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Abstract. In this paper we characterize the minimizer for a class of nonlocal perturbations
of the Coulomb energy. We show that the minimizer is the normalized characteristic function of
an ellipsoid, under the assumption that the perturbation kernel has the same homogeneity as the
Coulomb potential, is even, is smooth off the origin, and is sufficiently small. This result can be seen
as the stability of ellipsoids as energy minimizers, since the minimizer of the Coulomb energy is the
normalized characteristic function of a ball.
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1. Introduction and statement of the main result. Nonlocal energies are an
approximation of discrete energies modeling long-range particle interactions for large
numbers of particles. The study of the minimizers of nonlocal energies---existence,
uniqueness, regularity, and characterization---is therefore a crucial step for under-
standing optimal arrangements of particles, at least in average.

In this paper we characterize the minimizers for a class of nonlocal energies that
are perturbations of the Coulomb energy. We focus here on the two-dimensional case
to illustrate the main result and the key ideas of our approach.

We consider energy functionals I\kappa defined on probability measures \mu \in \scrP (\BbbR 2) as

(1.1) I\kappa (\mu ) =

\int 
\BbbR 2

\int 
\BbbR 2

W\kappa (z  - w)d\mu (z)d\mu (w) +

\int 
\BbbR 2

| z| 2 d\mu (z),

where the interaction potential W\kappa is given (in complex variables) by

(1.2) W\kappa (z) = - log | z| + \kappa (z), z \in \BbbC , z \not = 0,

and W\kappa (0) = +\infty , and \kappa is an even real-valued function, homogeneous of degree 0
and of class C3(\BbbC \setminus \{ 0\} ).
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MINIMIZERS OF PERTURBED COULOMB ENERGIES 3651

The unperturbed energy I0, defined in (1.1), for \kappa = 0, is perhaps the most well
studied nonlocal energy, due to its relevance in a variety of contexts, from random
matrices to interpolation theory and materials science. The minimizer of I0 is well
known, and is the normalized characteristic function of the unit disc, the so-called
circle law (see [4, 13] and the references therein).

The main result of this paper is that the perturbed energy I\kappa also has a unique
minimizer, which is the normalized characteristic function of an ellipse, provided the
kernel \kappa is small in some suitable norm. This can be seen as a ``stability"" result for
ellipses, showing the ``persistence"" of the ellipse as the energy minimizer, for small
perturbations of the energy.

1.1. Motivation. In the recent work [1, 8, 9] we considered the one-parameter
family of energies

(1.3) I\alpha (\mu ) =

\int 
\BbbR 2

\int 
\BbbR 2

W\alpha (z  - w)d\mu (z)d\mu (w) +

\int 
\BbbR 2

| z| 2 d\mu (z),

defined on \mu \in \scrP (\BbbR 2), where the interaction kernel W\alpha is given by

W\alpha (z) = - log | z| + \alpha 
x2

| z| 2
, z = x+ iy \in \BbbC , z \not = 0,  - 1<\alpha < 1.

The energy I\alpha arises in the study of defects in metals, dislocations, in the limit
case \alpha = 1 (see [12]). In [1] we showed that the minimizer of I\alpha is the normalized
characteristic function of the region encircled by an ellipse with semi-axes

\surd 
1 - \alpha 

and
\surd 
1 + \alpha for every  - 1<\alpha < 1 (see also [2] for a higher-dimensional version of the

result).
For \alpha small, we can interpret the energy I\alpha in (1.3) as a ``perturbation"" of the

Coulomb energy I0. Hence the minimality of the ellipse for I\alpha , for \alpha small shows
the persistence of the ellipse as energy minimizer when the logarithmic potential is
perturbed by \alpha x2/| z| 2.

A natural question is then, ``What is special about the potential \alpha x2/| z| 2, and
can we reproduce the persistence of the ellipse for more general perturbations \kappa of
the logarithmic potential?"" This is one of the main motivations of this work. In
Theorem 1.1 we identify the properties of the perturbation potential \kappa that guarantee
the persistence of the ellipse: if \kappa is even, zero-homogeneous, and smooth outside the
origin, then the minimizer of the corresponding energy is still an ellipse, at least if \kappa 
is sufficiently small.

Another motivation for our study comes from applications in materials science,
where kernels of the form (1.2) arise in the study of dislocations in anisotropic elastic
media. For instance, the interaction of screw dislocations in a planar anisotropic
elastic body is described in terms of the kernel

 - 1

2
log
\bigl( 
\alpha x2  - 2\beta xy+ \gamma y2

\bigr) 
, z = x+ iy \in \BbbC , z \not = 0,

where \alpha ,\beta , \gamma are given constants such that \alpha > 0 and \alpha \gamma  - \beta 2 > 0. This kernel can
be written in the form (1.2) by considering

\kappa (z) = - 1

2
log

\biggl( 
\alpha x2  - 2\beta xy+ \gamma y2

| z| 2

\biggr) 
.

Similarly, the interaction of edge dislocations in a planar anisotropic elastic body
involves a kernel of the form (1.2) with
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3652 MATEU, MORA, RONDI, SCARDIA, AND VERDERA

\kappa (z) = - 1

4

\alpha + \beta 

\alpha 
log

\biggl( 
x2 + (\alpha + \beta )2y

| z| 2

\biggr) 
 - 1

4

\alpha  - \beta 

\alpha 
log

\biggl( 
x2 + (\alpha  - \beta )2y

| z| 2

\biggr) 
,

where \beta >\alpha > 0 are given constants (see, e.g., [5, Chapter 13]).

1.2. Main result. Before stating our main result we fix some notation. Given
positive real numbers a and b and an angle \varphi \in [0,2\pi ), we let E(a, b,\varphi ) stand for the
compact set enclosed by the ellipse with semi-axes a and b, tilted by an angle \varphi with
respect to the x-axis, namely

(1.4) E(a, b,\varphi ) = ei\varphi 
\biggl\{ 
(x, y)\in \BbbR 2 :

x2

a2
+
y2

b2
\leq 1

\biggr\} 
.

If \varphi = 0, we use the notation

(1.5) E0(a, b) :=E(a, b,0) =

\biggl\{ 
(x, y)\in \BbbR 2 :

x2

a2
+
y2

b2
\leq 1

\biggr\} 
.

We will often refer to these sets as the ``interior"" of the boundary ellipse, interior not
having here the usual topological meaning.

We are now ready to state our main result.

Theorem 1.1. There exists \varepsilon 0 > 0 such that if \kappa is an even real function, homo-
geneous of degree 0, of class C3 off the origin, and satisfies the smallness condition

(1.6) | \nabla j\kappa (z)| \leq \varepsilon 0 for | z| = 1 and j \in \{ 0,1,2,3\} ,

then there exists a triplet (a, b,\varphi ) such that the probability measure \chi E/| E| , with
E =E(a, b,\varphi ) as in (1.4), is the unique minimizer of the energy (1.1).

The result in Theorem 1.1 is threefold: it gives existence, uniqueness, and charac-
terization of the minimizer of the energy (1.1). While the existence is quite standard,
uniqueness and characterization are more subtle.

To prove uniqueness, we show that the energy I\kappa is strictly convex on a class of
measures that are relevant for the minimization. We achieve this by showing that the
Fourier transform of the potentialW\kappa is positive outside zero. Note thatW\kappa =W 0+\kappa ,
where W 0 = - log | \cdot | is the logarithmic potential. For W 0 it is known that its Fourier
transform satisfies

\widehat W 0(\xi ) = 2\pi 
1

| \xi | 2
, \xi \not = 0,

so clearly \widehat W 0(\xi ) > 0 for \xi \not = 0. In section 3.2 we show that the assumptions on \kappa 

ensure that \^\kappa has a structure similar to\widehat W 0 and that adding \^\kappa to\widehat W 0 does not disrupt
its positivity outside the origin.

For the characterization of the minimizer, we use the Euler--Lagrange conditions

(W\kappa  \star \mu ) (z) +
1

2
| z| 2 =C for \mu -a.e. z \in supp\mu ,(1.7)

(W\kappa  \star \mu ) (z) +
1

2
| z| 2 \geq C for z \in \BbbR 2 \setminus N with Cap(N) = 0,(1.8)
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MINIMIZERS OF PERTURBED COULOMB ENERGIES 3653

where supp\mu stands for the support of \mu , C is a constant, and Cap is the logarithmic
capacity. Due to the strict convexity of the energy, these conditions are equivalent to
minimality and are satisfied by the unique minimizer of the energy only.

For the first Euler--Lagrange condition (1.7), our approach is to impose that
\chi E/| E| , for a generic ellipse E as in (1.4), satisfies it. We recall that  - log | \cdot |  \star \chi E is
quadratic on E for any ellipse (see, e.g., [6]), where the potential has been computed
explicitly in the context of Kirchhoff ellipses in fluid dynamics. Hence (1.7) can
only be satisfied if also \kappa  \star \chi E is quadratic on E. We prove that this is indeed
the case, by showing that the convolution against \partial ij\kappa defines a special Calder\'on--
Zygmund operator, which has the property of being constant on E, when evaluated on
\chi E . In other words, the assumptions on \kappa (notably without the smallness condition)
guarantee that

\partial ij

\biggl( 
(W\kappa 

\alpha  \star \mu ) (z) +
1

2
| z| 2
\biggr) 
= constant on E

for i, j = 1,2. Imposing that the constant is zero (as derived from (1.7)) gives a
system of three equations (for the derivatives \partial 11, \partial 12, and \partial 22) in three unknowns
(the semi-axes a and b and the tilting angle \varphi ). We show that this system admits
a unique solution for \kappa small by resorting to a nontrivial application of the implicit
function theorem.

For the second Euler--Lagrange condition (1.8), instead, we adopt a purely per-
turbative argument, which exploits the ``closeness"" of every term of the equation, for
\kappa small, to the corresponding term of the second Euler--Lagrange condition for the
case \kappa = 0.

Remark 1.2 (tilting angle \varphi ). For kernels that are even in each variable separately,
our proof yields \varphi = 0 for the minimizing ellipse. The simplest case in which the
minimizing ellipse has a rotation angle \varphi \not = 0 is

\kappa (z) = \beta 
xy

| z| 2
,

as was shown in [1]. To see this, we express \kappa in terms of the rotated variables
w := (u, v) = e - i\pi /4z and obtain the kernel

\~\kappa (w) =
\beta 

2

u2  - v2

| w| 2
,

where \~\kappa (w) := \kappa (z(w)). Since \~\kappa (w) = \beta u2

| w| 2  - \beta 
2 , this kernel yields the minimization

problem with interaction potential

 - log | w| + \beta 
u2

| w| 2
,

for which we know that minimizers are normalized characteristic functions of domains
enclosed by ellipses with angle \varphi = 0 and semi-axes

\surd 
1 - \beta and

\surd 
1 + \beta , for \beta \in ( - 1,1)

(see [1]). Thus the unique minimizer for the energy with interaction potential

 - log | z| + \beta 
xy

| z| 2

is, for each \beta \in ( - 1,1), the normalized characteristic function of

E(
\sqrt{} 

1 - \beta ,
\sqrt{} 

1 + \beta ,\pi /4).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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3654 MATEU, MORA, RONDI, SCARDIA, AND VERDERA

Remark 1.3 (examples of perturbation kernels). The kernels

(1.9) \kappa (z) = \beta 
x2\ell 

| z| 2\ell 
, \ell \in \BbbN ,

are even, real-valued, homogeneous of degree 0, and of class C3 off the origin. Theorem
1.1 then guarantees that for small enough \beta the corresponding energy I\kappa has a unique
minimizer, which is the normalized characteristic function of the domain enclosed by
some ellipse as in (1.5), by Remark 1.2. One may wonder, ``What is the maximal
interval in \beta for which the minimizer is an ellipse?"" For \ell = 1 we have a complete
answer: the results in [1, 12] show that for \beta \in ( - 1,1) the energy minimizer is an
ellipse, while for | \beta | \geq 1 it is a measure supported on a segment (the so-called semicircle
law). Therefore, ( - 1,1) is the maximal interval. For \ell \geq 2 the situation is unclear.
For instance, for \ell = 2 we only know from preliminary computations that for

 - 2

3
<\beta <

4

3

the minimization problem has a unique solution and there exists an ellipse solving the
first Euler--Lagrange condition. In this paper, however, we will not further investigate
this case, and our focus will be on small perturbations \kappa .

1.3. Structure of the paper. In section 2 we collect some results on Calder\'on--
Zygmund operators. In section 3 we prove that the energy I\kappa admits a unique
minimizer; in particular, we address the positivity of the Fourier transform of the
interaction kernel. Section 4 is devoted to the proof of the existence of an ellipse
satisfying the Euler--Lagrange conditions. Finally, in section 5 we briefly discuss the
higher-dimensional case.

2. Notation and terminology. We now recall some useful results and establish
some convention on notation and terminology.

2.1. The Fourier transform. The Fourier transform definition we adopt is

\widehat \phi (\xi ) = \int 
\BbbR d

\phi (z)e - i\xi \cdot z dz, \xi \in \BbbR d,

in any dimension d\geq 1, for functions \phi in the Schwartz class.
We will use on several occasions a formula giving the Fourier transform of a

distribution in \BbbR d of the form

\Phi k(z)

| z| d - s+k
, z \in \BbbR d \setminus \{ 0\} ,

where \Phi k is a homogeneous harmonic polynomial of degree k \geq 1 and 0 \leq s \leq d. In
the case s= 0 the above expression is understood in the principal value sense, as well
as the expression on the Fourier side in the formula below for s= d. The formula is

(2.1)
\Phi k(z)

| z| d - s+k
Fourier -  -  -  - \rightarrow ( - i)k2s\pi d/2

\Gamma (k+s2 )

\Gamma (k+d - s2 )

\Phi k(\xi )

| \xi | k+s
;

see [14, Chapter III, Theorem 5], where a slightly different definition of the Fourier
transform is adopted.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MINIMIZERS OF PERTURBED COULOMB ENERGIES 3655

2.2. Calder\'on--Zygmund operators. Let T be an even smooth homogeneous
convolution Calder\'on--Zygmund operator in \BbbR d, that is,

(2.2) T (f)(z) = p.v.

\int 
\BbbR d

f(w)H(z  - w)dw, f \in L2(\BbbR d),

where H is an even kernel, homogeneous of degree  - d, of class C1 off the origin, and
satisfying the cancellation property

(2.3)

\int 
| \xi | =1

H(\xi )d\sigma (\xi ) = 0.

The above principal value integral is defined for almost all z \in \BbbR d.
The Calder\'on--Zygmund constant of T is defined to be

(2.4) \| T\| CZ = sup
| \xi | =1

(| H(\xi )| + | \nabla H(\xi )| ).

If F \subset \BbbR d, f is a function defined on F , and 0<\gamma < 1, we set

| f | \gamma ,F = sup
x,y\in F
x\not =y

| f(x) - f(y)| 
| x - y| \gamma 

.

The following lemma is a regularity result for the Calder\'on--Zygmund operator
on smooth domains.

Lemma 2.1 (see [10]). Let D\subset \BbbR d be a domain with boundary of class C1,\gamma , 0<
\gamma < 1, and T an even smooth homogeneous convolution Calder\'on--Zygmund operator
in \BbbR d. Then

(2.5) | T (\chi D)(x)| \leq C \| T\| CZ for x\in \BbbR d

and

(2.6) | T (\chi D)| \gamma ,D + | T (\chi D)| \gamma ,\BbbR d\setminus D \leq C \| T\| CZ

for a positive constant C depending on d, \gamma , and D. The constant C depends only on
the constants determining the C1,\gamma -character of D.

As a consequence of Lemma 2.1 we deduce the following result that proves the
tangential continuity of the first order derivatives of a sort of primitive of T (\chi D).

Lemma 2.2. Let D\subset \BbbR d be a domain with boundary of class C1,\gamma , 0<\gamma < 1, and
let \tau (x) be a tangent vector to \partial D at x \in \partial D. Let G be an odd kernel, homogeneous
of degree  - (d - 1), of class C2 off the origin. Then the limits

lim
D\ni y\rightarrow x

\langle \nabla G  \star \chi D(y), \tau (x)\rangle and lim
D \not \ni y\rightarrow x

\langle \nabla G  \star \chi D(y), \tau (x)\rangle 

exist and coincide for each x\in \partial D.
Proof. We compute the distributional gradient of G. Note that \nabla G is an even

kernel, with values in \BbbR d, homogeneous of degree  - d, of class C1 off the origin.
The gradient of G in the sense of distributions is a constant multiple of the Dirac

delta at the origin plus the principal value distribution associated with the kernel \nabla G.
More precisely,

\nabla G=

\Biggl( \int 
| \xi | =1

G(\xi )\xi d\sigma (\xi )

\Biggr) 
\delta 0 +p.v.\nabla G.
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3656 MATEU, MORA, RONDI, SCARDIA, AND VERDERA

It is a simple matter realizing that

(2.7)

\int 
| \xi | =1

\partial iG(\xi )d\sigma (\xi ) = 0, i= 1, . . . , d.

To see this, we first note that, by applying the divergence theorem,

(2.8)

\int 
1
2<| z| <1

\partial iG(z)dz = - 
\int 
| \xi | = 1

2

G(\xi )\nu i(\xi )d\sigma (\xi ) +

\int 
| \xi | =1

G(\xi )\nu i(\xi )d\sigma (\xi ) = 0,

since, by the homogeneity of G, the integral
\int 
| \xi | =rG(\xi )\nu i(\xi )d\sigma (\xi ) is independent of

r > 0, where \nu i(\xi ) is the ith component of the exterior unit normal vector to the sphere
centered at 0 of radius r, at the point \xi . Moreover, by using again the homogeneity
of G, we conclude that\int 

1
2<| z| <1

\partial iG(z)dz =

\int 
1
2<| z| <1

| z|  - d \partial iG
\biggl( 
z

| z| 

\biggr) 
dz =

\int 1

1
2

1

\rho 
d\rho 

\int 
| \xi | =1

\partial iG(\xi )d\sigma (\xi )

= log 2

\int 
| \xi | =1

\partial iG(\xi )d\sigma (\xi )

and hence, by (2.8), prove (2.7).
This shows that \partial iG is the kernel of an even homogeneous Calder\'on--Zygmund

operator to which one can apply Lemma 2.1. Therefore, G \star \chi D is a Lipschitz function
in \BbbR d and \nabla G  \star \chi D satisfies a H\"older condition of order \gamma in D and in \BbbR d \setminus D. In
particular, G  \star \chi D is a function of class C1,\gamma in D and in \BbbR d \setminus D. Hence the limits

lim
D\ni y\rightarrow x

\nabla G  \star \chi D(y) and lim
D \not \ni y\rightarrow x

\nabla G  \star \chi D(y)

exist, for x\in \partial D, although they are not necessarily equal.
We now show that they coincide tangentially. For that assume d= 2 to simplify

the notation. Given z0 = (x0, y0) \in \partial D, take r small enough so that, renaming the
variables if necessary, there exists a function \phi : I = (x0  - r,x0 + r)\rightarrow \BbbR of class C1,\gamma 

such that

Q(z0, r)\cap D= \{ (x, y)\in Q(z0, r) : y < \phi (x)\} ,

where Q(z0, r) = \{ (x, y) : | x - x0| < r, | y - y0| < r\} . Set f(z) =G \star \chi D(z), z \in \BbbR 2. Since
f is a Lipschitz function, we have

f(x,\phi (x) - \varepsilon )
\varepsilon \rightarrow 0 -  -  - \rightarrow f(x,\phi (x)) uniformly in I.

Assume, without loss of generality, that \tau ((x,\phi (x))) = (1, \phi \prime (x)), x\in I. Thus we have
that, in the weak convergence of distributions on I,

\langle \nabla f(x,\phi (x) - \varepsilon ), \tau (x,\phi (x))\rangle = d

dx
f(x,\phi (x) - \varepsilon )

\varepsilon \rightarrow 0 -  -  - \rightarrow d

dx
f(x,\phi (x)).

Note that, in view of the H\"older regularity of \nabla f in D, the convergence of the left-
hand side is uniform in I. Since one can repeat the argument with f(x,\phi (x)  - \varepsilon )
replaced by f(x,\phi (x) + \varepsilon ), the proof is complete.

The next lemma establishes the behavior of Calder\'on--Zygmund operators on
ellipsoids. The behavior on balls was first proved in [10]; see also [7] for the special
case of the Beurling transform.
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MINIMIZERS OF PERTURBED COULOMB ENERGIES 3657

Lemma 2.3. Let T be an even homogeneous convolution Calder\'on--Zygmund op-
erator in \BbbR d of the form (2.2), where the kernel H is even, homogeneous of degree  - d,
integrable with respect to the (d - 1)-dimensional surface measure on the unit sphere,
and satisfying the cancellation property (2.3). Let E \subset \BbbR d be the domain enclosed by
an ellipsoid. Then T (\chi E) is constant on E. In particular, if

(2.9) E =

\biggl\{ 
x= (x1, . . . , xd)\in \BbbR d :

x21
a21

+ \cdot \cdot \cdot + x2d
a2d

\leq 1

\biggr\} 
,

then the constant value of T (\chi E) in E is

(2.10)  - 1

2

\int 
| \xi | =1

log

\biggl( 
\xi 21
a21

+ \cdot \cdot \cdot + \xi 2d
a2d

\biggr) 
H(\xi )d\sigma (\xi ).

Proof. Let E \subset \BbbR d be the domain enclosed by an ellipsoid. With no loss of
generality, up to a translation, we can assume that E is centered at the origin. Then
we can express E as E =Q(E0), where Q\in SO(d) is an appropriate rotation and E0

is the interior of an ellipsoid of the form (2.9). Changing variables according to Q we
obtain

T (\chi E)(z) = p.v.

\int 
E

H(z  - w)dw=p.v.

\int 
Q(E0)

H(z  - w)dw

=p.v.

\int 
E0

H(z  - Q(w))dw=p.v.

\int 
E0

(H \circ Q)(Q - 1z  - w)dw

= TH\circ Q(\chi E0
)(Q - 1z),

where TH\circ Q is defined as in (2.2), but with H replaced by H \circ Q. Since H \circ Q is of
the same type as H, it is enough to prove the statement about the domain enclosed
by an ellipsoid of the form (2.9).

Take a point z in the interior of E and a radius R so big that E \subset B(z,R). Then,
by using the definition of the principal value, we have that

(2.11)

T (\chi E)(z) = (p.v.H  \star \chi E) (z) = lim
r\rightarrow 0

\int 
E\setminus B(z,r)

H(z  - w)dw= - 
\int 
B(z,R)\setminus E

H(z  - w)dw.

The last equality follows by writing\int 
E\setminus B(z,r)

H(z  - w)dw=

\int 
B(z,R)\setminus B(z,r)

H(z  - w)dw - 
\int 
B(z,R)\setminus E

H(z  - w)dw,

and by changing to polar coordinated centered at z in the integral\int 
B(z,R)\setminus B(z,r)

H(z  - w)dw=

\int R

r

\int 
| \xi | =1

H(\rho \xi )\rho d - 1d\rho d\sigma (\xi )

=

\int R

r

\biggl( \int 
| \xi | =1

H(\xi )d\sigma (\xi )

\biggr) 
1

\rho 
d\rho = 0,

where we have also used the homogeneity of H and (2.3).
We now evaluate the last integral in (2.11) by taking again polar coordinates

centered at z. Given \xi \in \BbbR d with | \xi | = 1, denote by r(z, \xi ) the unique positive number
r such that z + r\xi lies in the boundary of the ellipsoid (2.9). Then
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3658 MATEU, MORA, RONDI, SCARDIA, AND VERDERA\int 
B(z,R)\setminus E

H(z  - w)dw=

\int 
| \xi | =1

\int R

r(z,\xi )

H(t\xi )td - 1 dtd\sigma (\xi )

=

\int 
| \xi | =1

\int R

r(z,\xi )

H(\xi )
1

t
dtd\sigma (\xi )

=

\int 
| \xi | =1

log

\biggl( 
R

r(z, \xi )

\biggr) 
H(\xi )d\sigma (\xi ),

where we have used that H is even and ( - d)-homogeneous. Hence

T (\chi E)(z) = - 
\int 
| \xi | =1

log

\biggl( 
R

r(z, \xi )

\biggr) 
H(\xi )d\sigma (\xi ) = - 

\int 
| \xi | =1

log

\biggl( 
1

r(z, \xi )

\biggr) 
H(\xi )d\sigma (\xi )

= - 1

2

\int 
| \xi | =1

log

\biggl( 
1

r(z, \xi )r(z, - \xi )

\biggr) 
H(\xi )d\sigma (\xi ),

where in the second identity we have used (2.3) and in the third that H is even. There
are exactly two points in the straight line z + r\xi , r \in \BbbR , that belong to the boundary
of (2.9). They correspond to the values r= r(z, \xi ) and r= - r(z, - \xi ). These values of
the parameter r are the solutions of the second degree equation\bigm| \bigm| \bigm| \bigm| \xi a

\bigm| \bigm| \bigm| \bigm| 2 r2 + 2
\Bigl\langle z
a
,
\xi 

a

\Bigr\rangle 
r+

\bigm| \bigm| \bigm| z
a

\bigm| \bigm| \bigm| 2  - 1 = 0,

where we use the notation

z

a
=

\biggl( 
z1
a1
, . . . ,

zd
ad

\biggr) 
, z = (z1, . . . , zd), a= (a1, . . . , ad),

and the brackets stand for scalar product in \BbbR d. Hence

r(z, \xi )r(z, - \xi ) =
\biggl( 
1 - 

\bigm| \bigm| \bigm| z
a

\bigm| \bigm| \bigm| 2\biggr) \bigm| \bigm| \bigm| \bigm| \xi a
\bigm| \bigm| \bigm| \bigm|  - 2

,

which yields (2.10) in view of (2.3).

The following corollary is for the case d= 2.

Corollary 2.4. Let T be an even homogeneous Calder\'on--Zygmund singular
integral in the plane, with kernel H as in Lemma 2.3, and let E be the compact set
enclosed by a tilted ellipse, namely

E =E(a, b,\varphi ) = ei\varphi 
\biggl\{ 
(x, y)\in \BbbR 2 :

x2

a2
+
y2

b2
\leq 1

\biggr\} 
.

Then the constant value of T (\chi E) on E is

(2.12)  - 1

2

\int 
| \xi | =1

log

\biggl( 
\langle \xi , ei\varphi \rangle 2

a2
+

\langle \xi , iei\varphi \rangle 2

b2

\biggr) 
H(\xi )d\sigma (\xi ).

Proof. Let Q = ei\varphi denote the rotation so that E(a, b,\varphi ) = Q(E0), with E0 =
E(a, b,0). Proceeding as in the proof of Lemma 2.3 we have that
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MINIMIZERS OF PERTURBED COULOMB ENERGIES 3659

T (\chi E)(z) = TH\circ Q(\chi E0
)(Q - 1z) = - 1

2

\int 
| \xi | =1

log

\biggl( 
\xi 21
a2

+
\xi 22
b2

\biggr) 
(H \circ Q)(\xi )d\sigma (\xi )

= - 1

2

\int 
| \xi | =1

log

\biggl( 
\xi 21
a2

+
\xi 22
b2

\biggr) 
H(ei\varphi \xi )d\sigma (\xi )

= - 1

2

\int 
| \xi | =1

log

\biggl( 
\langle \xi , ei\varphi \rangle 2

a2
+

\langle \xi , iei\varphi \rangle 2

b2

\biggr) 
H(\xi )d\sigma (\xi ).

3. Existence and uniqueness of a compactly supported minimizer. In
this section we focus on the two-dimensional case d= 2 and we show that the energy
I\kappa in (1.1) admits a unique minimizer for small perturbations \kappa .

3.1. Existence of a minimizer. Existence of a minimizer for the energy func-
tional (1.1) follows from the direct method of the calculus of variations. Indeed, I\kappa is
lower semicontinuous, since its overall kernel

W\kappa (z  - w) +
1

2
(| z| 2 + | w| 2)

is lower semicontinuous and bounded from below (recall that \kappa is bounded and con-
tinuous outside the origin, and W\kappa (0) =+\infty ). Moreover,

I\kappa (\mu ) =

\int 
\BbbR 2

\int 
\BbbR 2

\biggl( 
W\kappa (z  - w) +

1

2
(| z| 2 + | w| 2)

\biggr) 
d\mu (z)d\mu (w)

\geq c

\int 
\BbbR 2

| z| 2d\mu (z) - c\prime 

for some constants c, c\prime > 0. Hence I\kappa is lower semicontinuous and satisfies the lower
bound above, which guarantees tightness of minimizing sequences. The same lower
bound also guarantees that minimizers are compactly supported.

3.2. Uniqueness of the minimizer. We show that I\kappa admits a unique mini-
mizer, under the assumptions of Theorem 1.1, by showing that the Fourier transform
of W\kappa is strictly positive outside zero.

Note that W\kappa =W 0+\kappa , where W 0(z) = - log | z| , for z \in \BbbC , z \not = 0. We recall that

(3.1) \widehat W 0(\xi ) = 2\pi 
1

| \xi | 2
, \xi \in \BbbC , \xi \not = 0.

Clearly \widehat W 0(\xi )> 0 for \xi \not = 0. We now show that the assumptions on \kappa ensure that \^\kappa 

has a structure similar to \widehat W 0 and that adding \^\kappa to \widehat W 0 does not disrupt its positivity.
To see this, let \kappa be as in the statement of Theorem 1.1. As a first step we

compute the Fourier transform of \kappa . Consider the Fourier expansion of the restriction
of \kappa to the unit circle:

(3.2) \kappa (ei\theta ) =

\infty \sum 
n=0

an cos(2n\theta ) + bn sin(2n\theta ), \theta \in \BbbR ,

where an, bn \in \BbbR . Note that only even frequencies appear in (3.2) because \kappa is an
even function. Hence, by zero-homogeneity,

(3.3) \kappa (z) =

\infty \sum 
n=0

an
Re z2n

| z| 2n
+ bn

Im z2n

| z| 2n
, z \in \BbbC , z \not = 0.
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3660 MATEU, MORA, RONDI, SCARDIA, AND VERDERA

We have now rewritten \kappa in a form that allows us to compute its Fourier transform.
Indeed, since Re z2n and Im z2n are homogeneous harmonic polynomials of degree
2n, by using (2.1) with d = 2, k = 2n, and s = 2, we obtain the Fourier transform
identities

Re z2n

| z| 2n
Fourier -  -  -  - \rightarrow ( - 1)n4\pi np.v.

Re \xi 2n

| \xi | 2n+2
,

Im z2n

| z| 2n
Fourier -  -  -  - \rightarrow ( - 1)n4\pi np.v.

Im \xi 2n

| \xi | 2n+2
,

where \xi \not = 0. Then the Fourier transform \^\kappa (\xi ) of \kappa , for \xi \not = 0, is

\kappa (z)
Fourier -  -  -  - \rightarrow 

\infty \sum 
n=1

( - 1)n4\pi nan p.v.
Re \xi 2n

| \xi | 2n+2
+ ( - 1)n4\pi nbn p.v.

Im \xi 2n

| \xi | 2n+2
.

From the definition of W\kappa =W 0 + \kappa and (3.1) we then have that, for \xi \not = 0,

\widehat W\kappa (\xi ) = 2\pi 
1

| \xi | 2
+

\infty \sum 
n=1

( - 1)n4\pi n

\biggl( 
an p.v.

Re \xi 2n

| \xi | 2n+2
+ bn p.v.

Im \xi 2n

| \xi | 2n+2

\biggr) 
.

Since we have that, for some absolute constant C0 > 0,

\infty \sum 
n=1

2n(| an| + | bn| )\leq 2

\biggl( \infty \sum 
n=1

1

n2

\biggr) 1
2
\biggl( \infty \sum 
n=1

n4(| an| 2 + | bn| 2)
\biggr) 1

2

\leq C0

\bigm\| \bigm\| \bigm\| \bigm\| d2\kappa (ei\theta )d\theta 2

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(0,2\pi )

,

we can estimate, for \xi \not = 0,

\widehat W\kappa (\xi )\geq 2\pi 

| \xi | 2

\biggl( 
1 - 

\infty \sum 
n=0

2n(| an| + | bn| )
\biggr) 
\geq 2\pi 

| \xi | 2

\Biggl( 
1 - C0 sup

| z| =1
j\in \{ 1,2\} 

| \nabla j\kappa (z)| 

\Biggr) 
\geq \pi 

| \xi | 2
,

provided

C0 sup
| z| =1
j\in \{ 1,2\} 

| \nabla j\kappa (z)| \leq 1

2
,

which is true if \varepsilon 0 in (1.6) is small enough.

Since the positivity of the Fourier transform\widehat W\kappa (\xi ) for \xi \not = 0 yields strict convexity
of the energy functional (1.1) as a function of \mu (see, e.g., [9, section 4]), we have that
I\kappa has a unique minimizer.

4. The Euler--Lagrange conditions. The minimizer \mu of (1.1) is characterized
by two conditions, called the Euler--Lagrange conditions, which can be expressed in
terms of a potential that we define as follows. The potential of \mu \in \scrP (\BbbR 2) is defined as

(4.1) P\kappa (\mu )(z) = (W\kappa  \star \mu ) (z) +
1

2
| z| 2, z \in \BbbC ,

where W\kappa is the interaction potential (1.2).
The first Euler--Lagrange condition is

(4.2) P\kappa (\mu )(z) =C for \mu -a.e. z \in supp\mu ,
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MINIMIZERS OF PERTURBED COULOMB ENERGIES 3661

where supp\mu stands for the support of \mu , and C is a constant. The second Euler--
Lagrange condition is

(4.3) P\kappa (\mu )(z)\geq C for z \in \BbbR 2 \setminus N with Cap(N) = 0,

where the constant is the same that appears in the first Euler--Lagrange condition.
Here Cap is the logarithmic capacity.

We recall that for general energies conditions (4.2)--(4.3) are only necessary for
minimality. For convex energies they are, however, also sufficient, and hence equiva-
lent, to minimality. In our case, since I\kappa is strictly convex, the unique minimizer of
I\kappa is the only measure satisfying (4.2)--(4.3) for some constant C.

For the derivation of the Euler--Lagrange conditions see, e.g., [13, Theorem 1.3].

4.1. The first Euler--Lagrange condition (4.2). We show in this section
that under the assumptions of Theorem 1.1 there exists an ellipse with interior E =
E(a, b,\varphi ), defined as in (1.4), such that the potential P\kappa (\mu ) of the probability measure
\mu = \chi E/| E| (see (4.1)) is constant on E.

4.1.1. Computing the Hessian of \bfitP \bfitkappa on \bfitE . We note that condition (4.2)
for \mu = \chi E/| E| is equivalent to the vanishing on E of the Hessian H(P\kappa (\mu )) of P\kappa (\mu ).

To see this, we first observe that the potential P\kappa of \chi E/| E| is of class C1 with
Lipschitz continuous gradient. Hence finding an ellipse E such that \mu = \chi E/| E| 
satisfies (4.2) is equivalent to finding E such that \nabla P\kappa (\mu ) = 0 on E. Since P\kappa (\mu )
is an even function, \nabla P\kappa (\mu ) is odd and thus it vanishes at the origin. Consequently
\nabla P\kappa (\mu ) = 0 on E is equivalent to the vanishing in E of the Hessian H(P\kappa (\mu )) of
P\kappa (\mu ).

We now compute the Hessian of P\kappa (\mu ) in E. To this aim we will use Lemma 2.3,
in dimension d = 2, with kernel H = \partial ijW

\kappa (in fact separately with H = \partial ijW
0 and

H = \partial ij\kappa ).
As a first step, we compute the second derivatives of the terms in W\kappa . Since the

kernel \kappa is homogeneous of degree 0 and of class C3 off the origin, each second order
derivative \partial ij\kappa of \kappa in the sense of distributions is a constant multiple of the Dirac
delta at the origin plus the principal value distribution associated with the kernel
\partial ij\kappa . More precisely,

(4.4) \partial 11\kappa =

\Biggl( \int 
| \xi | =1

\xi 1 \partial 1\kappa (\xi )d\sigma (\xi )

\Biggr) 
\delta 0 +p.v.\partial 11\kappa ,

(4.5) \partial 22\kappa =

\Biggl( \int 
| \xi | =1

\xi 2 \partial 2\kappa (\xi )d\sigma (\xi )

\Biggr) 
\delta 0 +p.v.\partial 22\kappa ,

(4.6) \partial 12\kappa =

\Biggl( \int 
| \xi | =1

\xi 1 \partial 2\kappa (\xi )d\sigma (\xi )

\Biggr) 
\delta 0 +p.v.\partial 12\kappa .

These formulas follow from checking the action of the left-hand sides on a test function
and applying integration by parts via Green--Stokes.

Arguing as in the proof of (2.7) in Lemma 2.2, one can show that

(4.7)

\int 
| \xi | =1

\partial ij\kappa (\xi )d\sigma (\xi ) = 0, i, j = 1,2.
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3662 MATEU, MORA, RONDI, SCARDIA, AND VERDERA

Since \kappa is even, \partial ij\kappa is the kernel of an even homogeneous Calder\'on--Zygmund oper-
ator to which one can apply Lemma 2.3. Therefore the distributional second order
derivatives of \kappa  \star \chi E are constant on E. This shows the relevance of the assumption
that \kappa is even in Theorem 1.1.

Identities (4.4), (4.5), and (4.6) apply also to the kernel  - log | z| , which, in fact,
may be thought of as being homogeneous of degree 0. In this case the constant
multiple of \delta 0 can be computed explicitly, since\int 

| \xi | =1

\xi 1 \partial 1(log | \xi | )d\sigma (\xi ) =
\int 
| \xi | =1

\xi 21
| \xi | 2

d\sigma (\xi ) =

\int 2\pi 

0

cos2 \theta d\theta = \pi ,

and similarly\int 
| \xi | =1

\xi 2 \partial 2(log | \xi | )d\sigma (\xi ) = \pi ,

\int 
| \xi | =1

\xi 1 \partial 2(log | \xi | )d\sigma (\xi ) = 0.

Hence we obtain

(4.8) \partial 11

\biggl( 
 - 1

\pi 
log | z| 

\biggr) 
= - \delta 0 +

1

\pi 
p.v.

x2  - y2

| z| 4
,

(4.9) \partial 22

\biggl( 
 - 1

\pi 
log | z| 

\biggr) 
= - \delta 0  - 

1

\pi 
p.v.

x2  - y2

| z| 4
,

(4.10) \partial 12

\biggl( 
 - 1

\pi 
log | z| 

\biggr) 
=

1

\pi 
p.v.

2xy

| z| 4
.

Moreover, (4.7) still holds true when \kappa is replaced by  - log | \cdot | . Therefore the distri-
butional second order derivatives of  - log | \cdot |  \star \chi E are constant on E.

Since P\kappa (\chi E

| E| ) = - log | \cdot |  \star \chi E

| E| + \kappa  \star \chi E

| E| +
1
2 | \cdot | 

2, we have then proved that every

second order derivative of P\kappa (\chi E

| E| ) is constant in E.

4.1.2. Imposing that the Hessian of \bfitP \bfitkappa is zero in \bfitE . The first Euler--
Lagrange condition (4.2) is equivalent to the vanishing of the Hessian of P\kappa in E.
Since the Hessian is a symmetric matrix, requiring that it vanishes on E yields a
system of three equations in the parameters a, b, and \varphi . In this section we write this
system explicitly. In section 4.1.3 we will show that this system is uniquely solvable
under the hypotheses of Theorem 1.1, and hence that there exists a unique ellipse E
with semi-axes a and b, rotated of an angle \varphi with respect to the x-axis, such that
the associated P\kappa (\chi E

| E| ) satisfies (4.2).

The vanishing of the Hessian of P\kappa (\chi E

| E| ) in E corresponds to the three equations

(4.11) \partial 11P
\kappa 

\biggl( 
\chi E
| E| 

\biggr) 
= 0, \partial 22P

\kappa 

\biggl( 
\chi E
| E| 

\biggr) 
= 0, and \partial 12P

\kappa 

\biggl( 
\chi E
| E| 

\biggr) 
= 0 in E.

So far, in section 4.1.1 we have shown that every second order derivative of P\kappa (\chi E

| E| )
is constant in E, and so we now need to show that the constant value of every second
order derivative of P\kappa in E is in fact zero.

To make the three equations (4.11) as explicit as possible we need to know the

constant value on E = E(a, b,\varphi ) of p.v.x
2 - y2
| z| 4  \star \chi E and of p.v. 2xy| z| 4  \star \chi E from (4.8)--

(4.10). One could resort to (2.12), but, setting E0 = E(a, b,0), it is faster to appeal
to the well-known formula (see [6, page 1408])
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MINIMIZERS OF PERTURBED COULOMB ENERGIES 3663

(4.12)

\biggl( 
1

\pi z
 \star \chi E0

\biggr) 
(z) = \=z  - \lambda z for z \in E0, \lambda =

a - b

a+ b
.

Changing variables to pass from E to E0, and denoting E =Q(E0), with Q= ei\varphi , we
have that, by using (4.12),\biggl( 

1

\pi z
 \star \chi E

\biggr) 
(z) =

1

\pi 

\int 
E0

1

z  - ei\varphi w
dw= e - i\varphi 

\biggl( 
1

\pi 

\int 
E0

1

e - i\varphi z  - w
dw

\biggr) 
= e - i\varphi 

\bigl( 
e - i\varphi z  - \lambda e - i\varphi z

\bigr) 
= e - i\varphi 

\bigl( 
ei\varphi \=z  - \lambda e - i\varphi z

\bigr) 
= \=z  - \lambda e - 2i\varphi z for z \in E.

Differentiating in z we obtain

p.v.

\biggl( 
1

\pi z2
 \star \chi E

\biggr) 
(z) = \lambda e - i2\varphi , z \in E,

and taking real parts and imaginary parts we get, respectively,

(4.13) p.v.

\biggl( 
1

\pi 

x2  - y2

| z| 4
 \star \chi E

\biggr) 
(z) = \lambda cos(2\varphi ), z \in E,

and

(4.14) p.v.

\biggl( 
1

\pi 

2xy

| z| 4
 \star \chi E

\biggr) 
(z) = \lambda sin(2\varphi ), z \in E.

We are now ready to rewrite the system (4.11) more explicitly. For convenience,
we use the variables (p,\lambda ,\varphi ), with p= ab, instead of (a, b,\varphi ). (Alternatively, one could
consider (p, q,\varphi ), with q= a

b , observing that q can be obtained from \lambda as q= 1+\lambda 
1 - \lambda .)

We start with the first equation in (4.11), namely \partial 11P
\kappa (\chi E

| E| ) = 0 on E. By (4.8),

(4.13), (4.4) (and multiplying the equation by p) we have that, for z \in E,

(4.15) p - 1 + cos(2\varphi )\lambda +
1

\pi 
\partial 11\kappa  \star \chi E(z) + I1(\kappa ) = 0,

where

I1(\kappa ) =
1

\pi 

\int 
| \xi | =1

\xi 1 \partial 1\kappa (\xi )d\sigma (\xi ).

We compute the convolution term in (4.15) by using Lemma 2.3 and Corollary 2.4,
since \partial 11\kappa is admissible as kernel H (also thanks to (4.7)): for z \in E,

1

\pi 
\partial 11\kappa  \star \chi E(z) = - 1

2\pi 

\int 
| \xi | =1

log

\biggl( 
\langle \xi , ei\varphi \rangle 2

a2
+

\langle \xi , iei\varphi \rangle 2

b2

\biggr) 
\partial 11\kappa (\xi )d\sigma (\xi )

= - 1

2\pi 

\int 
| \xi | =1

\biggl( 
log

\biggl( 
1

a2

\biggr) 
+ log

\Bigl( 
\langle \xi , ei\varphi \rangle 2 + q2\langle \xi , iei\varphi \rangle 2

\Bigr) \biggr) 
\partial 11\kappa (\xi )d\sigma (\xi )

= - 1

2\pi 

\int 
| \xi | =1

log
\Bigl( 
\langle \xi , ei\varphi \rangle 2 + q2\langle \xi , iei\varphi \rangle 2

\Bigr) 
\partial 11\kappa (\xi )d\sigma (\xi ).

Hence (4.15) becomes

(4.16) p - 1 + cos(2\varphi )\lambda + F1(\lambda ,\varphi ,\kappa ) + I1(\kappa ) = 0,
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3664 MATEU, MORA, RONDI, SCARDIA, AND VERDERA

where

(4.17) F1(\lambda ,\varphi ,\kappa ) = - 1

2\pi 

\int 
| \xi | =1

log
\Bigl( 
\langle \xi , ei\varphi \rangle 2 + q2\langle \xi , iei\varphi \rangle 2

\Bigr) 
\partial 11\kappa (\xi )d\sigma (\xi ).

By the same token the second equation in (4.11) times p is

(4.18) p - 1 - cos(2\varphi )\lambda + F2(\lambda ,\varphi ,\kappa ) + I2(\kappa ) = 0,

where

(4.19) F2(\lambda ,\varphi ,\kappa ) = - 1

2\pi 

\int 
| \xi | =1

log
\Bigl( 
\langle \xi , ei\varphi \rangle 2 + q2\langle \xi , iei\varphi \rangle 2

\Bigr) 
\partial 22\kappa (\xi )d\sigma (\xi ),

and

I2(\kappa ) =
1

\pi 

\int 
| \xi | =1

\xi 2 \partial 2\kappa (\xi )d\sigma (\xi ).

Finally, the third equation in (4.11) times p is

(4.20) sin(2\varphi )\lambda + F3(\lambda ,\varphi ,\kappa ) + I3(\kappa ) = 0,

where

(4.21) F3(\lambda ,\varphi ,\kappa ) = - 1

2\pi 

\int 
| \xi | =1

log
\Bigl( 
\langle \xi , ei\varphi \rangle 2 + q2\langle \xi , iei\varphi \rangle 2

\Bigr) 
\partial 12\kappa (\xi )d\sigma (\xi ),

and

I3(\kappa ) =
1

\pi 

\int 
| \xi | =1

\xi 1 \partial 2\kappa (\xi )d\sigma (\xi ).

In conclusion, the system (4.11) is equivalent to the three equations (4.16), (4.18),
and (4.20), in the three unknowns (p,\lambda ,\varphi ), namely

(4.22)

\left\{     
p - 1 + cos(2\varphi )\lambda + F1(\lambda ,\varphi ,\kappa ) + I1(\kappa ) = 0,

p - 1 - cos(2\varphi )\lambda + F2(\lambda ,\varphi ,\kappa ) + I2(\kappa ) = 0,

sin(2\varphi )\lambda + F3(\lambda ,\varphi ,\kappa ) + I3(\kappa ) = 0.

4.1.3. Solving (4.22) via the implicit function theorem. We want to show
that the system (4.22) admits a (unique) solution, at least for \kappa small enough in
the C3-norm (see assumption (1.6) in Theorem 1.1). The idea is to use the implicit
function theorem to find, for \kappa small, a solution of (4.22) ``close"" to the solution for
\kappa = 0.

To explain our strategy let us first consider the system

(4.23) \scrL (p,\lambda ,\varphi ) := (p - 1 + cos(2\varphi )\lambda , p - 1 - cos(2\varphi )\lambda , sin(2\varphi )\lambda ) = 0.

Note that (4.23) is the ``limiting"" system for (4.22). Indeed the quantities Ij and Fj ,
j = 1,2,3, in (4.22) are small owing to the smallness assumption on \kappa .

Since the minimizer of I0 in (1.1) (corresponding to \kappa = 0) is the normalized
characteristic function of the unit disc, one would like to examine (4.22) and (4.23)
for (p,\lambda ) close to (1,0). We have \scrL (1,0,\varphi ) = 0 for each angle \varphi , which is consistent
with the fact that the support of the minimizer is a disc. Unfortunately, the fact that
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MINIMIZERS OF PERTURBED COULOMB ENERGIES 3665

the last column of the gradient of \scrL at (1,0,\varphi ) vanishes identically prevents us from
applying directly the inverse function theorem. To overcome this difficulty we need
to examine more carefully the three equations in (4.22). This careful analysis will in
particular identify the rotation angle of the ellipse solution of (4.22), which is by now
undetermined due to the isotropy of the disc.

As a first step, in the next lemma we compute the integral I3(\kappa ) in terms of the
Fourier coefficients of \kappa . Indeed, we recall that in section 3.2, in view of the Fourier
series expansion of \kappa (ei\theta ), we concluded that

(4.24) \kappa (z) =

\infty \sum 
n=0

an
Re z2n

| z| 2n
+ bn

Im z2n

| z| 2n
, z \in \BbbC , z \not = 0.

Lemma 4.1. We have

I3(\kappa ) =
1

\pi 

\int 
| \xi | =1

\xi 1 \partial 2\kappa (\xi )d\sigma (\xi ) = b1.

Proof. It is more convenient to perform the calculation in the complex variables
z and \=z. We have

I3 = Im
1

\pi 

\int 
| z| =1

z \partial \kappa (z)d\sigma (z) + Im
1

\pi 

\int 
| z| =1

\=z \partial \kappa (z)d\sigma (z).

To compute \partial \kappa set

Re z2n

| z| 2n
=

1

2

\biggl( 
zn

\=zn
+

\=zn

zn

\biggr) 
and

Im z2n

| z| 2n
=

1

2i

\biggl( 
zn

\=zn
 - \=zn

zn

\biggr) 
and then take \partial to obtain

(4.25)

\partial \kappa (z) =
1

2

\infty \sum 
n=1

\biggl( 
nan

\biggl( 
 - zn

\=zn+1
+

\=zn - 1

zn

\biggr) 
 - nbn

i

\biggl( 
zn

\=zn+1
+

\=zn - 1

zn

\biggr) \biggr) 
, z \in \BbbC , z \not = 0.

Hence we have that, for z \not = 0,

z\partial \kappa (z) =
1

2

\infty \sum 
n=1

\biggl( 
nan

\biggl( 
 - z2n+2

| z| 2n+2
+

\=z2n - 2

| z| 2n - 2

\biggr) 
 - nbn

i

\biggl( 
z2n+2

| z| 2n+2
+

\=z2n - 2

| z| 2n - 2

\biggr) \biggr) 
,

\=z\partial \kappa (z) =
1

2

\infty \sum 
n=1

\biggl( 
nan

\biggl( 
 - z2n

| z| 2n
+

\=z2n

| z| 2n

\biggr) 
 - nbn

i

\biggl( 
z2n

| z| 2n
+

\=z2n

| z| 2n

\biggr) \biggr) 
.

By integrating z\partial \kappa (z) and \=z\partial \kappa (z) on the unit circle one can easily see that all the
frequencies n \not = 1 yield a zero integral and that

1

\pi 

\int 
| z| =1

z \partial \kappa (z)d\sigma (z) = a1 + ib1 and
1

\pi 

\int 
| z| =1

\=z \partial \kappa (z)d\sigma (z) = 0.

In view of Lemma 4.1, system (4.22) becomes

(4.26)

\left\{     
p - 1 + cos(2\varphi )\lambda + F1(\lambda ,\varphi ,\kappa ) + I1(\kappa ) = 0,

p - 1 - cos(2\varphi )\lambda + F2(\lambda ,\varphi ,\kappa ) + I2(\kappa ) = 0,

sin(2\varphi )\lambda + F3(\lambda ,\varphi ,\kappa ) + b1 = 0.
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3666 MATEU, MORA, RONDI, SCARDIA, AND VERDERA

We now show that, up to a rotation of the axes, we can always assume that b1 = 0.
Consider the change of coordinates w = (u, v) = zei\psi , with the angle \psi to be fixed
later (see (4.27)). In these new coordinates, from (4.24) we have that

\~\kappa (w) := \kappa (z(w)) =

\infty \sum 
n=0

An
Rew2n

| w| 2n
+Bn

Imw2n

| w| 2n
,

where

An = an cos(2n\psi ) - bn sin(2n\psi ), Bn = an sin(2n\psi ) + bn cos(2n\psi ).

On the other hand, | z| = | w| , and hence the logarithmic and the confinement terms in
the potential P\kappa (\chi E/| E| ) are unchanged. By choosing the rotation angle \psi so that

(4.27) a1 sin(2\psi ) + b1 cos(2\psi ) = 0

we get B1 = 0, which means that in the rotated variables w = (u, v) there will be no
term I3(\kappa ) in the third equation in (4.22) (or (4.26)).

This is not yet the angle to which the statement of Theorem 1.1 refers. Once we
find the angle \~\varphi that the candidate ellipse in the (u, v) coordinate system forms with
the u-axis, the angle \varphi of Theorem 1.1 is obtained as \varphi = \~\varphi  - \psi (see also Remark 4.3).

We then assume from now on that b1 = 0, and so the third equation in (4.26) is

sin(2\varphi )\lambda + F3(\lambda ,\varphi ,\kappa ) = 0,

with F3 given by (4.21).
The system (4.26), with b1 = 0, can then be written as

(4.28) L(p,\lambda ,\varphi ,\kappa ) = 0,

where the components of L= (L1,L2,L3) are given by

L1(p,\lambda ,\varphi ,\kappa ) := p - 1 + cos(2\varphi )\lambda + F1(\lambda ,\varphi ,\kappa ) + I1(\kappa ),

L2(p,\lambda ,\varphi ,\kappa ) := p - 1 - cos(2\varphi )\lambda + F2(\lambda ,\varphi ,\kappa ) + I2(\kappa ),

and

L3(p,\lambda ,\varphi ,\kappa ) := sin(2\varphi )\lambda + F3(\lambda ,\varphi ,\kappa ).

Note that L(1,0,0,0) = 0. Hence for \kappa small we look for a solution (p,\lambda ,\varphi ) of the
system (4.28) close to (1,0,0).

Unfortunately, also the system (4.28) is not suitable for the application of the
inverse function theorem, since \partial L

\partial \varphi (1,0,0,0) = 0. Indeed, Fj(0,\varphi ,\kappa ) = 0 for every

\varphi \in \BbbR and \kappa \in C2(\BbbT ), j = 1,2,3 (here \BbbT denotes the unit sphere). This follows from
the fact that \lambda = 0 means that a= b and so q= 1 and that, for | \xi | = 1,

log
\Bigl( 
\langle \xi , ei\varphi \rangle 2 + q2\langle \xi , iei\varphi \rangle 2

\Bigr) 
= log | \xi | 2 = 0.

Consequently,

(4.29)
\partial Fj
\partial \varphi 

(0,\varphi ,\kappa ) = 0, j = 1,2,3.
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MINIMIZERS OF PERTURBED COULOMB ENERGIES 3667

We then modify the system (4.28) slightly by dividing the third equation (L3 = 0)
by \lambda . More precisely, we consider the system given by

(4.30) G(p,\lambda ,\varphi ,\kappa ) = 0,

where G= (G1,G2,G3) is given in components by

G1(p,\lambda ,\varphi ,\kappa ) :=L1(p,\lambda ,\varphi ,\kappa ), G2(p,\lambda ,\varphi ,\kappa ) :=L2(p,\lambda ,\varphi ,\kappa ),

and

G3(p,\lambda ,\varphi ,\kappa ) :=

\left\{     sin(2\varphi ) +
F3(\lambda ,\varphi ,\kappa )

\lambda 
if \lambda \not = 0,

sin(2\varphi ) +
\partial F3

\partial \lambda 
(0,\varphi ,\kappa ) if \lambda = 0.

We claim that

G(1,0,0,0) = 0.

Since we have already proved that L(1,0,0) = 0, and the two systems only differ in
their third component, it only remains to prove that G3(1,0,0,0) = 0. This can be
readily seen using the fact that F3(\lambda ,\varphi ,0) = 0 for every \lambda \in ( - 1,1), \varphi \in \BbbR .

On the other hand, the Jacobian matrix of G with respect to the variables p,\lambda ,
and \varphi at (1,0,0,0) is

(4.31)
\partial G

\partial (p,\lambda ,\varphi )
(1,0,0,0) =

\left(  1 1 0
1  - 1 0
0 0 2

\right)  ,

and hence it is invertible. By the implicit function theorem in Banach spaces (see, e.g.,
[3, statement (10.2.1)]) there exist p(\kappa ), \lambda (\kappa ), \varphi (\kappa ) satisfying the system (4.30) for \kappa 
close to zero in the C2-norm on | \xi | = 1. Note that the functions G and \partial G

\partial (p,\lambda ,\varphi ) are

clearly continuous in all the variables (p,\lambda ,\varphi ,\kappa ), where (p,\lambda ,\varphi )\in (0,+\infty )\times ( - 1,1)\times \BbbR ,
and \kappa belongs to the Banach space of C2-functions on the unit sphere equipped with
the C2-norm. This is in fact sufficient for our conclusion, and we need not prove that
G is continuously differentiable in all the variables.

As observed above, p and \lambda determine the semi-axes a and b of the ellipse. The
angle \varphi we have obtained here is in fact the angle \~\varphi of the rotation of the ellipse
with respect to the coordinate frame w= (u, v). Note that a and b are close to 1 and
\~\varphi is close to 0. Coming back from the (u, v)-plane to the original frame our ellipse
has semi-axes close to 1 and a clockwise rotation angle \varphi = \~\varphi  - \psi , hence close to
the angle  - \psi defined in (4.27) (see also Remark 4.3). Alternatively, looking from
the perspective of the original (x, y)-plane, we have rotated the ellipse of an angle
\psi counterclockwise and then of an angle \~\varphi clockwise. In conclusion, we have then
found an ellipse such that the potential of the normalized characteristic function of
its interior satisfies the first Euler--Lagrange equation (4.2).

Remark 4.2 (special case: \kappa even in each variable). The proof becomes shorter
if the kernel \kappa is even in each variable separately. If this is the case, \partial 2\kappa is odd in
y and so \partial 12\kappa is odd in y too. Thus p.v.

\int 
E
\partial 12\kappa (z)dz = 0 for the interior E of each

ellipse centered at the origin with axes on the coordinate axes, by Fubini (fixing x
and integrating in y). Then the constant value of p.v.\partial 12\kappa  \star \chi E on E is 0, provided
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3668 MATEU, MORA, RONDI, SCARDIA, AND VERDERA

we look only at ellipses with \varphi = 0. Moreover, the factor of \delta 0 in (4.6) is also zero.
Then the third equation in (4.11) reduces to

\partial 12 ( - log | z| )  \star \chi E
| E| 

= 0 on E,

which by (4.10) and (4.14) is satisfied, since \varphi = 0.
Therefore the system (4.11) is equivalent to the two conditions

\partial 11P
\kappa (\chi E/| E| ) = 0, \partial 22P

\kappa (\chi E/| E| ) = 0

in the two unknowns (p,\lambda ) (and \varphi = 0), namely to the first two equations in the
system (4.26), with \varphi = 0:\Biggl\{ 

p - 1 + \lambda + F1(\lambda ,0, \kappa ) + I1(\kappa ) = 0,

p - 1 - \lambda + F2(\lambda ,0, \kappa ) + I2(\kappa ) = 0.

We can immediately apply the implicit function theorem to the system above, which
gives p and \lambda in terms of \kappa .

Remark 4.3 (the angle  - \psi ). The angle  - \psi is the rotation angle with respect to
the x-axis of the minimizing ellipse corresponding to the kernel

(4.32)  - log | z| + a0 + b0 + a1
Re z2

| z| 2
+ b1

Im z2

| z| 2
, z \in \BbbC , z \not = 0,

for a1, b1 small enough. In (4.32) the perturbation is given by keeping only the first
two terms in the Fourier expansion (3.3) of \kappa .

Indeed, by [1, section 4.2], if a21 + b21 < 1/4 and b1 \not = 0, the minimizer for the
kernel (4.32) is the normalized characteristic function of an ellipse, whose major axis
is rotated with respect to the x-axis of an angle \theta satisfying

tan\theta = - a1 +
\sqrt{} 
a21 + b21
b1

.

It is immediate to check that the solutions of (4.27) for b1 \not = 0 satisfy

tan\psi =
a1 \pm 

\sqrt{} 
a21 + b21
b1

,

and hence, up to integer multiples of \pi , either \psi = - \theta or \psi = - \theta + \pi /2 (the rotation
angle of the minor axis of the ellipse).

4.2. The second Euler--Lagrange condition (4.3). Let E\kappa = E(a\kappa , b\kappa ,\varphi \kappa )
denote the interior of the ellipse of the type (1.4) obtained as the solution of the
first Euler--Lagrange condition in section 4.1. We recall that for \kappa = 0 the unique
minimizer of I0 is the normalized characteristic function of the unit disc. Hence we
have that E0 is the closed unit ball B(0,1).

In this section we prove that E\kappa also satisfies the second Euler--Lagrange condition
(4.3). This will conclude the characterization of the unique minimizer of the energy I\kappa 

in (1.1), with \kappa as in the statement of Theorem 1.1, as the normalized characteristic
function of E\kappa .

The strategy of proof is quite simple. First we note that for \kappa = 0 the Euler--
Lagrange condition (4.3) for P 0 is satisfied with a strict inequality outside B(0,1).
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MINIMIZERS OF PERTURBED COULOMB ENERGIES 3669

Then, since for small \kappa we have that E\kappa is close to B(0,1), we deduce that condition
(4.3) for P\kappa is satisfied, for \kappa \not = 0 small enough, in a neighborhood of B(0,1)---a
security region. We can in fact prove that the security region is uniform in \kappa under
the assumption that the smallness of \kappa is controlled in the C3-norm. Finally, this
shows (4.3).

4.2.1. Boundary subharmonicity of the potentials. For brevity we denote
with P\kappa the potential of \chi E\kappa /| E\kappa | defined as in (4.1) (hence omitting the argument
\chi E\kappa /| E\kappa | ), namely

(4.33) P\kappa (z) =

\biggl( 
( - log | \cdot | + \kappa )  \star 

\chi E\kappa 

| E\kappa | 

\biggr) 
(z) +

1

2
| z| 2, z \in \BbbC .

Lemma 4.4. For every z \in \partial E\kappa the limit of \Delta P\kappa (w) as w\rightarrow z, for w /\in E\kappa , exists
and satisfies the lower bound

(4.34) lim
E\kappa \not \ni w\rightarrow z

\Delta P\kappa (w)\geq 1,

provided the number \varepsilon 0 in the statement of Theorem 1.1 is small enough.

Proof. For w \not \in E\kappa we have that

(4.35) \Delta P\kappa (w) = 2+

\biggl( 
\Delta \kappa  \star 

\chi E\kappa 

| E\kappa | 

\biggr) 
(w).

The distribution \Delta \kappa , by (4.4) and (4.5), is the sum of two terms

(4.36) \Delta \kappa =

\Biggl( \int 
| \xi | =1

\langle \nabla \kappa (\xi ), \nu (\xi )\rangle d\sigma (\xi )

\Biggr) 
\delta 0 +p.v.\Delta \kappa ,

where \nu (\xi ) is the exterior unitary normal vector to the unit ball at \xi .
Note that, since \Delta \kappa is of class C1 off the origin, by Lemma 2.1 \Delta \kappa  \star \chi E\kappa 

| E\kappa | is a

function of class C0,\gamma on \BbbC \setminus E\kappa . Therefore the limit in (4.34) exists.
Finally, by (4.36) and (2.5) we can take the number \varepsilon 0 in the statement of Theorem

1.1 so small that \bigm| \bigm| \bigm| \bigm| \Delta \kappa  \star \chi E\kappa 

| E\kappa | 
(z)

\bigm| \bigm| \bigm| \bigm| \leq 1, z \in \BbbC \setminus \partial E\kappa ,

which completes the proof of Lemma 4.4.

Remark 4.5. The hypothesis on the smallness of the third order derivatives of \kappa 
in (1.6) is used precisely in the last step of the proof of Lemma 4.4, to ensure that
the kernel \Delta \kappa provides a smooth Calder\'on--Zygmund operator (T in the notation of
Lemma 4.4) to which one can apply Lemma 2.1. Then, by (2.5), we have that \Delta \kappa (z)
is controlled by \| \Delta \kappa \| CZ, and by the definition (2.4), \| \Delta \kappa \| CZ can be controlled in
terms of the second and third derivatives of \kappa .

4.2.2. The security region. Recall that P\kappa is constant on E\kappa and thus the
Hessian of P\kappa vanishes on \r E\kappa . The Hessian of P\kappa has a jump at each point of the
ellipse \partial E\kappa . We define its value at z \in \partial E\kappa as

H(P\kappa )(z) = lim
E\kappa \not \ni w\rightarrow z

H(P\kappa )(w).
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3670 MATEU, MORA, RONDI, SCARDIA, AND VERDERA

Note that the limit above exists arguing as in the proof of Lemma 4.4.
We would like to find an expression for H(P\kappa )(z) at points z \in \partial E\kappa , and for that

we need first to prove tangential continuity of the second order derivatives of P\kappa . This
follows from applying Lemma 2.2 to first order derivatives of the potential (4.33).

More precisely, we have the following.

Lemma 4.6. Let E\kappa be the ellipse satisfying the first Euler--Lagrange condition.
Then any tangent vector at z \in \partial E\kappa is in the kernel of the symmetric operator
H(P\kappa )(z). As a consequence, the unitary normal vector \nu \kappa (z) is an eigenvector of
H(P\kappa )(z) and the matrix of H(P\kappa )(z) in the basis \{ \nu \kappa (z), \tau \kappa (z)\} is of the form\biggl( 

r\kappa (z) 0
0 0

\biggr) 
,

with r\kappa (z)\geq 1.

Proof. By Lemma 2.2 the Hessian H(P\kappa ) is continuous at each point of the ellipse
in the tangential direction, and being identically 0 on the interior of the ellipse one
concludes that H(P\kappa )(z)(\tau \kappa (z)) = 0, z \in \partial E\kappa .

Hence \tau \kappa (z) is an eigenvector of H(P\kappa ), with eigenvalue zero. Being H(P\kappa )
symmetric, we have that also \nu \kappa (z) is an eigenvector, and H(P\kappa ) is diagonal in the
basis \{ \nu \kappa (z), \tau \kappa (z)\} . Let r\kappa (z) denote the eigenvalue corresponding to the eigenvector
\nu \kappa (z); then r\kappa (z) is the limit of the Laplacian from the exterior of E\kappa at the point z,
which satisfies the required estimate by Lemma 4.4.

We recall that by the first Euler--Lagrange equation we have P\kappa (z) =C\kappa , z \in E\kappa .
We now define the security region, an elliptical annulus of E\kappa in the exterior domain,
where the second Euler--Lagrange condition is satisfied, even strictly. The idea is to
prove that P\kappa is increasing in the direction of the outer normal \nu \kappa , at least close to
\partial E\kappa .

Let z \in \partial E\kappa , and define the function

g\kappa : t\in [0,+\infty ) \mapsto \rightarrow P\kappa (z + t\nu \kappa (z)).

Note that (g\kappa )\prime (t) = \langle \nabla P\kappa (z+ t\nu \kappa (z)), \nu \kappa (z)\rangle . Since \nabla P\kappa is a continuous function on
\BbbC vanishing on E\kappa (again by the first Euler--Lagrange condition for E\kappa ), we have that
(g\kappa )\prime (0) = 0. Moreover, (g\kappa )\prime \prime (t) = \langle H(P\kappa )(z + t\nu \kappa (z))\nu \kappa (z), \nu \kappa (z)\rangle . By (2.6) each
second order derivative of P\kappa is continuous (in fact of class C0,\gamma ) up to the boundary
in \BbbC \setminus E\kappa , and so (g\kappa )\prime \prime (0) = \langle H(P\kappa )(z)\nu \kappa (z), \nu \kappa (z)\rangle = \langle r\kappa (z)\nu \kappa (z), \nu \kappa (z)\rangle = r\kappa (z),
where we have also used Lemma 4.6.

Since H(P\kappa ) is of class C0,\gamma , we have that

| (g\kappa )\prime \prime (t) - (g\kappa )\prime \prime (0)| \leq c| t| \gamma ,

where the constant c is independent of \kappa by Lemma 2.1 and assumption (1.6). In
particular,

(g\kappa )\prime \prime (t)\geq (g\kappa )\prime \prime (0) - c | t| \gamma = r\kappa (z) - c | t| \gamma \geq 1 - c | t| \gamma ,

and so there exists \delta > 0, independent of \kappa , such that if 0< t < \delta , then (g\kappa )\prime \prime (t)> 0.
This implies that (g\kappa )\prime is increasing in the interval [0, \delta ]. Since (g\kappa )\prime (0) = 0, then
(g\kappa )\prime (t) is positive close to zero, and so g\kappa is increasing close to zero. In other words,
P\kappa is strictly increasing in a \delta -strip around E\kappa . Let
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MINIMIZERS OF PERTURBED COULOMB ENERGIES 3671

N\kappa = \{ z \in \BbbR 2 : dist(z,E\kappa )< \delta \} ;

we call N\kappa \setminus E\kappa the security region. We have proved that P\kappa is increasing in N\kappa \setminus E\kappa .
Since P\kappa = C\kappa in E\kappa , by the first Euler--Lagrange equation, we have that P\kappa > C\kappa 

in N\kappa \setminus E\kappa .
In what follows, for brevity, we write \kappa \rightarrow 0 to mean that \kappa tends to 0 in the

space C3(\BbbT ), that is, the quantity

\| \kappa \| C3(\BbbT ) = sup
j\in \{ 0,1,2,3\} 

sup
| \xi | =1

\bigm| \bigm| \nabla j\kappa (\xi )
\bigm| \bigm| 

becomes as small as we wish.

4.3. Approximating ellipses. We now show that E\kappa and P\kappa are ``close"" to
B(0,1) and P 0, respectively, for \kappa small.

First of all, considering the system (4.22), we conclude that

a\kappa 
\kappa \rightarrow 0 -  -  - \rightarrow 1, b\kappa 

\kappa \rightarrow 0 -  -  - \rightarrow 1.

Moreover, the set E\kappa is close to B(0,1) in the Hausdorff distance for every \kappa with
\| \kappa \| C3(\BbbT ) small enough. In particular, this ensures that if \| \kappa \| C3(\BbbT ) is sufficiently small,
then there exists a positive number \gamma such that B(0,1 + \gamma )\subset N\kappa .

For the potentials, we have the following result.

Lemma 4.7. P\kappa converges to P 0 uniformly on \BbbC \setminus B(0,1 + \gamma ) as \kappa tends to 0.

Proof. We first estimate the terms involving \kappa . We have\bigm| \bigm| \bigm| \bigm| \biggl( \kappa  \star \chi E\kappa 

| E\kappa | 

\biggr) 
(z) - 

\biggl( 
\kappa  \star 

\chi B(0,1)

| B(0,1)| 

\biggr) 
(z)

\bigm| \bigm| \bigm| \bigm| 
\leq 
\bigm| \bigm| \bigm| \bigm| 1

| E\kappa | 
 - 1

| B(0,1)| 

\bigm| \bigm| \bigm| \bigm| | (\kappa  \star \chi E\kappa )(z)| + 1

| B(0,1)| 
\bigm| \bigm| \bigl( \kappa  \star \chi E\kappa  - \kappa  \star \chi B(0,1)

\bigr) 
(z)
\bigm| \bigm| 

\leq 
\bigm| \bigm| \bigm| \bigm| 1

| E\kappa | 
 - 1

| B(0,1)| 

\bigm| \bigm| \bigm| \bigm| \| \kappa \| \infty | E\kappa | + \| \kappa \| \infty 
| B(0,1)| 

(| E\kappa \setminus B(0,1)| + | B(0,1) \setminus E\kappa | ) ,

which tends to 0 with \kappa . Let us deal now with the terms involving the logarithm. Let
us remark that we can arrange things so that B(0,1)\cup E\kappa \subset B(0,1+\gamma )\subset N\kappa (\kappa close
enough to 0 in the C3-norm). To estimate\biggl( 

log | z|  \star \chi E
\kappa 

| E\kappa | 

\biggr) 
(z) - 

\biggl( 
log | z|  \star 

\chi B(0,1)

| B(0,1)| 

\biggr) 
(z)

we first note that the function above is harmonic in \BbbC \setminus (B(0,1) \cup E\kappa ) and vanishes
at \infty . Thus we only need to estimate that difference for z \in B(0,R) \setminus B(0,1 + \gamma )
for R large. Now when w \in B(0,1) \cup E\kappa and z \in B(0,R) \setminus B(0,1 + \gamma ) the quantity
| log | z - w| | is bounded by a constant depending only on R and the distance between
B(0,1) \cup E\kappa and \BbbR 2 \setminus B(0,1 + \gamma ), which is positive. Hence we can argue as we did
above in dealing with bounded kernels.

Finally, we show that, for \kappa small, the constants in the right-hand side of the
Euler--Lagrange conditions are close to the constants for \kappa = 0.

Lemma 4.8. The constants C\kappa converge to C0 as \kappa tends to 0.
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3672 MATEU, MORA, RONDI, SCARDIA, AND VERDERA

Proof. Since P\kappa is constant on E\kappa , we have in particular that

C\kappa = P\kappa (0) =
1

| E\kappa | 

\int 
E\kappa 

( - log | z| + \kappa (z)) dz.

Remark that \chi E\kappa (z) tends to \chi B(0,1)(z) as \kappa tends to 0, for each z /\in \partial B(0,1), and
apply the dominated convergence theorem to conclude the proof.

4.3.1. Proof of the second Euler--Lagrange condition (4.3). So far we
have shown in section 4.2.2 that P\kappa (z)>C\kappa for z in the security region N\kappa \setminus E\kappa . It
remains to show that P\kappa (z)\geq C\kappa outside N\kappa . To this aim we use the approximation
arguments in section 4.3, together with the fact that P 0 satisfies the first Euler--
Lagrange condition

P 0(z) =C0, z \in B(0,1),

and the second Euler--Lagrange condition in the strengthened form

(4.37) P 0(z)>C0, z /\in B(0,1)

(see, e.g., the proof in [1] for \alpha = 0).
Let z /\in N\kappa ; then, since B(0,1 + \gamma )\subset N\kappa , we have that z /\in B(0,1 + \gamma ), and thus

P 0(z) \geq C0 + \eta , for some positive \eta , by (4.37). If \| \kappa \| C3(\BbbT ) is sufficiently small, by
applying Lemmas 4.7 and 4.8, then for \varepsilon = \eta /3 we have

P\kappa (z)\geq C0 + \eta  - \varepsilon \geq C\kappa + \eta  - 2\varepsilon =C\kappa +
\eta 

3
>C\kappa , z /\in N\kappa ,

which completes the proof of the second Euler--Lagrange condition.

5. The higher-dimensional case. In this section we briefly illustrate the
higher-dimensional version of the perturbation result. Let d \geq 3, and let I\kappa denote
the functional defined on probability measures \mu \in \scrP (\BbbR d) as

(5.1) I\kappa (\mu ) =

\int 
\BbbR d

\int 
\BbbR d

W\kappa (x - y)d\mu (y)d\mu (x) +

\int 
\BbbR d

| x| 2 d\mu (x),

where the interaction potential W\kappa is given by

W\kappa (x) =
1

| x| d - 2
+ \kappa (x), x\in \BbbR d, x \not = 0,

with W\kappa (0) = +\infty , and \kappa is an even real-valued function, homogeneous of degree

2 - d and of class C3(\BbbR d\setminus \{ 0\} ). For simplicity, in this section we assume that \widehat W\kappa > 0
outside the origin and that \kappa is even in each variable separately.

The higher-dimensional version of Theorem 1.1, under these slightly simplified
assumptions, is the following.

Theorem 5.1. Let d \geq 3. There exists \varepsilon 0 > 0 such that if \kappa is a real-valued
function, homogeneous of degree 2  - d, even in each variable, of class C3 off the
origin, and satisfying the smallness condition

(5.2) | \nabla j\kappa (x)| \leq \varepsilon 0 for | x| = 1 and j \in \{ 0,1,2,3\} ,

and \widehat W\kappa > 0 outside the origin, then there exists an ellipsoid with interior E, defined
as in (2.9), such that the probability measure \chi E/| E| is the unique minimizer of the
energy (5.1).
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MINIMIZERS OF PERTURBED COULOMB ENERGIES 3673

Remark 5.2. The assumption on the positivity of \widehat W\kappa outside the origin is not too
restrictive and is considered only for the sake of simplicity. Indeed, using standard
properties of spherical harmonics one can prove that this condition is satisfied if \kappa is
assumed to be small enough in the C6-norm on the sphere (see also [14, page 70] and
[11, Lemma 6]).

Existence of a compactly supported minimizer of (5.1) is straightforward under
the assumptions of Theorem 5.1. Indeed, the overall potential

f(x, y) =W\kappa (x - y) +
1

2
(| x| 2 + | y| 2)

is lower semicontinuous and is bounded from below due to homogeneity of \kappa and
(5.2). Indeed, by homogeneity we have that | \kappa (x)| \leq | x| 2 - d sup| \xi | =1 | \kappa (\xi )| \leq \varepsilon 0| x| 2 - d,
and so W\kappa (x) \geq (1  - \varepsilon 0)| x| 2 - d > 0 if \varepsilon 0 < 1. In conclusion the energy I\kappa is lower
semicontinuous and bounded from below by the confinement. This guarantees the
existence of a compactly supported minimizer.

As for uniqueness, the assumption \widehat W\kappa (\xi )> 0 for \xi \not = 0 guarantees strict convexity
of the energy. For strictly convex energies the unique minimizer is characterized by
the Euler--Lagrange conditions, and in the following sections we show that they admit
a unique ellipsoid as a solution.

We follow the strategy of section 4, and we only highlight the changes due to the
higher-dimensional setting.

5.1. The first Euler--Lagrange condition. The first Euler--Lagrange condi-
tion for I\kappa in (5.1) is

(5.3) P\kappa (\mu )(x) =C for \mu -a.e. x\in supp\mu ,

where the potential P\kappa of \mu \in \scrP (\BbbR d) is defined as

P\kappa (\mu )(x) =

\biggl( 
1

| \cdot | d - 2
 \star \mu 

\biggr) 
(x) + (\kappa  \star \mu )(x) +

1

2
| x| 2, x\in \BbbR d.

Note that since \kappa is even in each variable, by uniqueness, the minimizer is symmetric
with respect to all coordinate axes; in particular, if the minimizer is an ellipsoid,
then it will be as in (2.9). As in the two-dimensional case, (5.3) is in fact equivalent
to the vanishing of the Hessian of the potential in E, since the potential is even by
assumption. We then focus on the system

(5.4) \partial ijP
\kappa 

\biggl( 
\chi E
| E| 

\biggr) 
= 0 in E, i, j = 1, . . . , d,

for which we want to exhibit a solution E, for \kappa small.
We start by evaluating the left-hand side of (5.4) on a generic ellipsoid as in (2.9),

by applying Lemma 2.3 with kernels H = \partial ijW
0, and H = \partial ij\kappa , where we denoted

W 0 = | \cdot | 2 - d. Note that (2.3) is satisfied for both kernels. Lemma 2.3 guarantees that

\partial ijP
\kappa 
\Bigl( 
\chi E

| E| 

\Bigr) 
is constant on E, and as in the two-dimensional case, we need to find an

ellipsoid E for which this constant is zero.
By the assumption that \kappa is even in each variable, the system (5.4) simplifies

greatly and reduces to the ``diagonal"" system

(5.5) \partial iiP
\kappa 

\biggl( 
\chi E
| E| 

\biggr) 
= 0 in E, i= 1, . . . , d,
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3674 MATEU, MORA, RONDI, SCARDIA, AND VERDERA

which is a system of d equations in d unknowns, namely the semi-axes a1, . . . , ad of
the ellipsoid (see Remark 4.2 for the case d = 2). Indeed, for i \not = j we have that the
distributional derivatives of W 0 and \kappa satisfy

\partial ijW
0 =p.v.\partial ijW

0, \partial ij\kappa =p.v.\partial ij\kappa ,

and hence condition (5.4), for i \not = j, reduces to

(5.6) p.v.

\int 
E

\partial ij

\biggl( 
1

| x| d - 2

\biggr) 
dx+p.v.

\int 
E

\partial ij\kappa (x)dx= 0,

where we have used Lemma 2.3 to replace convolution integrals with their evaluation
at the origin, which belongs to E. Condition (5.6) is clearly satisfied since each term
in the equation is the integral of an odd function in the variable xj on a symmetric
domain and hence is zero by Fubini's theorem (see Remark 4.2).

The system (5.5) can be made more explicit. First, for every i we have that

\partial iiW
0 =

\Biggl( \int 
| \xi | =1

\xi i \partial iW
0(\xi )d\sigma (\xi )

\Biggr) 
\delta 0 +p.v.\partial iiW

0,

\partial ii\kappa =

\Biggl( \int 
| \xi | =1

\xi i \partial i\kappa (\xi )d\sigma (\xi )

\Biggr) 
\delta 0 +p.v.\partial ii\kappa .

Hence, for x\in E,

(\partial iiW
0  \star \chi E)(x) =

\int 
| \xi | =1

\xi i \partial iW
0(\xi )d\sigma (\xi ) - 

\int 
| \xi | =1

log
\bigm| \bigm| \xi 
a

\bigm| \bigm| \partial iiW 0(\xi )d\sigma (\xi ),

(\partial ii\kappa  \star \chi E)(x) =

\int 
| \xi | =1

\xi i \partial i\kappa (\xi )d\sigma (\xi ) - 
\int 
| \xi | =1

log
\bigm| \bigm| \xi 
a

\bigm| \bigm| \partial ii\kappa (\xi )d\sigma (\xi ),
where we have used Lemma 2.3 and the shorthand

\bigm| \bigm| \xi 
a

\bigm| \bigm| 2 = \xi 21
a21

+ \cdot \cdot \cdot + \xi 2d
a2d
. We now define

Ii(\kappa ) :=

\int 
| \xi | =1

\xi i \partial i\kappa (\xi )d\sigma (\xi ) and Fi(a,\kappa ) := - 
\int 
| \xi | =1

log
\bigm| \bigm| \xi 
a

\bigm| \bigm| \partial ii\kappa (\xi )d\sigma (\xi ),
where a= (a1, . . . , ad), and set

Gi(a,\kappa ) :=

\int 
| \xi | =1

\xi i \partial iW
0(\xi )d\sigma (\xi ) - 

\int 
| \xi | =1

log
\bigm| \bigm| \xi 
a

\bigm| \bigm| \partial iiW 0(\xi )d\sigma (\xi )

+ Ii(\kappa ) + Fi(a,\kappa ) +
\omega d
d

d\prod 
j=1

aj ,

where \omega d is the surface measure of the unit sphere in \BbbR d. Then the system (5.5) is
equivalent to Gi(a,\kappa ) = 0 for i= 1, . . . , d.

We want to show that, for \kappa small as in Theorem 5.1, the system Gi(a,\kappa ) = 0
admits a solution ``close"" to the solution for \kappa = 0, by using the implicit function
theorem. Note that in the expression of Gi the kernel \kappa and its derivatives only
appear on the unit sphere, so the smallness assumption (5.2) on \kappa is exactly what is
needed there. Since the minimizer of I0 (corresponding to \kappa = 0) is the normalized
characteristic function of the ball centered at zero with radius (d - 2)

1
d , we have that

Gi((d - 2)
1
d ,0) = 0 (where with an abuse of notation we used the shorthand (d - 2)

1
d

to denote the vector in \BbbR d with entries all given by (d - 2)
1
d ).
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MINIMIZERS OF PERTURBED COULOMB ENERGIES 3675

We now examine Gi(a,\kappa ) = 0 for a close to (d - 2)
1
d and \kappa close to zero. To apply

the implicit function theorem we need to show that the (d\times d)-matrix with ij-entry
\partial Gi

\partial aj
((d - 2)

1
d ,0) is invertible. We have that

\partial Gi
\partial aj

((d - 2)
1
d ,0) = (d - 2)1 - 

1
d

\Biggl( 
d

\int 
| \xi | =1

\xi 2j \xi 
2
i d\sigma (\xi ) - 

\int 
| \xi | =1

\xi 2j d\sigma (\xi ) +
\omega d
d

\Biggr) 
.

Since
\int 
| \xi | =1

\xi 2j d\sigma (\xi ) is independent of j and

d\sum 
j=1

\int 
| \xi | =1

\xi 2j d\sigma (\xi ) = \omega d,

we have that
\int 
| \xi | =1

\xi 2j d\sigma (\xi ) =
\omega d

d , and so

(5.7)
\partial Gi
\partial aj

((d - 2)
1
d ,0) = d(d - 2)

d - 1
d

\Biggl( \int 
| \xi | =1

\xi 2j \xi 
2
i d\sigma (\xi )

\Biggr) 
.

We can easily see that the matrix with ij-entries as in (5.7) is positive semidefinite.
Indeed, for z \in \BbbR d, we have

d\sum 
i,j=1

\biggl( 
\partial Gi
\partial aj

((d - 2)
1
d ,0)

\biggr) 
zizj = d(d - 2)

d - 1
d

\int 
| \xi | =1

\biggl( d\sum 
j=1

zj\xi 
2
j

\biggr) 2

d\sigma (\xi )\geq 0.

On the other hand, if \int 
| \xi | =1

\biggl( d\sum 
j=1

zj\xi 
2
j

\biggr) 2

d\sigma (\xi ) = 0,

then by continuity it must be

d\sum 
j=1

zj\xi 
2
j = 0 for all \xi \in \BbbR d, | \xi | = 1.

Choosing \xi = ei, where ei is the ith coordinate vector, and varying i = 1, . . . , d, we
conclude that z = 0 and hence that the matrix \partial Gi

\partial aj
((d - 2)

1
d ,0) is positive definite and

invertible. By the implicit function theorem in Banach spaces (see, e.g., [3, statement
(10.2.1)]) we can then conclude that there exists a unique solution (a1(\kappa ), . . . , ad(\kappa ))
with ai close to (d - 2)

1
d for \kappa close to zero in the C2-norm on | \xi | = 1.

5.2. The second Euler--Lagrange condition. Let E\kappa = E(a1(\kappa ), . . . , ad(\kappa ))
be the unique solution of the Euler--Lagrange condition (5.3) found in the previous
section. Here we prove that

P\kappa (x)\geq C\kappa for x\in \BbbR d\setminus E\kappa ,

where the potential P\kappa is defined as

P\kappa (x) :=

\biggl( \biggl( 
1

| x| d - 2
+ \kappa (x)

\biggr) 
 \star 
\chi E\kappa 

| E\kappa | 

\biggr) 
(x) +

1

2
| x| 2, x\in \BbbR d,

and P\kappa (x) =C\kappa in E\kappa by the first Euler--Lagrange condition.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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The proof of the subharmonicity of the potential proceeds exactly as in the two-
dimensional case treated in section 4.2.1, once it is shown the higher-dimensional
equivalent of Lemma 4.4. This follows directly by the fact that for every x\in \partial E\kappa the
limit of \Delta P\kappa (y) as y\rightarrow x, for y /\in E\kappa , exists and satisfies the lower bound

(5.8) lim
E\kappa \not \ni y\rightarrow x

\Delta P\kappa (y)\geq d

2
,

provided \kappa is small enough. To see this, note that, for y /\in E\kappa ,

\Delta P\kappa (y) =

\biggl( 
\Delta \kappa  \star 

\chi E\kappa 

| E\kappa | 

\biggr) 
(y) + d,

and hence by Remark 4.5, provided \kappa is suitably small on the unit sphere, we can
ensure that (5.8) is satisfied. Indeed, we can estimate the convolution with \Delta \kappa with
\| \Delta \kappa \| CZ, and by the definition (2.4), \| \Delta \kappa \| CZ can be controlled in terms of the second
and third derivatives of \kappa on the unit sphere.

As for the approximation argument in section 4.3, we only need to ensure that
the potentials are ``close"" outside a neighborhood B(0, (d - 2)

1
d +\gamma ) of B(0, (d - 2)

1
d ),

namely of the minimizer of the functional I0 with \kappa = 0. We hence need the higher-
dimensional version of Lemma 4.7. Note that in this case the potential \kappa is not
bounded in \BbbR d, and hence the proof requires some modification. However, since by
homogeneity, | \kappa (x)| \leq | x| 2 - d sup| \xi | =1 | \kappa (\xi )| , which is small if x /\in B(0,R), with R

large, we can reduce to proving convergence in B(0,R)\setminus B(0, (d - 2)
1
d + \gamma ), where all

potentials are bounded.
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