L2(µ) boundedness of the Cauchy transform, one can also

derive (3.2) via an estimate of the curvature c2(µ) by means of (2.2), and
the characterization of γ+ in terms of curvature in (2.4) [in this case the
dualization argument for the weak (1, 1) inequality is contained in the proof
of the estimate (2.4)].
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Because of the definition of analytic capacity, we know that there exists
a function f (the Ahlfors function) analytic in C \ EN such that |f(z)| ≤ 1
in C \ EN and f ′(∞) = γ(EN ). Let b be the function supported on ∂EN

defined by
1

2πi
f(z) dz|∂EN

= b(z) dµ(z),

where f(z) stands for the outside boundary values of f at ∂EN . Then b
satisfies the following conditions:

(3.3) ‖b‖∞ ≤ 2
πγ(EN )

,

(3.4) |C(b dµ)(z)| ≤ 1 for z 6∈ EN ,

and

(3.5) µ(EN ) =
∫

b dµ.

By standard arguments, it easy to check that (3.4) implies that

(3.6) |Cε(b dµ)(z)| ≤ C for z ∈ EN and all ε > 0,

Let us see what happens if we apply directly the local T (b) Theorem of
Christ in L2(µ) using the function b. We consider only the square Qn

j = Q0.
We must show that there exists a function b0 supported on ∂EN satisfying
(a), (b) and (c) of Theorem 3.1. If we set b0 = b, then (b) follows from (3.6),
and (c) from (3.5). However, we cannot deduce (a) from (3.3), since it may
happen γ(EN ) → 0 as N →∞ (in fact, it happens).

The argument above fails because we have a very bad estimate for ‖b‖∞.
By an elementary localization argument (see [Gar1, Lemma 1, (b)]), we can
obtain the following additional information on b:

(3.7)

∣∣∣∣∣
∫

Qn
j

b dµ

∣∣∣∣∣ ≤ C γ(Qn
j ∩ EN ) for n = 0, . . . , N , j = 1, . . . , 4n.

Notice that if b were bounded by an absolute constant, then we would have

(3.8)

∣∣∣∣∣
∫

Qn
j

b dµ

∣∣∣∣∣ ≤ C µ(Qn
j ) for n = 0, . . . , N , j = 1, . . . , 4n.

In fact, it is easy to see that if the latter estimate were true, then we would
be able to construct a (slight) variant of b satisfying (a), (b) and (c) in
Theorem 3.1, for Q0.

So the following question arises naturally. For which squares Qn
j is it

true that

(3.9) γ(Qn
j ∩ EN ) ≤ C µ(Qn

j )?
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This condition clearly holds for Qn
j = Q0, but it is false for the small squares

QN
j , since γ(QN

j ∩ EN ) ≈ `(QN
j ) but µ(QN

j ) = γ(EN )`(QN
j ). For the inter-

mediate squares Q
N/2
j (assuming N even) we have

γ(QN/2
j ∩ EN ) = `(QN/2

j )γ(EN/2),

since Q
N/2
j ∩EN coincides with a dilation of EN/2 with factor `(QN/2

j ). Also,

µ(QN/2
j ) = `(QN/2

j )γ(EN ).

Therefore, for these squares (3.9) is equivalent to

(3.10) γ(EN/2) ≤ Cγ(EN ).

Notice also that this estimate is a necessary condition for γ(EN ) ≈ N−1/2.
In next subsection, arguing by induction, we will see that we can always
assume (3.10) to be true.

3.4. Proof of Theorem 1.3 for the corner quarters Cantor set.
We will show that γ(EN ) ≤ C3N

−1/2 by induction on N , where C3 is some
fixed constant that will be fixed below. The cases N = 0, 1 are trivial.
Indeed, we only have to choose C3 big enough. Now we will prove that if

γ(EM ) ≤ C3

M1/2
for M ≤ N/2,

then this also holds for M = N . We denote M0 = N/2 if N is even, and
M0 = (N − 1)/2 if N is odd. We distinguish two cases:

(1) γ(EM0) ≤ 2γ(EN ).
(2) γ(EM0) > 2γ(EN ).

In Case (2), we deduce

γ(EN ) ≤ 1
2
γ(EM0) ≤

C3

(4M0)1/2
≤ C3

[2(N − 1)]1/2
≤ C3

N1/2
.

So we are left with Case (1). We take the measure

dµ =
1
4
γ(EN ) ds|∂EM0

(notice the difference with the measure µ in the preceding subsection). Our
goal is to show that the Cauchy transform is bounded on L2(µ) with absolute
constants. Since µ is supported on EM0 , this would imply that

γ+(EM0) ≥ C−1µ(EM0) = C−1γ(EN ),

and so, by Eiderman’s inequality (1.5),

γ(EN ) ≤ Cγ+(EM0) ≤
C

(N/2)1/2
=:

C3

N1/2
,

and the theorem would follow.
To verify that the Cauchy transform is bounded on L2(µ), we will use the

local T (b) Theorem of Christ. Let f be the Ahlfors function of EN . Then f
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is analytic on C\EN , |f(z)| ≤ 1 for z 6∈ EN , f(∞) = 0 and f ′(∞) = γ(EN ).
Let ν be the complex measure dν = 1

2πif(z)dz|∂EN
, so that Cν(z) = f(z) for

z 6∈ EN and Cν(z) = 0 if z ∈
◦

EN . Let n, with 0 ≤ n ≤ M0, be fixed. There
exists an index k, 1 ≤ k ≤ 4n, such that

γ(EN ) =
4n∑

j=1

ν(Qn
j ) ≤ 4n|ν(Qn

k)|.

This is equivalent to saying that µ(Qn
j ) ≤ |ν(Qn

k)|.
Now we will define the function bn

k associated to Qn
k . First we need

to introduce some auxiliary functions ϕ and ϕj , j = 1, . . . , 4M0 . We let ϕ
be a compactly supported C∞ function on C, with 0 ≤ ϕ ≤ 1, such that∫
∂Q0 ϕds ≥ 1 and ϕ vanishes on

⋃4
j=1 B(zj , 1/4), where zj are the vertices

of Q0. Then, for 1 ≤ j ≤ 4M0 , we set

ϕj(z) = ϕ

(
z − vj

4−M0

)
χ

Q
M0
j

,

where vj is the left lower vertex of QM0
j . It is easy to see that |Cε(ϕdµ)| ≤ C,

and also that ∫
ϕj dµ ≥ 1

4
µ(QM0

j ).

We define
b = bn

k :=
∑

Q
M0
j ⊂Qn

k

ν(QM0
j )

ϕj∫
ϕjdµ

.

We clearly have ∣∣∣∣
∫

b dµ

∣∣∣∣ = |ν(Qn
k)| ≥ µ(Qn

k).

To see that b is bounded it suffices to show that

(3.11) |ν(QM0
j )| ≤ Cµ(QM0

j ) for 1 ≤ j ≤ 4M0 .

From a localization argument such as the one mentioned in (3.7), we get

|ν(QM0
j )| ≤ Cγ(QM0

j ∩ EN ).

Suppose first that N is even and M0 = N/2. Then QM0
j ∩EN coincides with

a dilation of EN/2 by the factor `(QM0
j ). Thus, using condition (1),

γ(QM0
j ∩ EN ) = `(QM0

j )γ(EN/2) ≤ 41/2`(QM0
j )γ(EN ) = 41/2µ(QM0

j ),

and (3.11) follows. If M0 is odd and M0 = (N − 1)/2, then QM0
j ∩ EN

coincides with a dilation of E(N+1)/2 by the factor `(QM0
j ). Thus, by the

assumption (1) and the fact that E(N+1)/2 ⊂ E(N−1)/2 = EM0 , we obtain

γ(QM0
j ∩ EN ) = `(QM0

j )γ(E(N+1)/2) ≤ 41/2`(QM0
j )γ(EN ) = 41/2µ(QM0

j ),

and (3.11) also holds in this case.
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Let us check that Cε(b dµ) is a bounded function. Since |Cε(χQn
k

dν)| ≤ C,
we only have to prove that

|Cε(b dµ)− Cε(χQn
k

dν)| ≤ C.

This follows by standard estimates, such as in [MTV, Section 3, (15)] (the
reader should think that b dµ is an approximation of χQn

k
dν at the level of

the squares QM0
j , and then Cε(b dµ) approximates Cε(χQn

k
dν)).

This completes the arguments required for the function bn
k associated to

the square Qn
k in the local T (b) Theorem.

Let us consider now the squares Qn
j of the n-th generation with j 6= k.

We construct bn
j simply by translating bn

k . We have Qn
j = wn

j +Qn
k , for some

wn
j ∈ C. We define bn

j (z) = bn
k(z − wn

j ). It is clear that bn
j satisfies all the

necessary assumptions to apply the local T (b) Theorem.
Thus we have shown that the local T (b) Theorem of Christ can be applied

to µ, and so the Cauchy transform is bounded on L2(µ) with norm bounded
above by some absolute constant. We are done.

4. Some ideas for the proof of the general case

In this section we will sketch the arguments involved in the proof of
Theorem 1.1. First we will describe the similarities with the proof for the
corner quarters Cantor set, and then we will give the new ideas for the
general case.

By a standard discretization argument, such as the one in [Me, Lemma
1], it is enough to prove Theorem 1.1 assuming that E is a finite union of
compact disjoint segments.

As in the case of the corner quarters Cantor set, we want to apply some
kind of T (b) theorem, in the spirit of the local T (b) Theorem of Christ.
Because of the definition of analytic capacity, there exists a complex Radon
measure ν0 supported on E such that

‖Cν0‖∞ ≤ 1,(4.1)
|ν0(E)| = γ(E),(4.2)

dν0 = b0 dH1|E, with ‖b0‖∞ ≤ 1.(4.3)

We would like to show that there exists some Radon measure µ supported
on E with µ ∈ Σ(E), µ(E) ≈ γ(E), and such that the Cauchy transform
is bounded on L2(µ) with absolute constants. Then, as in the preceding
section, we would get

γ+(E) ≥ C−1µ(E) ≥ C−1γ(E),

and we would be done.
However, by a more or less direct application of a T (b) type theorem we

cannot expect to prove that the Cauchy transform is bounded with respect
to such a measure µ with absolute constants. Let us explain the reasons
in some detail. Suppose for example that there exists some function b such



12 JOAN MATEU, XAVIER TOLSA, AND JOAN VERDERA

that dν0 = b dµ and we use the information about ν0 given by (4.1), (4.2)
and (4.3). From (4.1) and (4.2) we derive

(4.4) ‖C(b dµ)‖∞ ≤ 1

and

(4.5)
∣∣∣∣
∫

b dµ

∣∣∣∣ ≈ µ(E).

The estimate (4.4) is very good for our purposes. In fact, most classical
T (b) type theorems require only the BMO(µ) norm of b to be bounded,
which is a weaker assumption. The estimate (4.5) is likewise good; it is a
global paraaccretivity condition, and with some technical difficulties (which
may involve some kind of stopping time argument, like in [Ch1], [Da] or
[NTV]), one can hope to be able to prove that the local paraaccretivity
condition ∣∣∣∣

∫

Q
b dµ

∣∣∣∣ ≈ µ(Q ∩ E)

holds for many squares Q.
Our problems arise from (4.3). Notice that this implies that |ν0|(E) ≤

H1(E), where |ν0| stands for the variation of ν0. This is a very bad estimate
since we don’t have any control on H1(E) (we only know H1(E) < ∞
because our assumption on E). However, as far as we know, all T (b) type
theorems require the estimate

(4.6) |ν0|(E) ≤ Cµ(E)

(and often stronger assumptions involving the L∞ norm of b). So by a
direct application of a T (b) type theorem we will obtain bad results when
γ(E) ¿ H1(E).

To prove Theorem 1.1, we need to work with a measure “better behaved”
than ν0, which we call ν. This new measure will be a suitable modification
of ν0 with the required estimate for its total variation. To construct ν, we
consider a set F containing E made up of a finite disjoint union of squares:
F =

⋃
i∈I Qi. One should think that the squares Qi approximate E at some

“intermediate scale”. For example, if E = EN is N -th approximation of the
corner quarters Cantor set, then F coincides with EN/2 (assuming N even),
and the squares Qi are the 4N/2 squares of generation N/2. For each square
Qi, we take a complex measure νi supported on Qi such that νi(Qi) = ν0(Qi)
and |νi|(Qi) = |νi(Qi)| (that is, νi will be a constant multiple of a positive
measure). We set ν =

∑
i νi. Then, if the squares Qi are big enough, the

variation |ν| will be sufficiently small. On the other hand, the squares Qi

cannot be too big, because we will need

(4.7) γ+(F ) ≤ Cγ+(E).

In this way, we will have constructed a complex measure ν supported on
F satisfying

(4.8) |ν|(F ) ≈ |ν(F )| = γ(E).
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Taking a suitable measure µ such that supp(µ) ⊃ supp(ν) and µ(F ) ≈ γ(E),
we will be ready for the application of a T (b) type theorem. Indeed, notice
that (4.8) implies that ν satisfies a global paraaccretivity condition and
that also the variation |ν| is controlled. On the other hand, if we have been
careful enough, we will have also some useful estimates on |Cν|, since ν is an
approximation of ν0 (in fact, when defining ν in the paragraph above, the
measures νi have to be constructed in a smoother way). Using a suitable
T (b) theorem, we will deduce γ+(F ) ≥ C−1µ(E), and so γ+(E) ≥ C−1γ(E),
by (4.7), and we will be done. Nevertheless, as in the case of the Cantor sets
E(λ), in order to obtain the right estimates on the measures ν and µ it will
be necessary to use an induction argument involving the sizes of the squares
Qi, which will allow to assume that γ(E ∩Qi) ≈ γ+(E ∩Qi) for each square
Qi.

Now we will make some comments regarding the new difficulties that
arise in the case of general sets. The choice of the right squares Qi which
approximate E at an intermediate scale is more complicated than in the
case of the corner quarters Cantor set. The key estimates which the squares
Qi must satisfy for the arguments above to work are the following:

(4.9) γ+(F ) = γ+

(⋃

i

Qi

) ≤ Cγ+(E)

and

(4.10)
∑

i

γ+(Qi ∩ E) ≤ Cγ+(E).

For the corner quarters Cantor set, it can be checked easily that both (4.9)
and (4.10) hold, using that γ+(EN ) ≈ N−1/2 for all N .

Then, modulo some technicalities, we set dµ =
∑

i ds|Γi
, where Γi is a

circumference of radius γ(E ∩ Qi)/10 concentric with Qi. We also define
dν =

∑
i ai ds|Γi

, with ai = ν0(Qi)/length(Γi).
In the construction of the squares Qi fulfilling (4.9) and (4.10), the char-

acterization of γ+ in terms of curvature and the properties of the associated
potential defined in (2.5) play an important role. Let σ be a Radon measure
which is maximal for the right hand side of (2.4) (and so for γ+, in a sense).
By variational arguments, it is not difficult to see that σ(E) ≈ γ+(E) and
that Uσ(x) ≥ λ0 for all x ∈ E, where λ0 > 0 is some absolute constant. We
consider the open set Ω = {x ∈ C : Uσ(x) > ελ0}, with ε < 10−3 fixed.
Notice that Ω ⊂ E and

(4.11) γ+(Ω) ≤ C(ελ0)−1σ(E) ≈ γ+(E),

by (2.7). Then, the squares Qi are precisely the Whitney squares of Ω which
intersect E, and we set F =

⋃
i Qi.

Observe that (4.9) is a direct consequence of (4.11).
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The inequality (4.10) requires some additional arguments. It turns out
that

(4.12) Uσ|2Qi
(x) > λ0/10 for all x ∈ Qi ∩ E,

if ε has been chosen small enough. This follows from the fact that there
exists some point x′ 6∈ Ω, with |x − x′| ≈ `(Qi), such that Uσ(x′) ≤ ελ0,
which implies that Uσ|C\2Qi

(x) ¿ λ0. Since Uσ(x) > λ0, most of the potential
Uσ(x) must be originated by σ|2Qi

, and then (4.12) holds. Thus, using (2.7)
again and the fact that

∑
i χ2Qi ≤ C, we get

∑

i

γ+(Qi ∩ E) ≤ Cλ−1
0

∑

i

σ(2Qi) ≤ Cλ−1
0 σ(E) ≈ γ+(E).

Another big difference between the proof for the Cantor sets E(λ) and
the proof for general compact sets comes from the T (b) theorem. The corner
quarters Cantor set, as well as the other Cantor sets E(λ), have a “regular”
structure which allows an easy application of the local T (b) theorem of
Christ. A general compact set does not have this nice structure. Further,
the measure µ mentioned above is non doubling, in general. So a much
more flexible T (b) type theorem is needed. To this end, the T (b) theorem of
Nazarov, Treil and Volberg in [NTV] is a very powerful tool. The version
of this theorem used in [To4] requires the following hypotheses:

- There exists a µ-measurable function b such that
(a) ‖b‖∞ ≤ C,
(b) ‖C∗(b dµ)‖L1(µ) ≤ Cµ(F ),
(c) µ(F ) ≤ C

∫
b dµ.

- Roughly speaking, there is a subset G0 ⊂ F with µ(G0) ≈ µ(F )
where both µ has linear growth and b is locally paraaccretive.

These assumptions ensure that there exists a subset G ⊂ G0 such that the
Cauchy transform is bounded on L2(µ|G). As a consequence, we deduce

γ+(E) ≥ C−1γ+(F ) ≥ C−1µ(G) ≈ µ(F ) ≥ C−1γ(E).

Of course, in this T (b) theorem µ is allowed to be non doubling. Notice
also that it only requires a control over the L1 norm of C∗(b dµ), instead of
the usual L∞ or BMO norms.

5. Applications to rational and harmonic approximation

In this section we will give some applications of the semiadditivity of
analytic capacity to problems on uniform approximation of analytic func-
tions by rational functions on compact sets, and also to questions on C1

approximation of harmonic functions on compact sets.
Let X ⊂ C be compact, and let R(X) be the space of functions on X

which are uniform limits of analytic functions on X, or equivalently, which
are uniform limits of rational functions with poles off X. Let A(X) be the

algebra of those continuous functions on X which are analytic on
◦
X. It is
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clear that R(X) ⊂ A(X). We are interested in characterizing those compact
sets X for which R(X) = A(X).

In order to explain the solution of this problem we need to introduce
a slight variant of analytic capacity. The continuous analytic capacity of a
compact set X ⊂ C is defined as

α(X) = sup |f ′(∞)|,
where the supremum is taken over all functions f which are continuous in
C, analytic on C \X and satisfy |f(z)| ≤ 1, z ∈ C. For a general set F ⊂ C,
we set α(F ) = sup{α(X) : X ⊂ F, X compact}. Clearly, α ≤ γ. If I ⊂ C
is an interval it is easy to check that α(I) = 0, and so α and γ are different
set functions. They coincide, however, on open sets.

In the 1960’s Vitushkin introduced a powerful new method to deal with
the above approximation problem leading to fairly complete solutions, thus
culminating work previously done by Lavrentief, Mergelyan, Walsh and oth-
ers. A good reference for this subject is the paper of Vitushkin [Vi]. We
state now Vitushkin’s Theorem.

Theorem 5.1. For a compact set X ⊂ C the following are equivalent.
(a) R(X) = A(X).

(b) α(∆ \
◦
X) = γ(∆ \X) for all open discs ∆ ⊂ C.

(c) There exists C > 0 such that α(∆ \
◦
X) ≤ Cγ(∆ \X) for all open

discs ∆ ⊂ C.

Conditions (a) and (b) must be interpreted as local negligibility con-
ditions on ∂X quantified by α. Thus, the preceding problem on uniform
rational approximation has been reduced to comparing the continuous ana-
lytic capacity of some sets.

The main drawback of Vitushkin’s Theorem arises from the fact that
conditions (b) and (c) above cannot be formulated in pure metric and/or
geometric terms. As a consequence, there still remain many open problems
in connection with the equality R(X) = A(X). To state one of the most
relevant, we need to introduce the notion of inner boundary of a compact
set X.

The inner boundary ∂iX of X is the set of boundary points which do
not belong to the boundary of a connected component of C \X. Vitushkin
showed that the equality R(X) = A(X) essentially depends on the structure
of ∂iX and he stated in [Vi] the following conjecture:

If α(∂iX) = 0, then R(X) = A(X).

The first contribution to this question comes from the following result by
Davie and Øksendal [DØ].

Theorem 5.2. If dim(∂iX) < 1, then R(X) = A(X).

Here dim(∂iX) stands for the Hausdorff dimension of ∂iX. Using The-
orem 1.2, this result can be improved as follows.
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Theorem 5.3. If γ(∂iX) = 0, then R(X) = A(X).

Proof. For each open disc ∆, we set

∆ \
◦
X = (∆ \X) ∪ (∆ ∩ ∂eX) ∪ (∆ ∩ ∂iX),

where ∂eX = ∂X \ ∂iX is the outer boundary of X. The arguments in the
proof of Mergelyan’s Theorem (see [Gam, Chapter VIII] or [Ve1]) can be

adapted to show that α(∆ \
◦
X) = α((∆ \X)∪ (∆∩ ∂iX)). Now, because of

the semiadditivity of γ, we have

α(∆ \
◦
X) ≤ C(γ(∆ \X) + γ(∆ ∩ ∂iX)) = Cγ(∆ \X) = Cα(∆ \X),

since ∆ \X is open. ¤

This result asserts, in particular, that if we take a compact set X, for
which ∂iX is the corner quarters Cantor set, then R(X) = A(X).

To solve the inner boundary conjecture it would be enough to prove the
semiadditivity of continuous analytic capacity, namely that there exists a
constant C such that

α(E ∪ F ) ≤ C(α(E) + α(F )) for all Borel sets E and F.

Let us remark that this inequality does not seem to be an easy consequence
of Theorem 1.2. The reader may obtain more information on this problem
and related questions in [Dve].

Now we turn our attention to C1 approximation of harmonic functions.
We will derive an analog of Mergelyan’s Theorem (see [Gam, Chapter VIII]
or [Ve1]) for harmonic functions from Theorem 1.1. For X ⊂ C compact,
we consider the space

C1(X) = C1(C)/J(X),

endowed with the quotient norm, where

J(X) = {f ∈ C1(C) : f(z) = 0 and ∇f(z) = 0, z ∈ X}.
The space C1(C) is equipped with its natural Banach space structure given
by the norm ‖f‖ =

∑

|α|≤1

‖∂αf‖∞.

Whitney’s extension Theorem identifies C1(X) with a space of jets. A
C1−jet is a triple (f0, f1, f2) of continuous functions on X such that

f0(w)− f0(z)− f1(z)(w − z)− f2(z)(w̄ − z̄) = o(|w − z|),
the small o being uniform in z, w ∈ X.

Set H(X) = {f ∈ C1(X) : f0 is harmonic on
◦
X} and let h(X) be the

closure in C1(X) of the functions in C1(C) which are harmonic in a neigh-
borhood of X.
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The C1 approximation problem for the Laplacian was studied by Para-
monov [Pa]. The natural capacities associated to this problem are κ′ and
κ. Given a compact set E ⊂ Rn, κ′(E) is defined as

κ′(E) = sup |〈T, 1〉|,
where the supremum is taken over all distributions T supported on E such
that ‖ x

‖x‖n ∗ T‖∞ ≤ 1. The capacity κ is the continuous version of κ′. Its
definition is analogous to the one of κ′, with the additional condition that

x
‖x‖n ∗T must be continuous. For n = 2, κ′ and κ coincide with γRe and αRe,
which are the versions of γ and α originated by bounded Cauchy potentials
of real measures.

Paramonov’s result reads as follows.

Theorem 5.4. For a compact set X ⊂ C the following are equivalent.
(a) H(X) = h(X).

(b) There exists C > 0 such that κ(∆ \
◦
X) ≤ Cκ(∆ \X) for all open

discs ∆ ⊂ C.

Let P (X) be the closure in C1(X) of the space of harmonic polynomials
in C. The version of Mergelyan’s Theorem for harmonic functions mentioned
above (which was an open problem up to now) is the following.

Theorem 5.5. For a compact set X ∈ C, H(X) = P (X) if and only if
C \X is connected.

Proof. The necessity was proved in [Pa, Theorem 7.1]. To obtain the
sufficiency we check that condition (b) of the preceding theorem is fulfilled
for discs centered at the boundary of X. It can be shown that this condition
already implies H(X) = h(X).

From Theorem 1.1 we deduce that γ(E) ≈ γRe(E) = κ′(E) for any
compact set E ⊂ C. In particular, if E is a continuum, then κ′(E) ≈
diam(E). Suppose that ∆ is a disc centered at some point in ∂X. Since
∆ \X contains a continuum E of diameter comparable to the radius of ∆,
we have

κ(∆ \X) = κ′(∆ \X) ≥ κ′(E) ≥ C−1diam(∆) ≥ C−1κ(∆ \
◦
X).

Thus, each function in H(X) can be approximated by functions in h(X).
Then, using Walsh’s analog of Runge’s Theorem for harmonic functions
[Wa] we obtain H(X) = P (X). ¤

6. Open problems

In this section we state several open problems related to the ones con-
sidered in the preceding sections. They are quite well known and, of course,
there is no attempt of originality.

Problem 1. Is the continuous analytic capacity α semiadditive? This
problem, raised by Vitushkin [Vi], has already been mentioned at the end
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of Section 5. It has several applications to uniform rational approximation.
In particular, it implies the inner boundary conjecture.

A closely related question is the comparability between α and α+, which
is the version of α originated by Cauchy transforms of positive measures.

Problem 2. Is the class of sets with positive analytic capacity invariant
under bilipschitz transformations? That is, if E is compact, γ(E) > 0
and ϕ : C−→C is bilipschitz, then can we claim that γ(ϕ(E)) > 0? From
Theorem 1.1 and the characterization of γ+ in terms of curvature, it is quite
easy to see that this is true if ϕ ∈ C1+ε, ε > 0 (see [To1], for example). The
analogous problem for ϕ bilipschitz or C1 seems much more difficult.

Problem 3. The capacities κ′ and κ in Rn. As mentioned in Section 5,
these capacities were introduced by Paramonov [Pa] to deal with problems of
harmonic approximation in C1 norm. One can ask several questions about κ′
and κ. For example, are they semiadditive? Are κ′ and κ comparable to their
corresponding positive versions κ′+ and κ+? The main obstacle that appears
when one tries to extend the methods used to prove the semiadditivity of
analytic capacity is the absence of a notion such as the Menger curvature of
a measure (see [Fa]), which plays a key role in the proof of Theorem 1.1, as
shown in Section 4.

Problem 4. Riesz transforms and uniform rectifiability. A set E ⊂ Rn is
called AD-regular of dimension d if

Hd(E ∩B(x, r)) ≈ rd for all x ∈ E and 0 < r ≤ diam(E),

where Hd stands for the d-dimensional Hausdorff measure. In [MMV] it
has been proved that if E ⊂ C is an AD-regular 1-dimensional set such that
the Cauchy transform is bounded on L2(H1

|E), then E is contained in an
AD-regular curve.

In the corresponding d-dimensional (with d > 1) version of the problem,
one has a set E ⊂ Rn and it is assumed that the d-dimensional Riesz trans-
forms are bounded on L2(Hd

|E). Then one asks if E is uniformly rectifiable
in the sense of David and Semmes [DS]. This problem still remains open.
David and Semmes [DS] have proved it under the stronger assumption of
the L2 boundedness of all Calderón-Zygmund operators with an odd kernel
which is C∞ away from the origin (see also [DS] for other partial results).
As in the preceding problem, the main difference with the 1-dimensional
case comes from the absence of a notion similar to Menger curvature, which
relates analytic concepts, such as L2 boundedness, with metric-geometric
information via a formula like (2.2).
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